WO2005075961A1 - 光輝感評価方法および光輝感評価装置 - Google Patents

光輝感評価方法および光輝感評価装置 Download PDF

Info

Publication number
WO2005075961A1
WO2005075961A1 PCT/JP2005/001475 JP2005001475W WO2005075961A1 WO 2005075961 A1 WO2005075961 A1 WO 2005075961A1 JP 2005001475 W JP2005001475 W JP 2005001475W WO 2005075961 A1 WO2005075961 A1 WO 2005075961A1
Authority
WO
WIPO (PCT)
Prior art keywords
image data
image
light
evaluation
glitter
Prior art date
Application number
PCT/JP2005/001475
Other languages
English (en)
French (fr)
Inventor
Shin Yamanaga
Tohru Hirayama
Original Assignee
Kansai Paint Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kansai Paint Co., Ltd. filed Critical Kansai Paint Co., Ltd.
Priority to JP2005517689A priority Critical patent/JPWO2005075961A1/ja
Publication of WO2005075961A1 publication Critical patent/WO2005075961A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/4738Diffuse reflection, e.g. also for testing fluids, fibrous materials

Definitions

  • the present invention relates to a glitter evaluation method and a glitter evaluation apparatus for evaluating the glitter of an object to be measured such as a glitter material-containing coating film.
  • Group A surface shape and surface layer properties such as glossiness / smoothness
  • Group B transparency, depth, two-layeredness, and flesh
  • Examples include the multilayer structure of the coating film such as a long-lasting feeling, and the oriented structure in the coating film such as Group C: shading feeling and glittering feeling.
  • Patent Document 1 discloses that an image obtained by photographing a coating film surface containing a radiant material that has been irradiated with light is divided into a number of sections, and a predetermined threshold value obtained for the brightness of all sections is subtracted from the brightness of each section.
  • a method is disclosed in which the subtraction value obtained in the above is evaluated in accordance with the total luminance summed up for all the compartments when the subtraction value is a positive value. According to this evaluation method, in the glitter evaluation when the brightness difference between samples is small, a sample showing a high correlation with the visual evaluation result, but having a large brightness difference of the glitter material (for example, Sufficient correlation cannot be obtained between silver metallic and low-brightness black metallic containing a small amount of aluminum.
  • Patent Document 2 and Non-Patent Document 1 analyze an image obtained by photographing a surface of a coating film containing a brilliant material irradiated with light, and classify light of the coating film into a “glitter feeling” and a “particle feeling”.
  • a method for quantitative evaluation is disclosed. According to this evaluation method, the magnitude of the “glitter feeling” and “particle feeling” of the paint color in a region having a relatively high brightness agrees well with the evaluation result by visual observation.
  • Patent Document 1 JP-A-10-170436
  • Patent Document 2 JP-A-2000-304696
  • Non-Patent Document 1 Toru Hirayama and 2 others, “Sensory Evaluation and Image Measurement of Micro Light (2nd Report)”, Research on Coatings, Kansai Paint Co., Ltd., July 2002, No. 138, p. 8—24
  • an object of the present invention is to provide a light evaluation method and a glitter evaluation device capable of accurately evaluating the light of an object to be measured.
  • the object of the present invention is a glitter evaluation method for evaluating the glitter of an object to be measured, which captures an image of a surface to be measured irradiated with light and converts image data including density information corresponding to each pixel. Acquiring the image data, performing a filtering process on the image data using an image filter for edge detection, and calculating using a predetermined threshold value based on the image data after the filtering process.
  • a light evaluation method comprising the steps of: acquiring light; and determining light based on the evaluation parameters.
  • the object of the present invention is to provide a glitter evaluation apparatus for evaluating the glitter of an object to be measured, a light irradiation apparatus for irradiating the object with illumination light, and a light irradiation apparatus for irradiating the object with light.
  • An image capturing apparatus that captures an object and generates image data including density information corresponding to each pixel; and an image analyzing apparatus that analyzes the image data. Then, a filtering process is performed using an image filter for edge detection, an evaluation parameter is obtained by calculating using a predetermined threshold based on the image data after the filtering process, and light is obtained based on the evaluation parameter. This is achieved by a light-S evaluation device characterized by discriminating.
  • FIG. 1 is a schematic configuration diagram of a glitter evaluation device according to one embodiment of the present invention.
  • FIG. 2 is a flowchart showing an embodiment of a glitter evaluation method using the glitter evaluation device shown in FIG. 1.
  • FIG. 3 is a view showing an example of an image obtained by imaging a coating film surface.
  • FIG. 4 is a diagram illustrating an example of a Sobel filter process.
  • FIG. 5 is a view showing an example of an image obtained by performing a Sobel filter process on an image obtained by imaging a coating film surface.
  • FIG. 6 is a density histogram corresponding to FIG.
  • FIG. 7 is a diagram showing an example of an image obtained by performing a binarization process on an image after the Sobel filter process.
  • FIG. 8 is a view showing an example of an optical S evaluation result according to the present invention.
  • FIG. 1 is a schematic configuration diagram of a glitter evaluation device according to one embodiment of the present invention.
  • the glitter evaluation device includes a light irradiation device 1 for irradiating a sample 10 as an object to be measured with illumination light, an imaging device 2 for imaging the light-irradiated sample 10, and an image pickup device 2. And an image analyzer 3 for analyzing the image data.
  • the light irradiation device 1 is preferably a device capable of irradiating simulated (artificial) sunlight, such as a halogen lamp or a metal halide lamp.
  • the light irradiation device 1 may be a fixed type in which the light irradiation angle is constant, or a variable angle type in which the light irradiation angle can be adjusted.
  • the light irradiation device 1 is configured so that light having a light source provided in the illumination unit la is irradiated from the irradiation terminal lc via the optical fiber cable lb. Obliquely above the surface to be imaged 1 so that it irradiates from
  • an image input element is a light receiving element, such as a CCD (Charge Coupled Device) camera or a CMOS (Complementary Metal Oxide Semiconductor) camera
  • the imaging device 2 preferably has an effective number of pixels of 60,000 to 10 million pixels, and preferably has a resolution of 8 to 16 bits per pixel.
  • the imaging apparatus 2 is preferably set so that the area of the sample 10 to be imaged is 26,400 ⁇ m 2 per pixel. In the present embodiment, the imaging device 2 is disposed immediately above the sample 10.
  • the image analysis device 3 includes a color image input unit 3a such as an image input board, an image processing unit 3b such as a CPU, and an output unit 3c such as a monitor. It is configured to perform image processing and output the result. Examples of the image analysis device 3 include a device in which image analysis software is installed in a personal computer (PC). A specific method of image processing in the image analysis device 3 will be described later.
  • a color image input unit 3a such as an image input board
  • an image processing unit 3b such as a CPU
  • an output unit 3c such as a monitor. It is configured to perform image processing and output the result.
  • Examples of the image analysis device 3 include a device in which image analysis software is installed in a personal computer (PC). A specific method of image processing in the image analysis device 3 will be described later.
  • the coated surface of the sample 10 having the coating film containing the glittering material is irradiated with the illuminating light from the light irradiation device 1 (Step Sl).
  • the glitter-containing coating film for example, a single layer containing a glitter pigment such as scaly aluminum powder, mica-like iron oxide, mica powder, and metal oxide-coated mica powder, which causes glitter or interference.
  • a coating film (hereinafter referred to as “coating a ”), a single-layer coating containing these glittering pigments in the same coating as the coloring pigment (hereinafter referred to as “coating b”), a colored base coating
  • a multi-layer coating film (hereinafter referred to as “coating film c”) consisting of a single-layer coating film a or a single-layer coating film b laminated on the film, and a clear coating film on coating film a, coating film b or coating film c.
  • coating d are laminated (hereinafter, referred to as “coating d”).
  • the coating film a or the coating film b is obtained by, for example, further mixing and dispersing a brilliant pigment and, if necessary, a coloring pigment in a thermosetting, thermoplastic, or room temperature curable resin composition. It can be obtained by applying an organic solvent-based or water-based paint to an object to be coated made of metal or plastic (for example, an automobile outer panel). When forming a coating film, Then, the paint may be applied directly, or the paint may be applied via an undercoat or, if necessary, an intermediate coat. In the formation of coating film c, a colored base coating film should be formed on the lower layer side of coating film a or coating b. In the formation of coating film d, the upper layer of coating film a, coating b or coating c V ⁇ .
  • the light irradiation angle of the light irradiation device 1 is preferably 7 to 80 degrees with respect to the vertical line (normal line) of the painted surface of the sample 10, preferably 15 75 degrees. More preferred.
  • the shape of the region irradiated with light on the painted surface of the sample 10 is circular in the present embodiment, but is not particularly limited.
  • the irradiation area on the coated surface of the sample 10 is not particularly limited, but is, for example, 1.5 to 50,000 mm 2 .
  • the illuminance of the irradiation light is, for example, 100 to 2,000 lux.
  • the imaging direction of the imaging device 2 is preferably a direction in which the specularly reflected light on the sample coating surface of the light irradiated from the light irradiation device 1 does not enter, and the angle between the imaging direction and the specularly reflected light is 10 One 80 degrees is preferred.
  • the sample 10 is irradiated obliquely from above, and images are taken from a direction perpendicular to the painted surface of the sample 10.
  • the measurement area 1 Oa on the painted surface of the sample 10 is not particularly limited as long as the area is uniformly irradiated with light, but includes the central part of the irradiated part and has an area of 110, 000mm 2 about the preferred tool 10- 600mm about 2 is more preferable.
  • the digital image picked up by the image pickup device 2 is a two-dimensional image composed of a large number (for example, 10,000 to 1,000,000) of pixels, and has density information corresponding to each pixel.
  • density refers to “a digital gradation corresponding to the brightness of a subject, which is a digital gradation indicating a grayscale value of each pixel forming a two-dimensional image”.
  • density of each pixel output from an 8-bit resolution CCD camera indicates a value of 0 255.
  • the density of each pixel increases as the intensity of reflected light from the glitter material contained in the coating film increases, and decreases as the intensity of reflected light decreases. Further, even if the intensity of the reflected light is the same, the density changes depending on the size, shape, reflection angle, material, and the like of the glittering material.
  • the digital image data obtained by the imaging device 2 is input to the image analysis device 3 (step S3).
  • Image analysis device 3 is a known, such as correction, adjustment, conversion, etc. Perform pre-processing as needed.
  • the preprocessing of the image in the image analysis device 3 may be performed on each of a plurality of images captured at different irradiation angles.
  • the density information of each coating color can be accurately obtained.
  • the density of each pixel is measured using the brightness scale ( It is possible to exemplify a method of replacing the lightness with a scale (equivalent scale).
  • the lightness scale includes, for example, * 3 * 1) * in the color system * (CIE 1976), L in the Hunter Lab color system, and the like.
  • the lightness function * was selected in consideration of the influence of ambient brightness during observation.
  • the * value is usually a value from 0 to 100, but in the present embodiment, it is assumed that even if the value is larger than 100, it exhibits a certain degree of regularity.
  • FIG. 3 shows an example of a digital image (original image before pre-processing) captured by the image capturing apparatus 2.
  • FIG. 3 (a) shows a digital image of a paint color having a large “particle feeling”.
  • 3 (b) is a bird's-eye view showing the density distribution of this digital image
  • Fig. 3 (c) is a digital image of paint color with small ⁇ particle feeling ''
  • Fig. 3 (d) is the density distribution of this digital image. It is a bird's-eye view.
  • the image data that has been subjected to the preprocessing in this manner is subjected to a filtering process using an image filter for edge detection in the image analysis device 3 (step S4).
  • this filter processing usually, in a state where the target pixel is made to correspond to the central element of the filter, the sum of values obtained by multiplying the density of the pixel corresponding to each element of the filter by a predetermined coefficient is given by This is the process of setting the density of the target pixel.
  • a typical example of the edge detection image filter is a Sobel filter.
  • FIG. 4 shows an example of a 3 ⁇ 3 size Sobel filter.
  • pixel e is focused.
  • the vertical direction filter processing value A obtained by the filtering by + 2 £ + 1 _ & _ 2 (1- 8 Deari lateral transverse filtered value B obtained by the filter processing by the edge detection image filter b is G + 2h + ia—2b_c.
  • the filtered density of the pixel e can be obtained by adding the absolute values of the vertical filtered value A and the horizontal filtered value B.
  • FIG. 5 shows an example of a digital image filtering process result.
  • FIG. 5 (a) is an image obtained by performing the filtering process on the digital image shown in FIG. 3 (a), and FIG. A bird's-eye view showing the density distribution in the image after this filter processing
  • Fig. 5 (c) is an image obtained by applying the above filter processing to the digital image shown in Fig. 3 (c)
  • Fig. 5 (d) is an image after this filter processing.
  • FIG. 4 is a bird's-eye view showing the concentration distribution in FIG.
  • FIGS. 6 (a) and 6 (b) show histograms corresponding to the concentration distributions of FIGS. 5 (b) and 5 (d).
  • the processing can be further performed using an image filter for detecting an edge in an oblique direction.
  • an image filter for detecting an edge in an oblique direction As the edge detection image filter, other filters such as a Laplacian filter may be used in addition to the Sobel filter, which is not particularly limited, as long as it has an edge enhancement function.
  • the image data that has been subjected to the filter processing is subsequently subjected to a binary filtering processing by a predetermined threshold in the image analysis device 3 (step S5).
  • the threshold value can be determined by a person skilled in the art of visual results based on experience and the like. More specifically, first, prepare a plurality of paint plates on which particles can be visually confirmed, from high-brightness paint color to low-brightness paint color, and rank them in descending order of the number of particles that can be visually confirmed. Then, a binarization process is performed on the filtered image of each painted plate using a predetermined threshold.
  • the threshold value is determined by performing the binarization process using various threshold values, and selecting a value such that the number of particles that can be confirmed in the binarized image has a correlation with the ranking result. Will be possible.
  • FIG. 7 shows an example of a result of the binarization processing.
  • FIG. 7 (a) shows an image obtained by performing the binarization processing on the image after the filter processing shown in FIG. 5 (a).
  • (b) is an image obtained by performing the binarization processing on the image after the filter processing shown in FIG. 5 (c).
  • the portions that appear white are the portions that are equal to or higher than the threshold value in the binarization process, and the portions of the glittering material particles that shine when the irradiated light is directly reflected in the coating film. Is equivalent to On the other hand, the part that looks black corresponds to the part with low brightness. As shown in Fig.
  • evaluation parameters are obtained by performing calculations using a predetermined threshold based on the image data after the filter processing, including the image data subjected to the binarization processing as described above. (Step S6). Then, the light on the painted surface is evaluated based on these evaluation parameters (step S7).
  • the evaluation parameters for evaluating the (light) M can be obtained by calculating the binarized image data, or a predetermined value can be obtained for the image data after the filter processing. It can also be obtained by calculating by applying a threshold value. For example, from the binarized image data, the number of granular sections (GN) and the percentage of granular section area (GD) can be calculated and used as evaluation parameters.
  • the number of granule sections (GN) is the number of sections having a grain shape in a binarized image, and corresponds to the number of glittering particles having a density equal to or higher than a threshold.
  • the grain section area ratio (GD) is a ratio of “the sum of the areas of the respective grain sections having a density equal to or higher than the threshold” to “the area of the entire image”.
  • a total density (TB), a background contrast (BC), and the like can be calculated and used as an evaluation parameter.
  • the total density (TB) is calculated by summing, for each section, the value obtained by subtracting the density power threshold value of the section having a density equal to or higher than the threshold value in the image after the filter processing.
  • the background contrast (BC) is calculated by subtracting the density of a section having a density less than the threshold value from the threshold value in the image after filtering from the threshold value for each section, and summing the value by a value less than the threshold value. It is obtained by dividing by the total area of the compartment having the concentration of
  • the evaluation of light can be performed by appropriately setting functions using these evaluation parameters.
  • the first principal component and the first principal component obtained by performing principal component analysis on features such as the number of granule sections (GN), the area fraction of grain sections (GD), the total density (TB), and the background contrast (BC)
  • GN number of granule sections
  • GD area fraction of grain sections
  • TB total density
  • BC background contrast
  • the evaluation parameters are obtained by two-dimensional FFT processing of image data or the like as disclosed in other known parameters (for example, as disclosed in Patent Document 2 and the like described above). Values relating to the periodicity of the light and shade to be obtained).
  • Coating Nos. 1 and 2 are high-brightness silver coatings using aluminum flakes of small particle size (particle size: about 10-15 ⁇ m).
  • the painted plate of paint color No. 3-5 is a high brightness silver paint color using aluminum flakes of medium particle size (particle size: about 15-25 ⁇ ).
  • the painted plate of paint color No. 6 is a high brightness silver paint color using aluminum flakes of large particle size (particle size: about 30 im).
  • the coating plate of coating color No. 710 is a high-brightness silver coating color using different types of high-brightness aluminum pigments.
  • the painted plates of paint colors No. 11 and 12 are white pearl paint colors with high brightness. Paint color No. 7-10
  • the silver paint color and paint color Nos. 11 and 12 can be clearly distinguished visually, but it is difficult to distinguish by quantitative evaluation using the conventional method. Was.
  • the glitter evaluation device As the glitter evaluation device, the same device as the configuration shown in FIG. 1 was used.
  • the light source of the light irradiation device 1 was a halogen lamp.
  • the image analysis software “1 ⁇ 00 ” manufactured by Mitani Shoji Co., Ltd. was used, and the statistical processing software “JUSE—Package SoftWareJ” manufactured by Japan Science and Technology Training Institute Co., Ltd. was used. Statistical processing was performed.
  • the measurement conditions are as follows: the angle between the irradiation direction by the light irradiation device 1 and the imaging direction by the imaging device 2 (the direction of incidence on the CCD force camera) is 15 degrees. The direction was perpendicular to the film surface. Before the measurement, the mirror surface white plate was photographed by the imaging device 2 and the exposure amount was calibrated and the V ⁇ appropriate gray level was set.
  • the ⁇ (gamma) value was adjusted to perform ⁇ (gamma) correction of the average value Dav, and the corrected density Dav 'after ⁇ correction was determined as the ⁇ value that maximized the correlation coefficient with *.
  • the ⁇ correction is a correction operation for adjusting a relative relationship between color data of an image or the like and a signal when the data is actually output to obtain a more natural display.
  • the ⁇ value is a ratio of a change in a voltage conversion value to a change in brightness of an image.
  • a first-order approximation formula of L * using the concentration of detection Dav ′ as a variable, that is, coefficients A and B at L * AX Dav ′ + B, were obtained. By using this linear approximation, it is possible to convert the density D of each pixel into a lightness scale.
  • the density of the digital image of paint color No. 112 in the present example was converted into a lightness scale. Since the value converted into the lightness scale exceeds 255 which is the maximum value of 8 bits, the converted value is multiplied by 0.14 in consideration of the processing in the post-process.
  • an 8-bit camera was used as the imaging device 2, so two different exposures were performed in one measurement so that the bright material-containing paint color could be clearly imaged over a wide range from low lightness to high lightness.
  • the dynamic range of the camera was artificially widened by capturing images at different amounts and combining the images.
  • the image data thus pre-processed was subjected to a filtering process using an image filter for edge detection composed of a Sobel filter. Then, the image data after the filter processing was further subjected to a binary image processing.
  • the threshold used for obtaining the evaluation parameters from the image data after the filtering is determined by the following method.
  • a high lightness (L *: about 100) paint color is used as a sample for determining the threshold value.
  • Six coated plates were prepared for visually confirming the stepwise change in the number of Lumiflake particles.
  • six coated plates were prepared with a low lightness (L *: about 10) paint color, which allows visual confirmation of the stepwise change in the number of aluminum flake particles. These coated plates were visually ranked in ascending order of the number of particles.
  • the lightness scale conversion is performed by the same method as described above on the densities of the images obtained by capturing these coated plates using the light evaluation device shown in FIG. 1, and the converted images are formed by a Sobel filter. Processed with an image filter for edge detection. The value after the brightness scale conversion was multiplied by 0.14 in the same manner as above. Then, binarization processing is performed on the filtered image using various thresholds, and among the thresholds, the number of particles that can be confirmed in the binarized image and the result of the visual ranking described above are shown. The threshold with the highest correlation was determined. As a result, in the present embodiment, it was found that the threshold value should be set at around 85 in the pixel density after the filter processing. Using the threshold value thus determined, the image after the filter processing of the paint colors No. 1-12 in the present embodiment was binarized.
  • statistics 1 to 4 are values obtained by standardizing the number of granular sections (GN), the area ratio of granular sections (GD), the total density (TB), and the background contrast (BC), respectively.
  • Principal component 1 and principal component 2 are obtained by performing principal component analysis on the values of these statistics 1 to 4, and the principal component 1 has a contribution rate of 0.887 and the principal component 2 has a contribution rate of 0.887.
  • the cumulative contribution ratio of Principal Component 1 and Principal Component 2 was 0.980, and Principal Component 1 and Principal Component 2 sufficiently contained information of the above four feature amounts, and corresponded to condensed information. It is thought that.
  • FIG. 8 shows the result of the mapping performed using the two principal components 1 and 2 obtained by the principal component analysis as factors.
  • a glitter evaluation method and a glitter evaluation device capable of accurately evaluating the light of an object to be measured.
  • a computer-color matching system for metallic and pearl paint colors can be constructed, and can be used for toning metallic paints, inks, and colorants for plastics containing a glittering material.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Coating Apparatus (AREA)
  • Spectrometry And Color Measurement (AREA)

Abstract

 被測定物の光輝感を評価する光輝感評価方法であって、光照射された被測定面を撮像し、各画素に対応した濃度情報を含む画像データを取得するステップ(S3)と、画像データに対して、エッジ検出用画像フィルタを用いてフィルタ処理を行うステップ(S4)と、フィルタ処理後の画像データに基づき所定の閾値を用いて演算することにより(S5)、評価パラメータを取得するステップ(S6)と、評価パラメータに基づいて、光輝感を判別するステップ(S7)とを備えることを特徴とする。この光輝感評価方法によれば、被測定物の光輝感を的確に評価することができる。  

Description

明 細 書
光輝感評価方法および光輝感評価装置
技術分野
[0001] 本発明は、光輝材含有塗膜などの被測定物の光輝感を評価するための光輝感評 価方法および光輝感評価装置に関する。
背景技術
[0002] 従来、塗膜の意匠性を高めるために、ソリッドカラー仕上げに代えて、りん片状のァ ルミ-ゥムゃ雲母粉末などの光輝材を含有した塗料によるメタリック仕上げが広く採 用されている。
[0003] また、塗膜の外観を評価するための基準として、例えば、 A群:光沢感ゃ平滑感な どの表面形状と表面層物性、 B群:透明感、深み感、 2層感および肉持感などの塗膜 の多層的構造、及び C群:陰影感ゃ光輝感などの塗膜内の配向的構造などが挙げら れる。
[0004] 前記基準のうち、光輝材含有塗膜において重要な C群の「光輝感」の定量的評価 方法として、特許文献 1、特許文献 2および非特許文献 1などに開示されている方法 が知られている。
[0005] 特許文献 1には、光照射した光輝材含有塗膜面を撮影した画像を多数の区画に分 割し、全ての区画の輝度力 得られた所定の閾値を各区画の輝度力 減算して求め た減算値が正の値のものを、全ての区画について総計した総輝度に従って評価する 方法が開示されている。この評価方法によれば、試料間の明度差が小さい場合の光 輝感評価においては、目視での評価結果と高い相関性を示す一方、光輝材の明度 差が大きい試料 (例えば、明度の高いシルバーメタリックと微量のアルミが入った明度 の低いブラックメタリック)間では、十分な相関性が得られない。
[0006] また、特許文献 2及び非特許文献 1には、光照射した光輝材含有塗膜面を撮影し た画像を解析し、塗膜の光 を「キラキラ感」と「粒子感」に分けてそれぞれ定量評 価する方法が開示されている。この評価方法は、比較的明度の高い領域の塗色につ ヽては前記「キラキラ感」や「粒子感」の大小が目視による評価結果とよく一致するが 、低明度の塗色や高明度であっても特定の種類の光輝材による塗色においては、前 記「キラキラ感」や「粒子感」に相当する値の大小だけでは光 を必ずしも判別でき ないおそれがあり、更に改良の余地があった。
特許文献 1:特開平 10— 170436号公報
特許文献 2:特開 2000— 304696号公報
非特許文献 1:平山徹、他 2名、「ミクロ光 の官能評価と画像計測 (第 2報)」、塗 料の研究、関西ペイント株式会社、平成 14年 7月、第 138号、 p. 8— 24
発明の開示
発明が解決しょうとする課題
[0007] そこで、本発明は、被測定物の光 ¾ϋを的確に評価することができる光 評価 方法および光輝感評価装置の提供を目的とする。
課題を解決するための手段
[0008] 本発明の前記目的は、被測定物の光輝感を評価する光輝感評価方法であって、 光照射された被測定面を撮像し、各画素に対応した濃度情報を含む画像データを 取得するステップと、前記画像データに対して、エッジ検出用画像フィルタを用いて フィルタ処理を行うステップと、フィルタ処理後の前記画像データに基づき所定の閾 値を用いて演算することにより、評価パラメータを取得するステップと、前記評価パラ メータに基づ ヽて、光 を判別するステップとを備える光 評価方法により達成 される。
[0009] また、本発明の前記目的は、被測定物の光輝感を評価する光輝感評価装置であつ て、被測定物に照明光を照射する光照射装置と、光照射された前記被測定物を撮 像し、各画素に対応した濃度情報を含む画像データを生成する撮像装置と、前記画 像データを解析する画像解析装置とを備え、前記画像解析装置は、前記画像デー タに対して、エッジ検出用画像フィルタを用いてフィルタ処理を行い、フィルタ処理後 の前記画像データに基づき所定の閾値を用いて演算することにより評価パラメータを 取得し、前記評価パラメータに基づ ヽて光 を判別することを特徴とする光 ¾S評 価装置により達成される。 図面の簡単な説明
[0010] [図 1]本発明の一実施形態に係る光輝感評価装置の概略構成図である。
[図 2]図 1に示す光輝感評価装置を用いた光輝感評価方法の一実施形態を示すフロ 一チャートである。
[図 3]塗膜面を撮像した画像の一例を示す図である。
[図 4]ソーベルフィルタ処理の一例を説明するための図である。
[図 5]塗膜面を撮像した画像に対してソーベルフィルタ処理を行った画像の一例を示 す図である。
[図 6]図 5に対応する濃度ヒストグラムである。
[図 7]ソーベルフィルタ処理後の画像に対して 2値化処理を行った画像の一例を示す 図である。
[図 8]本発明による光 ®S評価結果の一例を示す図である。
符号の説明
[0011] 1 光照射装置
2 撮像装置
3 画像解析装置
発明を実施するための最良の形態
[0012] 以下、本発明の実態形態について添付図面を参照して説明する。図 1は、本発明 の一実施形態に係る光輝感評価装置の概略構成図である。図 1に示すように、光輝 感評価装置は、被測定物である試料 10に対して照明光を照射する光照射装置 1と、 光照射された試料 10を撮像する撮像装置 2と、撮像された画像データを解析する画 像解析装置 3とを備えている。
[0013] 光照射装置 1は、擬似 (人工)太陽光を照射できる装置であることが好ましぐ光源と して、例えばハロゲンランプ、メタルハライドランプなどを挙げることができる。光照射 装置 1は、光照射角度が一定である固定型であってもよぐ或いは、光照射角度を調 整可能な角度可変型であってもよい。光照射装置 1は、本実施形態においては、照 明ュュット la内に設けられた光源力もの光が、光ファイバケーブル lbを介して照射 端末 lcから照射されるように構成されており、試料 10の被撮像面に対して斜め上方 から照射するように設置して 1、る。
[0014] 撮像装置 2は、 CCD (Charge Coupled Device)カメラや、 CMOS (Complementary Metal Oxide Semiconductor)カメラなどのように、画像入力素子が受光素子からなる 装置を好ましく用いることができる。より具体的には、撮像装置 2は、有効画素数が 6 万から 1000万画素であることが好ましく、 1画素の分解能が 8— 16ビットであることが 好ましい。この撮像装置 2は、試料 10の被撮像面積が 1画素あたり 2 6400 μ m2と なるように設定されることが好ましい。本実施形態においては、撮像装置 2は、試料 1 0の直上に配置されている。
[0015] 画像解析装置 3は、画像入力ボードなどカゝらなる画像入力部 3a、 CPUなどの画像 処理部 3b、モニタなどの出力部 3cを備えており、入力された画像データに対して画 像処理を行い、その結果を出力可能に構成されている。画像解析装置 3としては、例 えば、パーソナルコンピュータ(PC)に画像解析ソフトウェアをインストールしたものを 挙げることができる。画像解析装置 3における画像処理の具体的な方法にっ 、ては 後述する。
[0016] 次に、前記光輝感評価装置を用いて光輝感を評価する方法を、図 2に示すフロー チャートを参照しながら説明する。
[0017] まず、光輝材を含有する塗膜を有する試料 10の塗面に対し、光照射装置 1から照 明光を照射する (ステップ Sl)。光輝材含有塗膜としては、例えば、りん片状のアルミ ニゥム粉末、雲母状酸化鉄、雲母粉末、金属酸化物被覆雲母粉末などのキラキラ感 や干渉作用を生じさせる光輝性顔料を含有する単層塗膜 (以下、「塗膜 a」という)、こ れらの光輝性顔料が着色顔料と同一塗膜中に含まれる単層塗膜 (以下、「塗膜 b」と いう)、着色ベース塗膜上に単層塗膜 a又は単層塗膜 bを積層してなる複層塗膜 (以 下、「塗膜 c」という)、塗膜 a,塗膜 b又は塗膜 cにクリヤー塗膜が積層されてなる複層 塗膜 (以下、「塗膜 d」という)などを挙げることができる。
[0018] 塗膜 a又は塗膜 bは、例えば、熱硬化性、熱可塑性、又は常温硬化性の榭脂組成 物に光輝性顔料や、必要に応じて着色顔料などを更に混合分散してなる有機溶剤 系または水系塗料を、金属製又はプラスチック製の被塗装物 (例えば自動車外板な ど)に塗装することによって得ることができる。塗膜の形成においては、被塗装物に対 して塗料を直接塗布してもよぐ或いは、下塗塗装や必要に応じてさらに中塗塗装を 介して塗料を塗布してもよい。塗膜 cの形成においては、塗膜 a又は塗膜 bの下層側 に着色ベース塗膜を形成すればよぐ塗膜 dの形成においては、塗膜 a,塗膜 b又は 塗膜 cの上層側にタリヤー塗料を塗装すればよ Vヽ。
[0019] 光照射装置 1による光照射角度は、試料 10の塗面の鉛直線 (法線)に対し、 7— 80 度傾斜していることが好ましぐ 15 75度傾斜していることがより好ましい。試料 10の 塗面において光照射される領域の形状は、本実施形態においては円形としているが 、特に限定されるものではない。試料 10の塗面における照射面積についても特に限 定はないが、例えば、 1. 5— 50, 000mm2である。照射光の照度は、例えば、 100 一 2, 000ルクス(lux)である。
[0020] 次に、光照射された試料 10の塗面を撮像装置 2により撮像する (ステップ S2)。撮 像装置 2の撮像方向は、光照射装置 1から照射された光の試料塗面における正反射 光が入射しない方向であることが好ましぐ撮像方向と正反射光とのなす角度は、 10 一 80度が好ましい。本実施形態においては、試料 10を斜め上方から照射し、試料 1 0の塗面に対して垂直な方向から撮像している。試料 10の塗面における測定領域 1 Oaは、均一に光が照射されている範囲であれば特に限定されるものではなレ、が、照 射部分の中央部を含み、面積が 1一 10, 000mm2程度が好ましぐ 10— 600mm2 程度がより好ましい。
撮像装置 2で撮像されたデジタル画像は、多数 (例えば、 10, 000- 1, 000, 000 個)の画素から構成される 2次元画像であり、各画素に対応する濃度情報を有する。 本明細書において、「濃度」とは、「2次元画像を構成する画素毎の濃淡値を示すデ ジタル階調であり、被写体の明るさに対応するデジタル量」を意味する。例えば 8ビッ ト分解能の CCDカメラから出力される各画素の濃度は、 0 255の値を示す。
[0021] 各画素の濃度は、塗膜に含まれる光輝材による反射光の強度が強い部分ほど高く なり、反射光の強度が弱い部分ほど低くなる。また、反射光の強度が同じであっても、 光輝材の大きさ、形状、反射角度、材質などによって濃度が変化する。
[0022] 撮像装置 2により得られたデジタル画像データは、画像解析装置 3に入力される (ス テツプ S3)。画像解析装置 3は、視感度に合わせて、補正、調整、変換などの公知の 前処理を必要に応じて行う。画像解析装置 3における画像の前処理は、照射角度を 変えてそれぞれ撮像した複数の画像に対してそれぞれ行ってもよい。
[0023] 撮像された画像データに施す前処理としては、明度尺度変換を行うことが特に好ま しく、これによつて、撮像装置 2の露光量などに拘わらず、高明度色から低明度色ま で各塗色の濃度情報を的確に得ることができる。具体的には、国際照明委員会( Commission Internationale del'Eclairage、 CIE)等で定義された、明度尺度と視感 反射率との関係を表す明度関数を用いて、各画素の濃度を明度尺度(明度を等歩 度に目盛った尺度)に置き換える方法を例示することができる。明度尺度としては、例 えば、 * 3 * 1) *表色系にぉける * (CIE 1976)や、ハンター Lab表色系におけ る Lなどが挙げられるが、本実施形態においては、明度関数が観察時の周囲の明る さの影響を受けることを考慮して、 *を選択した。 *値は、通常は 0— 100の値で あるが、本実施形態においては、 100より大きな値であってもある程度の等間隔性を 示すと仮定した。
[0024] 図 3は、撮像装置 2により撮像されたデジタル画像 (前処理前のオリジナル画像)の 一例を示しており、図 3 (a)は「粒子感」の大きい塗色のデジタル画像、図 3 (b)はこの デジタル画像の濃度分布を示す鳥瞰図、図 3 (c)は「粒子感」の小さレ、塗色のデジタ ル画像、図 3 (d)はこのデジタル画像の濃度分布を示す鳥瞰図である。
[0025] こうして前処理が行われた画像データは、引き続き画像解析装置 3において、エッジ 検出用画像フィルタを用いたフィルタ処理が施される(ステップ S4)。このフィルタ処 理は、通常は、フィルタの中心要素に注目画素を対応させた状態で、フィルタの各要 素に対応する画素の濃度にそれぞれ所定の係数を乗じて得た値の合計値を、注目 画素の濃度として設定する処理である。
[0026] エッジ検出用画像フィルタの代表例として、ソーベルフィルタが挙げられる。図 4は、 3 X 3サイズのソーベルフィルタの一例を示している。図 4に示すように、デジタル画 像にお V、てそれぞれ a iの濃度情報を有する画素 (それぞれ画素 a— iとする)のうち 、画素 eに注目すると、縦方向のエッジ検出用画像フィルタ aによるフィルタ処理によ つて得られた縦方向フィルタ処理値 Aは、。+ 2£+1_&_2(1—8でぁり、横方向のエッジ 検出用画像フィルタ bによるフィルタ処理によって得られた横方向フィルタ処理値 Bは 、 g + 2h+i-a— 2b_cである。画素 eのフィルタ処理後の濃度は、前記縦方向フィルタ 処理値 Aおよび横方向フィルタ処理値 Bの絶対値を加算することにより得られる。
[0027] 図 5は、デジタル画像のフィルタ処理結果の一例を示しており、図 5 (a)は図 3 (a)に 示すデジタル画像に前記フィルタ処理を施した画像、図 5 (b)はこのフィルタ処理後 の画像における濃度分布を示す鳥瞰図、図 5 (c)は図 3 (c)に示すデジタル画像に前 記フィルタ処理を施した画像、図 5 (d)はこのフィルタ処理後の画像における濃度分 布を示す鳥瞰図である。また、図 5 (b)及び図 5 (d)の濃度分布に対応するヒストグラ ムを図 6 (a)及び図 6 (b)に示す。
[0028] 前記のソーベルフィルタ処理においては、必要に応じて斜め方向のエッジ検出用 画像フィルタを更に用いて処理することもできる。また、エッジ検出用画像フィルタとし ては、エッジ強調機能を有するものであれば特に制限はなぐソーベルフィルタ以外 にラプラシアンフィルタなど他のフィルタを使用してもよい。
[0029] フィルタ処理後の画像データは、引き続き画像解析装置 3において、所定の閾値に より 2値ィ匕処理される (ステップ S 5)。閾値の決定は、目視結果力 当業者が経験など に基づいて決定することができる。より詳細には、まず、目視によって粒子が確認でき る塗板を高明度塗色力 低明度塗色まで複数用意し、目視で確認できる粒子の数が 多い順に順位付けしておく。そして、各塗板のフィルタ処理後の画像に対して所定の 閾値を用いて 2値化処理を行う。閾値の決定は、 2値化処理を種々の閾値を用いて 行い、 2値化された画像で確認できる粒子数が、前記順位付けの結果と相関性が得 られるような値を選択することで可能になる。
[0030] 図 7は、 2値化処理結果の一例を示しており、図 7 (a)は図 5 (a)に示すフィルタ処理 後の画像に前記 2値化処理を施した画像、図 7 (b)は図 5 (c)に示すフィルタ処理後 の画像に前記 2値化処理を施した画像である。図 7 (a)及ぴ (b)において、白く見える 部分は、 2値化処理における閾値以上の部分であり、照射された光が塗膜中で正反 射して輝きを生じる光輝材粒子部分に相当する。一方、黒く見える部分は、輝きの低 い部分に相当する。図 7 (a)及び (b)に示すように、 2値化処理によって輝きを生じる 光輝材粒子の輪郭が明確に表示されており、図 7 (a)及び図 7 (b)間で粒子数の違 いが明瞭に表現されている。本実施形態においては、光 の評価を簡便に行うた めに閾値を 1つのみ設定している力 複数の閾値のそれぞれに対して 2値化処理さ れた画像を生成して、後述する光 ®Sの評価を行ってもょレ、。
[0031] 本実施形態においては、このように 2値化処理された画像データも含めて、フィルタ 処理後の画像データに基づき所定の閾値を用いて演算することにより、評価パラメ一 タを取得する(ステップ S6)。そして、これらの評価パラメータに基づいて、塗面の光 を評価する(ステップ S 7)。
[0032] 光) Mを評価するための評価パラメータは、 2値化処理された画像データを演算す ることにより取得することも可能であり、或いは、フィルタ処理後の画像データに対し て所定の閾値を適用して演算することにより取得することもできる。例えば、 2値化処 理された画像データからは、粒形区画数 (GN)や、粒形区画面積率 (GD)などを算 出して、評価パラメータとすることができる。粒形区画数 (GN)は、 2値化処理された 画像における粒形状を有する区画の数であり、閾値以上の濃度を有する光輝材粒 子の個数に相当する。また、粒形区画面積率 (GD)は、「画像全体の面積」に対する 「閾値以上の濃度を有する各粒形状区画の面積の総和」の比率である。
[0033] 一方、フィルタ処理後の画像データからは、例えば、総濃度 (TB)や、背景コントラ スト(BC)などを算出して、評価パラメータとすることができる。総濃度 (TB)は、フィル タ処理後の画像において閾値以上の濃度を有する区画の濃度力 閾値を減算した 値を、各区画について総和することにより算出される。また、背景コントラスト (BC)は 、フィルタ処理後の画像にお Vヽて閾値未満の濃度を有する区画の濃度を閾値から減 算した値を各区画につ V、て総和した値を、閾値未満の濃度を有する区画の総面積 で除算することにより得られる。
[0034] 光 の評価は、これらの評価パラメータを用いた関数を適宜設定することにより 行うことができる。例えば、粒形区画数 (GN)、粒形区画面積率 (GD)、総濃度 (TB) 、背景コントラスト (BC)などの特徴量を主成分分析することにより得られた第 1主成 分及び第 2主成分を、 2次元座標軸上にプロットしてグループ化することにより、光輝 感を評価することができる。
[0035] また、光) «の評価は、前記評価パラメータを、他の公知のパラメータ(例えば、前 記特許文献 2などに開示されているように、画像データの 2次元 FFT処理等により得 られる濃淡の周期性に関する値)と組み合わせて行うこともできる。
[0036] また、光照射角度が異なる複数の画像に基づ!/、て、前記フィルタ処理後の画像デ ータを複数取得した場合には、各画像の評価パラメータを対比することにより、光輝 感の評価を行うこともできる。
実施例
[0037] 以下、実施例に基づき本発明をより詳細に説明する。但し、本発明が、以下の実施 例に限定されるものではな 、。
[0038] (試料の準備)
試料として用いた 12枚の塗板 (塗色 No. 1— 12)は、「粒子感」、「キラキラ感」がそ れぞれ異なる高明度塗色を選択した。塗色 No. 1及び 2の塗板は、小粒径 (粒子径: 約 10— 15 μ m)のアルミフレークが用いられた高明度シルバー塗色である。塗色 No . 3— 5の塗板は、中粒径 (粒子径:約 15— 25 μ πι)のアルミフレークが用いられた高 明度シルバー塗色である。塗色 No. 6の塗板は、大粒径 (粒子径:約 30 i m)のアル ミフレークが用いられた高明度シルバー塗色である。また、塗色 No. 7 10の塗板 は、それぞれ異なる種類の高輝度アルミ顔料が使用されて Vヽる高明度シルバー塗色 である。塗色 No. 11及び 12の塗板は、高明度のホワイトパール塗色である。塗色 N o. 7— 10のシルバー塗色と塗色 No. 11及び 12のホワイトパール塗色とは、目視で は明確に判別可能であるが、従来方法による定量評価では判別が困難であった。
[0039] (試料の測定)
光輝感評価装置として、図 1に示す構成と同様の装置を使用した。光照射装置 1の 光源は、ハロゲンランプを使用した。また、画像解析装置 3における画像解析には、 三谷商事 (株)製の画像解析ソフト「 1^00 を使用し、(株)日本科学技術研修所 製の統計処理ソフト「JUSE— Package SoftWareJを用!/、て統計処理を行った。
[0040] 測定条件は、光照射装置 1による照射方向と、撮像装置 2による撮像方向(CCD力 メラへの入射方向)との角度を 15度とし、撮像装置 2による撮像方向は、試料の塗膜 表面に対して垂直な方向とした。測定前に、撮像装置 2により鏡面白磁板を撮影して 露光量の校正を行 V \適正グレイレベルの設定を行った。
[0041] 前記 12枚の塗板 (塗色 No. 1— 12)の塗膜表面を順次撮影し、得られた各デジタ ル画像の濃度情報の明度尺度変換を前処理として行った。本実施例にお!/、ては、 明度尺度変換を以下の方法で行った。
[0042] まず、白力 黒まで明度を段階的に変化させた、光輝材を含まない無彩色塗板の サンプルを 7枚用意した。次に、各サンプルの明度 (L *値)を、分光測色計を用いて 測定した。分光測色計は、光照射装置 1による照射方向と分光測色計への入射方向 との角度が 15度となり、分光測色計への入射方向が試料の塗膜表面に対して垂直 な方向となるように設置した。ついで、図 1に示す光輝感評価装置を用いて各サンプ ルを撮影し、各サンプルのデジタル画像における各画素濃度 Dの平均値 Davを求め た。次に、 γ (ガンマ)値を調整して平均値 Davの γ (ガンマ)補正を行い、 γ補正後 の補正濃度 Dav'とし *との相関係数が最も大きくなるような γ値を求めた。ここで、 γ補正とは、画像などの色のデータと、それが実際に出力される際の信号との相対 関係を調節して、より自然に近い表示を得るための補正操作である。また、 γ値とは 、画像の明るさの変化に対する電圧換算値の変化の比である。次に、捕正濃度 Dav 'を変数とした L *の 1次近似式、すなわち L * =AX Dav' +Bにおける係数 A及び Bを求めた。この 1次近似式を用いることにより、画素毎の濃度 Dを明度尺度変換する ことが可能になる。
[0043] 前記 1次近似式を用いて、本実施例における塗色 No. 1 12のデジタル画像の濃 度を明度尺度変換した。尚、明度尺度変換した値が 8ビットの最大値である 255を超 えるものがあるために、後工程における処理も考慮して、変換後の値を 0. 14倍した。 また、本実施例においては、撮像装置 2として 8ビットカメラを使用したため、低明度か ら高明度まで広範囲にわたって光輝材含有塗色を明瞭に撮像できるように、 1回の 測定において 2つの異なる露光量で撮像し、画像を合成することによりカメラのダイナ ミックレンジを擬似的に広くした。
[0044] こうして前処理が行われた画像データに対して、ソーベルフィルタからなるエッジ検 出用画像フィルタを用いてフィルタ処理を施した。そして、フィルタ処理後の画像デー タをさらに 2値ィ匕処理した。本実施例においては、フィルタ処理後の画像データから 評価パラメータを得るために用いる閾値を、以下の方法により決定した。
[0045] まず、閾値を決定するためのサンプルとして、高明度 (L *: 100程度)の塗色で、ァ ルミフレーク粒子数の段階的な変化を目視確認できる 6枚の塗板を用意した。更に、 低明度 (L *: 10程度)の塗色で、アルミフレーク粒子数の段階的な変化を目視確認 できる 6枚の塗板を用意した。これらの塗板に対しては、目視により粒子数の少なレ、も のから順に順位付けを行った。
[0046] 次に、これらの塗板を図 1に示す光 評価装置により撮像した画像の濃度に対し て、上記と同様の方法で明度尺度変換を行い、変換後の画像をソーベルフィルタか らなるエッジ検出用画像フィルタで処理した。尚、明度尺度変換後の値は、上記と同 様に 0. 14倍した。そして、フィルタ処理後の画像に対して種々の閾値を用いて 2値 化処理を行い、各閾値のうち、 2値化された画像で確認できる粒子数と、前記目視に よる順位付けの結果との相関性が最も高い閾値を求めた。この結果、本実施例にお いては、フィルタ処理後の画素濃度において、 85付近に閾値を設定すれば良いこと がわ力 た。こうして決定された閾値を用いて、本実施例における塗色 No. 1— 12の フィルタ処理後の画像を 2値化処理した。
[0047] 塗色 No. 1— 12のフィルタ処理後の画像データ力 前記閾値を用いて演算した粒 形区画数 (GN)、粒形区画面積率 (GD)、総濃度 (TB)及び背景コントラスト (BC)を 表 1に示す。これらの特徴量を標準化して、統計分析手法 (多変量解析手法)の 1つ である主成分分析を行った。標準化は、各特徴量の平均値と分散を求め、平均値が 0で分散が 1となるように行うものである。塗色 No. 1 12の塗板を対象に、標準化及 び主成分分析を行つた結果を表 2に示す。
[0048] [表 1]
Figure imgf000014_0001
[0049] [表 2]
Figure imgf000014_0002
[0050] 表 2において、統計量 1一 4は、それぞれ粒形区画数 (GN)、粒形区画面積率 (GD )、総濃度 (TB)及び背景コントラスト (BC)を標準化した値である。主成分 1及び主成 分 2は、これら統計量 1一 4の値を主成分分析することにより得られるものであり、主成 分 1の寄与率は 0. 887、主成分 2の寄与率は 0. 093で、主成分 1及び主成分 2の累 積寄与率は 0. 980となり、主成分 1及び主成分 2が、上記 4つの特徴量の情報を十 分に含み、凝縮した情報に相当すると考えられる。
[0051] 上記主成分分析により得られた 2つの主成分 1及び主成分 2を因子としたマップィ匕 を行った結果を、図 8に示す。
[0052] 図 8に示すように、 2つの主成分を因子としたマップにおいて、塗色 No. 1及び 2、 塗色 No. 3— 5、塗色 No. 6、塗色 No. 7— 10、及び塗色 No. 11 12力 それぞれ 異なる領域にプロットされる結果となった。これにより、実際に光 の異なる塗色に 対し、本実施例の方法により光輝性の違いを判別可能であることを確認した。特に、 従来法による評価では判別し難い塗色 No. 7 10及び塗色 No. 11 12を明確に 判別できたことは、本発明による大きな効果であると考えられる。本実施例の結果か ら、粒形区画数 (GN)、粒形区画面積率 (GD)、総濃度 (TB)及び背景コントラスト( BC)は、光 βを評価するための評価パラメータとして有効であると考えられる。 産業上の利用可能性
以上のように、本発明によれば、被測定物の光 を的確に評価することができる 光輝感評価方法および光輝感評価装置を提供することができる。これにより、例えば 、メタリック ·パール塗色のコンピュータ 'カラーマッチングシステムの構築を図ることが でき、光輝材を含有するメタリック塗料、インク、プラスチック用着色剤などの調色に利 用することができる。

Claims

請求の範囲
[1] 被測定物の光輝感を評価する光輝感評価方法であって、
光照射された被測定面を撮像し、各画素に対応した濃度情報を含む画像データを 取得するステップと、
前記画像データに対して、エッジ検出用画像フィルタを用いてフィルタ処理を行うス テツプと、
フィルタ処理後の前記画像データに基づき所定の閾値を用レ、て演算することにより 、評価パラメータを取得するステップと、
前記評価パラメータに基づ Vヽて、光 βを判別するステップとを備える光 評価 方法。
[2] 前記評価パラメータを取得するステップは、フィルタ処理後の前記画像データに対し て前記閾値を適用して演算した総濃度 (ΤΒ)又は背景コントラスト (BC)の少なくとも
1つを取得するステップを備える請求項 1に記載の光 評価方法。
[3] 前記評価パラメータを取得するステップは、フィルタ処理後の前記画像データを前記 閾値により 2値化処理するステップと、
2値ィ匕処理された前記画像データを演算するステップとを備える請求項 1に記載の 光輝感評価方法。
[4] 2値化処理された前記画像データを演算するステップは、粒形区画数 (GN)又は粒 形区画面積率 (GD)を少なくとも 1つを取得するステップを備える請求項 3に記載の 光輝感評価方法。
[5] 前記評価パラメータを取得するステップは、
フィルタ処理後の前記画像データに対して前記閾値を適用して演算した総濃度 (T B)及ぴ背景コントラスト (BC)を取得するステップと、
フィルタ処理後の前記画像データを前記閾値により 2値化処理するステップと、
2値化処理された前記画像データを演算して粒形区画数 (GN)及び粒形区画面積 率 (GD)を取得するステップとを備え、
前記光輝感を判別するステップは、少なくとも前記総濃度 (TB)、背景コントラスト( BC)、粒形区画数 (GN)及び粒形区画面積率 (GD)に基づいて演算するステップを 備える請求項 1に記載の光輝感評価方法。
[6] 前記光輝感を判別するステップは、少なくとも前記総濃度 (TB)、背景コントラスト (B
C)、粒形区画数 (GN)及び粒形区画面積率 (GD)を特徴量として主成分分析する ステップを備える請求項 5に記載の光輝感評価方法。
[7] 前記フィルタ処理を行うステップの前に、前記画像データに含まれる前記濃度情報を 明度尺度変換するステップを更に備える請求項 1に記載の光輝感評価方法。
[8] 前記エッジ検出用画像フィルタは、ソーベルフィルタである請求項 1に記載の光 ffig 評価方法。
[9] 被測定物の光 を評価する光 評価装置であって、
被測定物に照明光を照射する光照射装置と、
光照射された前記被測定物を撮像し、各画素に対応した濃度情報を含む画像デ ータを生成する撮像装置と、
前記画像データを解析する画像解析装置とを備え、
前記画像解析装置は、前記画像データに対して、エッジ検出用画像フィルタを用 V、てフィルタ処理を行 V、、フィルタ処理後の前記画像データに基づき所定の閾値を 用いて演算することにより評価パラメータを取得し、前記評価パラメータに基づいて 光) «を判別することを特徴とする光 評価装置。
PCT/JP2005/001475 2004-02-03 2005-02-02 光輝感評価方法および光輝感評価装置 WO2005075961A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005517689A JPWO2005075961A1 (ja) 2004-02-03 2005-02-02 光輝感評価方法および光輝感評価装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004027085 2004-02-03
JP2004-027085 2004-02-03

Publications (1)

Publication Number Publication Date
WO2005075961A1 true WO2005075961A1 (ja) 2005-08-18

Family

ID=34835881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001475 WO2005075961A1 (ja) 2004-02-03 2005-02-02 光輝感評価方法および光輝感評価装置

Country Status (2)

Country Link
JP (1) JPWO2005075961A1 (ja)
WO (1) WO2005075961A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246347A (ja) * 2007-03-29 2008-10-16 National Univ Corp Shizuoka Univ メタリック塗装数値化方法および数値化装置
WO2019177145A1 (ja) 2018-03-16 2019-09-19 コニカミノルタ株式会社 光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法
JP2021018149A (ja) * 2019-07-19 2021-02-15 三友工業株式会社 撮像情報分類システム、撮像情報分類方法、撮像情報分類プログラム及び表面判別装置
CN113939729A (zh) * 2019-06-28 2022-01-14 关西涂料株式会社 光辉性颜料判定方法、光辉性颜料判定装置以及光辉性颜料判定程序
JP7157355B1 (ja) 2021-06-04 2022-10-20 ダイキン工業株式会社 評価方法、評価装置及びコンピュータプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161042A (ja) * 1984-08-27 1986-03-28 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー メタリツク粒子含有表面の光学的性質を機器により特性づける方法
JPH0755705A (ja) * 1993-08-09 1995-03-03 Toyota Motor Corp 塗装深み感の評価方法
JPH10170436A (ja) * 1996-12-10 1998-06-26 Kanto Auto Works Ltd 塗膜の光輝感定量評価方法
JP2003294530A (ja) * 2002-04-03 2003-10-15 Nisshinbo Ind Inc コンピュータ・カラーマッチングの計算方法
JP2004301727A (ja) * 2003-03-31 2004-10-28 Nippon Paint Co Ltd 塗膜ムラの算出式算出方法及び塗膜ムラの数値化方法
JP2004329986A (ja) * 2003-04-30 2004-11-25 Nippon Paint Co Ltd 塗膜ムラの予測方法、塗膜ムラ予測プログラム、コンピュータが読み取り可能な記憶媒体及び塗膜ムラ予測装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6161042A (ja) * 1984-08-27 1986-03-28 イー・アイ・デュポン・ドゥ・ヌムール・アンド・カンパニー メタリツク粒子含有表面の光学的性質を機器により特性づける方法
JPH0755705A (ja) * 1993-08-09 1995-03-03 Toyota Motor Corp 塗装深み感の評価方法
JPH10170436A (ja) * 1996-12-10 1998-06-26 Kanto Auto Works Ltd 塗膜の光輝感定量評価方法
JP2003294530A (ja) * 2002-04-03 2003-10-15 Nisshinbo Ind Inc コンピュータ・カラーマッチングの計算方法
JP2004301727A (ja) * 2003-03-31 2004-10-28 Nippon Paint Co Ltd 塗膜ムラの算出式算出方法及び塗膜ムラの数値化方法
JP2004329986A (ja) * 2003-04-30 2004-11-25 Nippon Paint Co Ltd 塗膜ムラの予測方法、塗膜ムラ予測プログラム、コンピュータが読み取り可能な記憶媒体及び塗膜ムラ予測装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008246347A (ja) * 2007-03-29 2008-10-16 National Univ Corp Shizuoka Univ メタリック塗装数値化方法および数値化装置
WO2019177145A1 (ja) 2018-03-16 2019-09-19 コニカミノルタ株式会社 光沢値算出装置、光沢値測定装置、光沢色の色調定量化装置および光沢値算出方法
CN113939729A (zh) * 2019-06-28 2022-01-14 关西涂料株式会社 光辉性颜料判定方法、光辉性颜料判定装置以及光辉性颜料判定程序
JP2021018149A (ja) * 2019-07-19 2021-02-15 三友工業株式会社 撮像情報分類システム、撮像情報分類方法、撮像情報分類プログラム及び表面判別装置
JP7388684B2 (ja) 2019-07-19 2023-11-29 三友工業株式会社 撮像情報分類システム、撮像情報分類方法、撮像情報分類プログラム及び表面判別装置
JP7157355B1 (ja) 2021-06-04 2022-10-20 ダイキン工業株式会社 評価方法、評価装置及びコンピュータプログラム
WO2022255239A1 (ja) * 2021-06-04 2022-12-08 ダイキン工業株式会社 評価方法、評価装置及びコンピュータプログラム
JP2022186406A (ja) * 2021-06-04 2022-12-15 ダイキン工業株式会社 評価方法、評価装置及びコンピュータプログラム

Also Published As

Publication number Publication date
JPWO2005075961A1 (ja) 2007-10-11

Similar Documents

Publication Publication Date Title
JP3626387B2 (ja) コンピュータ調色装置及びこの装置を用いた塗料の調色方法
JP5063076B2 (ja) 光輝性顔料の同定方法、同定システム、同定プログラム及びその記録媒体
JP5496509B2 (ja) 色分類および皮膚色検出のための画像処理のためのシステム、方法、および装置
JP6854992B1 (ja) 光輝性顔料判定方法、光輝性顔料判定装置および光輝性顔料判定プログラム
JP6907766B2 (ja) 計測装置および計測システム
JP2012226763A (ja) 光輝性顔料の同定方法、同定システム、同定プログラム及びその記録媒体
JP7407408B2 (ja) 検査システム及び検査方法
US8064691B2 (en) Method for identifying color in machine and computer vision applications
JP5495017B2 (ja) 歯当たり面検出装置
JP2006208327A (ja) メタリック塗装面評価方法、装置、及び動作プログラム
WO2005075961A1 (ja) 光輝感評価方法および光輝感評価装置
JP2006208333A (ja) 目視感評価方法並びにシステム、メタリック塗装面評価装置、その動作プログラム及びメタリック塗装面の目視感評価方法
JP2020012668A (ja) 評価装置、計測装置、評価方法および評価プログラム
CN115601412A (zh) 基于多光谱图像处理对结晶聚合物粉体杂质的检测方法
JP3998596B2 (ja) 塗膜ムラの算出式算出方法及び塗膜ムラの数値化方法
JP3737644B2 (ja) 塗膜の光輝感定量評価方法
JP2004271467A (ja) メタリック塗色における意匠性の評価方法及び塗装物品
JP4391121B2 (ja) 塗膜ムラの予測方法、塗膜ムラ予測プログラム、コンピュータが読み取り可能な記憶媒体及び塗膜ムラ予測装置
JP3606820B2 (ja) 塗装ラインにおける塗色管理方法
CN113252585B (zh) 一种基于高光谱图像判断黄金表面覆膜的方法和装置
JP3488945B2 (ja) 塗膜の光輝感定量評価方法
JP2000065750A (ja) 塗膜の光輝感定量評価方法
CN114667439A (zh) 与包括效果颜料的目标涂层的光学特性相匹配的涂层配方的生成
JP2001318000A (ja) 調色終点判断方法
JP2024038564A (ja) 塗膜の艶消し感定量評価方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005517689

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1120050002772

Country of ref document: DE

122 Ep: pct application non-entry in european phase