WO2019176749A1 - 走査装置及び測定装置 - Google Patents

走査装置及び測定装置 Download PDF

Info

Publication number
WO2019176749A1
WO2019176749A1 PCT/JP2019/009219 JP2019009219W WO2019176749A1 WO 2019176749 A1 WO2019176749 A1 WO 2019176749A1 JP 2019009219 W JP2019009219 W JP 2019009219W WO 2019176749 A1 WO2019176749 A1 WO 2019176749A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scanning
unit
optical system
telecentric lens
Prior art date
Application number
PCT/JP2019/009219
Other languages
English (en)
French (fr)
Inventor
山口 淳
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to US16/981,221 priority Critical patent/US20210025986A1/en
Priority to EP19767255.3A priority patent/EP3754365A4/en
Priority to JP2020506458A priority patent/JP6920538B2/ja
Publication of WO2019176749A1 publication Critical patent/WO2019176749A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/22Telecentric objectives or lens systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/42Simultaneous measurement of distance and other co-ordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0875Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more refracting elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/101Scanning systems with both horizontal and vertical deflecting means, e.g. raster or XY scanners
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems
    • G02B26/12Scanning systems using multifaceted mirrors
    • G02B26/125Details of the optical system between the polygonal mirror and the image plane

Definitions

  • the present invention relates to a scanning device that performs optical scanning, and a measuring device that optically detects an object and measures its characteristics.
  • Patent Document 1 discloses an optical radar device that measures a distance to a measurement object based on an elapsed time from when light is emitted from a light projecting unit to when reflected light is received by a light receiving unit. Has been.
  • the scanning device projects pulsed light toward a predetermined area and scans optical information of the target object by receiving light reflected by the target object existing in the predetermined area. Obtain as information. Therefore, in consideration of obtaining accurate scanning information, it is preferable that the light reflected by the object can be reliably received.
  • the scanning device when the scanning device is mounted on a vehicle as an on-vehicle radar, the target object may have various shapes and sizes, or may move. It is preferable that the scanning device can project light that can be reliably received even for such various objects.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a scanning device and a measuring device capable of obtaining accurate optical information from various objects.
  • a light source unit that emits pulsed light
  • a deflection unit that deflects pulsed light in a variable direction and emits it as scanning light
  • an optical path of the scanning light are provided.
  • a scanning device a light receiving unit that receives the reflected light that has passed through the optical system after the scanning light is reflected by an object in a predetermined region, And a measuring unit that measures the characteristics of the object based on the result of receiving the reflected light by the unit.
  • FIG. 1 is a diagram illustrating a configuration of a measurement apparatus according to Example 1.
  • FIG. 3 is a diagram illustrating a configuration of an optical system of a scanning device in the measurement apparatus according to Embodiment 1.
  • FIG. 3 is a diagram illustrating a configuration of an optical system of a scanning device in the measurement apparatus according to Embodiment 1.
  • FIG. 6 is a diagram illustrating a configuration of an optical system of a scanning device in a measurement apparatus according to Embodiment 2.
  • FIG. 6 is a diagram illustrating a configuration of an optical system of a scanning device in a measurement apparatus according to Embodiment 2.
  • FIG. 10 is a diagram illustrating a configuration of an optical system of a scanning device in a measurement apparatus according to Example 3.
  • FIG. 1 is a diagram schematically illustrating a configuration of an optical measuring device (hereinafter simply referred to as a measuring device) 10 according to a first embodiment.
  • the measuring apparatus 10 performs optical scanning of a predetermined region (hereinafter referred to as a scanning region) R0, detects an object OB existing in the scanning region R0, and also measures the distance to the object OB.
  • an optical device that measures and analyzes the shape and the like of the object OB.
  • the measuring apparatus 10 includes a scanning unit 20 that scans the scanning region R0 using light, a measuring unit 30 that performs various measurements on the object OB using the scanning information obtained by the scanning unit 20, a scanning unit 20, And a control unit 40 that controls the measurement unit 30.
  • the scanning unit 20 includes a light source unit 21 that generates and emits pulsed light (hereinafter referred to as emission light) L1.
  • the light source unit 21 forms a light emitting element 21A that generates pulsed laser light having a peak wavelength in the infrared region, shapes the laser light, and outputs the shaped laser light as emitted light L1.
  • a shaping lens 21B that emits as follows.
  • the scanning unit 20 includes a deflecting unit 22 that emits the emitted light L1 from the light source unit 21 as scanning light (projection signal) L2 while deflecting the emitted light L1 in a variable direction.
  • the deflecting unit 22 continuously and periodically changes the deflection direction of the emitted light L1.
  • the deflecting unit 22 has a movable light reflecting surface 22A for reflecting the emitted light L1 from the light source unit 21.
  • the deflection unit 22 is a MEMS (Micro Electro Mechanical Systems) mirror configured such that the light reflecting surface 22A swings around at least one axis.
  • the scanning unit 20 includes an optical system 23 that projects the scanning light L2 toward the scanning region R0.
  • the optical system 23 is configured to adjust the light projection direction of the scanning light L2.
  • the scanning light L2 adjusted by the optical system 23 is projected onto the scanning region R0.
  • the scanning region R0 is a virtual three-dimensional space having an angle range corresponding to the range in which the scanning light L2 can be projected by the optical system 23, and a depth corresponding to a distance at which the scanning light L2 can maintain a distance that can be measured. It is. In FIG. 1, a part of the outer edge of the scanning region R0 is indicated by a broken line.
  • the object surface S1 the surface of the object OB on the scanning unit 20 side (hereinafter referred to as the object surface) S1 is scanned.
  • Light L2 is irradiated.
  • the object OB is an object having reflectivity with respect to the scanning light L2
  • the scanning light L2 is reflected by the object OB.
  • the scanning unit 20 includes a light receiving unit 24 that receives light (light reception signal, hereinafter referred to as reflected light) L3 that is reflected by the object OB and passes through the optical system 23.
  • the light receiving unit 24 includes a condenser lens 24A that receives and collects the reflected light L3, and a detection element 24B that detects the reflected light L3.
  • the detection element 24B performs photoelectric conversion on the reflected light L3, and generates an electrical signal corresponding to the reflected light L3 as a detection signal SR.
  • the scanning unit 20 includes a beam splitter BS that is provided between the deflection unit 22 and the light source unit 21 and separates the emitted light L1 and the reflected light L3 and guides the reflected light L3 to the light receiving unit 24.
  • a beam splitter BS that is provided between the deflection unit 22 and the light source unit 21 and separates the emitted light L1 and the reflected light L3 and guides the reflected light L3 to the light receiving unit 24.
  • the emitted light L1 passes through the beam splitter BS and travels toward the deflecting unit 22.
  • the scanning unit 20 functions as a light projecting unit that projects the scanning light L2 and functions as a light receiving unit that receives the reflected light L3.
  • the optical system 23 functions as a light projecting / receiving optical system that projects the scanning light L2 and receives the reflected light L3. Further, the scanning unit 20 generates and outputs a detection signal SR, which is a result of receiving the reflected light L3, as scanning information of the scanning region R0.
  • the measuring unit 30 measures the distance to the target object OB, the shape of the target surface S1 of the target object OB, and the like based on the detection signal SR generated by the scanning unit 20.
  • the measuring unit 30 is a distance measuring unit that measures the distance from the scanning unit 20 to the target surface S1 of the object OB.
  • the measurement unit 30 detects a pulse corresponding to the reflected light L3 in the detection signal SR. Further, for example, the measurement unit 30 measures the distance to the target surface S1 of the object OB by the time-of-flight method based on the time difference from the emission of the emitted light L1 to the reception of the reflected light L3. The measuring unit 30 generates distance data indicating the distance to the object OB.
  • the measurement unit 30 divides the scanning region R0 into a plurality of pixel regions based on the direction in which the scanning light L2 is projected, and displays a map-like image (distance) indicating distance data for each pixel region. Image).
  • the measurement unit 30 uses the change cycle of the deflection direction of the emitted light L1 by the deflection unit 22 or the change cycle of the projection direction of the scanning light L2 by the optical system 23 as a generation cycle of the distance image, and periodically displays the distance image. It may be generated.
  • the measurement part 30 may have a display part (not shown) which displays the said distance image as a moving image along a time series.
  • control unit 40 controls the operation of the scanning unit 20 (the light source unit 21, the deflection unit 22, the optical system 23, and the light receiving unit 24) and the measurement unit 30.
  • the control unit 40 supplies a drive signal to the light source unit 21 to drive and control the light source unit 21.
  • the control unit 40 also supplies a drive signal to the deflecting unit 22 and controls the displacement operation of the light reflecting surface 22A of the deflecting unit 22.
  • the control unit 40 controls the operation of the optical system 23 and controls the direction in which the scanning light L2 is projected.
  • FIG. 2 is a diagram schematically showing the configuration of the optical system 23 and the control unit 40.
  • the optical system 23 includes a telecentric lens 23A on which the scanning light L2 is incident.
  • the telecentric lens 23A is a telecentric f ⁇ lens.
  • the telecentric lens 23A has a configuration capable of moving on the optical path of the scanning light L2 so that the distance D between the deflecting portion 22 (light reflecting surface 22A in the present embodiment) and the telecentric lens 23A changes. .
  • the telecentric lens 23A is configured to be movable between the first position P0 and the second position P1 in the direction along the main optical axis of the scanning light L2.
  • the control unit 40 includes an optical system control unit 41 that controls the position of the telecentric lens 23A.
  • FIG. 2 is a diagram schematically showing each optical path of the scanning light L2 when the telecentric lens 23A is disposed at the first position P0.
  • the light source unit 21 emits the emitted light L2 at a predetermined cycle, for example.
  • the scanning light L ⁇ b> 2 is generated every time the emitted light L ⁇ b> 1 enters the deflecting unit 22. Therefore, in practice, not all scanning light L2 enters the telecentric lens 23A at the same time. Accordingly, the five solid lines shown in FIG. 2 schematically show the principal rays (for example, straight lines connecting the centers of the light beams) of the five scanning lights L2 generated within a predetermined period.
  • the emitted light L1 from the light source 21 has a predetermined beam diameter. Further, the scanning light L2 generated by the deflecting unit 22 is projected toward the scanning region R0 while changing the beam diameter.
  • the optical path range in consideration of the change of the beam diameter in each of the scanning lights L2 is indicated by a broken line.
  • each broken line in FIG. 2 indicates the path of light having a predetermined intensity smaller than the principal ray of the scanning light L2 (for example, an intensity of 1/2), and is hereinafter referred to as a sub-ray.
  • each principal ray of the scanning light L2 is indicated by a solid line, and sub-rays are indicated by a broken line.
  • the scanning light L2 is projected toward the scanning region R0 while being condensed by the telecentric lens 23A.
  • the optical axis of the scanning light L2 refers to the principal ray of the scanning light L2.
  • the light projecting direction of the scanning light L2 refers to a direction along the optical axis or principal ray of the scanning light L2.
  • the scanning light L2 is a telecentric lens. Regardless of the incident angle to 23A, the light is collimated by the telecentric lens 23A. Specifically, the scanning light L2 is incident on various regions on the incident surface of the telecentric lens 23A at various timings and at various angles. On the other hand, when the telecentric lens 23A is disposed at the first position P0, when the scanning light L2 is projected toward the scanning region R0, the light projecting directions are parallel to each other. .
  • FIG. 3 is a diagram schematically showing an optical path of the scanning light L2 when the telecentric lens 23A is disposed at the second position P1, which is a position different from the first position P0.
  • the telecentric lens 23A is arranged at a position where the distance D between the telecentric lens 23A and the deflecting unit 22 is larger than the distance D0 as the second position P1. That is, in the example shown in FIG. 3, the telecentric lens 23A is disposed at a position farther from the deflection unit 22 than the first position P0.
  • each of the scanning lights L2 is projected from the telecentric lens 23A in different directions.
  • the scanning light L2 incident on the telecentric lens 23A is emitted from the telecentric lens 23A so that its optical axes intersect within the scanning region R0.
  • the optical system 23 when the telecentric lens 23A is disposed at the first position P0, the optical system 23 constitutes a telecentric optical system. On the other hand, when the telecentric lens 23A is disposed at the second position P2, the telecentricity of the optical system 23 is lost.
  • the telecentric lens 23A as the optical system 23 adjusts the projection direction of the scanning light L2 so that the optical axes of the scanning light L2 are parallel to each other within a predetermined period.
  • the first light projection mode for example, an operation mode corresponding to the state where the first position P0 is arranged
  • the scanning light L2 so that the optical axis of the scanning light L2 intersects within the scanning region R0 within a predetermined period.
  • a second light projecting mode for adjusting the light projecting direction for example, an operation mode corresponding to the state of being disposed at the second position P1).
  • the object OB1 having the object surface S1A that is convex toward the scanning unit 20 is present on the optical path of the scanning light L2.
  • the scanning light L2 is incident on the wide range of the target surface S1A of the object OB1 while being condensed at an angle close to vertical (while the principal ray and the sub-ray approach each other). Is likely.
  • the light corresponding to the scanning light L2 incident on the target surface S1A at an angle close to the vertical follows an optical path close to the scanning light L2. It will come back to 23. Therefore, the light incident on the wide range of the target surface S1A can be received by the light receiving unit 24.
  • a part of the reflected light L3 is the scanning light L2. It may go in a different direction. Therefore, a part of the reflected light L3 reflected by the target surface S1A may not be received by the light receiving unit 24, and there may be a region where the scanning result on the target surface S1A cannot be obtained.
  • the reflected light L3 is emitted from a wide range of the target surface S1A. It can receive light. Accordingly, a wide range of scanning information of the target surface S1A (target object OB1) can be obtained, and the target object OB1 can be accurately measured.
  • the telecentric lens 23A may be configured to move continuously and periodically in consideration of obtaining scanning information accurately from the target surface S1 having various shapes, for example. Further, for example, by acquiring other information related to the scanning region R0, for example, an image captured by an external imaging device, the optical system control unit 41 of the control unit 40 calculates a position where the telecentric lens 23A should be disposed. Thereby, the position of the telecentric lens 23A may be adjusted.
  • the telecentric lens 23A is projected within the first state in which the optical axes of the scanning lights L2 projected within a predetermined period are parallel to each other and within the predetermined period.
  • the scanning light L2 has the second state in which the optical axes of the scanning light L2 intersect within the scanning region R0.
  • the telecentric lens 23A only needs to be configured to adjust the direction in which the scanning light L2 is projected.
  • the telecentric lens 23A is movable so that the distance D between the deflecting unit 22 and the deflection unit 22 changes. I just need it.
  • the deflection unit 22 is a MEMS mirror.
  • the deflecting unit 22 only needs to be configured to emit the light L1 emitted from the light source unit 21 while deflecting the light in a variable direction.
  • the deflecting unit 22 may be a movable polygon mirror, a galvanometer mirror, or a lens.
  • the scanning unit 20 includes a moving mechanism (not shown) that forms a moving path of the telecentric lens 23A and generates a moving force that moves the telecentric lens 23A.
  • the telecentric lens 23A may be configured to be manually moved by an operator who operates the scanning unit 20.
  • a plurality of housing cases configured to detachably accommodate the telecentric lens 23A in the scanning unit 20 may be provided.
  • a plurality of detachable telecentric lenses 23A may be provided in the optical path of the scanning light L2.
  • the optical system 23 only has to have a telecentric lens 23A on which the scanning light L2 is incident, and can be configured to adjust the light projection direction of the scanning light L2 that has passed through the telecentric lens 23A.
  • the measuring apparatus 10 includes the light source unit 21 that emits the emitted light L1, the deflecting unit 22 that emits the emitted light L1 as the scanning light L2 while deflecting the emitted light L1 in a variable direction, and the scanning light L2.
  • System 23 that projects light toward the scanning region (predetermined region) R0, and a light receiving unit that receives the reflected light L3 that the scanning light L2 reflects from the object OB in the scanning region R0 and passes through the optical system 23 24.
  • the optical system 23 may have a telecentric lens on which the scanning light L2 is incident, and may be configured to adjust the light projection direction of the scanning light L2 that has passed through the telecentric lens 23A. Therefore, it is possible to provide the measuring apparatus 10 that can measure accurate characteristics by obtaining accurate optical information from various objects OB.
  • the measuring apparatus 10 includes the light receiving unit 24 that receives the reflected light L3 that has passed through the optical system 23 .
  • the measuring apparatus 10 may not have the light receiving unit 24.
  • a light receiving unit that directly receives the reflected light L3 that has not passed through the optical system 23 may be provided outside the scanning unit 20 and received by the light receiving unit.
  • the reflected light L3 is used for measuring purposes such as distance measurement.
  • the reflected light L3 can be used for other purposes. That is, the measuring device 10 does not have to include the measuring unit 30.
  • the scanning unit 20 and the control unit 40 function as a scanning device. Further, the scanning unit 20 may operate independently without depending on the control unit 40. Therefore, the scanning unit 20 includes, for example, the light source unit 21, the deflecting unit 22, and the optical system 23, so that the scanning unit 20 can obtain accurate optical information from various objects OB.
  • the use of the measuring device 10 includes, for example, a distance measuring device that is mounted on a moving body such as a vehicle and detects an object near the vehicle and measures a distance to the object.
  • a distance measuring device that is mounted on a moving body such as a vehicle and detects an object near the vehicle and measures a distance to the object.
  • the detection accuracy and distance measurement accuracy of a cylindrical object such as a utility pole are improved.
  • the scanning region R0 can be scanned two-dimensionally. Therefore, it can be considered that the detection accuracy of objects having various surface shapes such as a spherical object is improved.
  • the measurement apparatus 10 uses, for example, a terahertz wave as the scanning light L2 (emitted light L1), and irradiates various objects as the object OB with the terahertz wave, thereby the internal structure and material of the object OB. It can be used as an analysis device for analyzing.
  • the measurement unit 30 may be configured to measure a terahertz wave by time domain spectroscopy, for example. Even in this case, even if the object OB has various surface shapes, it is possible to accurately obtain scanning information and perform an accurate analysis.
  • FIG. 4 is a diagram schematically illustrating the configuration of the scanning unit 20A and the control unit 40A in the measurement apparatus 10A according to the second embodiment.
  • the measurement apparatus 10A has the same configuration as the measurement apparatus 10 except for the configuration of the scanning unit 20A and the control unit 40A.
  • the scanning unit 10 ⁇ / b> A has the same configuration as the scanning unit 20 except for the configuration of the optical system 25.
  • the control unit 40A has the same configuration as the control unit 40 except that the control unit 40A includes the optical system control unit 42.
  • the optical system 25 includes a telecentric lens 25A on which the scanning light L2 is incident and a convex lens 25B on which the scanning light L2 that has passed through the telecentric lens 25A is incident.
  • the optical system 25 is configured such that the distance DA between the convex lens 25B and the telecentric lens 25A can be changed by moving the convex lens 25B on the optical path of the scanning light L2.
  • the control unit 40A includes an optical system control unit 42 that controls the position of the convex lens 25B.
  • the convex lens 25B is configured to be movable between the first position P2 and the second position P3 on the optical path of the scanning light L2 by the optical system control unit 42. As a result, the distance DA between the convex lens 25B and the telecentric lens 25A changes.
  • the telecentric lens 25A has the same configuration as the telecentric lens 23A disposed at the first position P0. Accordingly, each of the scanning lights L2 enters the convex lens 25B along directions parallel to each other. Each of the scanning lights L2 passes through the telecentric lens 25A, and then enters the convex lens 25B while being condensed (the beam diameter is gradually narrowed). On the other hand, after passing through the convex lens 25B, the scanning light L2 is projected toward the scanning region R0 so as to pass through the focal point of the convex lens 25B corresponding to the position of the convex lens 25B.
  • FIG. 4 is a diagram schematically showing an optical path of the scanning light L2 when the convex lens 25B is disposed at the first position P2.
  • the scanning light L2 has its respective optical axes intersecting in the scanning region R0 as in the case shown in FIG. Lighted. Therefore, for example, even when the target surface OB1 having the convex target surface S1A exists on the optical path of the scanning light L2, the reflected light L3 can be received from a wide range of the target surface S1A.
  • FIG. 5 is a diagram schematically showing an optical path of the scanning light L2 when the convex lens 25B is disposed at the second position P3.
  • the larger the distance DA between the convex lens 25B and the telecentric lens 25A the smaller the beam diameter of the scanning light L2 incident on the convex lens 25B. Therefore, when the convex lens 25B is arranged at the second position P3, which is a position farther from the telecentric lens 25A than the first position P2, the difference in the condensing distance from the convex lens 25B in each of the scanning lights L2 is closer. It will be.
  • the object surface S1B has a wide range.
  • the scanning light L2 can be incident while being condensed in a direction close to vertical. Therefore, the reflected light L3 from the wide range can be received. That is, by adjusting the position of the convex lens 25B, it is possible to accurately obtain the scanning information even for the convex target surface S1 having a different curvature, for example.
  • the position of the telecentric lens 25A is fixed. This suppresses the generation of the scanning light L2 that does not enter the telecentric lens 25A due to the position of the telecentric lens 25A. Accordingly, the scanning light L2 having a stable light quantity passes through the telecentric lens 25A and the convex lens 25B, and is projected toward the object OB. Accordingly, it is possible to suppress a decrease in the light amount of the scanning light L2.
  • the optical system 25 only needs to be configured to adjust the light projection direction of the scanning light L2. Therefore, the convex lens 25B may be fixed, and the telecentric lens 25A may be configured to move. Further, both the telecentric lens 25A and the convex lens 25B may move.
  • the optical system 25 includes the convex lens 25B on which the scanning light L2 having passed through the telecentric lens 25A is incident.
  • the optical system 25 is configured so that the distance between the telecentric lens 25A and the convex lens 25B can be changed. Therefore, it is possible to provide a scanning device (scanning unit 20A) and a measuring device 10A that can obtain accurate optical information from various objects OB.
  • FIG. 6 is a schematic diagram illustrating the configuration of the scanning unit 20B and the control unit 40B of the measurement apparatus 10B according to the third embodiment.
  • the measurement apparatus 10B has the same configuration as the measurement apparatus 10A except for the configuration of the scanning unit 20B and the control unit 40B.
  • the scanning unit 10B has the same configuration as the scanning unit 20A except for the configuration of the optical system 26.
  • the control unit 40B has the same configuration as the control unit 40A except that the control unit 40B includes the optical system control unit 43.
  • the optical system 26 includes a concave lens 26A on which the scanning light L2 that has passed through the telecentric lens 25A is incident instead of the convex lens 25B.
  • the concave lens 26A is configured to be movable between the first position P4 and the second position P5 on the optical path of the scanning light L2. As a result, the distance DB between the concave lens 26A and the telecentric lens 25A changes.
  • the control unit 40B includes an optical system control unit 43 that controls the position of the concave lens 26A.
  • the scanning light L2 is transmitted toward the scanning region R0 while passing through the concave lens 26A and proceeding in the direction of diverging from the optical system 26.
  • the target surface OB3 having the target surface S1C that is concave toward the scanning unit 20B exists on the optical path of the scanning light L2, it is nearly perpendicular to the wide range of the target surface S1C.
  • the scanning light L2 can be incident while being condensed in the direction. Therefore, the reflected light L3 can be received from a wide range of the target surface S1C.
  • the telecentric lens 25A since the telecentric lens 25A is fixed, most of the scanning light L2 passes through the telecentric lens 25A and the concave lens 26A and is projected toward the object OB. Therefore, stable and accurate scanning information can be obtained over a wide range of the target surface S1C.
  • the optical system 26 only needs to have a configuration in which the distance DB between the telecentric lens 25A and the concave lens 26A can be changed. Accordingly, the present invention is not limited to the case where the concave lens 26A moves, and the telecentric lens 25A may move, or both the concave lens 26A and the telecentric lens 25A may move.
  • the optical system 26 has a concave lens on which the scanning light L2 that has passed through the telecentric lens 25A is incident, and the distance DB between the telecentric lens 25A and the concave lens 26A can be changed.
  • a scanning device scanning unit 20B
  • a measuring device 10B that can obtain accurate optical information from various objects OB.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Mechanical Optical Scanning Systems (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Lenses (AREA)

Abstract

本発明は、種々の対象物から正確な光学情報を得ることが可能な走査装置を提供することを課題としている。 本発明の走査装置は、パルス光を出射する光源部(21)と、パルス光を方向可変に偏向し、走査光(L2)として出射する偏向部(22)と、走査光(L2)の光路上に設けられ、走査光(L2)を所定の領域に向けて投光する光学系(23)と、を有し、光学系(23)は、走査光(L2)が入射するテレセントリックレンズ(23A)を含み、かつテレセントリックレンズ(23A)を通過した走査光(L2)の投光方向を調節するように構成されている。

Description

走査装置及び測定装置
 本発明は、光走査を行う走査装置、及び光学的に対象物の検出及びその特性を測定する測定装置に関する。
 従来から、物体又は領域を走査の対象とし、当該対象を光によって走査する走査装置が知られている。また、当該走査装置によって得られた光学的情報を用いて、当該走査の対象に関する種々の特性を測定する測定装置が知られている。例えば、特許文献1には、投光部から光を照射した時から受光部で反射光を受信した時までの経過時間に基づいて、測定対象物までの距離を計測する光学式レーダ装置が開示されている。
特開2007-85832号公報
 当該走査装置は、例えば、所定の領域に向けてパルス光を投光し、当該所定の領域内に存在する対象物によって反射した光を受光することで、当該対象物の光学的な情報を走査情報として取得する。従って、正確な走査情報を得ることを考慮すると、当該対象物によって反射した光を確実に受光できることが好ましい。
 例えば、走査装置が車載用レーダとして車両に搭載される場合などにおいては、当該対象物は、種々の形状及びサイズを有している場合があり、また移動している場合がある。走査装置は、このような種々の対象物に対しても、確実に受光できるような光を投光することができることが好ましい。
 本発明は上記した点に鑑みてなされたものであり、種々の対象物から正確な光学情報を得ることが可能な走査装置及び測定装置を提供することを課題の1つとしている。
 請求項1に記載の発明は、パルス光を出射する光源部と、パルス光を方向可変に偏向し、走査光として出射する偏向部と、走査光の光路上に設けられ、走査光を所定の領域に向けて投光する光学系と、を有し、光学系は、走査光が入射するテレセントリックレンズを含み、かつテレセントリックレンズを通過した走査光の投光方向を調節するように構成されていることを特徴としている。
 また、請求項8に記載の発明は、請求項1に記載の走査装置と、走査光が所定の領域内の対象物によって反射して光学系を通過した反射光を受光する受光部と、受光部による反射光の受光結果に基づいて対象物の特性を測定する測定部と、を有することを特徴としている。
実施例1に係る測定装置の構成を示す図である。 実施例1に係る測定装置における走査装置の光学系の構成を示す図である。 実施例1に係る測定装置における走査装置の光学系の構成を示す図である。 実施例2に係る測定装置における走査装置の光学系の構成を示す図である。 実施例2に係る測定装置における走査装置の光学系の構成を示す図である。 実施例3に係る測定装置における走査装置の光学系の構成を示す図である。
 以下に本発明の実施例について詳細に説明する。
 図1は、実施例1に係る光学測定装置(以下、単に測定装置と称する)10の構成を模式的に示す図である。図1を用いて、測定装置10の全体構成について説明する。本実施例においては、測定装置10は、所定の領域(以下、走査領域と称する)R0の光走査を行い、走査領域R0内に存在する対象物OBを検出し、また対象物OBまでの距離及び対象物OBの形状等を測定及び分析する光学装置である。
 測定装置10は、光を用いて走査領域R0を走査する走査部20と、走査部20によって得られた走査情報を用いて対象物OBに関する種々の測定を行う測定部30と、走査部20及び測定部30を制御する制御部40と、を有する。
 走査部20は、パルス化された光(以下、出射光と称する)L1を生成及び出射する光源部21を有する。本実施例においては、光源部21は、赤外領域にピーク波長を有するパルス化されたレーザ光を生成する発光素子21Aと、当該レーザ光を整形し、当該整形されたレーザ光を出射光L1として出射する整形レンズ21Bとを含む。
 また、走査部20は、光源部21からの出射光L1を方向可変に偏向しつつ走査光(投光信号)L2として出射する偏向部22を有する。偏向部22は、出射光L1の偏向方向を連続的かつ周期的に変化させる。
 本実施例においては、偏向部22は、光源部21からの出射光L1を反射させる可動式の光反射面22Aを有する。例えば、偏向部22は、当該光反射面22Aが少なくとも1つの軸の周りを揺動するように構成されたMEMS(Micro Electro Mechanical Systems)ミラーである。
 また、走査部20は、走査光L2を走査領域R0に向けて投光する光学系23を有する。光学系23は、走査光L2の投光方向を調節するように構成されている。走査領域R0には、光学系23によって調節された走査光L2が投光される。
 なお、走査領域R0は、光学系23による走査光L2の投光可能範囲に対応する角度範囲と、走査光L2が測距可能な強度を維持できる距離に対応する奥行を有する仮想の3次元空間である。図1においては、走査領域R0の外縁の一部を破線で示した。
 例えば、図1に示すように、走査領域R0内における走査光L2の光路上に対象物OBが存在する場合、対象物OBの走査部20側の表面(以下、対象面と称する)S1に走査光L2が照射される。また、対象物OBが走査光L2に対して反射性を有する物体である場合、対象物OBによって走査光L2が反射する。
 走査部20は、走査光L2が対象物OBによって反射し、光学系23を通過した光(受光信号、以下、反射光と称する)L3を受光する受光部24を有する。本実施例においては、受光部24は、反射光L3を受光して集光する集光レンズ24Aと、反射光L3を検出する検出素子24Bとを有する。検出素子24Bは、反射光L3に対して光電変換を行い、反射光L3に応じた電気信号を検出信号SRとして生成する。
 本実施例においては、走査部20は、偏向部22と光源部21との間に設けられ、出射光L1と反射光L3とを分離して反射光L3を受光部24に導くビームスプリッタBSを有する。なお、出射光L1は、ビームスプリッタBSを透過して偏向部22に向かって進む。
 換言すれば、本実施例においては、走査部20は、走査光L2を投光する投光部として機能し、かつ反射光L3を受光する受光部として機能する。また、光学系23は、走査光L2を投光しかつ反射光L3を受光する投受光光学系として機能する。また、走査部20は、反射光L3の受光結果である検出信号SRを走査領域R0の走査情報として生成及び出力する。
 測定部30は、走査部20によって生成された検出信号SRに基づいて、対象物OBまでの距離、及び対象物OBの対象面S1の形状等を測定する。例えば、本実施例においては、測定部30は、走査部20から対象物OBの対象面S1までの距離を測定する測距部である。
 例えば、測定部30は、検出信号SR内における反射光L3に対応するパルスを検出する。また、例えば、測定部30は、出射光L1の出射から当該反射光L3を受光するまでの時間差に基づき、タイムオブフライト法によって対象物OBの対象面S1までの距離を測定する。測定部30は、対象物OBまでの距離を示す距離データを生成する。
 また、本実施例においては、測定部30は、走査光L2の投光方向に基づいて走査領域R0を複数の画素領域に区画し、当該画素領域毎の距離データを示すマップ状の画像(距離画像)を生成する。
 また、測定部30は、偏向部22による出射光L1の偏向方向の変化周期、又は光学系23による走査光L2の投光方向の変化周期を距離画像の生成周期とし、周期的に距離画像を生成してもよい。また、測定部30は、当該距離画像を時系列に沿って動画として表示する表示部(図示せず)を有していてもよい。
 また、制御部40は、走査部20(光源部21、偏向部22、光学系23及び受光部24)及び測定部30の動作制御を行う。例えば、本実施例においては、制御部40は、光源部21に駆動信号を供給し、光源部21の駆動及びその制御を行う。また、制御部40は、偏向部22に駆動信号を供給し、偏向部22の光反射面22Aの変位動作を制御する。また、制御部40は、光学系23の動作を制御し、走査光L2の投光方向を制御する。
 図2は、光学系23及び制御部40の構成を模式的に示す図である。本実施例においては、光学系23は、走査光L2が入射するテレセントリックレンズ23Aを有する。本実施例においては、テレセントリックレンズ23Aは、テレセントリックfθレンズからなる。
 また、テレセントリックレンズ23Aは、偏向部22(本実施例においては光反射面22A)とテレセントリックレンズ23Aとの間の距離Dが変化するように、走査光L2の光路上で移動可能な構成を有する。具体的には、テレセントリックレンズ23Aは、走査光L2の主光軸に沿った方向において、第1の位置P0と第2の位置P1との間で移動可能なように構成されている。また、本実施例においては、制御部40は、テレセントリックレンズ23Aの位置を制御する光学系制御部41を有する。
 図2は、テレセントリックレンズ23Aが第1の位置P0に配置されている場合の走査光L2の各々の光路を模式的に示す図である。なお、光源部21は、例えば所定の周期で出射光L2を出射する。また、走査光L2は、この出射光L1が偏向部22に入射する毎に生成される。従って、実際には、全ての走査光L2が同時にテレセントリックレンズ23Aに入射するわけではない。従って、図2に示した5つの実線は、所定の期間内に生成された5つの走査光L2の各々の主光線(例えば光束の中心を結んだ直線)を模式的に示すものである。
 また、実際の測定装置10では、光源21からの出射光L1は、所定のビーム径を有する。また、偏向部22によって生成された走査光L2は、当該ビーム径を変化させながら走査領域R0に向けて投光される。図2には、走査光L2の各々におけるビーム径の変化を考慮した光路範囲を破線で示した。
 例えば、図2の破線の各々は、走査光L2の主光線よりも所定の強度だけ小さな強度(例えば1/2の強度)の光の進路を示し、以下においては、副光線と称する。また、後述する図3、図4、図5及び図6においても、走査光L2の各々の主光線を実線で示し、副光線を破線で示している。また、走査光L2は、テレセントリックレンズ23Aによって集光されつつ、走査領域R0に向けて投光される。
 なお、以下においては、特に説明しない場合、走査光L2の光軸とは、その走査光L2の主光線をいう。また、走査光L2の投光方向とは、その走査光L2の光軸又は主光線に沿った方向をいう。
 図2に示すように、テレセントリックレンズ23Aが第1の位置P0(偏向部22との間の距離Dが第1の距離D0となる位置)に配置されている場合、走査光L2は、テレセントリックレンズ23Aへの入射角に関わらず、テレセントリックレンズ23Aによって平行化される。具体的には、走査光L2は、種々のタイミングでかつ種々の角度で、テレセントリックレンズ23Aの入射面における種々の領域に入射する。一方、テレセントリックレンズ23Aが第1の位置P0に配置されている場合、これらの走査光L2は、走査領域R0に向けて投光される際には、その投光方向は互いに平行なものとなる。
 図3は、テレセントリックレンズ23Aが第1の位置P0とは異なる位置である第2の位置P1に配置されている場合の走査光L2の光路を模式的に示す図である。図3に示す例では、テレセントリックレンズ23Aは、第2の位置P1として、偏向部22との間の距離Dが距離D0よりも大きな距離D1となる位置に配置されている。すなわち、図3に示す例では、テレセントリックレンズ23Aは、第1の位置P0よりも偏向部22から離れた位置に配置されている。
 図3に示すように、テレセントリックレンズ23Aが第2の位置P1に配置されている場合、走査光L2の各々は、テレセントリックレンズ23Aから、互いに異なる方向に投光される。例えば、テレセントリックレンズ23Aに入射した走査光L2は、その光軸が走査領域R0内で交わるように、テレセントリックレンズ23Aから出射される。
 すなわち、本実施例においては、テレセントリックレンズ23Aが第1の位置P0に配置されている場合は、光学系23はテレセントリック光学系を構成する。一方、テレセントリックレンズ23Aが第2の位置P2に配置されている場合、光学系23のテレセントリック性が失われる。
 換言すれば、本実施例においては、光学系23としてのテレセントリックレンズ23Aは、所定の期間内において走査光L2の各々の光軸が互いに平行になるように走査光L2の投光方向を調節する第1の投光モード(例えば第1の位置P0の配置された状態に対応する動作モード)と、所定の期間内において走査光L2の光軸が走査領域R0内で交わるように走査光L2の投光方向を調節する第2の投光モード(例えば第2の位置P1に配置された状態に対応する動作モード)と、を有する。
 図3に示すように、テレセントリックレンズ23Aが第2の位置P1に配置されている場合において、走査部20に向かって凸となる対象面S1Aを有する対象物OB1が走査光L2の光路上に存在する場合を考える。この場合、図3に示すように、対象物OB1の対象面S1Aの広い範囲に対し、走査光L2が垂直に近い角度で集光されつつ(主光線と副光線とが近づきながら)入射することとなる可能性が高い。
 また、対象面S1Aによって反射されることとなる反射光L3のうち、当該垂直に近い角度で対象面S1Aに入射した走査光L2に対応する光は、走査光L2に近い光路をたどって光学系23に戻って来ることとなる。従って、対象面S1Aの広い範囲に入射した光を受光部24によって受光することができる。
 なお、例えば図2に示すようにテレセントリックレンズ23Aが第1の位置P0に配置されている場合に対象面S1Aに走査光L2が照射された場合、反射光L3の一部が走査光L2とは異なる方向に進むこととなる場合がある。従って、対象面S1Aによって反射した反射光L3の一部が受光部24によって受光されず、対象面S1Aにおける走査結果を得ることができない領域が生ずる場合がある。
 このように、本実施例においては、テレセントリックレンズ23Aの位置を調節することで、例えば凸面形状の対象面S1Aが走査領域R0に存在する場合でも、その対象面S1Aの広い範囲から反射光L3を受光することができる。従って、対象面S1A(対象物OB1)の広い範囲の走査情報を得ることができ、正確に対象物OB1の測定を行うことができる。
 なお、例えば、種々の形状の対象面S1から正確に走査情報を得ることを考慮すると、テレセントリックレンズ23Aは、連続的かつ周期的に移動するように構成されていてもよい。また、例えば、走査領域R0に関する他の情報、例えば外部の撮像装置によって撮像された画像などを取得することで、制御部40の光学系制御部41がテレセントリックレンズ23Aの配置すべき位置を算出し、これによってテレセントリックレンズ23Aの位置が調節されてもよい。
 また、本実施例においては、テレセントリックレンズ23Aは、所定の期間内に投光される走査光L2の各々の光軸が平行となるような第1の状態と、所定の期間内に投光される走査光L2の各々の光軸が走査領域R0内で交わるような第2の状態とを有する場合について説明した。これによって、走査光L2の投光方向が変化した場合の検出信号SRの処理が単純化される。しかし、テレセントリックレンズ23Aは、走査光L2の投光方向を調節するように構成されていればよく、例えば本実施例のように偏向部22との間の距離Dが変化するように移動可能であればよい。
 また、本実施例においては、偏向部22がMEMSミラーである場合について説明した。しかし、偏向部22は、光源部21からの出射光L1を方向可変に偏向しつつ出射するように構成されていればよい。例えば、偏向部22は、可動式のポリゴンミラー、ガルバノミラー又はレンズであってもよい。
 また、本実施例においては、テレセントリックレンズ23Aは、制御部40によって制御されて移動する場合について説明した。すなわち、本実施例においては、例えば、走査部20は、テレセントリックレンズ23Aの移動経路を形成し、かつテレセントリックレンズ23Aを移動させる移動力を生成する移動機構(図示せず)を有する。
 しかし、テレセントリックレンズ23Aは、走査部20を操作するオペレータによって手動で移動させられるように構成されていてもよい。例えば、走査部20内にテレセントリックレンズ23Aを着脱可能に収容するように構成された複数の収容ケースが設けられていてもよい。また、例えば、走査光L2の光路内に複数の着脱可能なテレセントリックレンズ23Aが設けられていてもよい。換言すれば、光学系23は、走査光L2が入射するテレセントリックレンズ23Aを有し、テレセントリックレンズ23Aを通過した走査光L2の投光方向を調節することができるように構成されていればよい。
 このように、本実施例においては、測定装置10は、出射光L1を出射する光源部21と、出射光L1を方向可変に偏向しつつ走査光L2として出射する偏向部22と、走査光L2を走査領域(所定の領域)R0に向けて投光する光学系23と、走査光L2が走査領域R0内の対象物OBで反射し、光学系23を通過した反射光L3を受光する受光部24と、を有する。また、光学系23は、走査光L2が入射するテレセントリックレンズを有し、テレセントリックレンズ23Aを通過した走査光L2の投光方向を調節するように構成されていればよい。従って、種々の対象物OBから正確な光学情報を得ることで正確な特性の測定を行うことが可能な測定装置10を提供することができる。
 なお、本実施例においては、測定装置10が光学系23を通過した反射光L3を受光する受光部24を有する場合について説明した。しかし、測定装置10は受光部24を有していなくてもよい。例えば、光学系23を経ていない反射光L3を直接受光する受光部が走査部20の外部に設けられ、当該受光部によって受光されてもよい。
 また、本実施例においては、反射光L3が測距などの測定用途に用いられる場合について説明した。しかし、反射光L3は、他の用途に用いられることができる。すなわち、測定装置10は測定部30を有していなくてもよい。この場合、例えば、走査部20及び制御部40は、走査装置として機能する。また、走査部20は、制御部40によらず自立的に動作してもよい。従って、走査部20は、例えば光源部21、偏向部22及び光学系23を有することで、種々の対象物OBから正確な光学情報を得ることが可能な走査装置となる。
 なお、測定装置10の用途としては、例えば、車両などの移動体に搭載され、車両近傍の物体検出及び当該物体までの距離を測定する測距装置が挙げられる。この場合、例えば電柱などの円柱形状の物体の検出精度及び測距精度が向上することが考えられる。また、偏向部22の光反射面22Aが2つの軸の周りを揺動するように構成されることで、走査領域R0に対して2次元的に走査を行うことができる。従って、球状の物体など、種々の表面形状の物体の検出精度が向上することが考えられる。
 しかし、測定装置10は、例えば、走査光L2(出射光L1)としてテラヘルツ波を用い、当該テラヘルツ波を対象物OBとしての種々の物体に照射することで当該対象物OBの内部構造や材料などを分析する分析装置として用いられることができる。この場合、測定部30は、例えば、テラヘルツ波を時間領域分光法によって測定するように構成されていてもよい。この場合でも、種々の面形状を有する対象物OBであっても正確に走査情報を得て正確な分析を行うことができる。
 図4は、実施例2に係る測定装置10Aにおける走査部20A及び制御部40Aの構成を模式的に示す図である。測定装置10Aは、走査部20A及び制御部40Aの構成を除いては、測定装置10と同様の構成を有する。また、走査部10Aは、光学系25の構成を除いては、走査部20と同様の構成を有する。また、制御部40Aは、光学系制御部42を有する点を除いては、制御部40と同様の構成を有する。
 走査部20Aにおいては、光学系25は、走査光L2が入射するテレセントリックレンズ25Aと、テレセントリックレンズ25Aを通過した走査光L2が入射する凸レンズ25Bと、を有する。また、本実施例においては、光学系25は、凸レンズ25Bが走査光L2の光路上において移動することで、凸レンズ25Bとテレセントリックレンズ25Aとの間の距離DAを変更可能なように構成されている。また、本実施例においては、制御部40Aは凸レンズ25Bの位置を制御する光学系制御部42を有する。
 本実施例においては、凸レンズ25Bは、光学系制御部42によって、走査光L2の光路上において、第1の位置P2及び第2の位置P3との間で移動可能なように構成されている。これによって、凸レンズ25Bとテレセントリックレンズ25Aとの間の距離DAが変化する。
 また、本実施例においては、テレセントリックレンズ25Aは、第1の位置P0に配置されたテレセントリックレンズ23Aと同様の構成を有する。従って、走査光L2の各々は、凸レンズ25Bに対して、互いに平行な方向に沿って入射する。また、走査光L2の各々は、テレセントリックレンズ25Aを透過した後、集光されつつ(徐々にビーム径が狭まりつつ)凸レンズ25Bに入射する。一方、走査光L2は、凸レンズ25Bを透過した後、その凸レンズ25Bの位置に応じた凸レンズ25Bの焦点を通るように、走査領域R0に向けて投光される。
 図4は、凸レンズ25Bが第1の位置P2に配置されている場合の走査光L2の光路を模式的に示す図である。図4に示すように、凸レンズ25Bが第1の位置P2に配置されている場合、走査光L2は、図3に示す場合と同様に、その各々の光軸が走査領域R0内で交わるように投光される。従って、例えば凸面形状の対象面S1Aを有する対象面OB1が走査光L2の光路上に存在する場合でも、その対象面S1Aの広い範囲から反射光L3を受光することができる。
 図5は、凸レンズ25Bが第2の位置P3に配置されている場合の走査光L2の光路を模式的に示す図である。本実施例においては、凸レンズ25Bとテレセントリックレンズ25Aとの間の距離DAが大きくなるほど、凸レンズ25Bに入射する走査光L2のビーム径が小さくなる。従って、第1の位置P2よりもテレセントリックレンズ25Aから離れた位置である第2の位置P3に凸レンズ25Bが配置されている場合、走査光L2の各々における凸レンズ25Bからの集光距離の差が近づくこととなる。
 従って、図5に示すように、対象物OB1よりも曲率の小さな凸面形状の対象面S1Bを有する対象物OB2が走査光L2の光路上に存在する場合において、その対象面S1Bの広い範囲に対して垂直に近い方向で走査光L2を集光しつつ入射させることができる。従って、その広い範囲からの反射光L3を受光することができる。すなわち、凸レンズ25Bの位置を調節することで、例えば曲率が異なる凸面形状の対象面S1に対しても、正確に走査情報を得ることができる。
 また、本実施例においては、テレセントリックレンズ25Aの位置が固定されている。これによって、テレセントリックレンズ25Aの位置によってテレセントリックレンズ25Aに入射しない走査光L2が生ずることが抑制される。従って、安定した光量の走査光L2がテレセントリックレンズ25A及び凸レンズ25Bを通過し、対象物OBに向かって投光される。従って、走査光L2の光量低下を抑制することができる。
 なお、本実施例においては、凸レンズ25Bが移動することでテレセントリックレンズ25Aとの間の距離DAを変化させる場合について説明した。しかし、光学系25は、走査光L2の投光方向を調節するように構成されていればよい。従って、凸レンズ25Bが固定され、テレセントリックレンズ25Aが移動するように構成されていてもよい。また、テレセントリックレンズ25A及び凸レンズ25Bの両方が移動してもよい。
 このように、本実施例においては、光学系25は、テレセントリックレンズ25Aを通過した走査光L2が入射する凸レンズ25Bを有する。また、光学系25は、テレセントリックレンズ25Aと凸レンズ25Bとの間の距離を変更可能なように構成されている。従って、種々の対象物OBから正確な光学情報を得ることが可能な走査装置(走査部20A)及び測定装置10Aを提供することができる。
 図6は、実施例3に係る測定装置10Bの走査部20B及び制御部40Bの構成を模式的に示す図である。測定装置10Bは、走査部20B及び制御部40Bの構成を除いては、測定装置10Aと同様の構成を有する。また、走査部10Bは、光学系26の構成を除いては、走査部20Aと同様の構成を有する。また、制御部40Bは、光学系制御部43を有する点を除いては、制御部40Aと同様の構成を有する。
 走査部20Bにおいては、光学系26は、凸レンズ25Bに代えて、テレセントリックレンズ25Aを通過した走査光L2が入射する凹レンズ26Aを有する。また、本実施例においては、凹レンズ26Aは、走査光L2の光路上において、第1の位置P4及び第2の位置P5との間で移動可能なように構成されている。これによって、凹レンズ26Aとテレセントリックレンズ25Aとの間の距離DBが変化する。また、本実施例においては、制御部40Bは凹レンズ26Aの位置を制御する光学系制御部43を有する。
 また、本実施例においては、走査光L2は、凹レンズ26Aを透過した後、光学系26から発散する方向に進みつつ、走査領域R0に向けて投光される。本実施例においては、例えば走査部20Bに向かって凹となる対象面S1Cを有する対象面OB3が走査光L2の光路上に存在する場合に、その対象面S1Cの広い範囲に対して垂直に近い方向で走査光L2を集光しつつ入射させることができる。従って、その対象面S1Cの広い範囲から反射光L3を受光することができる。
 また、本実施例においても、テレセントリックレンズ25Aが固定されていることで、走査光L2の多くがテレセントリックレンズ25A及び凹レンズ26Aを通過し、対象物OBに向かって投光される。従って、対象面S1Cの広い範囲に対して、安定して正確な走査情報を得ることができる。
 また、本実施例においても、光学系26は、テレセントリックレンズ25Aと凹レンズ26Aとの間の距離DBが変更可能な構成を有していればよい。従って、凹レンズ26Aが移動する場合に限定されず、テレセントリックレンズ25Aが移動してもよいし、凹レンズ26Aとテレセントリックレンズ25Aの両方が移動してもよい。
 このように、本実施例においては、光学系26は、テレセントリックレンズ25Aを通過した走査光L2が入射する凹レンズを有し、テレセントリックレンズ25Aと凹レンズ26Aとの間の距離DBを変更可能な構成を有する。従って、種々の対象物OBから正確な光学情報を得ることが可能な走査装置(走査部20B)及び測定装置10Bを提供することができる。
10、10A、10B 測定装置
20、20A、20B 走査部(走査装置)
21 光源部
22 偏向部
23、25、26 光学系

Claims (8)

  1.  パルス光を出射する光源部と、
     前記パルス光を方向可変に偏向し、走査光として出射する偏向部と、
     前記走査光の光路上に設けられ、前記走査光を所定の領域に向けて投光する光学系と、を有し、
     前記光学系は、前記走査光が入射するテレセントリックレンズを含み、かつ前記テレセントリックレンズを通過した前記走査光の投光方向を調節するように構成されていることを特徴とする走査装置。
  2.  前記テレセントリックレンズは、前記走査光の光路上で移動可能であることを特徴とする請求項1に記載の走査装置。
  3.  前記光学系は、前記テレセントリックレンズを通過した前記走査光が入射する凸レンズを含み、
      前記光学系は、前記テレセントリックレンズと前記凸レンズとの間の距離を変更可能なように構成されていることを特徴とする請求項1に記載の走査装置。
  4.  前記凸レンズは、前記走査光の光路上で移動可能であることを特徴とする請求項3に記載の走査装置。
  5.  前記光学系は、所定の期間内において投光される前記走査光の各々の光軸が互いに平行になるように前記走査光の投光方向を調節する第1の投光モードと、所定の期間内において投光される前記走査光の光軸が前記所定の領域内で交わるように前記走査光の投光方向を調節する第2の投光モードと、を有することを特徴とする請求項1乃至4のいずれか1つに記載の走査装置。
  6.  前記光学系は、前記テレセントリックレンズを通過した前記走査光が入射する凹レンズを含み、
     前記光学系は、前記テレセントリックレンズと前記凹レンズとの間の距離を変更可能なように構成されていることを特徴とする請求項1に記載の走査装置。
  7.  前記凹レンズは、前記走査光の光路上で移動可能であることを特徴とする請求項6に記載の走査装置。
  8.  請求項1乃至7のいずれか1つに記載の走査装置と、
     前記走査光が前記所定の領域内の対象物によって反射して前記光学系を通過した反射光を受光する受光部と、
     前記受光部による前記反射光の受光結果に基づいて前記対象物の特性を測定する測定部と、を有することを特徴とする測定装置。
PCT/JP2019/009219 2018-03-15 2019-03-08 走査装置及び測定装置 WO2019176749A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/981,221 US20210025986A1 (en) 2018-03-15 2019-03-08 Scanning device and measuring device
EP19767255.3A EP3754365A4 (en) 2018-03-15 2019-03-08 SCAN DEVICE AND MEASURING DEVICE
JP2020506458A JP6920538B2 (ja) 2018-03-15 2019-03-08 走査装置及び測定装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018047576 2018-03-15
JP2018-047576 2018-03-15

Publications (1)

Publication Number Publication Date
WO2019176749A1 true WO2019176749A1 (ja) 2019-09-19

Family

ID=67906700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/009219 WO2019176749A1 (ja) 2018-03-15 2019-03-08 走査装置及び測定装置

Country Status (4)

Country Link
US (1) US20210025986A1 (ja)
EP (1) EP3754365A4 (ja)
JP (2) JP6920538B2 (ja)
WO (1) WO2019176749A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181618A1 (ja) * 2020-03-12 2021-09-16 三菱電機株式会社 光走査装置、測距装置および光走査装置の製造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11260881B1 (en) * 2021-02-23 2022-03-01 Blackmore Sensors & Analytics, Llc LIDAR system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150175A (ja) * 1991-10-14 1993-06-18 Asahi Optical Co Ltd 走査式描画装置
JPH10149427A (ja) * 1996-11-20 1998-06-02 Brother Ind Ltd 光学走査装置及び光学情報読取装置並びに光学情報記録装置
JP2007085832A (ja) 2005-09-21 2007-04-05 Omron Corp 光学式レーダ装置
JP2017075945A (ja) * 2015-10-13 2017-04-20 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス 連続波THzビームスキャンを用いた高速三次元映像検出装置
JP2017195569A (ja) * 2016-04-22 2017-10-26 コニカミノルタ株式会社 監視システム

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3501283A1 (de) * 1984-01-17 1985-07-25 Canon K.K., Tokio/Tokyo Fotoelektrische detektorvorrichtung und hiermit ausgestattetes ausrichtgeraet
US4564853A (en) * 1985-02-08 1986-01-14 Polaroid Corporation Electronic image sensing and printing apparatus
GB9218482D0 (en) * 1992-09-01 1992-10-14 Dixon Arthur E Apparatus and method for scanning laser imaging of macroscopic samples
CA2342413C (en) * 1996-04-01 2004-02-03 Lockheed Martin Corporation A method of isolating an electrical fault
DE19717488C2 (de) * 1997-04-25 2003-05-15 Baumer Optronic Gmbh Vorrichtung zur Inspektion der Oberfläche von Objekten
JP2000182929A (ja) * 1998-12-14 2000-06-30 Nikon Corp 面位置検出装置
JP2004177173A (ja) * 2002-11-25 2004-06-24 Nikon Corp 高さ測定装置
US20080232679A1 (en) * 2005-08-17 2008-09-25 Hahn Daniel V Apparatus and Method for 3-Dimensional Scanning of an Object
WO2011050249A1 (en) * 2009-10-23 2011-04-28 Bioptigen, Inc. Systems for comprehensive fourier domain optical coherence tomography (fdoct) and related methods
JP5748414B2 (ja) * 2010-04-09 2015-07-15 国立大学法人 新潟大学 円筒面の形状計測方法
JP5738005B2 (ja) * 2011-03-01 2015-06-17 株式会社トプコン 光波距離測定装置
JP5861532B2 (ja) * 2012-03-27 2016-02-16 株式会社デンソーウェーブ レーザレーダ装置
CN106104382B (zh) * 2014-03-12 2018-06-26 Asml荷兰有限公司 传感器系统、衬底输送系统和光刻设备
US10445896B1 (en) * 2016-09-23 2019-10-15 Apple Inc. Systems and methods for determining object range
US10788574B2 (en) * 2017-05-19 2020-09-29 Korea Electronics Technology Institute LIDAR device and LIDAR system including the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150175A (ja) * 1991-10-14 1993-06-18 Asahi Optical Co Ltd 走査式描画装置
JPH10149427A (ja) * 1996-11-20 1998-06-02 Brother Ind Ltd 光学走査装置及び光学情報読取装置並びに光学情報記録装置
JP2007085832A (ja) 2005-09-21 2007-04-05 Omron Corp 光学式レーダ装置
JP2017075945A (ja) * 2015-10-13 2017-04-20 コリア リサーチ インスティチュート オブ スタンダーズ アンド サイエンス 連続波THzビームスキャンを用いた高速三次元映像検出装置
JP2017195569A (ja) * 2016-04-22 2017-10-26 コニカミノルタ株式会社 監視システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754365A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021181618A1 (ja) * 2020-03-12 2021-09-16 三菱電機株式会社 光走査装置、測距装置および光走査装置の製造方法
JPWO2021181618A1 (ja) * 2020-03-12 2021-09-16
CN115210626A (zh) * 2020-03-12 2022-10-18 三菱电机株式会社 光扫描装置、测距装置以及光扫描装置的制造方法
JP7317208B2 (ja) 2020-03-12 2023-07-28 三菱電機株式会社 光走査装置、測距装置および光走査装置の製造方法
CN115210626B (zh) * 2020-03-12 2024-04-16 三菱电机株式会社 光扫描装置、测距装置以及光扫描装置的制造方法

Also Published As

Publication number Publication date
JP6920538B2 (ja) 2021-08-18
JPWO2019176749A1 (ja) 2021-03-11
EP3754365A1 (en) 2020-12-23
EP3754365A4 (en) 2021-11-10
JP2021170033A (ja) 2021-10-28
US20210025986A1 (en) 2021-01-28

Similar Documents

Publication Publication Date Title
CN110045386B (zh) 用于光检测与测距光学对准的方法与系统
US10996322B2 (en) Lidar sensor
EP2800945B1 (en) Non-contact sensor having improved laser spot
CN103038664B (zh) 主动照明扫描成像器
JP2006276012A (ja) 物体の六つの自由度を求めるための測定システム
US10012831B2 (en) Optical monitoring of scan parameters
JP6341500B2 (ja) レーザレーダ装置
US8772688B2 (en) Autofocus device including line image forming unit and rotation unit that rotates line image
US10162171B2 (en) Scanning optical system and light projecting and receiving apparatus
CN110300900B (zh) 用于感测对象的激光雷达传感器
JP2021170033A (ja) 走査装置
JP2018005183A (ja) 光走査装置、物体検知装置および距離検知装置
CN110312947B (zh) 用于检测对象的激光雷达传感器
JP2016109517A (ja) レーザレーダ装置
JP2017110964A (ja) 光波距離測定装置
JP7360298B2 (ja) 測量装置
US11639986B2 (en) Optical device for a distance measurement device according to the LIDAR principle
JP4851737B2 (ja) 距離測定装置
US11486967B2 (en) Module for a lidar sensor and lidar sensor
JP6344845B2 (ja) レーザ測距装置
JP2014085646A (ja) 光走査装置及び計測システム
CN110940960B (zh) 激光雷达扫描系统和激光雷达扫描方法
EP3879304A1 (en) Laser radar device
JP2021012071A (ja) 光走査装置、物体検出装置及びセンシング装置
CN110662980A (zh) 用于扫描空间角度的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19767255

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020506458

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019767255

Country of ref document: EP

Effective date: 20200914