WO2019176642A1 - ガス精製装置 - Google Patents
ガス精製装置 Download PDFInfo
- Publication number
- WO2019176642A1 WO2019176642A1 PCT/JP2019/008569 JP2019008569W WO2019176642A1 WO 2019176642 A1 WO2019176642 A1 WO 2019176642A1 JP 2019008569 W JP2019008569 W JP 2019008569W WO 2019176642 A1 WO2019176642 A1 WO 2019176642A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- gas
- ammonia
- combustion chamber
- combustion
- hydrogen sulfide
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
- C10K1/003—Removal of contaminants of acid contaminants, e.g. acid gas removal
- C10K1/004—Sulfur containing contaminants, e.g. hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1406—Multiple stage absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1418—Recovery of products
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1425—Regeneration of liquid absorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/1456—Removing acid components
- B01D53/1468—Removing hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
- B01D53/18—Absorbing units; Liquid distributors therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/52—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/58—Ammonia
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/75—Multi-step processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/76—Gas phase processes, e.g. by using aerosols
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/02—Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B3/00—Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
- C01B3/50—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
- C01B3/52—Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with liquids; Regeneration of used liquids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J3/00—Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
- C10J3/72—Other features
- C10J3/82—Gas withdrawal means
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/002—Removal of contaminants
- C10K1/003—Removal of contaminants of acid contaminants, e.g. acid gas removal
- C10K1/006—Hydrogen cyanide
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
- C10K1/10—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/08—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors
- C10K1/10—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids
- C10K1/101—Purifying combustible gases containing carbon monoxide by washing with liquids; Reviving the used wash liquors with aqueous liquids with water only
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10K—PURIFYING OR MODIFYING THE CHEMICAL COMPOSITION OF COMBUSTIBLE GASES CONTAINING CARBON MONOXIDE
- C10K1/00—Purifying combustible gases containing carbon monoxide
- C10K1/34—Purifying combustible gases containing carbon monoxide by catalytic conversion of impurities to more readily removable materials
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G7/00—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals
- F23G7/06—Incinerators or other apparatus for consuming industrial waste, e.g. chemicals of waste gases or noxious gases, e.g. exhaust gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/10—Inorganic absorbents
- B01D2252/103—Water
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2252/00—Absorbents, i.e. solvents and liquid materials for gas absorption
- B01D2252/20—Organic absorbents
- B01D2252/204—Amines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/16—Hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2256/00—Main component in the product gas stream after treatment
- B01D2256/20—Carbon monoxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/304—Hydrogen sulfide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/406—Ammonia
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0415—Purification by absorption in liquids
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B2203/00—Integrated processes for the production of hydrogen or synthesis gas
- C01B2203/04—Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
- C01B2203/0465—Composition of the impurity
- C01B2203/0485—Composition of the impurity the impurity being a sulfur compound
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10J—PRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
- C10J2300/00—Details of gasification processes
- C10J2300/16—Integration of gasification processes with another plant or parts within the plant
- C10J2300/1603—Integration of gasification processes with another plant or parts within the plant with gas treatment
- C10J2300/1618—Modification of synthesis gas composition, e.g. to meet some criteria
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/10—Process efficiency
- Y02P20/129—Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
Definitions
- the present disclosure relates to a gas purification apparatus.
- the product gas obtained by gasifying coal is hydrogen sulfide using an aqueous amine solution in a hydrogen sulfide absorption tower after ammonia (NH 3 ) is removed in an ammonia removal section, for example, a water washing tower.
- NH 3 ammonia
- H 2 S Purified by removing
- NH 3 removed by a washing tower can be obtained as an off-gas by a stripper
- H 2 S burned in a reducing atmosphere by a combustion device and removed by a hydrogen sulfide absorption tower is It is described that it is burned in an oxidizing atmosphere by a combustion device as off-gas.
- At least one embodiment of the present disclosure aims to provide a gas purifier that can reduce the size of the ammonia removal unit.
- a gas purification device is a gas purification device that purifies a first gas containing ammonia and hydrogen sulfide, and removes a part of the ammonia contained in the first gas from the first gas. Removing hydrogen sulfide and ammonia from the ammonia removing unit, the first off gas collecting unit collecting the first off gas containing ammonia removed by the ammonia removing unit, and the second gas from which part of the ammonia is removed by the ammonia removing unit A hydrogen sulfide / ammonia removing unit to be removed, a second off gas collecting unit for collecting a second off gas containing hydrogen sulfide and ammonia removed by the hydrogen sulfide / ammonia removing unit, and combustion for burning the first off gas and the second off gas
- a combustion section is combusted in a reducing atmosphere on the downstream side of the first combustion chamber and the first combustion chamber in which combustion is performed in a reducing atmosphere.
- a second combustion chamber that is
- the NH 3 remaining in the second gas can be treated together with H 2 S in the combustion part without completely removing NH 3 from the first gas in the ammonia removal part.
- the size of the ammonia removal section can be reduced.
- the second gas may include 2 ppm or more of ammonia.
- NH 3 remaining in the second gas without being removed by the ammonia removing section is included in the second off gas and burned in an oxidizing atmosphere in the third combustion chamber. Then, NH 3 burns nitrogen oxides (NOx) is generated.
- NOx nitrogen oxides
- the concentration of NH 3 remaining in the second gas about 2 ppm or more, the amount of NO x derived from NH 3 remaining in the ammonia removal section can be reduced as much as possible, so that the amount of NO x generated increases. While suppressing, the size of the ammonia removing portion can be reduced.
- the removal rate of ammonia from the first gas may be 98% or less.
- the size required for the ammonia removal unit rapidly increases with an increase in the removal rate. Therefore, by suppressing the removal rate of NH 3 from the first gas to 98% or less, the size of the ammonia removal unit can be reduced while suppressing an increase in the amount of NH 3 derived NO 3 remaining in the ammonia removal unit. Can be small.
- a portion of the second off gas may be configured to also flow into the second combustion chamber. According to this configuration, since NH 3 is combusted in a reducing atmosphere in the second combustion chamber, almost no NOx is generated. For this reason, since NH 3 burned in the third combustion chamber is reduced, it is possible to reduce the size of the ammonia removal unit while further suppressing an increase in the generation amount of NO 3 derived from NH 3 remaining in the ammonia removal unit. .
- a denitration unit for denitrating exhaust gas flowing out from the third combustion chamber may be further provided. According to this configuration, even if NOx is generated by the combustion of NH 3 in the third combustion chamber, the NOx flowing out from the gas purification device is decomposed by decomposing at least a part of NH 3 into nitrogen and water in the denitration unit. Since the total amount is reduced, it is possible to reduce the size of the ammonia removal unit while further suppressing an increase in the amount of NH 3 -derived NOx remaining in the ammonia removal unit.
- Some embodiments may further include a converter that generates a first gas by hydrolyzing hydrogen cyanide and carbonyl sulfide contained in a product gas obtained by gasifying coal. According to this configuration, the size of the ammonia removal unit can be reduced in the coal gasification combined power plant.
- the present disclosure without complete removal of NH 3 from a first gas in ammonia removal unit, it can be processed together with the H 2 S and NH 3 remaining in the second gas in the combustion unit Therefore, by reducing the NH 3 removal rate in the ammonia removal unit, the size of the ammonia removal unit can be reduced.
- FIG. 3 is a schematic configuration diagram of a gas purification device according to Embodiment 1 of the present disclosure. It is a block diagram of the structure of the combustion part of the gas purification apparatus which concerns on Embodiment 1 of this indication.
- the relationship between the water washing tower of the gas purification system according to the first embodiment of the present disclosure and NH 3 removal rate and the height of the water washing tower is a graph showing schematically.
- Embodiment 3 is a block diagram of the structure of the gas purification apparatus which concerns on Embodiment 3 of this indication.
- FIG. 1 shows a gas purification device 1 according to Embodiment 1 of the present disclosure.
- the gas purification apparatus 1 is an apparatus for purifying a product gas obtained by gasifying coal in a gasification furnace 100 of a coal gasification combined power plant. More specifically, the gas purifying apparatus 1 is configured such that COS and HCN are hydrolyzed in a converter 2 filled with a catalyst for hydrolyzing both carbonyl sulfide (COS) and hydrogen cyanide (HCN) contained in the product gas. It is an apparatus for removing H 2 S and NH 3 from a first gas containing H 2 S and NH 3 generated by being decomposed.
- COS carbonyl sulfide
- HN hydrogen cyanide
- Gas purifier 1, NH 3 by a water washing column 3 is ammonia removal unit for removing a portion of the NH 3 from the first gas to separate the gas-liquid wastewater is NH 3 removed by the water washing column 3 was dissolved
- a hydrogen sulfide / ammonia absorption tower 5 which is a hydrogen sulfide / ammonia removing section to be removed by absorption in an absorption liquid such as an aqueous solution, and a second off gas containing H 2 S and NH 3 absorbed in the absorption liquid
- An absorption regeneration tower 6 that is a two off-gas recovery unit and a combustion device 7 that is a combustion unit that combusts the first off-gas and the second off-gas are provided.
- the gas purification apparatus 1 which concerns on Embodiment 1 is an apparatus for refine
- the gas purification device 1 can further include a wastewater treatment device 11 for treating the wastewater that has been gas-liquid separated in the stripper 4.
- a wastewater treatment device 11 for treating the wastewater that has been gas-liquid separated in the stripper 4.
- HCN that has not been converted in the converter 2 is separated from the waste water from the stripper 4 and sent to the combustion device 7.
- the combustion device 7 communicates with a flue gas desulfurization device 12 for desulfurizing the exhaust gas of the combustion device 7 through a pipe 14.
- the flue gas desulfurization device 12 communicates with the chimney 13 via the pipe 15.
- heat is generated between the gasifier 100 and the converter 2 in order to heat the purified gas that has been purified from the gasifier 100 by the gas purifier 1 and flowed out of the hydrogen sulfide / ammonia absorption tower 5. While providing the exchanger 102, the heat exchanger 103 can also be provided between the converter 2 and the washing tower 3. The refined gas heated in the heat exchangers 102 and 103 is sent to the gas turbine 101 of the combined coal gasification combined power plant.
- the combustion apparatus 7 is divided into a first combustion chamber 7a, a second combustion chamber 7b, and a third combustion chamber 7c from the upstream side toward the downstream side.
- the first combustion chamber 7 a is provided with a burner 8, and the burner 8 is configured to be supplied with fuel and air.
- the first combustion chamber 7a is configured to be supplied with the first off gas from the stripper 4 (see FIG. 1) and the HCN from the waste water treatment device 11 (see FIG. 1).
- the second combustion chamber 7b is configured to be supplied with air.
- the third combustion chamber 7c is configured to be supplied with the second off gas and air from the absorption regeneration tower 6 (see FIG. 1).
- the third combustion chamber 7 c communicates with the exhaust heat boiler 9, and the exhaust heat boiler 9 communicates with the flue gas desulfurization device 12 (see FIG. 1) via the pipe 14.
- the product gas from the gasification furnace 100 is cooled by exchanging heat with purified gas in the heat exchanger 102 and flows into the converter 2.
- COS and HCN in the product gas are hydrolyzed by the catalyst, and the first gas containing H 2 S and NH 3 flows out from the converter 2.
- the first gas flowing out from the converter 2 is cooled by exchanging heat with the purified gas in the heat exchanger 103 and flows into the washing tower 3.
- the first gas is cooled by being brought into contact with water, and the NH 3 in the first gas is absorbed by the water, whereby NH 3 is removed from the first gas.
- NH 3 is not completely removed from the first gas, but a part of NH 3 is removed.
- the concentration of NH 3 remaining in the second gas flowing out of the water washing tower 3 is 2 ppm or more, preferably 5 ppm or more, more preferably 10 ppm or more, and most preferably 10 to 50 ppm.
- FIG. 3 schematically shows the relationship between the NH 3 removal rate and the height of the water washing tower 3 in the water washing tower 3.
- the NH 3 removal rate on the horizontal axis in FIG. 3 is the ratio of the amount of NH 3 contained in the waste water flowing out from the water washing tower 3 to the amount of NH 3 flowing into the water washing tower 3.
- the dimensionless height of the rinsing tower 3 on the vertical axis in FIG. 3 is necessary to obtain an arbitrary NH 3 removal rate relative to the height of the rinsing tower 3 necessary for the NH 3 removal rate to be 100%. This is the ratio of the height of the flush tower 3.
- the NH 3 removal rate is in the range of 95 to 100%
- the increase in the dimensionless height of the water washing tower 3 accompanying the increase in the NH 3 removal rate is dramatically larger than the NH 3 removal rate below the range.
- the height of the water-washing tower 3 can be dramatically lowered by slightly reducing the NH 3 removal rate from 100%.
- the height of the water washing tower 3 can be made 70% or less as compared with the case where the NH 3 removal rate is 100%. Can be reduced.
- the water purifying apparatus 1 considers the processing capacity of NH 3 in the equipment downstream of the water washing tower 3 in the gas purification apparatus 1.
- the height of the tower 3 can be designed.
- the water that has absorbed NH 3 in the washing tower 3 flows out from the washing tower 3 as waste water and flows into the stripper 4.
- the waste water is gas-liquid separated, and the first off gas containing NH 3 and the waste water from which the NH 3 has been removed flow out of the stripper 4.
- the first off gas is sent to the combustion device 7 and the waste water is sent to the waste water treatment device 11.
- HCN remaining in the waste water is separated, and the HCN is sent to the combustion device 7.
- the second gas generated by removing NH 3 from the first gas in the water washing tower 3 flows out of the water washing tower 3 and flows into the hydrogen sulfide / ammonia absorption tower 5.
- the second gas comes into contact with an absorbing solution such as an aqueous amine solution, and H 2 S and NH 3 in the second gas are dissolved in the absorbing solution, so that the second gas converts the H 2 S And NH 3 are removed.
- the purified gas produced by removing H 2 S and NH 3 from the second gas flows out of the hydrogen sulfide / ammonia absorption tower 5 and exchanges heat with the first gas and the produced gas in the heat exchangers 103 and 102, respectively. Heated to flow into the gas turbine 101.
- the absorption liquid that has absorbed H 2 S and NH 3 in the hydrogen sulfide / ammonia absorption tower 5 is heated in the absorption regeneration tower 6, thereby desorbing H 2 S and regenerating it.
- H 2 S desorbed from the absorption liquid is recovered so as to be included in the second off gas, and the second off gas is sent to the combustion device 7.
- the combustion apparatus 7 in the first combustion chamber 7 a, fuel and air are introduced from the burner 8 and combustion is performed in a reducing atmosphere. Since the first combustion chamber 7a is supplied with the first off gas containing NH 3 and HCN from the waste water treatment device 11 (see FIG. 1), the NH 3 is combusted in a reducing atmosphere to generate nitrogen and water. Thus, HCN is burned in a reducing atmosphere to become nitrogen, water, and carbon dioxide.
- the third combustion chamber 7c combustion is performed in an oxidizing atmosphere. Since the second off gas containing H 2 S and NH 3 is supplied to the third combustion chamber 7c, H 2 S is combusted in an oxidizing atmosphere to become sulfur dioxide and water, and NH 3 becomes an oxidizing atmosphere. It is burned and becomes NOx and water. NH 3 contained in the second off-gas, as described above, and NH 3 remaining in the second gas to not completely remove the NH 3 in the washing column 3 (see FIG. 1). In the gas purifying apparatus 1, even without complete removal of NH 3 in water washing column 3, the NH 3 remaining in the second gas by water washing tower 3 can be burned and removed in the combustion device 7.
- NH 3 remaining in the second gas when NH 3 remaining in the second gas is burned and removed by the water washing tower 3 in the combustion device 7, NOx is generated due to combustion in an oxidizing atmosphere of NH 3 .
- NH 3 remaining in the second gas has a concentration of about 2 ppm or more, so that the generation amount of NO 3 derived from NH 3 remaining in the second gas in the rinsing tower 3 is reduced as much as possible. be able to. Therefore, in the gas purification apparatus 1, the height of the flush tower 3 can be reduced while suppressing an increase in the amount of NOx generated.
- the exhaust gas from the combustion device 7 is cooled in the exhaust heat boiler 9 and then circulates through the pipe 14. As shown in FIG. 1, the exhaust gas is desulfurized in the flue gas desulfurization device 12 after flowing through the pipe 14. The desulfurized exhaust gas flows through the pipe 15 and is then released from the chimney 13 into the atmosphere.
- Embodiment 2 Next, a gas purification apparatus according to Embodiment 2 will be described.
- the gas purification device according to the second embodiment is obtained by changing the processing mode of the second off gas in the combustion device 7 with respect to the first embodiment.
- the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- Embodiment 3 Next, a gas purification apparatus according to Embodiment 3 will be described.
- the gas purification apparatus according to the third embodiment is obtained by adding a denitration unit for denitrating exhaust gas to each of the first and second embodiments.
- Embodiment 3 will be described with a configuration in which a denitration unit is added to the configuration of Embodiment 1, but Embodiment 3 may be configured by adding a denitration unit to the configuration of Embodiment 2.
- the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
- the pipe 14 is provided with a denitration device 20 that is a denitration unit for denitrating exhaust gas from the combustion device 7.
- the denitration apparatus 20 is filled with a known catalyst for decomposing NOx into nitrogen and water.
- Other configurations are the same as those of the first embodiment.
- NOx is generated by the combustion of NH 3 in the third combustion chamber 7c (see FIG. 2).
- the third embodiment since at least a part of NOx contained in the exhaust gas is decomposed into nitrogen and water in the denitration device 20, the total amount of NOx flowing out from the gas purification device 1 is reduced as compared with the first embodiment. . For this reason, the height of the water-washing tower 3 can be lowered while further suppressing an increase in the amount of NH 3 -derived NOx generated in the second gas in the water-washing tower 3.
- the gas purification apparatus 1 has been described as a part of the combined coal gasification combined power plant.
- the present invention is not limited to this form, and the gas purification apparatus 1 can be provided in any facility.
- the gas purification device 1 does not necessarily have the converter 2, and the gas purification device 1 purifies the first gas (a gas containing H 2 S and NH 3 ) discharged from any facility. It may be a device for.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Analytical Chemistry (AREA)
- Organic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Inorganic Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Toxicology (AREA)
- Industrial Gases (AREA)
- Treating Waste Gases (AREA)
Abstract
ガス精製装置は、第1ガスに含まれるアンモニアの一部を除去するアンモニア除去部と、アンモニア除去部で除去されたアンモニアを含む第1オフガスを回収する第1オフガス回収部と、アンモニア除去部でアンモニアの一部が除去された第2ガスから硫化水素及びアンモニアを除去する硫化水素・アンモニア除去部と、硫化水素・アンモニア除去部で除去された硫化水素及びアンモニアを含む第2オフガスを回収する第2オフガス回収部と、第1オフガス及び第2オフガスを燃焼する燃焼部とを備え、燃焼部は、還元性雰囲気にて燃焼が行われる第1燃焼室と、第1燃焼室の下流側で還元性雰囲気にて燃焼が行われる第2燃焼室と、第2燃焼室の下流側で酸化性雰囲気にて燃焼が行われる第3燃焼室とを含み、第1オフガスは第1燃焼室に流入するとともに第2オフガスは第3燃焼室に流入するように構成されている。
Description
本開示は、ガス精製装置に関する。
石炭ガス化複合発電プラントにおいて、石炭をガス化して得られる生成ガスは、アンモニア除去部、例えば水洗塔でアンモニア(NH3)が除去された後、硫化水素吸収塔でアミン水溶液を用いて硫化水素(H2S)が除去されることによって精製される。特許文献1及び2には、水洗塔で除去されたNH3は、ストリッパーでオフガスとして得ることができ、燃焼装置によって還元性雰囲気にて燃焼され、硫化水素吸収塔で除去されたH2Sは、オフガスとして燃焼装置によって酸化性雰囲気にて燃焼されることが記載されている。
しかしながら、特許文献1及び2に記載のガス精製装置では、NH3の除去は水洗塔でしか行われていないので、水洗塔でNH3を完全に除去することが想定されており、そうすると、水洗塔の高さが高くなって(アンモニア除去部のサイズが大きくなって)ガス精製装置のコストが増加してしまうといった問題点があった。仮に、水洗塔でNH3を完全に除去しない場合には、除去されなかったNH3が硫化水素吸収塔に流入し、H2Sと共にアミン水溶液で回収されてオフガスとなるので、H2S及びNH3の混合ガスの処理設備が必要となり、ガス精製装置のコストが増加してしまう。
上述の事情に鑑みて、本開示の少なくとも1つの実施形態は、アンモニア除去部のサイズを小さくできるガス精製装置を提供することを目的とする。
本発明の少なくとも1つの実施形態に係るガス精製装置は、アンモニア及び硫化水素を含む第1ガスを精製するガス精製装置であって、第1ガスに含まれるアンモニアの一部を第1ガスから除去するアンモニア除去部と、アンモニア除去部で除去されたアンモニアを含む第1オフガスを回収する第1オフガス回収部と、アンモニア除去部でアンモニアの一部が除去された第2ガスから硫化水素及びアンモニアを除去する硫化水素・アンモニア除去部と、硫化水素・アンモニア除去部で除去された硫化水素及びアンモニアを含む第2オフガスを回収する第2オフガス回収部と、第1オフガス及び第2オフガスを燃焼する燃焼部とを備え、燃焼部は、還元性雰囲気にて燃焼が行われる第1燃焼室と、第1燃焼室の下流側で還元性雰囲気にて燃焼が行われる第2燃焼室と、第2燃焼室の下流側で酸化性雰囲気にて燃焼が行われる第3燃焼室とを含み、第1オフガスは第1燃焼室に流入するとともに第2オフガスは第3燃焼室に流入するように構成されている。
この構成によると、アンモニア除去部で第1ガスからNH3を完全に除去しなくても、第2ガス中に残存したNH3を燃焼部でH2Sと共に処理できるので、アンモニア除去部でのNH3の除去率を低下させることにより、アンモニア除去部のサイズを小さくすることができる。
いくつかの実施形態では、第2ガスは2ppm以上のアンモニアを含んでもよい。アンモニア除去部で除去されずに第2ガス中に残存したNH3は、第2オフガスに含まれて、第3燃焼室内で酸化性雰囲気にて燃焼される。そうすると、NH3が燃焼して窒素酸化物(NOx)が発生してしまう。しかしながら、第2ガス中に残存するNH3を2ppm以上程度の濃度にすることにより、アンモニア除去部で残存したNH3由来のNOxの発生量をできる限り低減できるので、NOxの発生量の増加を抑えながら、アンモニア除去部のサイズを小さくすることができる。
いくつかの実施形態では、第1ガスからアンモニアが除去される除去率は98%以下であってもよい。除去率が100%近くになると、除去率の増加に伴いアンモニア除去部に必要なサイズが急速に大きくなる。このため、第1ガスからNH3が除去される除去率を98%以下に抑えることにより、アンモニア除去部で残存したNH3由来のNOxの発生量の増加を抑えながら、アンモニア除去部のサイズを小さくすることができる。
いくつかの実施形態では、第2オフガスの一部が第2燃焼室にも流入するように構成されてもよい。この構成によれば、第2燃焼室ではNH3が還元性雰囲気にて燃焼されるので、NOxはほとんど発生しない。このため、第3燃焼室で燃焼されるNH3が減少するので、アンモニア除去部で残存したNH3由来のNOxの発生量の増加をさらに抑えながら、アンモニア除去部のサイズを小さくすることができる。
いくつかの実施形態では、第3燃焼室から流出する排ガスを脱硝するための脱硝部をさらに備えてもよい。この構成によれば、第3燃焼室におけるNH3の燃焼によってNOxが発生しても、脱硝部でNH3の少なくとも一部を窒素及び水に分解することにより、ガス精製装置から流出するNOxの総量が低減するので、アンモニア除去部で残存したNH3由来のNOxの発生量の増加をさらに抑えながら、アンモニア除去部のサイズを小さくすることができる。
いくつかの実施形態では、石炭をガス化して得られる生成ガスに含まれるシアン化水素及び硫化カルボニルを加水分解することによって第1ガスを生成する変換器をさらに備えてもよい。この構成によれば、石炭ガス化複合発電プラントにおいて、アンモニア除去部のサイズを小さくすることができる。
本開示の少なくとも1つの実施形態によれば、アンモニア除去部で第1ガスからNH3を完全に除去しなくても、第2ガス中に残存したNH3を燃焼部でH2Sと共に処理できるので、アンモニア除去部でのNH3の除去率を低下させることにより、アンモニア除去部のサイズを小さくすることができる。
以下、図面を参照して本発明のいくつかの実施形態について説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
(実施形態1)
図1は、本開示の実施形態1に係るガス精製装置1を示している。ガス精製装置1は、石炭ガス化複合発電プラントのガス化炉100において石炭をガス化して得られる生成ガスを精製するための装置である。より具体的には、ガス精製装置1は、生成ガス中に含まれる硫化カルボニル(COS)及びシアン化水素(HCN)の両方を加水分解するための触媒が充填された変換器2においてCOS及びHCNが加水分解されることによって生成したH2S及びNH3を含む第1ガスから、H2S及びNH3を除去するための装置である。
図1は、本開示の実施形態1に係るガス精製装置1を示している。ガス精製装置1は、石炭ガス化複合発電プラントのガス化炉100において石炭をガス化して得られる生成ガスを精製するための装置である。より具体的には、ガス精製装置1は、生成ガス中に含まれる硫化カルボニル(COS)及びシアン化水素(HCN)の両方を加水分解するための触媒が充填された変換器2においてCOS及びHCNが加水分解されることによって生成したH2S及びNH3を含む第1ガスから、H2S及びNH3を除去するための装置である。
ガス精製装置1は、第1ガスからNH3の一部を除去するアンモニア除去部である水洗塔3と、水洗塔3で除去されたNH3が溶解した排水を気液分離することによりNH3を含む第1オフガスを回収する第1オフガス回収部であるストリッパー4と、水洗塔3でNH3の一部が第1ガスから除去されて生成した第2ガスからH2S及びNH3をアミン水溶液等の吸収液に吸収させることによって除去する硫化水素・アンモニア除去部である硫化水素・アンモニア吸収塔5と、吸収液に吸収されたH2S及びNH3を含む第2オフガスを回収する第2オフガス回収部である吸収再生塔6と、第1オフガス及び第2オフガスを燃焼する燃焼部である燃焼装置7とを備えている。尚、実施形態1に係るガス精製装置1は、石炭ガス化複合発電プラントのガス化炉100において石炭をガス化して得られる生成ガスを精製するための装置であるため、変換器2もガス精製装置1の構成要件である。
ガス精製装置1は、ストリッパー4において気液分離された排水を処理するための排水処理装置11をさらに含むことができる。排水処理装置11では、変換器2において変換されなかったHCNを、ストリッパー4からの排水から分離して燃焼装置7に送るように構成されている。燃焼装置7は、配管14を介して、燃焼装置7の排ガスを脱硫するための排煙脱硫装置12に連通している。排煙脱硫装置12は、配管15を介して煙突13に連通している。
また、ガス化炉100からの生成ガスがガス精製装置1によって精製されて硫化水素・アンモニア吸収塔5から流出した精製ガスを加熱するために、ガス化炉100と変換器2との間に熱交換器102を設けるとともに変換器2と水洗塔3との間に熱交換器103を設けることもできる。熱交換器102及び103において加熱された精製ガスは、石炭ガス化複合発電プラントのガスタービン101に送られるようになっている。
図2に示されるように、燃焼装置7は、上流側から下流側に向かって、第1燃焼室7aと、第2燃焼室7bと、第3燃焼室7cとに区画されている。第1燃焼室7aにはバーナ8が設けられ、バーナ8には燃料及び空気のそれぞれが供給されるように構成されている。また、第1燃焼室7aは、ストリッパー4(図1参照)からの第1オフガスと、排水処理装置11(図1参照)からのHCNとが供給されるように構成されている。第2燃焼室7bは、空気が供給されるように構成されている。第3燃焼室7cは、吸収再生塔6(図1参照)からの第2オフガスと空気とが供給されるように構成されている。第3燃焼室7cは排熱ボイラー9と連通し、排熱ボイラー9は、配管14を介して排煙脱硫装置12(図1参照)に連通している。
次に、実施形態1に係るガス精製装置1の動作について説明する。
図1に示されるように、ガス化炉100からの生成ガスは、熱交換器102において精製ガスと熱交換することによって冷却されて変換器2に流入する。変換器2では、生成ガス中のCOS及びHCNが触媒によって加水分解されて、H2S及びNH3を含む第1ガスが変換器2から流出する。変換器2から流出した第1ガスは、熱交換器103において精製ガスと熱交換することによって冷却されて水洗塔3に流入する。
図1に示されるように、ガス化炉100からの生成ガスは、熱交換器102において精製ガスと熱交換することによって冷却されて変換器2に流入する。変換器2では、生成ガス中のCOS及びHCNが触媒によって加水分解されて、H2S及びNH3を含む第1ガスが変換器2から流出する。変換器2から流出した第1ガスは、熱交換器103において精製ガスと熱交換することによって冷却されて水洗塔3に流入する。
水洗塔3では、第1ガスが水と接触することにより冷却されるとともに、第1ガス中のアNH3が水に吸収されることによって、第1ガスからNH3が除去される。このとき、第1ガスからNH3が完全に除去されるのではなく、NH3の一部が除去される。水洗塔3から流出する第2ガス中に残存したNH3の濃度は、2ppm以上、好ましくは5ppm以上、さらに好ましくは10ppm以上、最も好ましくは10~50ppmである。このように水洗塔3でNH3を完全に除去しないようにすることによって、アンモニア除去部のサイズを小さくすることができる、すなわち水洗塔3の高さを低くすることができる。この効果を以下に説明する。
図3には、水洗塔3においてNH3除去率と水洗塔3の高さとの関係を模式的に示している。図3における横軸のNH3除去率は、水洗塔3に流入するNH3の量に対する水洗塔3から流出する排水に含まれるNH3の量の比である。また、図3における縦軸の水洗塔3の無次元高さは、NH3除去率が100%となるのに必要な水洗塔3の高さに対する任意のNH3除去率を得るのに必要な水洗塔3の高さの比である。NH3除去率が95~100%の範囲では、その範囲以下のNH3除去率に比べて、NH3除去率の上昇に伴う水洗塔3の無次元高さの上昇が劇的に大きくなる。このため、NH3除去率を100%からわずかに低減することにより、水洗塔3の高さを劇的に低くすることができる。例えば、NH3除去率を98%以下にすることで、NH3除去率が100%の場合に比べて、水洗塔3の高さを70%以下にすることができ、ガス精製装置1のコストを低減することができる。このように、水洗塔3の高さは水洗塔3におけるNH3除去率と関連するので、ガス精製装置1において水洗塔3よりも下流側の設備におけるNH3の処理能力等を考慮して水洗塔3の高さを設計することができる。
図1に示されるように、水洗塔3でNH3を吸収した水は、排水として水洗塔3から流出しストリッパー4に流入する。ストリッパー4では排水が気液分離されることによって、NH3を含む第1オフガスと、NH3が除去された排水とがストリッパー4から流出する。第1オフガスは燃焼装置7に送られ、排水は排水処理装置11に送られる。排水処理装置11では、排水に残存するHCNが分離され、HCNは燃焼装置7に送られる。
水洗塔3で第1ガスからNH3が除去されて生成した第2ガスは、水洗塔3から流出して硫化水素・アンモニア吸収塔5に流入する。硫化水素・アンモニア吸収塔5では、第2ガスがアミン水溶液等の吸収液と接触して第2ガス中のH2S及びNH3が吸収液に溶解することにより、第2ガスからH2S及びNH3が除去される。第2ガスからH2S及びNH3が除去されて生成した精製ガスは、硫化水素・アンモニア吸収塔5から流出し、熱交換器103及び102のそれぞれにおいて第1ガス及び生成ガスと熱交換して加熱されて、ガスタービン101に流入する。
硫化水素・アンモニア吸収塔5でH2S及びNH3を吸収した吸収液は、吸収再生塔6において加熱されることにより、H2Sを脱離して再生される。吸収液から脱離したH2Sは第2オフガスに含まれるように回収され、第2オフガスは燃焼装置7に送られる。
図2に示されるように、燃焼装置7において、第1燃焼室7aでは、バーナ8から燃料及び空気が導入されて還元性雰囲気にて燃焼が行われる。第1燃焼室7aには、NH3が含まれる第1オフガスと、排水処理装置11(図1参照)からのHCNが供給されるので、NH3が還元性雰囲気にて燃焼されて窒素及び水となり、HCNが還元性雰囲気にて燃焼されて窒素、水、及び二酸化炭素となる。
また、第3燃焼室7cでは、酸化性雰囲気にて燃焼が行われる。第3燃焼室7cには、H2S及びNH3を含む第2オフガスが供給されるので、H2Sが酸化性雰囲気にて燃焼されて二酸化硫黄及び水となり、NH3が酸化性雰囲気にて燃焼されてNOxと水となる。第2オフガスに含まれるNH3は、上述したように、水洗塔3(図1参照)において完全にNH3を除去しなかったために第2ガス中に残存したNH3である。ガス精製装置1では、水洗塔3において完全にNH3を除去しなくても、水洗塔3で第2ガス中に残存したNH3を燃焼装置7において燃焼除去することができる。
しかし、水洗塔3で第2ガス中に残存したNH3を燃焼装置7において燃焼除去すると、NH3の酸化性雰囲気における燃焼によってNOxが発生してしまう。この実施形態1では、第2ガス中に残存するNH3を2ppm以上程度の濃度にしているので、水洗塔3で第2ガス中に残存したNH3由来のNOxの発生量をできる限り低減することができる。したがって、ガス精製装置1において、NOxの発生量の増加を抑えながら、水洗塔3の高さを低くすることができる。
燃焼装置7の排ガスは、排熱ボイラー9において冷却された後、配管14を流通する。図1に示されるように、排ガスは、配管14を流通した後、排煙脱硫装置12において脱硫される。脱硫された排ガスは、配管15を流通した後、煙突13から大気中に放出される。
このように、水洗塔3で第1ガスからNH3を完全に除去しなくても、第2ガス中に残存したNH3を燃焼装置7でH2Sと共に処理できるので、水洗塔3でのNH3除去率を低下させることにより、水洗塔3の高さを低くすることができる。その結果、ガス精製装置1のコストを低減することができる。
(実施形態2)
次に、実施形態2に係るガス精製装置について説明する。実施形態2に係るガス精製装置は、実施形態1に対して、燃焼装置7における第2オフガスの処理形態を変更したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
次に、実施形態2に係るガス精製装置について説明する。実施形態2に係るガス精製装置は、実施形態1に対して、燃焼装置7における第2オフガスの処理形態を変更したものである。尚、実施形態2において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
図4に示されるように、第2オフガスの一部は第2燃焼室7bに流入するとともに第2オフガスの残部は第3燃焼室7cに流入するように構成されている。その他の構成は実施形態1と同じである。
第2燃焼室7bではNH3が還元性雰囲気にて燃焼されるので、NOxはほとんど発生しない。このため、第3燃焼室7cで燃焼されるNH3が減少するので、実施形態1に比べて、水洗塔3で残存したNH3由来のNOxの発生量の増加をさらに抑えながら、水洗塔3の高さを低くすることができる。
(実施形態3)
次に、実施形態3に係るガス精製装置について説明する。実施形態3に係るガス精製装置は、実施形態1及び2のそれぞれに対して、排ガスを脱硝するための脱硝部を追加したものである。以下では、実施形態1の構成に脱硝部を追加した構成で実施形態3を説明するが、実施形態2の構成に脱硝部を追加することによって実施形態3を構成してもよい。尚、実施形態3において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
次に、実施形態3に係るガス精製装置について説明する。実施形態3に係るガス精製装置は、実施形態1及び2のそれぞれに対して、排ガスを脱硝するための脱硝部を追加したものである。以下では、実施形態1の構成に脱硝部を追加した構成で実施形態3を説明するが、実施形態2の構成に脱硝部を追加することによって実施形態3を構成してもよい。尚、実施形態3において、実施形態1の構成要件と同じものは同じ参照符号を付し、その詳細な説明は省略する。
図5に示されるように、配管14には、燃焼装置7からの排ガスを脱硝するための脱硝部である脱硝装置20が設けられている。脱硝装置20には、NOxを窒素と水に分解するための公知の触媒が充填されている。その他の構成は実施形態1と同じである。
実施形態1において記載したように、第3燃焼室7c(図2参照)でのNH3の燃焼によりNOxが発生する。しかし、実施形態3では、排ガスに含まれるNOxの少なくとも一部が脱硝装置20において窒素及び水に分解されるので、実施形態1に比べて、ガス精製装置1から流出するNOxの総量が低減する。このため、水洗塔3で第2ガス中に残存したNH3由来のNOxの発生量の増加をさらに抑えながら、水洗塔3の高さを低くすることができる。
実施形態1~3ではそれぞれ、ガス精製装置1を石炭ガス化複合発電プラントの一部として説明したが、この形態に限定するものではなく、ガス精製装置1は任意の設備に設けることができる。この場合、ガス精製装置1は変換器2を必ずしも有さなくてもよく、ガス精製装置1は、任意の設備から排出される第1ガス(H2S及びNH3を含むガス)を精製するための装置であってもよい。
1 ガス精製装置
2 変換器
3 水洗塔(アンモニア除去部)
4 ストリッパー(第1オフガス回収部)
5 硫化水素・アンモニア吸収塔(硫化水素・アンモニア除去部)
6 吸収再生塔(第2オフガス回収部)
7 燃焼装置(燃焼部)
7a 第1燃焼室
7b 第2燃焼室
7c 第3燃焼室
8 バーナ
9 排熱ボイラー
11 排水処理装置
12 排煙脱硫装置
13 煙突
14 配管
15 配管
20 脱硝装置(脱硝部)
100 ガス化炉
101 ガスタービン
102 熱交換器
103 熱交換器
2 変換器
3 水洗塔(アンモニア除去部)
4 ストリッパー(第1オフガス回収部)
5 硫化水素・アンモニア吸収塔(硫化水素・アンモニア除去部)
6 吸収再生塔(第2オフガス回収部)
7 燃焼装置(燃焼部)
7a 第1燃焼室
7b 第2燃焼室
7c 第3燃焼室
8 バーナ
9 排熱ボイラー
11 排水処理装置
12 排煙脱硫装置
13 煙突
14 配管
15 配管
20 脱硝装置(脱硝部)
100 ガス化炉
101 ガスタービン
102 熱交換器
103 熱交換器
Claims (6)
- アンモニア及び硫化水素を含む第1ガスを精製するガス精製装置であって、
前記第1ガスに含まれるアンモニアの一部を前記第1ガスから除去するアンモニア除去部と、
前記アンモニア除去部で除去されたアンモニアを含む第1オフガスを回収する第1オフガス回収部と、
前記アンモニア除去部でアンモニアの一部が除去された第2ガスから硫化水素及びアンモニアを除去する硫化水素・アンモニア除去部と、
前記硫化水素・アンモニア除去部で除去された硫化水素及びアンモニアを含む第2オフガスを回収する第2オフガス回収部と、
前記第1オフガス及び前記第2オフガスを燃焼する燃焼部と
を備え、
前記燃焼部は、
還元性雰囲気にて燃焼が行われる第1燃焼室と、
前記第1燃焼室の下流側で還元性雰囲気にて燃焼が行われる第2燃焼室と、
前記第2燃焼室の下流側で酸化性雰囲気にて燃焼が行われる第3燃焼室と
を含み、
前記第1オフガスは前記第1燃焼室に流入するとともに前記第2オフガスは前記第3燃焼室に流入するように構成されているガス精製装置。 - 前記第2ガスは2ppm以上のアンモニアを含む、請求項1に記載のガス精製装置。
- 前記第1ガスからアンモニアが除去される除去率は98%以下である、請求項1または2に記載のガス精製装置。
- 前記第2オフガスの一部が前記第2燃焼室にも流入するように構成されている、請求項1~3のいずれか一項に記載のガス精製装置。
- 前記第3燃焼室から流出する排ガスを脱硝するための脱硝部をさらに備える、請求項1~4のいずれか一項に記載のガス精製装置。
- 石炭をガス化して得られる生成ガスに含まれるシアン化水素及び硫化カルボニルを加水分解することによって前記第1ガスを生成する変換器をさらに備える、請求項1~5のいずれか一項に記載のガス精製装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/979,100 US11441087B2 (en) | 2018-03-14 | 2019-03-05 | Gas purification device |
EP19767873.3A EP3744817A4 (en) | 2018-03-14 | 2019-03-05 | GAS PURIFIER |
CN201980009264.4A CN111655825B (zh) | 2018-03-14 | 2019-03-05 | 气体精制装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-046169 | 2018-03-14 | ||
JP2018046169A JP6934437B2 (ja) | 2018-03-14 | 2018-03-14 | ガス精製装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019176642A1 true WO2019176642A1 (ja) | 2019-09-19 |
Family
ID=67908161
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/008569 WO2019176642A1 (ja) | 2018-03-14 | 2019-03-05 | ガス精製装置 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11441087B2 (ja) |
EP (1) | EP3744817A4 (ja) |
JP (1) | JP6934437B2 (ja) |
CN (1) | CN111655825B (ja) |
WO (1) | WO2019176642A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10185159A (ja) * | 1996-12-24 | 1998-07-14 | Tokyo Electric Power Co Inc:The | アンモニアの分解と硫化水素の完全燃焼を同時に行う燃焼方法と燃焼装置 |
JP2000290668A (ja) * | 1999-04-12 | 2000-10-17 | Mitsubishi Heavy Ind Ltd | ガス精製方法 |
JP2003130326A (ja) * | 2001-10-26 | 2003-05-08 | Mitsubishi Heavy Ind Ltd | ガス燃焼処理方法およびその装置 |
JP2004036983A (ja) | 2002-07-02 | 2004-02-05 | Mitsubishi Heavy Ind Ltd | アンモニア含有ガス処理方法及びその装置 |
JP2004067849A (ja) * | 2002-08-06 | 2004-03-04 | Mitsubishi Heavy Ind Ltd | 湿式ガス精製方法 |
JP2007246703A (ja) * | 2006-03-16 | 2007-09-27 | Ngk Insulators Ltd | 燃料ガス中の硫化カルボニルおよびシアンの除去方法 |
JP2019066140A (ja) * | 2017-10-04 | 2019-04-25 | 三菱重工エンジニアリング株式会社 | ガス燃焼処理装置及び燃焼処理方法、ガス燃焼処理装置を備えたガス精製システム |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3929615A (en) * | 1973-06-01 | 1975-12-30 | American Gas Ass | Production of hydrocarbon gases from oil shale |
GB0507017D0 (en) * | 2005-04-06 | 2005-05-11 | Boc Group Plc | Treatment of fuel gas |
EP2188040A1 (en) | 2007-08-30 | 2010-05-26 | Shell Internationale Research Maatschappij B.V. | Process for removal of hydrogen sulphide and carbon dioxide from an acid gas stream |
US8858906B2 (en) | 2008-03-13 | 2014-10-14 | Shell Oil Company | Process for removal of carbon dioxide from a gas |
AU2011221123B2 (en) * | 2010-02-24 | 2014-05-15 | Mitsubishi Heavy Industries Engineering, Ltd. | CO shift catalyst , CO shift reaction apparatus, and method for purification of gasified gas |
CN102320568A (zh) * | 2011-08-25 | 2012-01-18 | 上海泽玛克敏达机械设备有限公司 | Bgl加压熔渣气化加纯氧非催化部分氧化制取合成气或氢气的方法及装置 |
CN103113929B (zh) * | 2012-08-06 | 2014-06-11 | 山西鑫立能源科技有限公司 | 一种煤热解气体的综合循环利用装置 |
CN103041679B (zh) * | 2013-01-15 | 2015-02-04 | 美景(北京)环保科技有限公司 | 含氨酸性气废气处理系统 |
CN205340579U (zh) * | 2016-01-29 | 2016-06-29 | 苏州新区环保服务中心有限公司 | 工业污泥干化尾气处理系统 |
CN106673014B (zh) * | 2016-12-29 | 2018-11-23 | 天津市创举科技股份有限公司 | 一种焦炉煤气脱硫脱氨制备氨水工艺 |
CN107013201A (zh) * | 2017-05-03 | 2017-08-04 | 中为(上海)能源技术有限公司 | 利用煤炭地下气化产品气发电的方法 |
-
2018
- 2018-03-14 JP JP2018046169A patent/JP6934437B2/ja active Active
-
2019
- 2019-03-05 EP EP19767873.3A patent/EP3744817A4/en active Pending
- 2019-03-05 CN CN201980009264.4A patent/CN111655825B/zh active Active
- 2019-03-05 US US16/979,100 patent/US11441087B2/en active Active
- 2019-03-05 WO PCT/JP2019/008569 patent/WO2019176642A1/ja unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10185159A (ja) * | 1996-12-24 | 1998-07-14 | Tokyo Electric Power Co Inc:The | アンモニアの分解と硫化水素の完全燃焼を同時に行う燃焼方法と燃焼装置 |
JP2000290668A (ja) * | 1999-04-12 | 2000-10-17 | Mitsubishi Heavy Ind Ltd | ガス精製方法 |
JP2003130326A (ja) * | 2001-10-26 | 2003-05-08 | Mitsubishi Heavy Ind Ltd | ガス燃焼処理方法およびその装置 |
JP3924150B2 (ja) | 2001-10-26 | 2007-06-06 | 三菱重工業株式会社 | ガス燃焼処理方法およびその装置 |
JP2004036983A (ja) | 2002-07-02 | 2004-02-05 | Mitsubishi Heavy Ind Ltd | アンモニア含有ガス処理方法及びその装置 |
JP2004067849A (ja) * | 2002-08-06 | 2004-03-04 | Mitsubishi Heavy Ind Ltd | 湿式ガス精製方法 |
JP2007246703A (ja) * | 2006-03-16 | 2007-09-27 | Ngk Insulators Ltd | 燃料ガス中の硫化カルボニルおよびシアンの除去方法 |
JP2019066140A (ja) * | 2017-10-04 | 2019-04-25 | 三菱重工エンジニアリング株式会社 | ガス燃焼処理装置及び燃焼処理方法、ガス燃焼処理装置を備えたガス精製システム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3744817A4 |
Also Published As
Publication number | Publication date |
---|---|
EP3744817A1 (en) | 2020-12-02 |
US11441087B2 (en) | 2022-09-13 |
EP3744817A4 (en) | 2021-03-31 |
US20200399548A1 (en) | 2020-12-24 |
CN111655825B (zh) | 2021-06-22 |
JP6934437B2 (ja) | 2021-09-15 |
CN111655825A (zh) | 2020-09-11 |
JP2019156985A (ja) | 2019-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6770119B2 (en) | Mercury removal method and system | |
JP6637682B2 (ja) | 石炭焚ボイラ用排ガス処理装置と石炭焚ボイラ用排ガス処理方法 | |
WO2012063466A1 (ja) | 排ガス処理方法と装置 | |
CN103318846B (zh) | 一种从煤化工及电厂含硫化物中获得硫磺的方法 | |
JP4227676B2 (ja) | ガス精製装置 | |
KR20180132194A (ko) | 배가스 내 잠열의 회수와 대기오염물질의 제거가 가능한 일체형 배가스 응축기 및 이를 포함하는 가압 순산소 연소 발전 시스템 | |
JP6917266B2 (ja) | ガス燃焼処理装置及び燃焼処理方法、ガス燃焼処理装置を備えたガス精製システム | |
JP4475697B2 (ja) | ガス精製方法 | |
EP0933516B1 (en) | Gasification power generation process and equipment | |
WO2019176642A1 (ja) | ガス精製装置 | |
EP3481534B1 (en) | A process for the combined removal of siloxanes and sulfur-containing compounds from biogas streams | |
JP4381130B2 (ja) | ガス化複合発電システム | |
JP2004075712A (ja) | ガス化ガス用のcos処理装置とcos処理方法 | |
JPH1119468A (ja) | ガス精製方法 | |
JP3868078B2 (ja) | 発電設備 | |
JP2010215802A (ja) | 乾式ガス精製設備及び石炭ガス化複合発電設備 | |
CN110877899A (zh) | 低浓度含硫酸性气体的处理方法 | |
CN204093311U (zh) | 一种用煤气、天然气净化工业炉窑的装置 | |
JP4519338B2 (ja) | アンモニア含有ガスの処理方法及び石炭ガス化複合発電プラント | |
JPH10287885A (ja) | 化石燃料ガス化複合発電設備のガス精製装置 | |
JPH11349951A (ja) | ガス精製方法 | |
JP2006110515A (ja) | 廃棄物のガス化改質処理方法 | |
JPH11347348A (ja) | 被処理ガスのイオウ分回収方法 | |
JP2016183295A (ja) | コークス炉ガスの脱硫方法 | |
JP2015009223A (ja) | 不純物除去装置、及び、脱硫装置、及び、石炭ガス化複合発電設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19767873 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019767873 Country of ref document: EP Effective date: 20200828 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |