WO2019176367A1 - 充電システム、充電装置、充電方法 - Google Patents

充電システム、充電装置、充電方法 Download PDF

Info

Publication number
WO2019176367A1
WO2019176367A1 PCT/JP2019/003780 JP2019003780W WO2019176367A1 WO 2019176367 A1 WO2019176367 A1 WO 2019176367A1 JP 2019003780 W JP2019003780 W JP 2019003780W WO 2019176367 A1 WO2019176367 A1 WO 2019176367A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
electric vehicle
charging
battery
relay
Prior art date
Application number
PCT/JP2019/003780
Other languages
English (en)
French (fr)
Inventor
宮崎 英樹
井戸 寛
義弘 戸高
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019176367A1 publication Critical patent/WO2019176367A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/40Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L55/00Arrangements for supplying energy stored within a vehicle to a power network, i.e. vehicle-to-grid [V2G] arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging system, a charging device, and a charging method for charging a battery mounted on an electric vehicle.
  • an electric vehicle such as an electric vehicle that can travel by driving a traveling motor using electric power charged in a battery has been widely used.
  • the charging facility does not exist in the vicinity, or if the charging device for charging the battery by taking in power from the charging facility fails, charging becomes impossible, and the charging state of the battery is changed.
  • the charging state of the battery is changed.
  • inter-vehicle charging in which the batteries of two electric vehicles are electrically connected and charged from one battery to the other battery has been studied.
  • Patent Document 1 includes a battery pack configured by combining a plurality of chargeable / dischargeable battery modules and provided with a plurality of switching means for switching a connection state between the battery modules, and a current output from the battery pack.
  • Output current detecting means for detecting a value
  • external connection means for connecting the assembled battery to the outside of the electric vehicle, and when the electric power is supplied from the assembled battery to another electric vehicle, the assembled battery
  • An electric vehicle comprising: control means for controlling the plurality of switching means according to a current value output from a battery and changing a combination of the battery modules connected to an output terminal of the assembled battery.
  • a power supply device is disclosed.
  • a charging system includes a first charging device mounted on a first electric vehicle, and a second charging device mounted on a second electric vehicle different from the first electric vehicle.
  • the first charging device includes: a first power receiving device that receives power supplied wirelessly or by wire; a first battery mounted on the first electric vehicle; and the first power receiving device.
  • a first relay that connects or disconnects, a first insulation diagnostic unit that diagnoses insulation between a frame ground of the first electric vehicle and the first battery, the first electric vehicle, and the first electric vehicle
  • a first communication device that performs inter-vehicle communication between second electric vehicles, and the second charging device includes a second power receiving device that receives power supplied wirelessly or by wire, Between the second battery mounted on the second electric vehicle and the second power receiving device.
  • the relays are in the cut-off state, respectively, the insulation diagnosis is performed, and the first communication device transmits the insulation diagnosis result by the first insulation diagnosis unit by the vehicle-to-vehicle communication.
  • the second charging device transmits the second charging device when both of the insulation diagnosis results by the first insulation diagnosis unit and the second insulation diagnosis unit are normal.
  • a charging device is mounted on a first electric vehicle, and includes a power receiving device that receives power supplied wirelessly or by wire, and a first device mounted on the first electric vehicle.
  • the communication device transmits the insulation diagnosis result by the insulation diagnosis unit to the second electric vehicle by the inter-vehicle communication, and when the relay is in a cut-off state, Of the first electric vehicle and the second electric vehicle Via a cable connected to and charges the second battery mounted on the second electric vehicle using the power received by the power receiving device.
  • a charging device is mounted on a second electric vehicle connected to the first electric vehicle, and receives a power supplied wirelessly or by wire, Diagnosing insulation between a second battery mounted on the second electric vehicle and a relay for connecting or disconnecting the power receiving device and a frame ground of the second electric vehicle and the second battery.
  • the charging method uses a first electric vehicle equipped with a first charging device and a first battery, and a second electric vehicle equipped with a second charging device and a second battery.
  • the first charging device includes a first power receiving device that receives power supplied wirelessly or by wire, and a first power receiving device that connects or blocks between the first battery and the first power receiving device.
  • the second charging device includes a second power receiving device that receives power supplied wirelessly or by wire, and a space between the second battery and the second power receiving device.
  • a second relay to be connected or disconnected, and when the first relay and the second relay are in a disconnected state, the first charging device and the second charging device, The frame ground of the first electric vehicle and the first battery And the insulation between the frame ground of the second electric vehicle and the second battery, respectively, and the vehicle between the first electric vehicle and the second electric vehicle.
  • the insulation diagnosis result by the first charging device is transmitted to the second charging device, and the insulation diagnosis result by the first charging device and the second charging device is any.
  • the second relay is switched from the disconnected state to the connected state, the first relay is in the disconnected state, and the second relay is in the connected state.
  • the second battery is charged using the power received by the first power receiving device via a cable connected between the charging device and the second charging device.
  • inter-vehicle charging can be performed safely.
  • FIG. 1 is a diagram showing a configuration of an inter-vehicle charging system according to an embodiment of the present invention.
  • the inter-vehicle charging system shown in FIG. 1 includes wireless power feeding systems 1a and 1b.
  • the wireless power feeding systems 1a and 1b are respectively used for wireless power feeding to vehicles such as electric cars, and are mounted on separate vehicles.
  • a vehicle on which the wireless power feeding system 1a is mounted will be described as “vehicle A”
  • vehicle on which the wireless power feeding system 1b is mounted will be described as “vehicle B”.
  • the wireless power feeding system 1a includes a power transmission device 100a installed on the ground side near the vehicle A, and a power receiving device 200a, a high-voltage battery 300a, a load 400a, and a battery monitoring device 500a mounted on the vehicle A side.
  • the wireless power feeding system 1b includes a power transmission device 100b installed on the ground side near the vehicle B, and a power receiving device 200b, a high-voltage battery 300b, a load 400b, and a battery monitoring device 500b mounted on the vehicle B side. .
  • the power transmission device 100a includes a power transmission control unit 110a, a communication unit 120a, an AC power supply 130a, a power conversion unit 140a, and a primary coil L1a.
  • the power transmission control unit 110a controls the entire power transmission device 100a by controlling the operations of the communication unit 120a and the power conversion unit 140a.
  • the communication unit 120a performs wireless communication with the communication unit 220a included in the power receiving device 200a under the control of the power transmission control unit 110a.
  • Various information necessary for wireless power feeding is exchanged between the power transmitting apparatus 100a and the power receiving apparatus 200a by wireless communication between the communication unit 120a and the communication unit 220a.
  • information such as the frequency of the alternating current flowing through the primary coil L1a, that is, the frequency of the alternating magnetic field emitted from the primary coil L1a is transmitted from the communication unit 120a to the communication unit 220a.
  • information such as the state of charge (SOC) and deterioration state of the high-voltage battery 300a and the allowable current during charging is transmitted from the communication unit 220a to the communication unit 120a.
  • SOC state of charge
  • AC power supply 130a is, for example, a commercial power supply, and supplies predetermined AC power to power conversion unit 140a.
  • the power conversion unit 140a outputs an AC current having a predetermined frequency and current value to the primary coil L1a using the AC power supplied from the AC power supply 130a under the control of the power transmission control unit 110a.
  • Primary coil L1a is installed on the ground side located under vehicle A, and emits an alternating magnetic field corresponding to the alternating current flowing from power conversion unit 140a toward vehicle A in the air. Thereby, wireless power feeding to the vehicle A is performed.
  • the power receiving device 200a includes a power reception control unit 210a, a communication unit 220a, an alternating current detection unit 230a, a drive control unit 240a, a power conversion unit 250a, a secondary coil L2a, a resonance coil Lxa, and a resonance capacitor Cxa.
  • the resonance coil Lxa and the resonance capacitor Cxa are connected to the secondary coil L2a and constitute a resonance circuit together with the secondary coil L2a.
  • the resonance frequency of the resonance circuit is determined according to the inductances of the secondary coil L2a and the resonance coil Lxa and the capacitance value of the resonance capacitor Cxa.
  • the resonance coil Lxa and the resonance capacitor Cxa may each be composed of a plurality of elements. Further, part or all of the resonance coil Lxa may be substituted by the inductance of the secondary coil L2a.
  • the power reception control unit 210a controls the entire power reception device 200a by controlling the operations of the communication unit 220a and the drive control unit 240a.
  • the communication unit 220a performs wireless communication with the communication unit 120a included in the power transmission device 100a under the control of the power reception control unit 210a, and exchanges various information as described above between the power transmission device 100a and the power reception device 200a. Send and receive.
  • Information such as the frequency of the alternating current flowing through the primary coil L1a received by the communication unit 220a is output from the communication unit 220a to the power reception control unit 210a.
  • the alternating current detection unit 230a detects the alternating current flowing through the resonance circuit including the secondary coil L2a when the secondary coil L2a receives the alternating magnetic field emitted from the primary coil L1a. And the alternating voltage from which a frequency and an amplitude each change according to the detected alternating current is generated, and it outputs to the drive control part 240a.
  • the drive control part 240a can acquire the frequency and magnitude
  • the drive control unit 240a controls switching operations of a plurality of switching elements included in the power conversion unit 250a under the control of the power reception control unit 210a. At this time, the drive control unit 240a changes the timing of the switching operation of each switching element based on the alternating current flowing through the resonance circuit detected by the alternating current detection unit 230a. A specific method for changing the timing of the switching operation will be described later.
  • the power conversion unit 250a has a plurality of switching elements, and controls the AC current flowing in the resonance circuit and rectifies by switching each of the plurality of switching elements, thereby converting AC power to DC power. Do.
  • the power converter 250a is connected to a chargeable / dischargeable high voltage battery 300a via relays 611a and 612a, and the high voltage battery 300a is charged using DC power output from the power converter 250a.
  • Relays 611a and 612a are for conducting or blocking between power converter 250a and high voltage battery 300a, and the switching state is controlled by a vehicle control device (not shown).
  • a smoothing capacitor C0a for smoothing the input voltage to the high voltage battery 300a is also connected between the power converter 250a and the high voltage battery 300a.
  • a load 400a is connected to the high voltage battery 300a via relays 613a and 614a.
  • the load 400a provides various functions related to the operation of the vehicle A using the DC power charged in the high voltage battery 300a.
  • the load 400a includes, for example, an AC motor for driving a vehicle, an inverter that converts the DC power of the high-voltage battery 300a into AC power, and supplies the AC motor to the AC motor.
  • the relays 613a and 614a are for conducting or blocking between the high voltage battery 300a and the load 400a, and the switching state is controlled by a vehicle control device (not shown) similarly to the relays 611a and 612a.
  • the relay 614a is a precharge relay for suppressing an inrush current that flows when the high voltage battery 300a and the load 400a are connected, and a precharge resistor Rpa is connected in series.
  • a converter 615a is connected between the high voltage battery 300a and the load 400a.
  • the converter 615a is connected to the low voltage battery 616a, and charges the low voltage battery 616a by reducing the DC power output from the high voltage battery 300a and supplying it to the low voltage battery 616a.
  • the high-voltage battery 300a may be charged by boosting the DC power output from the low-voltage battery 616a and supplying it to the high-voltage battery 300a.
  • the low voltage battery 616a supplies DC power having a lower voltage than that of the high voltage battery 300a to auxiliary equipment (not shown) mounted on the vehicle A, and one end side is connected to the converter 615a and the other end side is a frame of the vehicle A. Connected to the ground FGa.
  • the high voltage battery 300a is configured by combining a plurality of battery cells using, for example, lithium ion batteries.
  • the low voltage battery 616a is configured using, for example, a lead storage battery.
  • the high-voltage battery 300a and the low-voltage battery 616a may have any configuration as long as the high-voltage battery 300a can output DC power having a higher voltage than the low-voltage battery 616a.
  • a vehicle-to-vehicle communication device 617a is also connected to one end of the low-voltage battery 616a.
  • the inter-vehicle communication device 617a receives power supply from the low-voltage battery 616a and performs wireless communication with the inter-vehicle communication device 617b mounted on the vehicle B, so that the inter-vehicle communication between the vehicle A and the vehicle B is performed. Realize communication.
  • the inter-vehicle communication performed by the inter-vehicle communication devices 617a and 617b is necessary for inter-vehicle charging. Information is transmitted and received between the vehicle A and the vehicle B. A specific procedure for inter-vehicle charging will be described later.
  • the power transmission device 100b, power reception device 200b, high voltage battery 300b, load 400b and battery monitoring device 500b in the wireless power supply system 1b are also the power transmission device 100a, power reception device 200a, high voltage battery 300a, load 400a and battery monitoring in the wireless power supply system 1a. It has the same function and configuration as the device 500a.
  • symbols “a” and “b” are added to the end of the reference numerals. Yes.
  • the power receiving device 200a, the battery monitoring device 500a, the relays 611a and 612a, and the inter-vehicle communication device 617a that are mounted on the vehicle A and are related to the charging of the high voltage battery 300a are collectively referred to as “charging device A”.
  • the power receiving device 200b, the battery monitoring device 500b, the relays 611b and 612b, and the inter-vehicle communication device 617b that are mounted on the vehicle B and are associated with charging of the high-voltage battery 300b are collectively referred to as “charging device B”.
  • the booster cables 701 and 702 have impedances Z1 and Z2 including a resistance component and an inductive component, respectively, in order to suppress an inrush current at the start of inter-vehicle charging.
  • Both ends of the booster cable 701 are connected to the positive electrodes of the high-voltage batteries 300a and 300b via relays 611a and 611b, respectively.
  • Both ends of the booster cable 702 are connected to the negative electrodes of the high-voltage batteries 300a and 300b via relays 612a and 612b, respectively.
  • capacity components Cca and Ccb are formed between relay 611a and relay 612a in charging device A and between relay 611b and relay 612b in charging device B by connecting booster cables 701 and 702, respectively.
  • FIG. 2 is a diagram illustrating a configuration example of the power receiving device 200a according to the embodiment of the present invention.
  • the alternating current detection unit 230a is configured using, for example, a transformer Tr.
  • a transformer Tr When the magnetic flux generated by the alternating magnetic field emitted from the primary coil L1a is linked to the secondary coil L2a, an electromotive force is generated in the secondary coil L2a, and an alternating current i flows through the resonance circuit including the secondary coil L2a.
  • an alternating current i flows through the primary coil of the transformer Tr, an alternating voltage Vg whose frequency and amplitude change according to the alternating current i is generated at both ends of the secondary coil of the transformer Tr.
  • the alternating current detection part 230a can detect the alternating current i.
  • the alternating current detector 230a may be configured by using a device other than the transformer Tr.
  • the power conversion unit 250a includes two MOS transistors (MOSFETs) Q1 and Q2 connected in series.
  • the MOS transistors Q1 and Q2 perform a switching operation for switching between the source and the drain from the conductive state to the disconnected state or from the disconnected state to the conductive state in accordance with the gate drive signal from the drive control unit 240a.
  • the MOS transistor Q1 can function as an upper arm switching element
  • the MOS transistor Q2 can function as a lower arm switching element.
  • a resonance circuit including the secondary coil L2a is connected to the connection point O between the MOS transistors Q1 and Q2 and the source terminal of the MOS transistor Q2. Therefore, the AC current i flowing through the resonance circuit can be controlled and rectified by switching the MOS transistors Q1 and Q2 at appropriate timings.
  • FIG. 2 illustrates the power converter 250a having a half-bridge configuration using two MOS transistors Q1 and Q2 as switching elements, but as a power converter 250a having a full-bridge configuration using four MOS transistors as switching elements. Also good.
  • the power converter 250a having the half-bridge configuration illustrated in FIG. 2 will be described, but the basic operation is the same even when the full-bridge configuration is used.
  • the drive control unit 240a includes a voltage acquisition unit 241a, a drive signal generation unit 243a, and a gate drive circuit 244a.
  • the voltage acquisition unit 241a acquires the AC voltage Vg output from the AC current detection unit 230a (transformer Tr) and outputs it to the drive signal generation unit 243a.
  • the basic drive signal Sr is input from the power reception control unit 210a to the drive signal generation unit 243a.
  • the basic drive signal Sr is an AC signal that is output from the drive control unit 240a to the power conversion unit 250a and is a source of the gate drive signal that controls the switching operation of the MOS transistors Q1 and Q2, and the frequency thereof is the primary power transmission device 100a. It is determined according to the frequency of the current flowing through the coil L1a.
  • the communication unit 220a when the communication unit 220a receives information representing the frequency f of the alternating current flowing through the primary coil L1a of the power transmission device 100a from the communication unit 120a, the communication unit 220a outputs the information to the power reception control unit 210a.
  • the power reception control unit 210a When information on the frequency f is input from the communication unit 220a, the power reception control unit 210a generates a basic drive signal Sr corresponding to the frequency f and outputs the basic drive signal Sr to the drive control unit 240a.
  • the basic drive signal Sr is, for example, a combination of two rectangular waves corresponding to the MOS transistors Q1 and Q2, respectively, and has an H level corresponding to ON (conducting state) and an L level corresponding to OFF (disconnected state). Are alternately repeated at the frequency f. However, a predetermined protection period is provided between the H levels of the two rectangular waves so that the MOS transistors Q1 and Q2 are not turned on simultaneously.
  • the drive signal generation unit 243a adjusts the phase of the basic drive signal Sr input from the power reception control unit 210a based on the AC voltage Vg input from the voltage acquisition unit 241a, and generates the charge drive signal Sc. Then, the generated charge drive signal Sc is output to the gate drive circuit 244a.
  • the gate drive circuit 244a outputs a gate drive signal based on the charge drive signal Sc input from the drive signal generation unit 243a to the gate terminals of the MOS transistors Q1 and Q2, respectively, and causes the MOS transistors Q1 and Q2 to perform switching operations.
  • the MOS transistors Q1 and Q2 function as switching elements, respectively, and control of the alternating current i flowing in the resonance circuit according to the alternating magnetic field emitted from the primary coil L1a, or the alternating current power to the direct current power. Conversion to
  • the power receiving device 200a of the present embodiment can charge the high-voltage battery 300a by receiving wireless power feeding from the power transmitting device 100a by performing the operation as described above.
  • the power receiving device 200b in the wireless power feeding system 1b also has the same configuration as the power receiving device 200a described above, and can receive the wireless power feeding from the power transmitting device 100b to charge the high-voltage battery 300b. Description of the details of the power receiving device 200b is omitted.
  • FIG. 3 is a diagram showing a processing flow during normal charging of the wireless power feeding systems 1a and 1b according to the embodiment of the present invention.
  • the processing flow of FIG. 3 is started in the wireless power feeding system 1a.
  • the processing flow of FIG. 3 is started in the wireless power feeding system 1b.
  • the processing flow of the wireless power feeding system 1a will be described as a representative example, and the processing flow of the wireless power feeding system 1b is the same, and the description thereof will be omitted.
  • step S10 the ground-side power transmission device 100a makes a charge inquiry to the vehicle A-side power reception device 200a.
  • an inquiry for charging is performed by transmitting a predetermined communication message from the communication unit 120a of the power transmission device 100a to the communication unit 220a of the power reception device 200a.
  • step S20 the power receiving device 200a that has received the charge inquiry in step S10 notifies the power transmitting device 100a of the allowable current of the high-voltage battery 300a during charging.
  • the power receiving device 200a determines the allowable current based on, for example, the charge state or deterioration state of the high-voltage battery 300a measured in advance, and transmits information indicating the value of the allowable current from the communication unit 220a to the communication unit 120a of the power transmission device 100a. Send to.
  • the power receiving apparatus 200a may notify the power transmitting apparatus 100a to that effect. In this case, the process flow of FIG. 3 is complete
  • step S30 the amount of current is determined in the power transmission device 100a, and power transmission to the power reception device 200a is started.
  • the power transmitting apparatus 100a compares the output current value corresponding to the allowable current notified from the power receiving apparatus 200a in step S20 and its own rated current value, and selects the smaller one to determine the current amount.
  • the power conversion unit 110a is controlled by the power transmission control unit 110a, and an alternating current corresponding to the determined amount of current is caused to flow through the primary coil L1a, thereby generating an alternating magnetic field in the primary coil L1a and starting power transmission.
  • the power reception control unit 210a of the power receiving device 200a sets the frequency f to It is preferable that the above-described basic drive signal Sr can be generated.
  • the frequency f may be notified from the power transmitting apparatus 100a to the power receiving apparatus 200a when charging is inquired in step S10.
  • step S40 the power receiving device 200a performs drive control processing of the power converter 250a in response to the alternating current i that flows through the resonance circuit including the secondary coil L2a in response to the alternating magnetic field emitted from the primary coil L1a.
  • the drive control of the power conversion unit 250a according to the alternating current received from the power transmission device 100a is performed by performing the processing as described above in each unit of the drive control unit 240a. Thereby, the high voltage battery 300a is charged in the constant current (CC) mode.
  • step S50 in the power receiving device 200a, it is determined whether or not the state of charge (SOC) of the high voltage battery 300a has reached a predetermined value, for example, 80% or more. As a result, if the SOC is less than 80%, the drive control process of step S40 is repeated. If the SOC becomes 80% or more, the constant current mode is changed to the constant voltage (CV) mode and the process proceeds to step S60.
  • SOC state of charge
  • step S60 the power receiving device 200a notifies the power transmitting device 100a of a charging current corresponding to the current charging state of the high voltage battery 300a.
  • the power receiving apparatus 200a determines the charging current with a value smaller than the allowable current notified in step S20 based on the current charging state of the high voltage battery 300a, and transmits information indicating the value of the charging current to the communication unit 220a. To the communication unit 120a of the power transmission device 100a.
  • step S70 the power receiving device 200a performs the same drive control process as in step S40, thereby charging the high-voltage battery 300a in the constant voltage (CV) mode.
  • step S80 in the power receiving device 200a, it is determined whether or not the state of charge (SOC) of the high voltage battery 300a has reached 100% of full charge. As a result, if the SOC is less than 100%, the process returns to step S60 to continue charging the high voltage battery 300a, and if the SOC reaches 100%, the process proceeds to step S90.
  • SOC state of charge
  • step S90 the charging of the high voltage battery 300a is terminated.
  • a predetermined communication message is transmitted from the communication unit 220a of the power receiving device 200a to the communication unit 120a of the power transmission device 100a, thereby instructing the stop of power transmission.
  • the power transmission is stopped by interrupting the energization of the primary coil L1a in response to the power transmission stop instruction.
  • the charging of the high voltage battery 300a is terminated by stopping the operation of the power conversion unit 250a in the power receiving device 200a.
  • step S90 the processing flow of FIG. Thereby, the wireless power supply of the wireless power supply system 1a is completed.
  • FIG. 4 is a functional block diagram of battery monitoring devices 500a and 500b according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of a processing flow of charging control when charging the high voltage battery 300b of the vehicle B by inter-vehicle charging from the vehicle A to the vehicle B.
  • the wireless power feeding from the power transmission device 100a is received by the power receiving device 200a of the vehicle A, and the DC power from the power receiving device 200a is output to the high voltage battery 300b of the vehicle B via the booster cables 701 and 702. A case where the high voltage battery 300b is charged will be described.
  • the functional block diagram of FIG. 4 shows functional blocks of battery monitoring devices 500a and 500b for performing inter-vehicle charging from the vehicle A to the vehicle B in the wireless power feeding systems 1a and 1b.
  • the battery monitoring device 500a includes functional blocks of an arithmetic processing unit 510a, an insulation diagnosis unit 530a, and an input / output unit 550a.
  • the battery monitoring apparatus 500b includes functional blocks of an arithmetic processing unit 510b, a cell voltage measurement unit 520b, an insulation diagnosis unit 530b, and an input / output unit 550b.
  • the arithmetic processing unit 510a is realized, for example, by executing a predetermined program in the CPU. Further, the insulation diagnosis unit 530a and the input / output unit 550a are each realized by using an arbitrary hardware configuration.
  • the insulation diagnosis unit 530a diagnoses the insulation of the high-voltage system on the vehicle A side in the wireless power feeding system 1a in accordance with an instruction from the arithmetic processing unit 510a.
  • the high voltage system on the vehicle A side where the insulation diagnosis unit 530a performs insulation diagnosis is each part of the wireless power feeding system 1a connected to the high voltage battery 300a via the relays 611a to 614a.
  • the power conversion unit 250a, A load 400a, a converter 615a, wiring between them, and the like are included.
  • a predetermined pulse signal is input to the wiring between the power conversion unit 250a and the relay 611a or the wiring connecting the load 400a and the relays 613a and 614a.
  • the impedance between the wiring and the frame ground FGa of the vehicle A is measured. As a result, if the impedance remains infinite and does not change, it is determined that the insulation of the high-voltage system on the vehicle A side is secured with respect to the frame ground FGa. On the other hand, when the impedance changes in response to the input of the pulse signal, it is determined that a leak from the high-voltage system on the vehicle A side to the frame ground FGa has occurred and insulation of the high-voltage system on the vehicle A side is not secured. To do.
  • the insulation diagnosis result by the insulation diagnosis unit 530a is output to the vehicle-to-vehicle communication device 617a by the input / output unit 550a, and to the power receiving device 200b via the vehicle-to-vehicle communication device 617b by the vehicle-to-vehicle communication device 617a. Sent.
  • the arithmetic processing unit 510b is realized, for example, by executing a predetermined program in the CPU, and includes a battery information acquisition unit 511b and a charging instruction unit 512b.
  • the cell voltage measurement unit 520b, the insulation diagnosis unit 530b, and the input / output unit 550b are each realized by using an arbitrary hardware configuration.
  • the cell voltage measuring unit 520b measures the voltage of the high voltage battery 300b and outputs the measurement result to the arithmetic processing unit 510b.
  • the cell voltage measurement unit 520b measures the cell voltage for each of the plurality of battery cells constituting the high-voltage battery 300b. Then, each measured cell voltage is output to the arithmetic processing unit 510b.
  • the insulation diagnosis unit 530b diagnoses the insulation of the high-voltage system on the vehicle B side in the wireless power feeding system 1b in accordance with an instruction from the arithmetic processing unit 510b.
  • the high voltage system on the vehicle B side where the insulation diagnosis unit 530b performs insulation diagnosis is each part of the wireless power feeding system 1b connected to the high voltage battery 300b via the relays 611b to 614b.
  • the power conversion unit 250b, A load 400b, a converter 615b, wiring between them, and the like are included.
  • a diagnosis method similar to that of the insulation diagnosis unit 530a in the battery monitoring device 500a can be used.
  • the insulation diagnosis result by the insulation diagnosis unit 530b is output to the vehicle-to-vehicle communication device 617b by the input / output unit 550b, and to the power receiving device 200a via the vehicle-to-vehicle communication device 617a by the vehicle-to-vehicle communication device 617b. Sent.
  • the battery information acquisition unit 511b displays information such as the measurement result of the voltage of the high voltage battery 300b by the cell voltage measurement unit 520b and various states of the high voltage battery 300b based on the measurement result, such as the SOC of the high voltage battery 300b. Obtained as battery information indicating the state of the high-voltage battery 300b before charging.
  • the charging instruction unit 512b issues a charging instruction to the power receiving device 200a of the vehicle A.
  • the charging instruction from the charging instruction unit 512b is output to the inter-vehicle communication device 617b by the input / output unit 550b, and is transmitted to the power receiving device 200a via the inter-vehicle communication device 617a by the inter-vehicle communication performed by the inter-vehicle communication device 617b.
  • step S110 the relays 611a to 614a of the vehicle A and the relays 611b to 614b of the vehicle B are all turned off, and the high voltage batteries 300a and 300b are electrically disconnected from the power converters 250a and 250b and the loads 400a and 400b, respectively.
  • the relays 611a to 614a and the relays 611b to 614b are switched off by vehicle control devices (not shown) mounted on the vehicles A and B, respectively.
  • step S120 the soundness of the inter-vehicle communication performed between the vehicle A and the vehicle B is confirmed.
  • the vehicle-to-vehicle communication device 617a and the vehicle-to-vehicle communication device 617b through vehicle-to-vehicle communication, and determining whether or not the information has been received with the correct content, the vehicle It is confirmed whether or not vehicle-to-vehicle communication can be normally performed between A and vehicle B.
  • step S130 it is determined whether or not the vehicle-to-vehicle communication between the vehicle A and the vehicle B is normal based on the confirmation result of the soundness of the vehicle-to-vehicle communication in step S120. If it is confirmed in step S120 that the vehicle-to-vehicle communication can be normally performed, the process proceeds to step S140 and the process flow of FIG. 5 is continued. Otherwise, the process flow of FIG. 5 is terminated. Thereby, when the soundness of vehicle-to-vehicle communication cannot be confirmed, inter-vehicle charging from the vehicle A to the vehicle B is prohibited.
  • step S140 the insulation diagnosis units 530a and 530b perform insulation diagnosis of the high-voltage systems on the vehicle A and vehicle B sides in the wireless power feeding systems 1a and 1b, respectively.
  • the insulation diagnosis unit 530a of the battery monitoring device 500a and the insulation diagnosis unit 530b of the battery monitoring device 500b use the above-described diagnosis method to diagnose insulation of the high voltage system of the vehicle A and the high voltage system of the vehicle B. Do each.
  • step S150 between the charging device A and the charging device B, the insulation diagnosis results performed in step S140 are exchanged with each other.
  • the insulation diagnosis result for the vehicle A performed by the insulation diagnosis unit 530a of the battery monitoring device 500a is transmitted from the inter-vehicle communication device 617a to the inter-vehicle communication device 617b by inter-vehicle communication, and the battery monitoring device 500b.
  • the insulation diagnosis result for the vehicle B performed by the insulation diagnosis unit 530b is transmitted from the inter-vehicle communication device 617b to the inter-vehicle communication device 617a by inter-vehicle communication.
  • the insulation diagnosis result is displayed on a display device (not shown) installed in each of the vehicles A and B, thereby notifying the user.
  • the vehicle A and the vehicle B may display their own insulation diagnosis results, or the other party's diagnosis results received by inter-vehicle communication, that is, the vehicle A, the insulation diagnosis result of the vehicle B.
  • the insulation diagnosis result of the vehicle A may be displayed.
  • the insulation diagnosis result of both the vehicle A and the vehicle B may be displayed together.
  • step S160 the arithmetic processing units 510a and 510b of the battery monitoring devices 500a and 500b determine whether or not the insulation diagnosis results of the vehicle A and the vehicle B performed in step S140 are normal. If the insulation diagnosis results of both the vehicles A and B are normal, the process proceeds to step S170 and the process flow of FIG. 5 is continued. Otherwise, the process flow of FIG. 5 is terminated. Thereby, when the insulation is not ensured with respect to both the high voltage
  • step S170 the vehicle B transmits the battery information of the high-voltage battery 300b to be charged for inter-vehicle charging from the vehicle B to the vehicle A by inter-vehicle communication.
  • the battery information acquired by the arithmetic processing unit 510b of the battery monitoring device 500b is output from the input / output unit 550b to the inter-vehicle communication device 617b, so that the battery information of the high-voltage battery 300b is communicated between the vehicles by inter-vehicle communication.
  • the inter-vehicle communication device 617a To the inter-vehicle communication device 617a.
  • step S180 it is determined whether or not the booster cables 701 and 702 are connected between the wireless power feeding system 1a and the wireless power feeding system 1b.
  • the wireless power feeding system 1b it is determined that the booster cables 701 and 702 are connected when an operation switch (not shown) provided in the vehicle B is operated by the user.
  • an operation switch not shown
  • step S150 if the insulation diagnosis result is normal, the user is prompted to connect the booster cables 701 and 702, and when the connection is completed, a predetermined operation is performed. The user may be instructed to do so.
  • the impedance between the relay 611b and the relay 612b may be measured in the wireless power feeding system 1b, and it may be determined whether or not the booster cables 701 and 702 are connected based on the measurement result. Until the booster cables 701 and 702 are connected between the wireless power supply system 1a and the wireless power supply system 1b, the process stays at step S180, and when connected, the process proceeds to step S190.
  • step S190 in the wireless power feeding system 1b of the vehicle B, the relays 611b and 612b on the charging side of the high voltage battery 300b are switched from off to on.
  • the charging instruction unit 512b of the battery monitoring device 500b transmits a charging start instruction for the high-voltage battery 300b to the vehicle A.
  • This charging start instruction is transmitted from the inter-vehicle communication device 617b of the wireless power feeding system 1b to the inter-vehicle communication device 617a of the wireless power feeding system 1a by inter-vehicle communication, and is received by the power receiving device 200a.
  • the power receiving device 200a When the power receiving device 200a receives the charging start instruction transmitted from the battery monitoring device 500b in step S200, the power receiving device 200a instructs the power transmitting device 100a to flow the AC current similar to that in the normal state to the primary coil L1a. . Receiving this instruction, the power transmission device 100a determines the amount of current and causes an alternating current corresponding to the determined amount of current to flow through the primary coil L1a, thereby generating an alternating magnetic field in the primary coil L1a and starting power transmission. The power receiving device 200a receives the AC magnetic field emitted from the primary coil L1a, performs drive control processing of the power conversion unit 250a according to the AC current i flowing through the resonance circuit including the secondary coil L2a, and from the power conversion unit 250a.
  • the DC power output from the power converter 250a is supplied from the wireless power feeding system 1a to the wireless power feeding system 1b via the booster cables 701 and 702, and input to the high voltage battery 300b via the relays 611b and 612b. Thereby, vehicle-to-vehicle charging from vehicle A to vehicle B is performed, and high-voltage battery 300b is charged using the power received by power receiving device 200a.
  • step S210 it is determined whether or not charging of the high voltage battery 300b is completed in the wireless power feeding system 1b of the vehicle B.
  • SOC state of charge
  • the threshold value used in the determination in step S210 may be a value corresponding to the minimum electric power at which vehicle B can operate, for example. If it does in this way, it can avoid that the user of vehicle A cannot use vehicle A for a long time by inter-vehicle charge, and can suppress the fall of convenience.
  • step S220 the charging instruction unit 512b of the battery monitoring device 500b transmits a charging stop instruction for the high-voltage battery 300b to the vehicle A.
  • This charge stop instruction is transmitted by inter-vehicle communication from the vehicle-to-vehicle communication device 617b of the wireless power feeding system 1b to the vehicle-to-vehicle communication device 617a of the wireless power feeding system 1a, similarly to the charging start instruction in step S200, and is received by the power receiving device 200a. Received.
  • the power receiving device 200a When the power receiving device 200a receives the charging stop instruction transmitted from the battery monitoring device 500b in step S220, the power receiving device 200a instructs the power transmitting device 100a to stop the emission of the alternating magnetic field from the primary coil L1a. Receiving this instruction, the power transmission device 100a stops the power transmission by interrupting the alternating current of the primary coil L1a. Thereby, the inter-vehicle charging from the vehicle A to the vehicle B is stopped.
  • step S230 the relays 611b and 612b on the charging side of the high voltage battery 300b are switched from on to off in the wireless power feeding system 1b of the vehicle B. If the process of step S230 is performed, the process flow of FIG. 5 will be complete
  • the vehicle-to-vehicle charging from the vehicle A to the vehicle B is performed to charge the high-voltage battery 300b of the vehicle B.
  • the vehicle-to-vehicle charging from the vehicle B to the vehicle A is performed. It is also possible to charge the high voltage battery 300a of the vehicle A.
  • each unit of the wireless power feeding system 1a and each unit of the wireless power feeding system 1b may be interchanged.
  • the inter-vehicle charging system includes a charging device A mounted on a vehicle A which is an electric vehicle, and a charging device B mounted on a vehicle B which is an electric vehicle different from the vehicle A.
  • the charging device A includes a power receiving device 200a that receives power supplied wirelessly from the power transmitting device 100a, relays 611a and 612a that connect or block between the high voltage battery 300a mounted on the vehicle A and the power receiving device 200a, and the vehicle An insulation diagnosis unit 530a for diagnosing insulation between the frame ground FGa of A and the high-voltage battery 300a, and an inter-vehicle communication device 617a that performs inter-vehicle communication between the vehicle A and the vehicle B.
  • the charging device B includes a power receiving device 200b that receives power supplied wirelessly from the power transmitting device 100b, and relays 611b and 612b that connect or disconnect the high voltage battery 300b mounted on the vehicle B and the power receiving device 200b.
  • an insulation diagnosis unit 530b that diagnoses insulation between the frame ground FGb of the vehicle B and the high-voltage battery 300b, and an inter-vehicle communication device 617b that performs inter-vehicle communication between the vehicle A and the vehicle B.
  • the insulation diagnosis units 530a and 530b perform insulation diagnosis when the relays 611a and 612a and the relays 611b and 612b are in the disconnected state, respectively (step S140).
  • the inter-vehicle communication device 617a transmits the insulation diagnosis result by the insulation diagnosis unit 530a to the charging device B by inter-vehicle communication (step S150).
  • Charging device B switches relays 611b and 612b from the disconnected state to the connected state (step S190) when both of the insulation diagnosis results by insulation diagnosis units 530a and 530b are normal (step S160: Yes).
  • the power receiving device 200a is connected via the booster cables 701 and 702 connected between the charging device A and the charging device B.
  • the high-voltage battery 300b is charged using the power received by (step S200). Since it did in this way, vehicle-to-vehicle charge can be performed safely between the vehicle A and the vehicle B.
  • step S150 At least one of the charging device A and the charging device B notifies the user of the insulation diagnosis result performed in step S140 (step S150). Since it did in this way, the insulation of a high voltage
  • the charging device B is connected to the booster cables 701 and 702 between the charging device A and the charging device B after the user is notified of the insulation diagnosis result for the high-voltage systems of the vehicles A and B in step S150. If it is determined whether or not the booster cables 701 and 702 are connected (step S180: Yes), the relays 611b and 612b are switched from the disconnected state to the connected state in step S190. Since it did in this way, the electrical connection of the charging device A and the high voltage battery 300b can be permitted only when the insulation of the high voltage system is ensured, and the safety can be improved.
  • the power receiving device 200a includes a secondary coil L2a, a resonance coil Lxa and a resonance capacitor Cxa that are resonance elements that are connected to the secondary coil L2a and have a resonance circuit having a predetermined resonance frequency together with the secondary coil L2a.
  • the MOS transistors Q1 and Q2 that are a plurality of switching elements are provided, and the MOS transistors Q1 and Q2 are respectively switched to perform the switching operation so that the secondary coil L2a receives the alternating magnetic field emitted from the primary coil L1a and flows to the resonance circuit.
  • a power converter 250a that controls the alternating current i. Since it did in this way, the high voltage battery 300b can be charged by vehicle-to-vehicle charging using wireless power feeding.
  • each component included in the drive control units 240a and 240b and the battery monitoring devices 500a and 500b may be realized by software executed by a microcomputer or the like, or may be an FPGA (Field-Programmable). It may be realized by hardware such as (Gate Array). These may be used in combination.
  • the wireless power feeding systems 1a and 1b used for wireless power feeding to a vehicle such as an electric vehicle have been described. You may apply. Further, the present invention can be applied even when the high-voltage batteries 300a and 300b are charged by performing inter-vehicle charging not by wireless power feeding but by wired power feeding using electric wires.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)

Abstract

車車間充電を安全に行う。 車車間充電システムにおいて、電池監視装置500aおよび500bは、リレー611a、612aおよびリレー611b、612bがそれぞれ遮断状態であるときに、絶縁性の診断をそれぞれ行う。車車間通信装置617aは、車車間通信により、電池監視装置500aによる絶縁性の診断結果を無線給電システム1bへ送信する。無線給電システム1bは、電池監視装置500aおよび500bによる絶縁性の診断結果がいずれも正常であるときに、リレー611b、612bを遮断状態から接続状態に切り替える。 そして、リレー611a、612aが遮断状態であり、かつリレー611b、612bが接続状態であるときに、ブースターケーブル701、702を介して、受電装置200aにより受電された電力を用いて高圧電池300bを充電する。

Description

充電システム、充電装置、充電方法
 本発明は、電動車両に搭載された電池の充電を行う充電システム、充電装置および充電方法に関する。
 近年、電池に充電された電力を用いて走行用モータを駆動させることで走行可能な電気自動車等の電動車両が広く利用されている。こうした電動車両では、充電設備が付近に存在しなかったり、充電設備から電力を取り込んで電池を充電する充電装置が故障したりした場合に、充電が不可能になってしまい、電池の充電状態を回復できずに電欠状態につながるという問題がある。そこで、このような問題点を解消するために、2つの電動車両の電池同士を電気的に接続し、一方の電池から他方の電池へと充電する車車間充電が検討されている。
 車車間充電に関して、下記の特許文献1が知られている。特許文献1には、充放電可能な電池モジュールを複数組み合わせて構成され、前記複数の電池モジュール間の接続状態を切り替える複数の切換手段が設けられた組電池と、前記組電池から出力される電流値を検出する出力電流検出手段と、前記組電池を、前記電動車両の外部に接続するための外部接続手段と、前記組電池から他の電動車両に対して電力供給を行う際に、前記組電池から出力される電流値に応じて前記複数の切換手段を制御して、前記組電池の出力端子に接続される前記電池モジュールの組み合わせを変更する制御手段とを有することを特徴とする電動車両用電源装置が開示されている。
特開2010-273427号公報
 特許文献1に記載の電動車両用電源装置では、いずれか少なくとも一方の電動車両において絶縁性が確保されていない場合に、ユーザが2つの電動車両の電池同士をケーブルで接続しようとすると、電池から出力される高電圧の直流電力がユーザの人体に印加されてしまって危険を及ぼす可能性がある。したがって、車車間充電を安全に行うことができない。
 本発明による充電システムは、第1の電動車両に搭載された第1の充電装置と、前記第1の電動車両とは異なる第2の電動車両に搭載された第2の充電装置と、を備え、前記第1の充電装置は、無線または有線により給電された電力を受電する第1の受電装置と、前記第1の電動車両に搭載された第1の電池と前記第1の受電装置の間を接続または遮断する第1のリレーと、前記第1の電動車両のフレームグランドと前記第1の電池の間の絶縁性を診断する第1の絶縁診断部と、前記第1の電動車両と前記第2の電動車両の間で車車間通信を行う第1の通信装置と、を有し、前記第2の充電装置は、無線または有線により給電された電力を受電する第2の受電装置と、前記第2の電動車両に搭載された第2の電池と前記第2の受電装置の間を接続または遮断する第2のリレーと、前記第2の電動車両のフレームグランドと前記第2の電池の間の絶縁性を診断する第2の絶縁診断部と、前記第1の電動車両と前記第2の電動車両の間で車車間通信を行う第2の通信装置と、を有し、前記第1の絶縁診断部および前記第2の絶縁診断部は、前記第1のリレーおよび前記第2のリレーがそれぞれ遮断状態であるときに、前記絶縁性の診断をそれぞれ行い、前記第1の通信装置は、前記車車間通信により、前記第1の絶縁診断部による前記絶縁性の診断結果を前記第2の充電装置へ送信し、前記第2の充電装置は、前記第1の絶縁診断部および前記第2の絶縁診断部による前記絶縁性の診断結果がいずれも正常であるときに、前記第2のリレーを遮断状態から接続状態に切り替え、前記第1のリレーが遮断状態であり、かつ前記第2のリレーが接続状態であるときに、前記第1の充電装置と前記第2の充電装置の間に接続されたケーブルを介して、前記第1の受電装置により受電された前記電力を用いて前記第2の電池を充電する。
 本発明の一態様による充電装置は、第1の電動車両に搭載されたものであって、無線または有線により給電された電力を受電する受電装置と、前記第1の電動車両に搭載された第1の電池と前記受電装置の間を接続または遮断するリレーと、前記第1の電動車両のフレームグランドと前記第1の電池の間の絶縁性を診断する絶縁診断部と、前記第1の電動車両と前記第1の電動車両とは異なる第2の電動車両の間で車車間通信を行う通信装置と、を備え、前記絶縁診断部は、前記リレーが遮断状態であるときに、前記絶縁性の診断を行い、前記通信装置は、前記車車間通信により、前記絶縁診断部による前記絶縁性の診断結果を前記第2の電動車両へ送信し、前記リレーが遮断状態であるときに、前記第1の電動車両と前記第2の電動車両の間に接続されたケーブルを介して、前記受電装置により受電された前記電力を用いて前記第2の電動車両に搭載された第2の電池を充電する。
 本発明の他の一態様による充電装置は、第1の電動車両と接続される第2の電動車両に搭載されたものであって、無線または有線により給電された電力を受電する受電装置と、前記第2の電動車両に搭載された第2の電池と前記受電装置の間を接続または遮断するリレーと、前記第2の電動車両のフレームグランドと前記第2の電池の間の絶縁性を診断する絶縁診断部と、前記第1の電動車両と前記第2の電動車両の間で車車間通信を行う通信装置と、を備え、前記絶縁診断部は、前記リレーが遮断状態であるときに、前記絶縁性の診断を行い、前記通信装置は、前記車車間通信により、前記第1の電動車両における絶縁性の診断結果を前記第1の電動車両から受信し、前記絶縁診断部による前記絶縁性の診断結果と、前記第1の電動車両から受信した前記絶縁性の診断結果とがいずれも正常であるときに、前記リレーを遮断状態から接続状態に切り替え、前記第1の電動車両と前記第2の電動車両の間に接続されたケーブルを介して供給される電力を用いて、前記第2の電池を充電する。
 本発明による充電方法は、第1の充電装置および第1の電池を搭載した第1の電動車両と、第2の充電装置および第2の電池を搭載した第2の電動車両とを用いたものであって、前記第1の充電装置は、無線または有線により給電された電力を受電する第1の受電装置と、前記第1の電池と前記第1の受電装置の間を接続または遮断する第1のリレーと、を有し、前記第2の充電装置は、無線または有線により給電された電力を受電する第2の受電装置と、前記第2の電池と前記第2の受電装置の間を接続または遮断する第2のリレーと、を有し、前記第1のリレーおよび前記第2のリレーがそれぞれ遮断状態であるときに、前記第1の充電装置および前記第2の充電装置により、前記第1の電動車両のフレームグランドと前記第1の電池の間の絶縁性の診断、および前記第2の電動車両のフレームグランドと前記第2の電池の間の絶縁性の診断をそれぞれ行い、前記第1の電動車両と前記第2の電動車両の間の車車間通信により、前記第1の充電装置による前記絶縁性の診断結果を前記第2の充電装置へ送信し、前記第1の充電装置および前記第2の充電装置による前記絶縁性の診断結果がいずれも正常であるときに、前記第2のリレーを遮断状態から接続状態に切り替え、前記第1のリレーが遮断状態であり、かつ前記第2のリレーが接続状態であるときに、前記第1の充電装置と前記第2の充電装置の間に接続されたケーブルを介して、前記第1の受電装置により受電された前記電力を用いて前記第2の電池を充電する。
 本発明によれば、車車間充電を安全に行うことができる。
本発明の一実施形態に係る車車間充電システムの構成を示す図である。 本発明の一実施形態に係る受電装置の構成例を示す図である。 本発明の一実施形態に係る無線給電システムの通常充電時の処理フローを示す図である。 本発明の一実施形態に係る電池監視装置の機能ブロック図である。 車車間充電による充電制御の処理フローの一例を示す図である。
 以下、図面を参照して、本発明に係る充電システムおよび充電装置の実施の形態について説明する。
 図1は、本発明の一実施形態に係る車車間充電システムの構成を示す図である。図1に示す車車間充電システムは、無線給電システム1aおよび1bにより構成される。無線給電システム1a、1bは、電気自動車等の車両への無線給電においてそれぞれ利用されるものであり、別々の車両に搭載されている。以下では、無線給電システム1aが搭載される車両を「車両A」、無線給電システム1bが搭載される車両を「車両B」として、それぞれ説明する。
 無線給電システム1aは、車両A付近の地上側に設置された送電装置100aと、車両A側にそれぞれ搭載された受電装置200a、高圧電池300a、負荷400aおよび電池監視装置500aとを有する。同様に、無線給電システム1bは、車両B付近の地上側に設置された送電装置100bと、車両B側にそれぞれ搭載された受電装置200b、高圧電池300b、負荷400bおよび電池監視装置500bとを有する。
 送電装置100aは、送電制御部110a、通信部120a、交流電源130a、電力変換部140aおよび一次コイルL1aを備える。送電制御部110aは、通信部120aおよび電力変換部140aの動作を制御することで、送電装置100a全体の制御を行う。
 通信部120aは、送電制御部110aの制御により、受電装置200aが備える通信部220aとの間で無線通信を行う。この通信部120aと通信部220aの無線通信により、無線給電の際に必要な各種情報が送電装置100aと受電装置200aの間で交換される。たとえば、一次コイルL1aに流れる交流電流の周波数、すなわち一次コイルL1aから放出される交流磁界の周波数等の情報が、通信部120aから通信部220aに送信される。また、高圧電池300aの充電状態(SOC)や劣化状態、充電時の許容電流等の情報が、通信部220aから通信部120aに送信される。
 交流電源130aは、たとえば商用電源であり、所定の交流電力を電力変換部140aに供給する。電力変換部140aは、送電制御部110aの制御により、交流電源130aから供給された交流電力を用いて所定の周波数および電流値の交流電流を一次コイルL1aに出力する。一次コイルL1aは、車両Aの下に位置する地上側に設置されており、電力変換部140aから流される交流電流に応じた交流磁界を車両Aに向けて空中に放出する。これにより、車両Aへの無線給電を行う。
 受電装置200aは、受電制御部210a、通信部220a、交流電流検出部230a、駆動制御部240a、電力変換部250a、二次コイルL2a、共振コイルLxaおよび共振コンデンサCxaを備える。共振コイルLxaおよび共振コンデンサCxaは、二次コイルL2aに接続されており、二次コイルL2aとともに共振回路を構成する。この共振回路の共振周波数は、二次コイルL2aおよび共振コイルLxaがそれぞれ有するインダクタンスと、共振コンデンサCxaが有する静電容量値とに応じて決定される。なお、共振コイルLxaおよび共振コンデンサCxaはそれぞれ複数の素子により構成されていてもよい。また、共振コイルLxaの一部または全部を二次コイルL2aのインダクタンスで代用してもよい。
 受電制御部210aは、通信部220aおよび駆動制御部240aの動作を制御することで、受電装置200a全体の制御を行う。通信部220aは、受電制御部210aの制御により、送電装置100aが備える通信部120aとの間で無線通信を行い、送電装置100aと受電装置200aの間で交換される前述のような各種情報を送受信する。通信部220aが受信した一次コイルL1aに流れる交流電流の周波数等の情報は、通信部220aから受電制御部210aに出力される。
 交流電流検出部230aは、一次コイルL1aから放出された交流磁界を二次コイルL2aが受けることで二次コイルL2aを含む共振回路に流れる交流電流を検出する。そして、検出した交流電流に応じて周波数と振幅がそれぞれ変化する交流電圧を発生させ、駆動制御部240aに出力する。駆動制御部240aは、交流電流検出部230aから入力された交流電圧に基づいて、共振回路に流れる交流電流の周波数や大きさを取得することができる。
 駆動制御部240aは、受電制御部210aの制御により、電力変換部250aが有する複数のスイッチング素子のスイッチング動作を制御する。このとき駆動制御部240aは、交流電流検出部230aが検出した共振回路に流れる交流電流に基づいて、各スイッチング素子のスイッチング動作のタイミングを変化させる。なお、スイッチング動作のタイミングを変化させる具体的な方法は後述する。
 電力変換部250aは、複数のスイッチング素子を有しており、複数のスイッチング素子をそれぞれスイッチング動作させることで、共振回路に流れる交流電流を制御するとともに整流し、交流電力から直流電力への変換を行う。電力変換部250aには、リレー611a、612aを介して充放電可能な高圧電池300aが接続されており、電力変換部250aから出力される直流電力を用いて高圧電池300aが充電される。リレー611a、612aは、電力変換部250aと高圧電池300aの間を導通または遮断するためのものであり、不図示の車両制御装置によって切り替え状態が制御される。なお、電力変換部250aと高圧電池300aの間には、高圧電池300aへの入力電圧を平滑化するための平滑コンデンサC0aも接続されている。
 高圧電池300aには、リレー613a、614aを介して負荷400aが接続される。負荷400aは、高圧電池300aに充電された直流電力を利用して、車両Aの動作に関する様々な機能を提供する。負荷400aには、たとえば車両駆動用の交流モータや、高圧電池300aの直流電力を交流電力に変換して交流モータに供給するインバータなどが含まれる。リレー613a、614aは、高圧電池300aと負荷400aの間を導通または遮断するためのものであり、リレー611a、612aと同様に、不図示の車両制御装置によって切り替え状態が制御される。なお、リレー614aは高圧電池300aと負荷400aを接続した際に流れる突入電流を抑制するためのプリチャージリレーであり、プリチャージ抵抗Rpaが直列に接続されている。
 高圧電池300aと負荷400aの間には、コンバータ615aが接続されている。コンバータ615aは低圧電池616aと接続されており、高圧電池300aから出力された直流電力を降圧して低圧電池616aに供給することで、低圧電池616aを充電する。なお、上記とは反対に、低圧電池616aから出力された直流電力を昇圧して高圧電池300aに供給することで、高圧電池300aを充電できるようにしてもよい。低圧電池616aは、高圧電池300aよりも低圧の直流電力を車両Aに搭載された不図示の補機類等に供給するものであり、一端側がコンバータ615aに接続され、他端側が車両AのフレームグランドFGaに接続されている。
 無線給電システム1aにおいて、高圧電池300aは、たとえばリチウムイオン電池を用いた複数の電池セルを組み合わせて構成される。一方、低圧電池616aは、たとえば鉛蓄電池を用いて構成される。ただし、充放電可能な二次電池であり、低圧電池616aよりも高電圧の直流電力を高圧電池300aが出力できれば、高圧電池300a、低圧電池616aをそれぞれどのような構成としてもよい。
 低圧電池616aの一端側には、車車間通信装置617aも接続されている。車車間通信装置617aは、低圧電池616aからの電源供給を受けて、車両Bに搭載された車車間通信装置617bとの間で無線通信を行うことにより、車両Aと車両Bの間で車車間通信を実現する。無線給電システム1aと無線給電システム1bを接続して車両Aと車両Bの間で車車間充電を行う際には、この車車間通信装置617a、617bが行う車車間通信により、車車間充電において必要な情報が車両Aと車両Bの間で送受信される。なお、車車間充電の具体的な手順については後述する。
 無線給電システム1bにおける送電装置100b、受電装置200b、高圧電池300b、負荷400bおよび電池監視装置500bも、上記の無線給電システム1aにおける送電装置100a、受電装置200a、高圧電池300a、負荷400aおよび電池監視装置500aと同様の機能および構成をそれぞれ有している。なお図1では、無線給電システム1aの各構成要素と、無線給電システム1bの各構成要素とを互いに区別するため、符号の末尾に「a」、「b」の記号をそれぞれ付して示している。
 以下では、無線給電システム1aのうち、車両Aに搭載されて高圧電池300aの充電に関わる受電装置200a、電池監視装置500a、リレー611a、612aおよび車車間通信装置617aをまとめて、「充電装置A」と称する。同様に、車両Bに搭載されて高圧電池300bの充電に関わる受電装置200b、電池監視装置500b、リレー611b、612bおよび車車間通信装置617bをまとめて、「充電装置B」と称する。
 車両Aと車両Bの間で車車間充電を行う際には、図1に示すように、充電装置Aと充電装置Bがブースターケーブル701、702を介して互いに接続される。ブースターケーブル701、702は、車車間充電開始時の突入電流を抑制するために、抵抗成分や誘導成分を含むインピーダンスZ1、Z2をそれぞれ有している。ブースターケーブル701の両端は、リレー611a、611bを介して高圧電池300a、300bの正極側にそれぞれ接続される。ブースターケーブル702の両端は、リレー612a、612bを介して高圧電池300a、300bの負極側にそれぞれ接続される。なお、ブースターケーブル701、702が接続されることで、充電装置Aにおけるリレー611aとリレー612aの間、および充電装置Bにおけるリレー611bとリレー612bの間に、容量成分Cca、Ccbがそれぞれ形成される。
 次に、図1の無線給電システム1aのうち、受電装置200aの詳細について説明する。図2は、本発明の一実施形態に係る受電装置200aの構成例を示す図である。
 図2に示すように、交流電流検出部230aは、たとえばトランスTrを用いて構成される。一次コイルL1aから放出された交流磁界による磁束が二次コイルL2aと鎖交すると、二次コイルL2aに起電力が生じ、二次コイルL2aを含む共振回路に交流電流iが流れる。この交流電流iがトランスTrの一次側コイルに流れると、トランスTrの二次側コイルの両端に、交流電流iに応じて周波数と振幅がそれぞれ変化する交流電圧Vgが発生する。これにより、交流電流検出部230aは交流電流iの検出を行うことができる。なお、共振回路に流れる交流電流iを検出できるものであれば、トランスTr以外のものを用いて交流電流検出部230aを構成してもよい。
 電力変換部250aは、直列接続された2つのMOSトランジスタ(MOSFET)Q1、Q2を有する。MOSトランジスタQ1、Q2は、駆動制御部240aからのゲート駆動信号に応じて、ソース-ドレイン間を導通状態から切断状態へ、または切断状態から導通状態へと切り替えるスイッチング動作をそれぞれ行う。このスイッチング動作により、MOSトランジスタQ1を上アームのスイッチング素子として機能させるとともに、MOSトランジスタQ2を下アームのスイッチング素子として機能させることができる。MOSトランジスタQ1、Q2間の接続点Oと、MOSトランジスタQ2のソース端子には、二次コイルL2aを含む共振回路がそれぞれ接続されている。そのため、MOSトランジスタQ1、Q2をそれぞれ適切なタイミングでスイッチング動作させることで、共振回路に流れる交流電流iの制御および整流を行うことができる。
 なお、図2では2つのMOSトランジスタQ1、Q2をスイッチング素子として用いたハーフブリッジ構成の電力変換部250aを例示したが、4つのMOSトランジスタをスイッチング素子として用いたフルブリッジ構成の電力変換部250aとしてもよい。以下では図2に示したハーフブリッジ構成の電力変換部250aによる動作例を説明するが、フルブリッジ構成とした場合でも基本的な動作は同様である。
 駆動制御部240aは、電圧取得部241a、駆動信号生成部243aおよびゲート駆動回路244aを有する。
 電圧取得部241aは、交流電流検出部230a(トランスTr)から出力される交流電圧Vgを取得し、駆動信号生成部243aに出力する。
 駆動信号生成部243aには、電圧取得部241aが取得した交流電圧Vgに加えて、受電制御部210aから基本駆動信号Srが入力される。基本駆動信号Srは、駆動制御部240aから電力変換部250aに出力されてMOSトランジスタQ1、Q2のスイッチング動作を制御するゲート駆動信号の元となる交流信号であり、その周波数は送電装置100aの一次コイルL1aに流れる電流の周波数に応じて決定される。具体的には、通信部220aは、送電装置100aの一次コイルL1aに流れる交流電流の周波数fを表す情報を通信部120aから受信すると、これを受電制御部210aに出力する。受電制御部210aは、通信部220aから周波数fの情報が入力されると、この周波数fに応じた基本駆動信号Srを生成し、駆動制御部240aに出力する。なお、基本駆動信号Srは、たとえばMOSトランジスタQ1、Q2にそれぞれ対応する2つの矩形波の組み合わせであり、オン(導通状態)に対応するHレベルと、オフ(切断状態)に対応するLレベルとが、周波数fで交互に繰り返される。ただし、MOSトランジスタQ1とQ2が同時にオンとならないように、2つの矩形波におけるHレベルの間には所定の保護期間が設けられる。
 駆動信号生成部243aは、電圧取得部241aから入力された交流電圧Vgに基づいて、受電制御部210aから入力された基本駆動信号Srの位相を調整し、充電駆動信号Scを生成する。そして、生成した充電駆動信号Scをゲート駆動回路244aに出力する。
 ゲート駆動回路244aは、駆動信号生成部243aから入力された充電駆動信号Scに基づくゲート駆動信号をMOSトランジスタQ1、Q2のゲート端子へそれぞれ出力し、MOSトランジスタQ1、Q2をそれぞれスイッチング動作させる。これにより、電力変換部250aにおいて、MOSトランジスタQ1、Q2がスイッチング素子としてそれぞれ機能し、一次コイルL1aから放出された交流磁界に応じて共振回路に流れる交流電流iの制御や、交流電力から直流電力への変換が行われる。
 本実施形態の受電装置200aは、以上説明したような動作を行うことにより、送電装置100aから無線給電を受けて高圧電池300aを充電することができる。
 なお、無線給電システム1bにおける受電装置200bも、上記の受電装置200aと同様の構成を有しており、送電装置100bから無線給電を受けて高圧電池300bを充電することができる。受電装置200bの詳細については説明を省略する。
 次に、無線給電システム1a、1bを用いた通常充電時の無線給電の流れについて説明する。図3は、本発明の一実施形態に係る無線給電システム1a、1bの通常充電時の処理フローを示す図である。充電装置Aを搭載した車両Aが所定の充電位置に駐車されると、無線給電システム1aにおいて図3の処理フローが開始される。同様に、充電装置Bを搭載した車両Bが所定の充電位置に駐車されると、無線給電システム1bにおいて図3の処理フローが開始される。なお以下では、無線給電システム1aの処理フローを代表例として説明することとし、無線給電システム1bの処理フローについては同様であるため説明を省略する。
 ステップS10では、地上側の送電装置100aから車両A側の受電装置200aに対して、充電の問い合わせを行う。ここでは、たとえば送電装置100aの通信部120aから受電装置200aの通信部220aへ所定の通信メッセージを送信することにより、充電の問い合わせを行う。
 ステップS20では、ステップS10で充電の問い合わせを受けた受電装置200aから送電装置100aに対して、充電時における高圧電池300aの許容電流を通知する。
このとき受電装置200aは、たとえば予め測定した高圧電池300aの充電状態や劣化状態に基づいて許容電流を決定し、その許容電流の値を示す情報を、通信部220aから送電装置100aの通信部120aへ送信する。なお、充電が不要な場合は、その旨を受電装置200aから送電装置100aへ通知してもよい。この場合、ステップS30以降の処理は実行されずに、図3の処理フローが終了する。
 ステップS30では、送電装置100aにおいて電流量を決定し、受電装置200aへの送電を開始する。このとき送電装置100aは、ステップS20で受電装置200aから通知された許容電流に対応する出力電流値と、自身の定格電流値とを比較し、いずれか小さい方を選択して電流量を決定する。そして、送電制御部110aにより電力変換部140aを制御して、決定した電流量に応じた交流電流を一次コイルL1aに流すことで、一次コイルL1aに交流磁界を発生させて送電を開始する。なお、このときさらに、一次コイルL1aに流れる交流電流の周波数fを表す情報を通信部120aから受電装置200aの通信部220aへ送信することで、受電装置200aの受電制御部210aにおいて、周波数fに応じた前述の基本駆動信号Srを生成できるようにすることが好ましい。
あるいは、ステップS10で充電の問い合わせを行う際に、送電装置100aから受電装置200aへ周波数fを通知してもよい。
 ステップS40では、受電装置200aにおいて、一次コイルL1aから放出された交流磁界を受けて二次コイルL2aを含む共振回路に流れる交流電流iに応じて、電力変換部250aの駆動制御処理を行う。ここでは、駆動制御部240aの各部において前述のような処理をそれぞれ実施することで、送電装置100aから受電した交流電流に応じた電力変換部250aの駆動制御を行う。これにより、定電流(CC)モードで高圧電池300aの充電を実施する。
 ステップS50では、受電装置200aにおいて、高圧電池300aの充電状態(SOC)が所定の値、たとえば80%以上になったか否かを判定する。その結果、SOCが80%未満であれば、ステップS40の駆動制御処理を繰り返し、SOCが80%以上になったら、定電流モードから定電圧(CV)モードに移行してステップS60に進む。
 ステップS60では、受電装置200aから送電装置100aに対して、現在の高圧電池300aの充電状態に応じた充電電流を通知する。このとき受電装置200aは、現在の高圧電池300aの充電状態に基づいて、ステップS20で通知した許容電流よりも小さな値で充電電流を決定し、その充電電流の値を示す情報を、通信部220aから送電装置100aの通信部120aへ送信する。
 ステップS70では、受電装置200aにおいて、ステップS40と同様の駆動制御処理を行うことにより、定電圧(CV)モードで高圧電池300aの充電を実施する。
 ステップS80では、受電装置200aにおいて、高圧電池300aの充電状態(SOC)が満充電の100%に達したか否かを判定する。その結果、SOCが100%未満であれば、ステップS60に戻って高圧電池300aの充電を継続し、SOCが100%に達したらステップS90に進む。
 ステップS90では、高圧電池300aの充電を終了する。ここでは、たとえば受電装置200aの通信部220aから送電装置100aの通信部120aへ所定の通信メッセージを送信することにより、送電停止を指示する。送電装置100aでは、この送電停止指示に応じて一次コイルL1aへの通電を遮断することで、送電を停止する。送電装置100aからの送電が停止されたら、受電装置200aにおいて電力変換部250aの動作を停止することで、高圧電池300aの充電を終了する。
 ステップS90で高圧電池300aの充電を終了したら、図3の処理フローを終了する。これにより、無線給電システム1aの無線給電が完了する。
 次に、車両Aと車両Bの間で車車間充電を行う場合の無線給電システム1a、1bの動作について、図4、図5を参照して説明する。図4は、本発明の一実施形態に係る電池監視装置500a、500bの機能ブロック図である。図5は、車両Aから車両Bへの車車間充電により車両Bの高圧電池300bを充電させる際の充電制御の処理フローの一例を示す図である。なお以下では、送電装置100aからの無線給電を車両Aの受電装置200aにより受電し、受電装置200aからの直流電力をブースターケーブル701、702を介して車両Bの高圧電池300bに出力することで、高圧電池300bを充電する場合について説明する。
 図4の機能ブロック図は、無線給電システム1a、1bにおいて車両Aから車両Bへの車車間充電を行うための電池監視装置500a、500bの機能ブロックを示している。
図4に示すように、電池監視装置500aは、演算処理部510a、絶縁診断部530aおよび入出力部550aの各機能ブロックを有する。また、電池監視装置500bは、演算処理部510b、セル電圧計測部520b、絶縁診断部530bおよび入出力部550bの各機能ブロックを有する。
 電池監視装置500aにおいて、演算処理部510aは、たとえばCPUにおいて所定のプログラムを実行することで実現される。また、絶縁診断部530aおよび入出力部550aは、それぞれ任意のハードウェア構成を用いて実現される。
 絶縁診断部530aは、演算処理部510aの指示に応じて、無線給電システム1aにおける車両A側の高圧系統の絶縁性を診断する。絶縁診断部530aが絶縁性の診断を行う車両A側の高圧系統とは、リレー611a~614aを介して高圧電池300aに接続される無線給電システム1aの各部分であり、たとえば電力変換部250a、負荷400a、コンバータ615aや、これらの間の配線などを含む。具体的には、たとえば電力変換部250aとリレー611aの間の配線や、負荷400aとリレー613a、614aの間を接続している配線に対して、所定のパルス信号を入力し、このときの当該配線と車両AのフレームグランドFGa間のインピーダンスを計測する。その結果、インピーダンスが無限大のままで変化しなければ、フレームグランドFGaに対して車両A側の高圧系統の絶縁性が確保されていると判断する。一方、パルス信号の入力に応じてインピーダンスが変化する場合は、車両A側の高圧系統からフレームグランドFGaへのリークが生じており、車両A側の高圧系統の絶縁性が確保されていないと判断する。絶縁診断部530aによる絶縁性の診断結果は、入出力部550aにより車車間通信装置617aへ出力され、車車間通信装置617aが行う車車間通信により、車車間通信装置617bを介して受電装置200bへ送信される。
 電池監視装置500bにおいて、演算処理部510bは、たとえばCPUにおいて所定のプログラムを実行することで実現され、電池情報取得部511bおよび充電指示部512bを含む。また、セル電圧計測部520b、絶縁診断部530bおよび入出力部550bは、それぞれ任意のハードウェア構成を用いて実現される。
 セル電圧計測部520bは、高圧電池300bの電圧を計測し、その計測結果を演算処理部510bへ出力する。セル電圧計測部520bは、高圧電池300bの電圧を計測する際には、高圧電池300bを構成する複数の電池セルの各々についてセル電圧の計測を行う。そして、計測した各セル電圧を演算処理部510bへ出力する。
 絶縁診断部530bは、演算処理部510bの指示に応じて、無線給電システム1bにおける車両B側の高圧系統の絶縁性を診断する。絶縁診断部530bが絶縁性の診断を行う車両B側の高圧系統とは、リレー611b~614bを介して高圧電池300bに接続される無線給電システム1bの各部分であり、たとえば電力変換部250b、負荷400b、コンバータ615bや、これらの間の配線などを含む。なお、絶縁診断部530bが行う絶縁性の診断では、電池監視装置500aにおける絶縁診断部530aと同様の診断方法を用いることができる。絶縁診断部530bによる絶縁性の診断結果は、入出力部550bにより車車間通信装置617bへ出力され、車車間通信装置617bが行う車車間通信により、車車間通信装置617aを介して受電装置200aへ送信される。
 演算処理部510bにおいて、電池情報取得部511bは、セル電圧計測部520bによる高圧電池300bの電圧の計測結果や、これに基づく高圧電池300bの各種状態、たとえば高圧電池300bのSOC等の情報を、充電前の高圧電池300bの状態を示す電池情報として取得する。
 演算処理部510bにおいて、充電指示部512bは、車両Aの受電装置200aに対して充電指示を行う。充電指示部512bからの充電指示は、入出力部550bにより車車間通信装置617bへ出力され、車車間通信装置617bが行う車車間通信により、車車間通信装置617aを介して受電装置200aへ送信される。
 次に、図5のフローチャートに従って、車車間充電による高圧電池300bの充電制御の流れについて説明する。
 ステップS110では、車両Aのリレー611a~614aおよび車両Bのリレー611b~614bを全てオフにし、高圧電池300a、300bを電力変換部250a、250bおよび負荷400a、400bから電気的にそれぞれ切断する。ここでは、たとえば車両A、Bにそれぞれ搭載された不図示の車両制御装置により、リレー611a~614aおよびリレー611b~614bをそれぞれオフに切り替える。
 ステップS120では、車両Aと車両Bの間で行われる車車間通信の健全性を確認する。ここでは、たとえば車車間通信装置617aと車車間通信装置617bの間で予め定められた情報を車車間通信により送受信し、その情報を互いに正しい内容で受信できたか否かを判断することで、車両Aと車両Bの間で車車間通信を正常に実施可能であるか否かの確認を行う。
 ステップS130では、ステップS120における車車間通信の健全性の確認結果に基づき、車両Aと車両Bの間の車車間通信が正常であるか否かを判定する。ステップS120で車車間通信が正常に実施可能であることが確認された場合は、ステップS140に進んで図5の処理フローを継続し、そうでない場合は図5の処理フローを終了する。これにより、車車間通信の健全性が確認できなかった場合は、車両Aから車両Bへの車車間充電を禁止する。
 ステップS140では、絶縁診断部530a、530bにより、無線給電システム1a、1bにおける車両A、車両B側の高圧系統の絶縁性診断をそれぞれ実施する。ここでは電池監視装置500aの絶縁診断部530aと、電池監視装置500bの絶縁診断部530bにより、前述のような診断方法を用いて、車両Aの高圧系統および車両Bの高圧系統に対する絶縁性の診断をそれぞれ行う。
 ステップS150では、充電装置Aと充電装置Bの間で、ステップS140で行った絶縁性の診断結果を互いに交換する。ここでは、電池監視装置500aの絶縁診断部530aが行った車両Aに対する絶縁性の診断結果を、車車間通信により車車間通信装置617aから車車間通信装置617bへと送信すると共に、電池監視装置500bの絶縁診断部530bが行った車両Bに対する絶縁性の診断結果を、車車間通信により車車間通信装置617bから車車間通信装置617aへと送信する。そして、無線給電システム1aと無線給電システム1bのそれぞれにおいて、車両A、Bにそれぞれ設置された不図示の表示装置に絶縁性の診断結果を表示することで、ユーザへの通知を行う。このとき、車両Aと車両Bでは自身の絶縁性の診断結果をそれぞれ表示してもよいし、車車間通信で互いに受信した相手方の診断結果、すなわち車両Aでは車両Bの絶縁性の診断結果を、車両Bでは車両Aの絶縁性の診断結果をそれぞれ表示してもよい。あるいは、車両Aと車両Bの少なくとも一方において、車両A、車両B両方の絶縁性の診断結果を併せて表示してもよい。
また、表示装置を用いた画面表示の代わりに、音声等を利用してユーザへの通知を行ってもよい。充電装置Aと充電装置Bの少なくとも一方が車両A、Bの絶縁性の診断結果をユーザに通知するものであれば、任意の通知方法を用いることができる。
 ステップS160では、電池監視装置500a、500bの演算処理部510a、510bにより、ステップS140で行った車両Aと車両Bの絶縁性の診断結果がいずれも正常であったか否かを判定する。車両A、B両方の絶縁性の診断結果が正常であった場合は、ステップS170に進んで図5の処理フローを継続し、そうでない場合は図5の処理フローを終了する。これにより、車両Aの高圧系統と車両Bの高圧系統の両方に対して絶縁性が確保されていない場合は、車両Aから車両Bへの車車間充電を禁止する。
 ステップS170では、車両Bから車両Aに対して、車車間充電の対象とする高圧電池300bの電池情報を車車間通信により送信する。ここでは、電池監視装置500bの演算処理部510bが取得した電池情報を入出力部550bから車車間通信装置617bへ出力することで、高圧電池300bの電池情報が車車間通信により車車間通信装置617bから車車間通信装置617aへと送信されるようにする。
 ステップS180では、無線給電システム1aと無線給電システム1bの間にブースターケーブル701、702が接続されたか否かを判定する。ここでは、たとえば無線給電システム1bにおいて、車両Bに設けられた不図示の操作スイッチがユーザに操作されたときに、ブースターケーブル701、702が接続されたと判定する。なお、ステップS150で絶縁性の診断結果をユーザに通知する際に、絶縁性の診断結果が正常であれば、ユーザにブースターケーブル701、702の接続を促すとともに、接続を完了したら所定の操作を行うようユーザに指示してもよい。あるいは、無線給電システム1bにおいてリレー611bとリレー612bの間のインピーダンスを測定し、その測定結果に基づいてブースターケーブル701、702が接続されたか否かを判定してもよい。無線給電システム1aと無線給電システム1bの間にブースターケーブル701、702が接続されるまではステップS180に留まり、接続されたらステップS190に進む。
 ステップS190では、車両Bの無線給電システム1bにおいて、高圧電池300bの充電側にあるリレー611b、612bをオフからオンに切り替える。続くステップS200では、電池監視装置500bの充電指示部512bにより、高圧電池300bの充電開始指示を車両Aに送信する。この充電開始指示は、無線給電システム1bの車車間通信装置617bから無線給電システム1aの車車間通信装置617aへと車車間通信により送信され、受電装置200aによって受信される。
 ステップS200で電池監視装置500bから送信された充電開始指示を受電装置200aが受信すると、受電装置200aは送電装置100aに対して、通常時と同様の交流電流を一次コイルL1aに流すように指示する。この指示を受けた送電装置100aは、電流量を決定し、決定した電流量に応じた交流電流を一次コイルL1aに流すことで、一次コイルL1aに交流磁界を発生させて送電を開始する。受電装置200aは、一次コイルL1aから放出された交流磁界を受けて二次コイルL2aを含む共振回路に流れる交流電流iに応じて、電力変換部250aの駆動制御処理を行い、電力変換部250aから直流電力を出力する。電力変換部250aが出力した直流電力は、ブースターケーブル701、702を介して無線給電システム1aから無線給電システム1bへと供給され、リレー611b、612bを介して高圧電池300bに入力される。これにより、車両Aから車両Bへの車車間充電が行われ、受電装置200aにより受電された電力を用いて高圧電池300bが充電される。
 ステップS210では、車両Bの無線給電システム1bにおいて、高圧電池300bの充電が完了したか否かを判定する。ここでは、たとえば図3のステップS50やステップS80と同様に、高圧電池300bの充電状態(SOC)が所定の閾値以上になったか否かを判定する。その結果、高圧電池300bのSOCが閾値未満であれば、充電が未完了であると判定してステップS210に留まり、閾値以上になったら充電完了と判定してステップS220に進む。なお、車車間充電の時間を短縮するために、ステップS210の判定で用いられる閾値は、たとえば車両Bが動作可能な最低限の電力に相当する値としてもよい。このようにすれば、車両Aのユーザが車車間充電によって車両Aを長時間使用できなくなるのを回避し、利便性の低下を抑えることができる。
 ステップS220では、電池監視装置500bの充電指示部512bにより、高圧電池300bの充電停止指示を車両Aに送信する。この充電停止指示は、ステップS200の充電開始指示と同様に、無線給電システム1bの車車間通信装置617bから無線給電システム1aの車車間通信装置617aへと車車間通信により送信され、受電装置200aによって受信される。
 ステップS220で電池監視装置500bから送信された充電停止指示を受電装置200aが受信すると、受電装置200aは送電装置100aに対して、一次コイルL1aからの交流磁界の放出を停止するように指示する。この指示を受けた送電装置100aは、一次コイルL1aの交流電流を遮断して送電を停止する。これにより、車両Aから車両Bへの車車間充電が停止される。
 送電装置100aからの送電が停止されたことを確認したら、ステップS230では、車両Bの無線給電システム1bにおいて、高圧電池300bの充電側にあるリレー611b、612bをオンからオフに切り替える。ステップS230の処理を実行したら、図5の処理フローを終了する。
 なお、上記では車両Aから車両Bへの車車間充電を行って車両Bの高圧電池300bを充電する場合について説明したが、これとは反対に、車両Bから車両Aへの車車間充電を行って車両Aの高圧電池300aを充電することも可能である。その場合、図4の機能ブロック図および図5の処理フローでは、無線給電システム1aの各部と無線給電システム1bの各部とを互いに入れ替えればよい。
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)車車間充電システムは、電動車両である車両Aに搭載された充電装置Aと、車両Aとは異なる電動車両である車両Bに搭載された充電装置Bとを備える。充電装置Aは、送電装置100aから無線により給電された電力を受電する受電装置200aと、車両Aに搭載された高圧電池300aと受電装置200aの間を接続または遮断するリレー611a、612aと、車両AのフレームグランドFGaと高圧電池300aの間の絶縁性を診断する絶縁診断部530aと、車両Aと車両Bの間で車車間通信を行う車車間通信装置617aとを有する。同様に、充電装置Bは、送電装置100bから無線により給電された電力を受電する受電装置200bと、車両Bに搭載された高圧電池300bと受電装置200bの間を接続または遮断するリレー611b、612bと、車両BのフレームグランドFGbと高圧電池300bの間の絶縁性を診断する絶縁診断部530bと、車両Aと車両Bの間で車車間通信を行う車車間通信装置617bとを有する。絶縁診断部530aおよび530bは、リレー611a、612aおよびリレー611b、612bがそれぞれ遮断状態であるときに、絶縁性の診断をそれぞれ行う(ステップS140)。車車間通信装置617aは、車車間通信により、絶縁診断部530aによる絶縁性の診断結果を充電装置Bへ送信する(ステップS150)。充電装置Bは、絶縁診断部530aおよび530bによる絶縁性の診断結果がいずれも正常であるときに(ステップS160:Yes)、リレー611b、612bを遮断状態から接続状態に切り替える(ステップS190)。そして、リレー611a、612aが遮断状態であり、かつリレー611b、612bが接続状態であるときに、充電装置Aと充電装置Bの間に接続されたブースターケーブル701、702を介して、受電装置200aにより受電された電力を用いて高圧電池300bを充電する(ステップS200)。このようにしたので、車両Aと車両Bの間で車車間充電を安全に行うことができる。
(2)充電装置Aおよび充電装置Bの少なくとも一方は、ステップS140で行った絶縁性の診断結果をユーザに通知する(ステップS150)。このようにしたので、車両Aと車両Bのそれぞれにおいて、高圧系統の絶縁性が確保されており、車車間充電を安全に実行できるか否かをユーザに確実に知らせることができる。
(3)充電装置Bは、ステップS150で車両Aと車両Bの高圧系統に対する絶縁性の診断結果がユーザに通知された後、充電装置Aと充電装置Bの間にブースターケーブル701、702が接続されたか否かを判定し(ステップS180)、ブースターケーブル701、702が接続されたと判定すると(ステップS180:Yes)、ステップS190でリレー611b、612bを遮断状態から接続状態に切り替える。このようにしたので、高圧系統の絶縁性が確保されているときにのみ充電装置Aと高圧電池300bの電気的接続を許可して、安全性の向上を図ることができる。
(4)受電装置200aは、二次コイルL2aと、二次コイルL2aに接続されて所定の共振周波数を有する共振回路を二次コイルL2aとともに構成する共振要素である共振コイルLxaおよび共振コンデンサCxaと、複数のスイッチング素子であるMOSトランジスタQ1、Q2を有し、MOSトランジスタQ1、Q2をそれぞれスイッチング動作させることで、二次コイルL2aが一次コイルL1aから放出される交流磁界を受けて共振回路に流れる交流電流iを制御する電力変換部250aとを備える。このようにしたので、無線給電を用いた車車間充電により高圧電池300bを充電することができる。
 なお、以上説明した実施形態において、駆動制御部240a、240bや電池監視装置500a、500bが有する各構成要素は、マイクロコンピュータ等で実行されるソフトウェアにより実現してもよいし、FPGA(Field-Programmable Gate Array)等のハードウェアにより実現してもよい。また、これらを混在して使用してもよい。
 上記実施形態では、電気自動車等の車両への無線給電において利用される無線給電システム1a、1bを説明したが、車両への無線給電用に限らず、他の用途の無線給電システムに本発明を適用してもよい。また、無線給電ではなく、電線を用いた有線給電による車車間充電を行って高圧電池300a、300bを充電する場合でも、本発明の適用が可能である。
 以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 1a,1b 無線給電システム
 100a,100b 送電装置
 110a,110b 送電制御部
 120a,120b 通信部
 130a,130b 交流電源
 140a,140b 電力変換部
 200a,200b 受電装置
 210a,210b 受電制御部
 220a,220b 通信部
 230a,230b 交流電流検出部
 240a,240b 駆動制御部
 241a 電圧取得部
 243a 駆動信号生成部
 244a ゲート駆動回路
 250a,250b 電力変換部
 300a,300b 高圧電池
 400a,400b 負荷
 500a,500b 電池監視装置
 510a,510b 演算処理部
 511b 電池情報取得部
 512b 充電指示部
 520b セル電圧計測部
 530a,530b 絶縁診断部
 550a,550b 入出力部
 611a,611b,612a,612b,613a,613b,614a,614b
 リレー
 615a,615b コンバータ
 616a,616b 低圧電池
 617a,617b 車車間通信装置
 L1a,L1b 一次コイル
 L2a,L2b 二次コイル
 Lxa,Lxb 共振コイル
 Cxa,Cxb 共振コンデンサ
 Tr トランス
 Q1,Q2 MOSトランジスタ

Claims (7)

  1.  第1の電動車両に搭載された第1の充電装置と、
     前記第1の電動車両とは異なる第2の電動車両に搭載された第2の充電装置と、を備え、
     前記第1の充電装置は、
     無線または有線により給電された電力を受電する第1の受電装置と、
     前記第1の電動車両に搭載された第1の電池と前記第1の受電装置の間を接続または遮断する第1のリレーと、
     前記第1の電動車両のフレームグランドと前記第1の電池の間の絶縁性を診断する第1の絶縁診断部と、
     前記第1の電動車両と前記第2の電動車両の間で車車間通信を行う第1の通信装置と、を有し、
     前記第2の充電装置は、
     無線または有線により給電された電力を受電する第2の受電装置と、
     前記第2の電動車両に搭載された第2の電池と前記第2の受電装置の間を接続または遮断する第2のリレーと、
     前記第2の電動車両のフレームグランドと前記第2の電池の間の絶縁性を診断する第2の絶縁診断部と、
     前記第1の電動車両と前記第2の電動車両の間で車車間通信を行う第2の通信装置と、を有し、
     前記第1の絶縁診断部および前記第2の絶縁診断部は、前記第1のリレーおよび前記第2のリレーがそれぞれ遮断状態であるときに、前記絶縁性の診断をそれぞれ行い、
     前記第1の通信装置は、前記車車間通信により、前記第1の絶縁診断部による前記絶縁性の診断結果を前記第2の充電装置へ送信し、
     前記第2の充電装置は、前記第1の絶縁診断部および前記第2の絶縁診断部による前記絶縁性の診断結果がいずれも正常であるときに、前記第2のリレーを遮断状態から接続状態に切り替え、
     前記第1のリレーが遮断状態であり、かつ前記第2のリレーが接続状態であるときに、前記第1の充電装置と前記第2の充電装置の間に接続されたケーブルを介して、前記第1の受電装置により受電された前記電力を用いて前記第2の電池を充電する充電システム。
  2.  請求項1に記載の充電システムにおいて、
     前記第1の充電装置および前記第2の充電装置の少なくとも一方は、前記絶縁性の診断結果をユーザに通知する充電システム。
  3.  請求項2に記載の充電システムにおいて、
     前記第2の充電装置は、前記絶縁性の診断結果が前記ユーザに通知された後、前記第1の充電装置と前記第2の充電装置の間に前記ケーブルが接続されたか否かを判定し、前記ケーブルが接続されたと判定すると前記第2のリレーを遮断状態から接続状態に切り替える充電システム。
  4.  請求項1に記載の充電システムにおいて、
     前記第1の受電装置は、
     二次コイルと、
     前記二次コイルに接続されて所定の共振周波数を有する共振回路を前記二次コイルとともに構成する共振要素と、
     複数のスイッチング素子を有し、前記複数のスイッチング素子をそれぞれスイッチング動作させることで、前記二次コイルが地上側に設置された一次コイルから放出される交流磁界を受けて前記共振回路に流れる交流電流を制御する電力変換部と、を備える充電システム。
  5.  第1の電動車両に搭載された充電装置であって、
     無線または有線により給電された電力を受電する受電装置と、
     前記第1の電動車両に搭載された第1の電池と前記受電装置の間を接続または遮断するリレーと、
     前記第1の電動車両のフレームグランドと前記第1の電池の間の絶縁性を診断する絶縁診断部と、
     前記第1の電動車両と前記第1の電動車両とは異なる第2の電動車両の間で車車間通信を行う通信装置と、を備え、
     前記絶縁診断部は、前記リレーが遮断状態であるときに、前記絶縁性の診断を行い、
     前記通信装置は、前記車車間通信により、前記絶縁診断部による前記絶縁性の診断結果を前記第2の電動車両へ送信し、
     前記リレーが遮断状態であるときに、前記第1の電動車両と前記第2の電動車両の間に接続されたケーブルを介して、前記受電装置により受電された前記電力を用いて前記第2の電動車両に搭載された第2の電池を充電する充電装置。
  6.  第1の電動車両と接続される第2の電動車両に搭載された充電装置であって、
     無線または有線により給電された電力を受電する受電装置と、
     前記第2の電動車両に搭載された第2の電池と前記受電装置の間を接続または遮断するリレーと、
     前記第2の電動車両のフレームグランドと前記第2の電池の間の絶縁性を診断する絶縁診断部と、
     前記第1の電動車両と前記第2の電動車両の間で車車間通信を行う通信装置と、を備え、
     前記絶縁診断部は、前記リレーが遮断状態であるときに、前記絶縁性の診断を行い、
     前記通信装置は、前記車車間通信により、前記第1の電動車両における絶縁性の診断結果を前記第1の電動車両から受信し、
     前記絶縁診断部による前記絶縁性の診断結果と、前記第1の電動車両から受信した前記絶縁性の診断結果とがいずれも正常であるときに、前記リレーを遮断状態から接続状態に切り替え、前記第1の電動車両と前記第2の電動車両の間に接続されたケーブルを介して供給される電力を用いて、前記第2の電池を充電する充電装置。
  7.  第1の充電装置および第1の電池を搭載した第1の電動車両と、第2の充電装置および第2の電池を搭載した第2の電動車両とを用いた充電方法であって、
     前記第1の充電装置は、
     無線または有線により給電された電力を受電する第1の受電装置と、
     前記第1の電池と前記第1の受電装置の間を接続または遮断する第1のリレーと、を有し、
     前記第2の充電装置は、
     無線または有線により給電された電力を受電する第2の受電装置と、
     前記第2の電池と前記第2の受電装置の間を接続または遮断する第2のリレーと、を有し、
     前記第1のリレーおよび前記第2のリレーがそれぞれ遮断状態であるときに、前記第1の充電装置および前記第2の充電装置により、前記第1の電動車両のフレームグランドと前記第1の電池の間の絶縁性の診断、および前記第2の電動車両のフレームグランドと前記第2の電池の間の絶縁性の診断をそれぞれ行い、
     前記第1の電動車両と前記第2の電動車両の間の車車間通信により、前記第1の充電装置による前記絶縁性の診断結果を前記第2の充電装置へ送信し、
     前記第1の充電装置および前記第2の充電装置による前記絶縁性の診断結果がいずれも正常であるときに、前記第2のリレーを遮断状態から接続状態に切り替え、
     前記第1のリレーが遮断状態であり、かつ前記第2のリレーが接続状態であるときに、前記第1の充電装置と前記第2の充電装置の間に接続されたケーブルを介して、前記第1の受電装置により受電された前記電力を用いて前記第2の電池を充電する充電方法。
PCT/JP2019/003780 2018-03-14 2019-02-04 充電システム、充電装置、充電方法 WO2019176367A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018046614A JP2021083134A (ja) 2018-03-14 2018-03-14 充電システム、充電装置、充電方法
JP2018-046614 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019176367A1 true WO2019176367A1 (ja) 2019-09-19

Family

ID=67908348

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003780 WO2019176367A1 (ja) 2018-03-14 2019-02-04 充電システム、充電装置、充電方法

Country Status (2)

Country Link
JP (1) JP2021083134A (ja)
WO (1) WO2019176367A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111231699A (zh) * 2020-02-14 2020-06-05 威马智慧出行科技(上海)有限公司 一种车车互充装置及车辆

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165940A (ja) * 2013-02-21 2014-09-08 Nissan Motor Co Ltd 充電装置
JP2015231289A (ja) * 2014-06-05 2015-12-21 アイシン精機株式会社 充電システム、及び充電式車両
JP2016096630A (ja) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 電動車両及び給電システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014165940A (ja) * 2013-02-21 2014-09-08 Nissan Motor Co Ltd 充電装置
JP2015231289A (ja) * 2014-06-05 2015-12-21 アイシン精機株式会社 充電システム、及び充電式車両
JP2016096630A (ja) * 2014-11-13 2016-05-26 トヨタ自動車株式会社 電動車両及び給電システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111231699A (zh) * 2020-02-14 2020-06-05 威马智慧出行科技(上海)有限公司 一种车车互充装置及车辆
CN111231699B (zh) * 2020-02-14 2022-01-14 威马智慧出行科技(上海)有限公司 一种车车互充装置及车辆

Also Published As

Publication number Publication date
JP2021083134A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US10144298B2 (en) Power supply device of vehicle
US9551755B2 (en) Relay weld diagnostic device
CN104052088B (zh) 用于电动汽车的无线充电系统
US10305334B2 (en) Wireless power-supplying system, power-receiving device, and power-transmitting device
RU2614052C1 (ru) Устройство подачи электрической энергии, транспортное средство и система бесконтактной подачи электрической энергии
US9114715B2 (en) Electronic control unit
JP5844106B2 (ja) 車両用の電源装置とこの電源装置を備える車両
JP6201319B2 (ja) 変換装置、故障判定方法及び制御プログラム
CN203434641U (zh) 一种电动汽车的无线充电通信系统
US10114056B2 (en) Deterioration specifying device and deterioration specifying method
US20170133880A1 (en) Power supply device and wireless power transfer apparatus
WO2014156150A1 (ja) 車両用電力装置
CN104143845A (zh) 用于电动汽车的无线充电检测系统
JP2013169081A (ja) 充電装置
WO2019176367A1 (ja) 充電システム、充電装置、充電方法
JP2015220853A (ja) 非接触給電システム
WO2019176369A1 (ja) 充電制御装置
JP2019115148A (ja) 非接触受電装置
CN110967619B (zh) 检测电路、电路检测及控制方法
JP7173698B2 (ja) 車両用非接触受電システム
US20230018075A1 (en) Vehicle and charging system
WO2019176432A1 (ja) 受電装置
JP5659764B2 (ja) 充電装置およびそれを備える電動車両
JP2015231258A (ja) 非接触給電システム及び受電装置
KR101924522B1 (ko) Ev용 ac 충전장치 및 이의 충전방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP