WO2019176369A1 - 充電制御装置 - Google Patents

充電制御装置 Download PDF

Info

Publication number
WO2019176369A1
WO2019176369A1 PCT/JP2019/003782 JP2019003782W WO2019176369A1 WO 2019176369 A1 WO2019176369 A1 WO 2019176369A1 JP 2019003782 W JP2019003782 W JP 2019003782W WO 2019176369 A1 WO2019176369 A1 WO 2019176369A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
state
voltage
charging
unit
Prior art date
Application number
PCT/JP2019/003782
Other languages
English (en)
French (fr)
Inventor
宮崎 英樹
孝徳 山添
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2019176369A1 publication Critical patent/WO2019176369A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/46Accumulators structurally combined with charging apparatus
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a charging control device that controls charging of a battery.
  • an electric vehicle such as an electric vehicle that can travel by driving a traveling motor using electric power charged in a battery has been widely used.
  • a charging method that can safely and promptly return to the state where the vehicle can run is desired.
  • Patent Document 1 discloses a voltage doubler rectifier circuit unit having a capacitor for rectifying an AC input voltage to boost it to a double voltage, and converting the DC input voltage to an AC voltage to boost the voltage to a predetermined voltage level. It is interposed between the converter circuit section that constantly applies an AC voltage to the capacitor of the voltage rectifier circuit section, the main battery for supplying drive power to the motor, and the voltage doubler rectifier circuit section, and does not charge the main battery. Sometimes, the main battery and the voltage doubler rectifier circuit unit are disconnected, and when charging the main battery, an electric vehicle battery charging device including an opening / closing unit that connects the main battery and the voltage doubler rectifier circuit unit Is disclosed.
  • Lithium ion batteries which are widely used in driving electric motors in electric vehicles, become overdischarged when they are discharged for a long period of time when they are out of charge. Charging may be required. Further, when the discharge further proceeds from the overdischarged state, the battery may be deteriorated and charging may become impossible.
  • the battery charging device described in Patent Document 1 when charging a battery that has fallen out of charge, it is not possible to perform appropriate charge control in consideration of such a difference in battery state.
  • a charging control device controls charging of a battery mounted on an electric vehicle, and includes a voltage measuring unit that measures the voltage of the battery, and a measurement result of the battery voltage by the voltage measuring unit.
  • a battery state determination unit that determines whether the battery state corresponding to the state of the battery is a first state, a second state, or a third state, and the battery state by the battery state determination unit And a charging instruction unit that switches the charging method of the battery based on the determination result.
  • FIG. 1 is a diagram illustrating a configuration of a wireless power feeding system according to an embodiment of the present invention. It is a figure which shows the structural example of the power receiving apparatus which concerns on one Embodiment of this invention. It is a figure which shows the processing flow at the time of normal charge of the wireless power feeding system which concerns on one Embodiment of this invention. It is a functional block diagram of the battery monitoring apparatus which concerns on one Embodiment of this invention. It is a figure which shows an example of the processing flow of charge control at the time of returning a high voltage battery from an electric shortage state.
  • FIG. 1 is a diagram showing a configuration of a wireless power feeding system 1 according to an embodiment of the present invention.
  • a wireless power feeding system 1 shown in FIG. 1 is used in wireless power feeding to a vehicle such as an electric vehicle, and includes a power transmission device 100 installed on the ground side in the vicinity of the vehicle and a power receiving device respectively mounted on the vehicle side. 200, a high-voltage battery 300, a load 400, and a battery monitoring device 500.
  • the power transmission device 100 includes a power transmission control unit 110, a communication unit 120, an AC power source 130, a power conversion unit 140, and a primary coil L1.
  • the power transmission control unit 110 controls the power transmission apparatus 100 as a whole by controlling the operations of the communication unit 120 and the power conversion unit 140.
  • the communication unit 120 performs wireless communication with the communication unit 220 included in the power receiving device 200 under the control of the power transmission control unit 110.
  • Various information necessary for wireless power feeding is exchanged between the power transmitting apparatus 100 and the power receiving apparatus 200 by wireless communication between the communication unit 120 and the communication unit 220.
  • information such as the frequency of the alternating current flowing through the primary coil L1, that is, the frequency of the alternating magnetic field emitted from the primary coil L1, is transmitted from the communication unit 120 to the communication unit 220.
  • information such as the state of charge (SOC) and deterioration state of the high-voltage battery 300 and the allowable current during charging is transmitted from the communication unit 220 to the communication unit 120.
  • SOC state of charge
  • AC power supply 130 is a commercial power supply, for example, and supplies predetermined AC power to the power conversion unit 140.
  • the power conversion unit 140 outputs an alternating current having a predetermined frequency and current value to the primary coil L ⁇ b> 1 using the alternating current power supplied from the alternating current power supply 130 under the control of the power transmission control unit 110.
  • Primary coil L1 is installed on the ground side located under the vehicle, and emits an alternating magnetic field corresponding to the alternating current flowing from power conversion unit 140 toward the vehicle. Thereby, wireless power feeding to the vehicle is performed.
  • the power receiving apparatus 200 includes a power reception control unit 210, a communication unit 220, an alternating current detection unit 230, a drive control unit 240, a power conversion unit 250, a secondary coil L2, a resonance coil Lx, and a resonance capacitor Cx.
  • the resonance coil Lx and the resonance capacitor Cx are connected to the secondary coil L2, and constitute a resonance circuit together with the secondary coil L2.
  • the resonance frequency of the resonance circuit is determined according to the inductances of the secondary coil L2 and the resonance coil Lx and the capacitance value of the resonance capacitor Cx.
  • the resonant coil Lx and the resonant capacitor Cx may each be composed of a plurality of elements. Further, part or all of the resonance coil Lx may be substituted by the inductance of the secondary coil L2.
  • the power reception control unit 210 controls the power reception apparatus 200 as a whole by controlling the operations of the communication unit 220 and the drive control unit 240.
  • the communication unit 220 performs wireless communication with the communication unit 120 included in the power transmission device 100 under the control of the power reception control unit 210, and stores various types of information as described above exchanged between the power transmission device 100 and the power reception device 200. Send and receive.
  • Information such as the frequency of the alternating current flowing through the primary coil L1 received by the communication unit 220 is output from the communication unit 220 to the power reception control unit 210.
  • the alternating current detection unit 230 detects the alternating current flowing through the resonance circuit including the secondary coil L2 when the secondary coil L2 receives the alternating magnetic field emitted from the primary coil L1. Then, an AC voltage whose frequency and amplitude change according to the detected AC current is generated and output to the drive control unit 240.
  • the drive control unit 240 can acquire the frequency and magnitude of the alternating current flowing through the resonance circuit based on the alternating voltage input from the alternating current detection unit 230.
  • the drive control unit 240 controls the switching operations of the plurality of switching elements included in the power conversion unit 250 under the control of the power reception control unit 210. At this time, the drive control unit 240 changes the timing of the switching operation of each switching element based on the alternating current flowing through the resonance circuit detected by the alternating current detection unit 230. A specific method for changing the timing of the switching operation will be described later.
  • the power conversion unit 250 has a plurality of switching elements, and controls the AC current flowing through the resonance circuit and rectifies by switching each of the plurality of switching elements, thereby converting AC power to DC power.
  • a high voltage battery 300 that can be charged and discharged is connected to the power conversion unit 250 via relays 611 and 612, and the high voltage battery 300 is charged using DC power output from the power conversion unit 250.
  • the relays 611 and 612 are for conducting or blocking between the power conversion unit 250 and the high voltage battery 300, and the switching state is controlled by a vehicle control device (not shown).
  • a smoothing capacitor C0 for smoothing the input voltage to the high voltage battery 300 is also connected between the power converter 250 and the high voltage battery 300.
  • a load 400 is connected to the high voltage battery 300 via relays 613 and 614.
  • the load 400 uses the DC power charged in the high voltage battery 300 to provide various functions related to the operation of the vehicle.
  • the load 400 includes, for example, an AC motor for driving a vehicle, an inverter that converts DC power of the high-voltage battery 300 into AC power, and supplies the AC motor to the AC motor.
  • the relays 613 and 614 are for conducting or blocking between the high-voltage battery 300 and the load 400, and the switching state is controlled by a vehicle control device (not shown) similarly to the relays 611 and 612.
  • the relay 614 is a precharge relay for suppressing an inrush current that flows when the high voltage battery 300 and the load 400 are connected, and a precharge resistor Rp is connected in series.
  • a converter 615 is connected between the high voltage battery 300 and the load 400.
  • the converter 615 is connected to the low voltage battery 616, and charges the low voltage battery 616 by reducing the DC power output from the high voltage battery 300 and supplying it to the low voltage battery 616.
  • the high voltage battery 300 may be charged by boosting the DC power output from the low voltage battery 616 and supplying it to the high voltage battery 300.
  • the low voltage battery 616 supplies DC power having a lower voltage than the high voltage battery 300 to auxiliary equipment (not shown) mounted on the vehicle, and one end side is connected to the converter 615 and the other end side is a frame ground FG of the vehicle. It is connected to the.
  • the high voltage battery 300 is configured by combining a plurality of battery cells using, for example, lithium ion batteries.
  • the low voltage battery 616 is configured using, for example, a lead storage battery.
  • the high-voltage battery 300 and the low-voltage battery 616 may have any configuration as long as the high-voltage battery 300 can output DC power having a higher voltage than the low-voltage battery 616, which is a chargeable / dischargeable secondary battery.
  • FIG. 2 is a diagram illustrating a configuration example of the power receiving device 200 according to an embodiment of the present invention.
  • the alternating current detection unit 230 is configured using, for example, a transformer Tr.
  • a transformer Tr When the magnetic flux generated by the alternating magnetic field emitted from the primary coil L1 is linked to the secondary coil L2, an electromotive force is generated in the secondary coil L2, and an alternating current i flows through the resonance circuit including the secondary coil L2.
  • this alternating current i flows through the primary coil of the transformer Tr, an alternating voltage Vg whose frequency and amplitude change according to the alternating current i is generated at both ends of the secondary coil of the transformer Tr.
  • the alternating current detection part 230 can detect the alternating current i.
  • the AC current detection unit 230 may be configured by using a device other than the transformer Tr as long as the AC current i flowing through the resonance circuit can be detected.
  • the power conversion unit 250 includes two MOS transistors (MOSFETs) Q1 and Q2 connected in series.
  • the MOS transistors Q1 and Q2 perform a switching operation for switching between the source and the drain from the conductive state to the disconnected state or from the disconnected state to the conductive state in accordance with the gate drive signal from the drive control unit 240.
  • the MOS transistor Q1 can function as an upper arm switching element
  • the MOS transistor Q2 can function as a lower arm switching element.
  • a resonance circuit including the secondary coil L2 is connected to the connection point O between the MOS transistors Q1 and Q2 and the source terminal of the MOS transistor Q2. Therefore, the AC current i flowing through the resonance circuit can be controlled and rectified by switching the MOS transistors Q1 and Q2 at appropriate timings.
  • the drive control unit 240 includes a voltage acquisition unit 241, a drive signal generation unit 243, and a gate drive circuit 244.
  • the voltage acquisition unit 241 acquires the AC voltage Vg output from the AC current detection unit 230 (transformer Tr) and outputs the AC voltage Vg to the drive signal generation unit 243.
  • the drive signal generation unit 243 receives the basic drive signal Sr from the power reception control unit 210 in addition to the AC voltage Vg acquired by the voltage acquisition unit 241.
  • the basic drive signal Sr is an AC signal that is output from the drive control unit 240 to the power conversion unit 250 and is a source of a gate drive signal that controls the switching operation of the MOS transistors Q1 and Q2, and the frequency thereof is the primary power transmission device 100. It is determined according to the frequency of the current flowing through the coil L1. Specifically, when the communication unit 220 receives information representing the frequency f of the alternating current flowing through the primary coil L1 of the power transmission device 100 from the communication unit 120, the communication unit 220 outputs the information to the power reception control unit 210.
  • the power reception control unit 210 When the information on the frequency f is input from the communication unit 220, the power reception control unit 210 generates a basic drive signal Sr corresponding to the frequency f and outputs it to the drive control unit 240.
  • the basic drive signal Sr is, for example, a combination of two rectangular waves corresponding to the MOS transistors Q1 and Q2, respectively, and has an H level corresponding to ON (conducting state) and an L level corresponding to OFF (disconnected state). Are alternately repeated at the frequency f. However, a predetermined protection period is provided between the H levels of the two rectangular waves so that the MOS transistors Q1 and Q2 are not turned on simultaneously.
  • the drive signal generation unit 243 adjusts the phase of the basic drive signal Sr input from the power reception control unit 210 based on the AC voltage Vg input from the voltage acquisition unit 241, and generates the charge drive signal Sc. Then, the generated charge drive signal Sc is output to the gate drive circuit 244.
  • the gate drive circuit 244 outputs a gate drive signal based on the charge drive signal Sc input from the drive signal generation unit 243 to the gate terminals of the MOS transistors Q1 and Q2, respectively, and causes the MOS transistors Q1 and Q2 to perform a switching operation.
  • the MOS transistors Q1 and Q2 function as switching elements, respectively, and control of the alternating current i flowing in the resonance circuit according to the alternating magnetic field emitted from the primary coil L1, or the alternating current power to the direct current power. Conversion to
  • the power receiving device 200 of the present embodiment can charge the high-voltage battery 300 by receiving wireless power feeding from the power transmitting device 100 by performing the operation described above.
  • FIG. 3 is a diagram illustrating a processing flow during normal charging of the wireless power feeding system 1 according to an embodiment of the present invention.
  • step S10 the ground-side power transmission device 100 issues a charge inquiry to the vehicle-side power reception device 200.
  • charging is inquired by transmitting a predetermined communication message from the communication unit 120 of the power transmission device 100 to the communication unit 220 of the power reception device 200.
  • step S20 the power receiving device 200 that has received the charge inquiry in step S10 notifies the power transmitting device 100 of the allowable current of the high-voltage battery 300 during charging.
  • the power receiving device 200 determines an allowable current based on, for example, a charge state or a deteriorated state of the high voltage battery 300 measured in advance, and transmits information indicating the value of the allowable current from the communication unit 220 to the communication unit 120 of the power transmission device 100. Send to.
  • the power receiving apparatus 200 may notify the power transmitting apparatus 100 to that effect. In this case, the process flow of FIG. 3 is complete
  • step S30 the power transmission device 100 determines the amount of current and starts power transmission to the power reception device 200.
  • the power transmitting apparatus 100 compares the output current value corresponding to the allowable current notified from the power receiving apparatus 200 in step S20 and its own rated current value, and selects the smaller one to determine the current amount.
  • the power transmission control unit 110 controls the power conversion unit 140 to cause an alternating current corresponding to the determined current amount to flow through the primary coil L1, thereby generating an alternating magnetic field in the primary coil L1 and starting power transmission.
  • the power reception control unit 210 of the power reception device 200 sets the frequency f to It is preferable that the above-described basic drive signal Sr can be generated. Alternatively, the frequency f may be notified from the power transmitting apparatus 100 to the power receiving apparatus 200 when an inquiry for charging is made in step S10.
  • step S40 the power receiving device 200 performs drive control processing of the power conversion unit 250 according to the alternating current i that flows through the resonance circuit including the secondary coil L2 by receiving the alternating magnetic field emitted from the primary coil L1.
  • drive control of the power conversion unit 250 according to the alternating current received from the power transmission device 100 is performed by performing the above-described processing in each unit of the drive control unit 240.
  • the high voltage battery 300 is charged in the constant current (CC) mode.
  • step S50 the power receiving device 200 determines whether or not the state of charge (SOC) of the high voltage battery 300 has reached a predetermined value, for example, 80% or more. As a result, if the SOC is less than 80%, the drive control process of step S40 is repeated. If the SOC becomes 80% or more, the constant current mode is changed to the constant voltage (CV) mode and the process proceeds to step S60.
  • SOC state of charge
  • step S60 the power receiving device 200 notifies the power transmitting device 100 of a charging current corresponding to the current charging state of the high voltage battery 300.
  • the power receiving apparatus 200 determines a charging current with a value smaller than the allowable current notified in step S20 based on the current charging state of the high-voltage battery 300, and transmits information indicating the value of the charging current to the communication unit 220. To the communication unit 120 of the power transmission apparatus 100.
  • step S70 the power receiving device 200 performs the drive control process similar to that in step S40, thereby charging the high-voltage battery 300 in the constant voltage (CV) mode.
  • step S80 the power receiving device 200 determines whether or not the state of charge (SOC) of the high voltage battery 300 has reached 100% of full charge. As a result, if the SOC is less than 100%, the process returns to step S60 to continue charging the high voltage battery 300, and if the SOC reaches 100%, the process proceeds to step S90.
  • SOC state of charge
  • step S90 the charging of the high voltage battery 300 is terminated.
  • the power transmission stop is instructed.
  • power transmission is stopped by interrupting the energization of the primary coil L1 in response to the power transmission stop instruction.
  • the operation of the power conversion unit 250 in the power reception device 200 is stopped, thereby completing the charging of the high voltage battery 300.
  • step S90 the processing flow of FIG. 3 is ended. Thereby, the wireless power supply of the wireless power supply system 1 is completed.
  • the high-voltage battery 300 and the low-voltage battery 616 fall into a state where no further discharge is possible when the remaining capacity is reduced by continuing to supply power to the load 400 and the auxiliary machines. Such a state is called an electric shortage state. Further, since the remaining capacity of the high-voltage battery 300 and the low-voltage battery 616 gradually decreases due to self-discharge even when the high-voltage battery 300 and the low-voltage battery 616 are not used, even when the high-voltage battery 300 or the low-voltage battery 616 is left without being charged for a long time, You may fall into a shortage.
  • the low voltage battery 616 falls short of power, the low voltage battery 616 is replaced with a new one, or if the high voltage battery 300 can be used, the DC power from the high voltage battery 300 is stepped down by the converter 615 and the low voltage battery 616 is removed. By charging, the low voltage battery 616 can be returned to a usable state.
  • the high-voltage battery 300 is in an electric shortage state, the high-voltage battery 300 is generally not easily replaceable. Therefore, in order to return the high-voltage battery 300 to a usable state, wireless communication is not possible. It is necessary to perform wireless power feeding from the power transmitting apparatus 100 to the power receiving apparatus 200 using the power feeding system 1 to charge the high voltage battery 300.
  • the high-voltage battery 300 may be in an overdischarged state in which the discharge has progressed more than usual, and charging with a lower current than in normal times may be required. Further, when the discharge further proceeds from the overdischarged state, the battery may be deteriorated and charging may become impossible.
  • the wireless power feeding system 1 of the present embodiment implements charging control according to the battery state of the high-voltage battery 300 in such a power-out state mainly using the battery monitoring device 500. That is, the battery monitoring device 500 functions as a charge control device that controls the charging of the high-voltage battery 300 in the absence of electricity.
  • FIG. 4 is a functional block diagram of a battery monitoring apparatus 500 according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of a processing flow of charge control when the high-voltage battery 300 is returned from the power shortage state.
  • the low voltage battery 616 when the low voltage battery 616 can be used and the converter 615 can boost the DC power output from the low voltage battery 616, the low voltage battery 616 is used to charge the high voltage battery 300. It is also conceivable to restore the high voltage battery 300 in a dead state to a usable state. However, in the charge control described below, it is assumed that the high voltage battery 300 is charged by performing wireless power feeding from the power transmission device 100 to the power reception device 200, and the high voltage battery 300 is charged using the low voltage battery 616. Exclude cases.
  • the functional block diagram of FIG. 4 shows functional blocks of the battery monitoring device 500 for performing charging control of the high voltage battery 300 that has fallen into an electric shortage state.
  • the battery monitoring apparatus 500 includes functional blocks of an arithmetic processing unit 510, a cell voltage measurement unit 520, an insulation diagnosis unit 530, a recording unit 540, and an output unit 550.
  • Arithmetic processing unit 510 is realized, for example, by executing a predetermined program in CPU, and includes a battery state determination unit 511 and a charging instruction unit 512.
  • the cell voltage measurement unit 520, the insulation diagnosis unit 530, and the output unit 550 are each implemented using an arbitrary hardware configuration
  • the recording unit 540 is implemented using a nonvolatile memory such as a flash memory, for example. .
  • the cell voltage measurement unit 520 measures the voltage of the high-voltage battery 300 and outputs the measurement result to the arithmetic processing unit 510.
  • the cell voltage measurement unit 520 measures the cell voltage for each of the plurality of battery cells constituting the high-voltage battery 300. Then, each measured cell voltage is output to the arithmetic processing unit 510.
  • the insulation diagnosis unit 530 diagnoses the insulation of the high-voltage system on the vehicle side in the wireless power feeding system 1 in accordance with an instruction from the arithmetic processing unit 510.
  • the vehicle-side high-voltage system on which the insulation diagnosis unit 530 performs insulation diagnosis is each part of the wireless power feeding system 1 connected to the high-voltage battery 300 via the relays 611 to 614.
  • the power conversion unit 250, the load 400, converter 615, and wiring between them Specifically, for example, a predetermined pulse signal is input to the wiring between the power conversion unit 250 and the relay 611 or the wiring connecting the load 400 and the relays 613 and 614, and the current The impedance between the wiring and the frame ground FG is measured.
  • the impedance remains infinite and does not change, it is determined that the insulation of the high-voltage system on the vehicle side is secured with respect to the frame ground FG.
  • the impedance changes in response to the input of the pulse signal, it is determined that a leak has occurred from the high voltage system on the vehicle side to the frame ground FG, and insulation of the high voltage system on the vehicle side is not ensured.
  • the battery state determination unit 511 determines the state of the high voltage battery 300 before charging (battery state) based on the measurement result of the voltage of the high voltage battery 300 by the cell voltage measurement unit 520, that is, the measurement result of each cell voltage. ). At this time, the battery state determination unit 511 determines, based on the measurement result of each cell voltage, whether the high-voltage battery 300 before charging that has fallen into an electric shortage state is in a deteriorated state, an overdischarged state, or a normal electric shortage state. judge. A specific battery state determination method by the battery state determination unit 511 will be described later with reference to the processing flow of FIG.
  • the charging instruction unit 512 switches the charging method of the high-voltage battery 300 based on the determination result of the battery state by the battery state determination unit 511. At this time, the charging instruction unit 512 instructs the power receiving device 200 to charge the high-voltage battery 300 by different methods for each of the three types of battery states described above, that is, the deterioration state, the overdischarge state, and the normal power-out state. The charging instruction is given. The charging instruction from charging instruction unit 512 is output to power receiving device 200 by output unit 550.
  • the recording unit 540 records various information according to the control of the arithmetic processing unit 510.
  • the information recorded in the recording unit 540 includes the voltage measurement result of the high voltage battery 300 by the cell voltage measurement unit 520 and the like.
  • Information recorded in the recording unit 540 is read by the arithmetic processing unit 510 as necessary, and is used in processing and arithmetic operations performed by the arithmetic processing unit 510.
  • step S110 it is determined whether or not the high voltage battery 300 is in an electric shortage state.
  • the voltage of the high voltage battery 300 is measured by the cell voltage measurement unit 520, and if the measured voltage is less than a predetermined value, it is determined that the high voltage battery 300 has fallen out of charge.
  • the SOC of the high-voltage battery 300 may be calculated from the voltage of the high-voltage battery 300, and it may be determined that the high-voltage battery 300 has fallen out of charge when the SOC becomes less than a predetermined value. If it is determined in step S110 that the high-voltage battery 300 has run out of power, the process proceeds to the next step S120.
  • step S120 all the relays 611 to 614 are turned off, and the high voltage battery 300 is electrically disconnected from the power conversion unit 250 and the load 400.
  • a command to turn off all the relays 611 to 614 is output from the output unit 550 to a vehicle control device (not shown), thereby turning off the relays 611 to 614. Switch to.
  • step S130 the cell voltage measurement unit 520 measures each cell voltage of the high voltage battery 300. At this time, since the relays 611 to 614 are turned off in step S120, no current flows through the high voltage battery 300. Therefore, each cell voltage measured in step S ⁇ b> 130 represents an OCV (Open Circuit Voltage) of each battery cell when the high voltage battery 300 falls into an electric shortage state.
  • OCV Open Circuit Voltage
  • step S140 it is determined whether or not the high-voltage battery 300 starts to recover from the lack of electricity.
  • the low voltage battery 616 that has been in a power shortage together with the high voltage battery 300 is replaced with a new charged one, and the vehicle is parked at a predetermined charging position where the power receiving device 200 can receive wireless power feeding from the power transmitting device 100.
  • the process proceeds to the next step S150.
  • step S150 the cell voltage measurement unit 520 measures each cell voltage of the high voltage battery 300. At this time as well, similarly to step S130, since the relays 611 to 614 are turned off in step S120, no current flows through the high voltage battery 300. Accordingly, each cell voltage measured in step S150 represents the OCV of each battery cell at the present time, that is, at the start of return from the power shortage state.
  • the battery state determination unit 511 determines the presence or absence of a deteriorated cell in the high-voltage battery 300.
  • the difference between these OCVs in at least one of the battery cells is a predetermined deterioration judgment value, for example, 0.5 V or more, the composition of the electrode changes, swells, corrodes, etc. when left for a long time.
  • the battery cell is determined to be deteriorated and the battery cell is determined to be deteriorated.
  • the battery cell may be determined as a deteriorated cell. If it is determined in step S160 that there is a deteriorated cell, it is determined that the high voltage battery 300 is in a deteriorated state and the process proceeds to step S220. If it is determined that there is no deteriorated cell, the process proceeds to step S170.
  • step S170 the battery state determination unit 511 determines whether or not there is an overdischarge cell in the high voltage battery 300.
  • the current OCV of each battery cell measured in step S150 is compared with a predetermined overdischarge determination value, for example, 3V.
  • a predetermined overdischarge determination value for example, 3V.
  • step S170 If it is determined in step S170 that there is an overdischarge cell, it is determined that the high voltage battery 300 is in an overdischarge state, and the process proceeds to step S180. If it is determined that there is no overdischarge cell, the high voltage battery 300 is in a normal battery shortage state. It judges that there exists, and progresses to step S240.
  • step S180 the battery state determination unit 511 determines whether the high voltage battery 300 can be charged.
  • the OCV of the overdischarge cell determined in step S170 is compared with a predetermined chargeable determination value, for example, 2V.
  • a predetermined chargeable determination value for example, 2V.
  • the chargeable determination value can be set to any value other than 2V depending on the characteristics of the high-voltage battery 300, but at least a value lower than the overdischarge determination value used in the determination in step S170 is set. Is done.
  • step S170 If it is determined in step S170 that the high-voltage battery 300 is in an overdischarged state, and it is determined in step S180 that the high-voltage battery 300 can be charged and the process proceeds to step S190, the insulation diagnosis unit 530 causes the wireless power feeding system 1 in step S190. Carry out insulation diagnosis of the high-voltage system on the vehicle side. As a result, if the insulation of the high-voltage system on the vehicle side can be confirmed, the relays 611 and 612 on the charging side of the high-voltage battery 300 are switched from OFF to ON in step S200, and then in step S210, the charging instruction unit 512 Then, a low current charging start instruction with a predetermined charging current lower than that during normal charging is transmitted to the power receiving apparatus 200.
  • step S210 If the low current charge start instruction is transmitted to the power receiving apparatus 200 in step S210, the processing flow of FIG. If the insulation of the high-voltage system on the vehicle side cannot be confirmed in step S190, the process flow of FIG. 5 is terminated without performing the processes after step S200.
  • the power receiving device 200 When the power receiving device 200 receives the low current charging start instruction transmitted from the battery monitoring device 500 in step S210, the power receiving device 200 causes the power transmitting device 100 to reduce the alternating current flowing through the primary coil L1 more than usual. To instruct. Thereafter, the high voltage battery 300 is charged by receiving wireless power feeding from the power transmission device 100 according to the same procedure as that in the normal charging described in the processing flow of FIG. As a result, the high voltage battery 300 in the lack of charge state can be charged and returned from the lack of charge state.
  • step S160 If it is determined in step S160 that the high voltage battery 300 is in a deteriorated state and the process proceeds to step S220, or it is determined in step S170 that the high voltage battery 300 is in an overdischarged state, and the high voltage battery 300 cannot be charged in step S180.
  • step S220 the relays 611 to 614 turned off in step S120 are maintained in the off state as they are.
  • the charging instruction unit 512 transmits a charging stop instruction for prohibiting charging of the high-voltage battery 300 and factor information indicating the factor to the power receiving apparatus 200.
  • the factor information includes, for example, information indicating whether the determination result for the battery state of the high voltage battery 300 is in a deteriorated state or an overdischarge state, information indicating the number of deteriorated cells or overdischarge cells in the high voltage battery 300, and the like. be able to.
  • the power receiving device 200 When the power receiving device 200 receives the charge stop instruction transmitted from the battery monitoring device 500 in step S230, the power receiving device 200 instructs the power transmitting device 100 not to release the AC magnetic field from the primary coil L1. Thereby, when the high-voltage battery 300 in the absence of charge is in a deteriorated state or an overdischarged state in which charging is impossible, charging of the high-voltage battery 300 can be prohibited.
  • step S170 If it is determined in step S170 that the high-voltage battery 300 is normally out of charge and the process proceeds to step S240, the insulation diagnosis unit 530 performs an insulation diagnosis of the high-voltage system on the vehicle side in the wireless power feeding system 1 in step S240. To do. As a result, if insulation of the high-voltage system on the vehicle side can be confirmed, the relays 611 and 612 on the charging side of the high-voltage battery 300 are switched from OFF to ON in step S250, and then in step S260, the charging instruction unit 512 Then, a normal charging start instruction with the same charging current as that during normal charging is transmitted to the power receiving apparatus 200. When the normal charging start instruction is transmitted to the power receiving apparatus 200 in step S260, the processing flow in FIG. If the insulation property of the high-voltage system on the vehicle side cannot be confirmed in step S240, the processing flow in FIG. 5 is terminated without performing the processing after step S250.
  • the power receiving device 200 When the power receiving device 200 receives the normal charging start instruction transmitted from the battery monitoring device 500 in step S260, the power receiving device 200 instructs the power transmitting device 100 to flow an alternating current similar to that in the normal state to the primary coil L1. To do. Thereafter, the high voltage battery 300 is charged by receiving wireless power feeding from the power transmission device 100 according to the same procedure as that in the normal charging described in the processing flow of FIG. As a result, the high voltage battery 300 in the lack of charge state can be charged and returned from the lack of charge state.
  • the battery monitoring device 500 functions as a charge control device that controls charging of the high-voltage battery 300 mounted on the electric vehicle.
  • the battery monitoring device 500 has a cell voltage measuring unit 520 that measures the voltage of the high voltage battery 300, and a battery state corresponding to the state of the high voltage battery 300 based on the measurement result of the voltage of the high voltage battery 300 by the cell voltage measuring unit 520.
  • a battery state determination unit 511 that determines whether the state is the first state (deterioration state), the second state (overdischarge state), or the third state (normal power-out state), and the battery state determination unit 511
  • a charging instruction unit 512 that switches a charging method of the high-voltage battery 300 based on the determination result of the battery state. Since it did in this way, when charging the high voltage battery 300 which has fallen into an electric shortage state, appropriate charge control according to a battery state can be performed.
  • the battery monitoring apparatus 500 further includes a recording unit 540 that records the voltage of the high-voltage battery 300 measured by the cell voltage measurement unit 520 when the high-voltage battery 300 is in an out-of-charge state (step S130).
  • the battery state determination unit 511 determines that the battery state is the first state (deterioration). State) (step S160: Yes).
  • the charging instruction unit 512 prohibits charging of the high voltage battery 300 (steps S220 and S230). Since it did in this way, when the high voltage battery 300 is in a battery state that is not suitable for charging, it is possible to prevent dangerous charging.
  • the high voltage battery 300 is configured by combining a plurality of battery cells.
  • Cell voltage measurement unit 520 measures the voltage of each of the plurality of battery cells in steps S130 and S150. If the difference between the voltage recorded in the recording unit 540 and the current voltage for at least one battery cell among the plurality of battery cells is greater than or equal to the deterioration determination value in step S160, the battery state determination unit 511 determines that the battery state is It determines with it being a 1st state (deterioration state). Since it did in this way, about the high voltage battery 300 comprised combining the some battery cell, it can be determined appropriately whether a battery state corresponds to a 1st state.
  • the battery state determination unit 511 determines that the battery state is the second state (overdischarge state) (step S170: Yes). .
  • the charging instruction unit 512 restricts charging of the high-voltage battery 300 (steps S180 to S230). Specifically, when the battery state determination unit 511 determines that the battery state is the second state, whether or not the voltage of the high-voltage battery 300 is equal to or higher than a predetermined chargeable determination value lower than the overdischarge determination value. Is determined (step S180).
  • step S180: Yes When the battery state determination unit 511 determines that the battery state is the second state and the voltage of the high-voltage battery 300 is equal to or higher than the chargeable determination value (step S180: Yes), the charging instruction unit 512 is normal.
  • the high voltage battery 300 is charged with a predetermined low current smaller than the current at the time of charging (step S210).
  • step S180: No when the battery state determination unit 511 determines that the battery state is the second state and the voltage of the high voltage battery 300 is less than the chargeable determination value (step S180: No), the high voltage battery 300 is charged. Is prohibited (steps S220 and S230). Since it did in this way, according to the battery state of the high voltage battery 300, when it can charge, it can charge with an appropriate charging current, and when it cannot charge, it can prevent performing dangerous charge.
  • the high voltage battery 300 is configured by combining a plurality of battery cells.
  • cell voltage measurement unit 520 measures the voltage of each of the plurality of battery cells.
  • battery state determination unit 511 determines that the battery state is the second state (overdischarge state) when the voltage of at least one of the plurality of battery cells is less than the overdischarge determination value. To do. Since it did in this way, about the high voltage battery 300 comprised combining the some battery cell, it can be determined appropriately whether a battery state corresponds to a 2nd state.
  • Step S170 When the battery state determination unit 511 determines that the battery state is neither the first state nor the second state, the battery state determination unit 511 determines that the battery state is the third state (normal power-out state) ( Step S170: No).
  • the charging instruction unit 512 permits charging of the high-voltage battery 300 (steps S240 to S260). Since it did in this way, according to the battery state of the high voltage battery 300, when it can charge similarly to normal time, it can charge with an appropriate charging current.
  • the high voltage battery 300 is charged by being connected to the power receiving device 200 that receives the AC magnetic field emitted from the primary coil L1 installed on the ground side and is wirelessly fed.
  • the power receiving apparatus 200 includes a secondary coil L2, a resonance coil Lx and a resonance capacitor Cx, which are resonance elements that are connected to the secondary coil L2 and constitute a resonance circuit having a predetermined resonance frequency together with the secondary coil L2.
  • the power conversion unit 250 includes MOS transistors Q1 and Q2 which are switching elements, and controls the alternating current i flowing in the resonance circuit when the secondary coil L2 receives an alternating magnetic field by switching the MOS transistors Q1 and Q2. With. Since it did in this way, the high voltage battery 300 can be charged by wireless electric power feeding.
  • each component included in the drive control unit 240 and the battery monitoring device 500 may be realized by software executed by a microcomputer or the like, or an FPGA (Field-Programmable Gate Array) or the like. You may implement
  • FPGA Field-Programmable Gate Array
  • the wireless power feeding system 1 used for wireless power feeding to a vehicle such as an electric vehicle has been described.
  • the present invention is not limited to wireless power feeding to a vehicle, but is applied to a wireless power feeding system for other uses. May be. Further, the present invention can be applied even when the high voltage battery 300 is charged by wired power feeding using an electric wire instead of wireless power feeding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Secondary Cells (AREA)

Abstract

電欠状態に陥った電池を充電する際に、電池状態に応じた適切な充電制御を行う。 電池監視装置500は、電動車両に搭載された高圧電池の充電を制御する充電制御装置として機能する。電池監視装置500は、高圧電池の電圧を計測するセル電圧計測部520と、セル電圧計測部520による高圧電池の電圧の計測結果に基づいて、高圧電池の状態に対応する電池状態が第1の状態(劣化状態)、第2の状態(過放電状態)または第3の状態(通常電欠状態)のいずれであるかを判定する電池状態判定部511と、電池状態判定部511による電池状態の判定結果に基づいて、高圧電池の充電方法を切り替える充電指示部512と、を備える。

Description

充電制御装置
 本発明は、電池の充電を制御する充電制御装置に関する。
 近年、電池に充電された電力を用いて走行用モータを駆動させることで走行可能な電気自動車等の電動車両が広く利用されている。こうした電動車両では、電池の放電が進んで電欠状態に陥ると走行不能になるため、走行可能な状態へと安全かつ速やかに復帰できるような充電方法が望まれている。
 電池が電欠状態に陥った場合の充電方法に関して、下記の特許文献1が知られている。
特許文献1には、交流入力電圧を整流して倍電圧に昇圧するためのコンデンサを有する倍電圧整流回路部と、直流入力電圧を交流電圧に変換して所定の電圧レベルに昇圧し、上記倍電圧整流回路部のコンデンサに常時交流電圧を印加する変換回路部と、モータへ駆動電力を供給するための主バッテリと上記倍電圧整流回路部との間に介装され、上記主バッテリを充電しないときには、上記主バッテリと上記倍電圧整流回路部とを切り離し、上記主バッテリを充電するとき、上記主バッテリと上記倍電圧整流回路部とを接続する開閉部とを備えた電気自動車のバッテリ充電装置が開示されている。
特開2000-299902号公報
 電気自動車において走行用モータの駆動に広く利用されているリチウムイオン電池は、電欠状態で長期間放置されると、通常よりも放電が進んだ過放電状態となり、通常時よりも低電流での充電が必要になることがある。また、過放電状態から放電がさらに進むと電池が劣化し、充電が不可能になることもある。しかしながら、特許文献1に記載のバッテリ充電装置では、電欠状態に陥った電池を充電する際に、こうした電池状態の違いを考慮した適切な充電制御を行うことができない。
 本発明による充電制御装置は、電動車両に搭載された電池の充電を制御するものであって、前記電池の電圧を計測する電圧計測部と、前記電圧計測部による前記電池の電圧の計測結果に基づいて、前記電池の状態に対応する電池状態が第1の状態、第2の状態または第3の状態のいずれであるかを判定する電池状態判定部と、前記電池状態判定部による前記電池状態の判定結果に基づいて、前記電池の充電方法を切り替える充電指示部と、を備える。
 本発明によれば、電欠状態に陥った電池を充電する際に、電池状態に応じた適切な充電制御を行うことができる。
本発明の一実施形態に係る無線給電システムの構成を示す図である。 本発明の一実施形態に係る受電装置の構成例を示す図である。 本発明の一実施形態に係る無線給電システムの通常充電時の処理フローを示す図である。 本発明の一実施形態に係る電池監視装置の機能ブロック図である。 高圧電池を電欠状態から復帰させる際の充電制御の処理フローの一例を示す図である。
 以下、図面を参照して、本発明に係る充電制御装置の実施の形態について説明する。
 図1は、本発明の一実施形態に係る無線給電システム1の構成を示す図である。図1に示す無線給電システム1は、電気自動車等の車両への無線給電において利用されるものであり、車両付近の地上側に設置された送電装置100と、車両側にそれぞれ搭載された受電装置200、高圧電池300、負荷400および電池監視装置500とを有する。
 送電装置100は、送電制御部110、通信部120、交流電源130、電力変換部140および一次コイルL1を備える。送電制御部110は、通信部120および電力変換部140の動作を制御することで、送電装置100全体の制御を行う。
 通信部120は、送電制御部110の制御により、受電装置200が備える通信部220との間で無線通信を行う。この通信部120と通信部220の無線通信により、無線給電の際に必要な各種情報が送電装置100と受電装置200の間で交換される。たとえば、一次コイルL1に流れる交流電流の周波数、すなわち一次コイルL1から放出される交流磁界の周波数等の情報が、通信部120から通信部220に送信される。また、高圧電池300の充電状態(SOC)や劣化状態、充電時の許容電流等の情報が、通信部220から通信部120に送信される。
 交流電源130は、たとえば商用電源であり、所定の交流電力を電力変換部140に供給する。電力変換部140は、送電制御部110の制御により、交流電源130から供給された交流電力を用いて所定の周波数および電流値の交流電流を一次コイルL1に出力する。一次コイルL1は、車両の下に位置する地上側に設置されており、電力変換部140から流される交流電流に応じた交流磁界を車両に向けて空中に放出する。これにより、車両への無線給電を行う。
 受電装置200は、受電制御部210、通信部220、交流電流検出部230、駆動制御部240、電力変換部250、二次コイルL2、共振コイルLxおよび共振コンデンサCxを備える。共振コイルLxおよび共振コンデンサCxは、二次コイルL2に接続されており、二次コイルL2とともに共振回路を構成する。この共振回路の共振周波数は、二次コイルL2および共振コイルLxがそれぞれ有するインダクタンスと、共振コンデンサCxが有する静電容量値とに応じて決定される。なお、共振コイルLxおよび共振コンデンサCxはそれぞれ複数の素子により構成されていてもよい。また、共振コイルLxの一部または全部を二次コイルL2のインダクタンスで代用してもよい。
 受電制御部210は、通信部220および駆動制御部240の動作を制御することで、受電装置200全体の制御を行う。通信部220は、受電制御部210の制御により、送電装置100が備える通信部120との間で無線通信を行い、送電装置100と受電装置200の間で交換される前述のような各種情報を送受信する。通信部220が受信した一次コイルL1に流れる交流電流の周波数等の情報は、通信部220から受電制御部210に出力される。
 交流電流検出部230は、一次コイルL1から放出された交流磁界を二次コイルL2が受けることで二次コイルL2を含む共振回路に流れる交流電流を検出する。そして、検出した交流電流に応じて周波数と振幅がそれぞれ変化する交流電圧を発生させ、駆動制御部240に出力する。駆動制御部240は、交流電流検出部230から入力された交流電圧に基づいて、共振回路に流れる交流電流の周波数や大きさを取得することができる。
 駆動制御部240は、受電制御部210の制御により、電力変換部250が有する複数のスイッチング素子のスイッチング動作を制御する。このとき駆動制御部240は、交流電流検出部230が検出した共振回路に流れる交流電流に基づいて、各スイッチング素子のスイッチング動作のタイミングを変化させる。なお、スイッチング動作のタイミングを変化させる具体的な方法は後述する。
 電力変換部250は、複数のスイッチング素子を有しており、複数のスイッチング素子をそれぞれスイッチング動作させることで、共振回路に流れる交流電流を制御するとともに整流し、交流電力から直流電力への変換を行う。電力変換部250には、リレー611、612を介して充放電可能な高圧電池300が接続されており、電力変換部250から出力される直流電力を用いて高圧電池300が充電される。リレー611、612は、電力変換部250と高圧電池300の間を導通または遮断するためのものであり、不図示の車両制御装置によって切り替え状態が制御される。なお、電力変換部250と高圧電池300の間には、高圧電池300への入力電圧を平滑化するための平滑コンデンサC0も接続されている。
 高圧電池300には、リレー613、614を介して負荷400が接続される。負荷400は、高圧電池300に充電された直流電力を利用して、車両の動作に関する様々な機能を提供する。負荷400には、たとえば車両駆動用の交流モータや、高圧電池300の直流電力を交流電力に変換して交流モータに供給するインバータなどが含まれる。リレー613、614は、高圧電池300と負荷400の間を導通または遮断するためのものであり、リレー611、612と同様に、不図示の車両制御装置によって切り替え状態が制御される。なお、リレー614は高圧電池300と負荷400を接続した際に流れる突入電流を抑制するためのプリチャージリレーであり、プリチャージ抵抗Rpが直列に接続されている。
 高圧電池300と負荷400の間には、コンバータ615が接続されている。コンバータ615は低圧電池616と接続されており、高圧電池300から出力された直流電力を降圧して低圧電池616に供給することで、低圧電池616を充電する。なお、上記とは反対に、低圧電池616から出力された直流電力を昇圧して高圧電池300に供給することで、高圧電池300を充電できるようにしてもよい。低圧電池616は、高圧電池300よりも低圧の直流電力を車両に搭載された不図示の補機類等に供給するものであり、一端側がコンバータ615に接続され、他端側が車両のフレームグランドFGに接続されている。
 無線給電システム1において、高圧電池300は、たとえばリチウムイオン電池を用いた複数の電池セルを組み合わせて構成される。一方、低圧電池616は、たとえば鉛蓄電池を用いて構成される。ただし、充放電可能な二次電池であり、低圧電池616よりも高電圧の直流電力を高圧電池300が出力できれば、高圧電池300、低圧電池616をそれぞれどのような構成としてもよい。
 次に、図1の無線給電システム1のうち、受電装置200の詳細について説明する。図2は、本発明の一実施形態に係る受電装置200の構成例を示す図である。
 図2に示すように、交流電流検出部230は、たとえばトランスTrを用いて構成される。一次コイルL1から放出された交流磁界による磁束が二次コイルL2と鎖交すると、二次コイルL2に起電力が生じ、二次コイルL2を含む共振回路に交流電流iが流れる。
この交流電流iがトランスTrの一次側コイルに流れると、トランスTrの二次側コイルの両端に、交流電流iに応じて周波数と振幅がそれぞれ変化する交流電圧Vgが発生する。これにより、交流電流検出部230は交流電流iの検出を行うことができる。なお、共振回路に流れる交流電流iを検出できるものであれば、トランスTr以外のものを用いて交流電流検出部230を構成してもよい。
 電力変換部250は、直列接続された2つのMOSトランジスタ(MOSFET)Q1、Q2を有する。MOSトランジスタQ1、Q2は、駆動制御部240からのゲート駆動信号に応じて、ソース-ドレイン間を導通状態から切断状態へ、または切断状態から導通状態へと切り替えるスイッチング動作をそれぞれ行う。このスイッチング動作により、MOSトランジスタQ1を上アームのスイッチング素子として機能させるとともに、MOSトランジスタQ2を下アームのスイッチング素子として機能させることができる。MOSトランジスタQ1、Q2間の接続点Oと、MOSトランジスタQ2のソース端子には、二次コイルL2を含む共振回路がそれぞれ接続されている。そのため、MOSトランジスタQ1、Q2をそれぞれ適切なタイミングでスイッチング動作させることで、共振回路に流れる交流電流iの制御および整流を行うことができる。
 なお、図2では2つのMOSトランジスタQ1、Q2をスイッチング素子として用いたハーフブリッジ構成の電力変換部250を例示したが、4つのMOSトランジスタをスイッチング素子として用いたフルブリッジ構成の電力変換部250としてもよい。以下では図2に示したハーフブリッジ構成の電力変換部250による動作例を説明するが、フルブリッジ構成とした場合でも基本的な動作は同様である。
 駆動制御部240は、電圧取得部241、駆動信号生成部243およびゲート駆動回路244を有する。
 電圧取得部241は、交流電流検出部230(トランスTr)から出力される交流電圧Vgを取得し、駆動信号生成部243に出力する。
 駆動信号生成部243には、電圧取得部241が取得した交流電圧Vgに加えて、受電制御部210から基本駆動信号Srが入力される。基本駆動信号Srは、駆動制御部240から電力変換部250に出力されてMOSトランジスタQ1、Q2のスイッチング動作を制御するゲート駆動信号の元となる交流信号であり、その周波数は送電装置100の一次コイルL1に流れる電流の周波数に応じて決定される。具体的には、通信部220は、送電装置100の一次コイルL1に流れる交流電流の周波数fを表す情報を通信部120から受信すると、これを受電制御部210に出力する。受電制御部210は、通信部220から周波数fの情報が入力されると、この周波数fに応じた基本駆動信号Srを生成し、駆動制御部240に出力する。なお、基本駆動信号Srは、たとえばMOSトランジスタQ1、Q2にそれぞれ対応する2つの矩形波の組み合わせであり、オン(導通状態)に対応するHレベルと、オフ(切断状態)に対応するLレベルとが、周波数fで交互に繰り返される。ただし、MOSトランジスタQ1とQ2が同時にオンとならないように、2つの矩形波におけるHレベルの間には所定の保護期間が設けられる。
 駆動信号生成部243は、電圧取得部241から入力された交流電圧Vgに基づいて、受電制御部210から入力された基本駆動信号Srの位相を調整し、充電駆動信号Scを生成する。そして、生成した充電駆動信号Scをゲート駆動回路244に出力する。
 ゲート駆動回路244は、駆動信号生成部243から入力された充電駆動信号Scに基づくゲート駆動信号をMOSトランジスタQ1、Q2のゲート端子へそれぞれ出力し、MOSトランジスタQ1、Q2をそれぞれスイッチング動作させる。これにより、電力変換部250において、MOSトランジスタQ1、Q2がスイッチング素子としてそれぞれ機能し、一次コイルL1から放出された交流磁界に応じて共振回路に流れる交流電流iの制御や、交流電力から直流電力への変換が行われる。
 本実施形態の受電装置200は、以上説明したような動作を行うことにより、送電装置100から無線給電を受けて高圧電池300を充電することができる。
 次に、無線給電システム1を用いた通常充電時の無線給電の流れについて説明する。図3は、本発明の一実施形態に係る無線給電システム1の通常充電時の処理フローを示す図である。受電装置200、高圧電池300および負荷400を搭載した車両が所定の充電位置に駐車されると、無線給電システム1において図3の処理フローが開始される。
 ステップS10では、地上側の送電装置100から車両側の受電装置200に対して、充電の問い合わせを行う。ここでは、たとえば送電装置100の通信部120から受電装置200の通信部220へ所定の通信メッセージを送信することにより、充電の問い合わせを行う。
 ステップS20では、ステップS10で充電の問い合わせを受けた受電装置200から送電装置100に対して、充電時における高圧電池300の許容電流を通知する。このとき受電装置200は、たとえば予め測定した高圧電池300の充電状態や劣化状態に基づいて許容電流を決定し、その許容電流の値を示す情報を、通信部220から送電装置100の通信部120へ送信する。なお、充電が不要な場合は、その旨を受電装置200から送電装置100へ通知してもよい。この場合、ステップS30以降の処理は実行されずに、図3の処理フローが終了する。
 ステップS30では、送電装置100において電流量を決定し、受電装置200への送電を開始する。このとき送電装置100は、ステップS20で受電装置200から通知された許容電流に対応する出力電流値と、自身の定格電流値とを比較し、いずれか小さい方を選択して電流量を決定する。そして、送電制御部110により電力変換部140を制御して、決定した電流量に応じた交流電流を一次コイルL1に流すことで、一次コイルL1に交流磁界を発生させて送電を開始する。なお、このときさらに、一次コイルL1に流れる交流電流の周波数fを表す情報を通信部120から受電装置200の通信部220へ送信することで、受電装置200の受電制御部210において、周波数fに応じた前述の基本駆動信号Srを生成できるようにすることが好ましい。あるいは、ステップS10で充電の問い合わせを行う際に、送電装置100から受電装置200へ周波数fを通知してもよい。
 ステップS40では、受電装置200において、一次コイルL1から放出された交流磁界を受けて二次コイルL2を含む共振回路に流れる交流電流iに応じて、電力変換部250の駆動制御処理を行う。ここでは、駆動制御部240の各部において前述のような処理をそれぞれ実施することで、送電装置100から受電した交流電流に応じた電力変換部250の駆動制御を行う。これにより、定電流(CC)モードで高圧電池300の充電を実施する。
 ステップS50では、受電装置200において、高圧電池300の充電状態(SOC)が所定の値、たとえば80%以上になったか否かを判定する。その結果、SOCが80%未満であれば、ステップS40の駆動制御処理を繰り返し、SOCが80%以上になったら、定電流モードから定電圧(CV)モードに移行してステップS60に進む。
 ステップS60では、受電装置200から送電装置100に対して、現在の高圧電池300の充電状態に応じた充電電流を通知する。このとき受電装置200は、現在の高圧電池300の充電状態に基づいて、ステップS20で通知した許容電流よりも小さな値で充電電流を決定し、その充電電流の値を示す情報を、通信部220から送電装置100の通信部120へ送信する。
 ステップS70では、受電装置200において、ステップS40と同様の駆動制御処理を行うことにより、定電圧(CV)モードで高圧電池300の充電を実施する。
 ステップS80では、受電装置200において、高圧電池300の充電状態(SOC)が満充電の100%に達したか否かを判定する。その結果、SOCが100%未満であれば、ステップS60に戻って高圧電池300の充電を継続し、SOCが100%に達したらステップS90に進む。
 ステップS90では、高圧電池300の充電を終了する。ここでは、たとえば受電装置200の通信部220から送電装置100の通信部120へ所定の通信メッセージを送信することにより、送電停止を指示する。送電装置100では、この送電停止指示に応じて一次コイルL1への通電を遮断することで、送電を停止する。送電装置100からの送電が停止されたら、受電装置200において電力変換部250の動作を停止することで、高圧電池300の充電を終了する。
 ステップS90で高圧電池300の充電を終了したら、図3の処理フローを終了する。
これにより、無線給電システム1の無線給電が完了する。
 次に、高圧電池300が電欠状態に陥った場合の無線給電システム1の動作について説明する。高圧電池300や低圧電池616は、負荷400や補機類への電力供給を続けて残容量が低下すると、それ以上は放電できない状態に陥る。このような状態は電欠状態と呼ばれる。また、高圧電池300や低圧電池616は未使用状態でも自己放電により残容量が徐々に低下するため、高圧電池300や低圧電池616を長期間に渡って充電せずに放置したときにも、電欠状態に陥る場合がある。
 低圧電池616が電欠状態に陥った場合、低圧電池616を新品に交換するか、高圧電池300が使用可能であれば、高圧電池300からの直流電力をコンバータ615で降圧して低圧電池616を充電することで、低圧電池616を使用可能な状態へと復帰させることができる。一方、高圧電池300が電欠状態に陥った場合、一般的に高圧電池300は容易に交換可能な構造とはなっていないため、高圧電池300を使用可能な状態へと復帰させるには、無線給電システム1を用いて送電装置100から受電装置200へと無線給電を行い、高圧電池300を充電する必要がある。
 ここで、高圧電池300が電欠状態に陥ったままで長期間放置されると、通常よりも放電が進んだ過放電状態となり、通常時よりも低い電流での充電が必要になることがある。
また、過放電状態から放電がさらに進むと電池が劣化し、充電が不可能となることもある。このように、電欠状態に陥った高圧電池300を充電する際には、その電池状態を考慮して充電制御を行う必要がある。本実施形態の無線給電システム1は、こうした電欠状態にある高圧電池300の電池状態に応じた充電制御を、主に電池監視装置500を用いて実現している。すなわち、電池監視装置500は、電欠状態の高圧電池300の充電を制御する充電制御装置として機能する。
 以下では図4、図5を参照して、電欠状態に陥った高圧電池300の充電制御について説明する。図4は、本発明の一実施形態に係る電池監視装置500の機能ブロック図である。図5は、高圧電池300を電欠状態から復帰させる際の充電制御の処理フローの一例を示す図である。
 なお、低圧電池616が使用可能であり、かつコンバータ615が低圧電池616から出力された直流電力を昇圧可能なものである場合は、低圧電池616を用いて高圧電池300を充電することにより、電欠状態にある高圧電池300を使用可能な状態へと復帰させることも考えられる。しかしながら、以下に説明する充電制御では、送電装置100から受電装置200へと無線給電を行うことで高圧電池300の充電を行うことを前提としており、低圧電池616を用いて高圧電池300を充電する場合については除外する。
 図4の機能ブロック図は、電欠状態に陥った高圧電池300の充電制御を行うための電池監視装置500の機能ブロックを示している。図4に示すように、電池監視装置500は、演算処理部510、セル電圧計測部520、絶縁診断部530、記録部540および出力部550の各機能ブロックを有する。演算処理部510は、たとえばCPUにおいて所定のプログラムを実行することで実現され、電池状態判定部511および充電指示部512を含む。また、セル電圧計測部520、絶縁診断部530および出力部550は、それぞれ任意のハードウェア構成を用いて実現され、記録部540は、たとえばフラッシュメモリ等の不揮発型のメモリを用いて実現される。
 セル電圧計測部520は、高圧電池300の電圧を計測し、その計測結果を演算処理部510へ出力する。セル電圧計測部520は、高圧電池300の電圧を計測する際には、高圧電池300を構成する複数の電池セルの各々についてセル電圧の計測を行う。そして、計測した各セル電圧を演算処理部510へ出力する。
 絶縁診断部530は、演算処理部510の指示に応じて、無線給電システム1における車両側の高圧系統の絶縁性を診断する。絶縁診断部530が絶縁性の診断を行う車両側の高圧系統とは、リレー611~614を介して高圧電池300に接続される無線給電システム1の各部分であり、たとえば電力変換部250、負荷400、コンバータ615や、これらの間の配線などを含む。具体的には、たとえば電力変換部250とリレー611の間の配線や、負荷400とリレー613、614の間を接続している配線に対して、所定のパルス信号を入力し、このときの当該配線とフレームグランドFG間のインピーダンスを計測する。その結果、インピーダンスが無限大のままで変化しなければ、フレームグランドFGに対して車両側の高圧系統の絶縁性が確保されていると判断する。一方、パルス信号の入力に応じてインピーダンスが変化する場合は、車両側の高圧系統からフレームグランドFGへのリークが生じており、車両側の高圧系統の絶縁性が確保されていないと判断する。
 演算処理部510において、電池状態判定部511は、セル電圧計測部520による高圧電池300の電圧の計測結果、すなわち各セル電圧の計測結果に基づいて、充電前の高圧電池300の状態(電池状態)を判定する。このとき電池状態判定部511は、各セル電圧の計測結果により、電欠状態に陥った充電前の高圧電池300が劣化状態、過放電状態、通常電欠状態のいずれの電池状態であるかを判定する。なお、電池状態判定部511による具体的な電池状態の判定方法については、後で図5の処理フローを参照して説明する。
 演算処理部510において、充電指示部512は、電池状態判定部511による電池状態の判定結果に基づいて、高圧電池300の充電方法を切り替える。このとき充電指示部512は、前述の3種類の電池状態、すなわち劣化状態、過放電状態、通常電欠状態のそれぞれについて、互いに異なる方法により高圧電池300の充電を行うように、受電装置200に対して充電指示を行う。充電指示部512からの充電指示は、出力部550により受電装置200へ出力される。
 記録部540は、演算処理部510の制御に応じて様々な情報を記録する。記録部540に記録される情報には、セル電圧計測部520による高圧電池300の電圧計測結果などが含まれる。記録部540に記録された情報は、必要に応じて演算処理部510により読み出され、演算処理部510が行う処理や演算において利用される。
 次に、図5のフローチャートに従って、電欠状態に陥った高圧電池300の充電制御の流れについて説明する。
 ステップS110では、高圧電池300が電欠状態に陥ったか否かを判定する。ここでは、たとえばセル電圧計測部520により高圧電池300の電圧を計測し、計測した電圧が所定値未満であれば、高圧電池300が電欠状態に陥ったと判定する。このとき、高圧電池300の電圧から高圧電池300のSOCを算出し、SOCが所定値未満となったときに高圧電池300が電欠状態に陥ったと判定してもよい。ステップS110で高圧電池300が電欠状態に陥ったと判定したら、次のステップS120に処理を進める。
 ステップS120では、リレー611~614を全てオフにし、高圧電池300を電力変換部250および負荷400から電気的に切断する。ここでは、たとえば電池監視装置500の演算処理部510の処理により、リレー611~614を全てオフにする指令を出力部550から不図示の車両制御装置へ出力することで、リレー611~614をオフに切り替える。
 ステップS130では、セル電圧計測部520により、高圧電池300の各セル電圧を計測する。このときには、ステップS120でリレー611~614がオフにされているため、高圧電池300に電流が流れていない。したがって、ステップS130において計測される各セル電圧は、高圧電池300が電欠状態に陥ったときの各電池セルのOCV(Open Circuit Voltage)を表している。ステップS130で高圧電池300の各セル電圧を計測したら、その計測結果を記録部540に記録してステップS140に進む。
 ステップS140では、高圧電池300の電欠状態からの復帰を開始するか否かを判定する。ここではたとえば、高圧電池300とともに電欠状態に陥った低圧電池616が充電済みの新品に交換され、かつ受電装置200が送電装置100からの無線給電を受電可能な所定の充電位置に車両が駐車されたときに、高圧電池300の電欠状態からの復帰を開始すると判定する。ステップS140で高圧電池300の電欠状態からの復帰を開始すると判定したら、次のステップS150に処理を進める。
 ステップS150では、セル電圧計測部520により、高圧電池300の各セル電圧を計測する。このときもステップS130と同様に、ステップS120でリレー611~614がオフにされているため、高圧電池300に電流が流れていない。したがって、ステップS150において計測される各セル電圧は、現在、すなわち電欠状態からの復帰開始時の各電池セルのOCVを表している。
 ステップS160では、電池状態判定部511により、高圧電池300における劣化セルの有無を判定する。ここでは、ステップS130で記録部540に記録された高圧電池300が電欠状態に陥ったときの各電池セルのOCVと、ステップS150で計測した現在の各電池セルのOCVとを、電池セルごとに比較する。その結果、いずれか少なくとも一つの電池セルにおけるこれらのOCVの差が所定の劣化判定値、たとえば0.5V以上であれば、長期間の放置によって当該電池セルに電極の組成変化、膨潤、腐食等の充電不可能な劣化が生じていると判断し、当該電池セルを劣化セルと判定する。ただし、OCVの差が劣化判定値未満であっても、他の電池セルと比べてOCVの差が大きく乖離している電池セルがある場合は、当該電池セルを劣化セルと判定してもよい。ステップS160で劣化セルありと判定した場合は、高圧電池300が劣化状態にあると判断してステップS220に進み、劣化セルなしと判定した場合はステップS170に進む。
 ステップS170では、電池状態判定部511により、高圧電池300における過放電セルの有無を判定する。ここでは、ステップS150で計測した現在の各電池セルのOCVを所定の過放電判定値、たとえば3Vと比較する。その結果、いずれか少なくとも一つの電池セルにおけるOCVの値が過放電判定値未満であれば、長期間の放置によって当該電池セルに充放電不可能な劣化は生じていないものの、当該電池セルは過放電状態にあるものと判断し、当該電池セルを過放電セルと判定する。ステップS170で過放電セルありと判定した場合は、高圧電池300が過放電状態にあると判断してステップS180に進み、過放電セルなしと判定した場合は、高圧電池300が通常電欠状態にあると判断してステップS240に進む。
 ステップS170で高圧電池300が過放電状態にあると判定してステップS180に進んだ場合、ステップS180では、電池状態判定部511により、高圧電池300が充電可能であるか否かを判定する。ここでは、ステップS170で判定した過放電セルのOCVを所定の充電可能判定値、たとえば2Vと比較する。その結果、当該過放電セルのOCVの値が充電可能判定値以上であれば、高圧電池300が充電可能と判定してステップS190に進み、充電可能判定値未満であれば、高圧電池300が充電不可能と判定してステップS220に進む。なお、上記の充電可能判定値は、2V以外にも高圧電池300の特性に応じて任意の値を設定可能であるが、少なくともステップS170の判定で用いられる過放電判定値よりも低い値が設定される。
 ステップS170で高圧電池300が過放電状態にあると判定し、ステップS180で高圧電池300が充電可能と判定してステップS190に進んだ場合、ステップS190では、絶縁診断部530により、無線給電システム1における車両側の高圧系統の絶縁性診断を実施する。その結果、車両側の高圧系統の絶縁性が確認できた場合は、ステップS200で高圧電池300の充電側にあるリレー611、612をオフからオンに切り替えた後、ステップS210では充電指示部512により、通常充電時よりも低い所定の充電電流による低電流充電開始指示を受電装置200に送信する。ステップS210で低電流充電開始指示を受電装置200に送信したら、図5の処理フローを終了する。なお、ステップS190で車両側の高圧系統の絶縁性が確認できなかった場合は、ステップS200以降の処理を実施せずに図5の処理フローを終了する。
 ステップS210で電池監視装置500から送信された低電流充電開始指示を受電装置200が受信すると、受電装置200は送電装置100に対して、通常時よりも一次コイルL1に流れる交流電流を低下させるように指示する。その後は、図3の処理フローで説明した通常充電時と同様の手順により、送電装置100からの無線給電を受けて高圧電池300の充電を行う。これにより、電欠状態にある高圧電池300が充電されて電欠状態から復帰することができる。
 ステップS160で高圧電池300が劣化状態にあると判定してステップS220に進んだ場合、または、ステップS170で高圧電池300が過放電状態にあると判定し、ステップS180で高圧電池300が充電不可能と判定してステップS220に進んだ場合、ステップS220では、ステップS120でオフにしたリレー611~614をそのままオフ状態に維持する。続くステップS230では、充電指示部512により、高圧電池300の充電を禁止する充電停止指示と、その要因を表す要因情報とを受電装置200に送信する。要因情報にはたとえば、高圧電池300の電池状態に対する判定結果が劣化状態と過放電状態のいずれであるかを示す情報や、高圧電池300における劣化セルまたは過放電セルの個数を示す情報などを含めることができる。ステップS230で充電停止指示および要因情報を受電装置200に送信したら、図5の処理フローを終了する。
 ステップS230で電池監視装置500から送信された充電停止指示を受電装置200が受信すると、受電装置200は送電装置100に対して、一次コイルL1からの交流磁界の放出を実施しないように指示する。これにより、電欠状態の高圧電池300が劣化状態または充電不可能な過放電状態にある場合は、高圧電池300の充電を禁止することができる。
 ステップS170で高圧電池300が通常電欠状態にあると判定してステップS240に進んだ場合、ステップS240では、絶縁診断部530により、無線給電システム1における車両側の高圧系統の絶縁性診断を実施する。その結果、車両側の高圧系統の絶縁性が確認できた場合は、ステップS250で高圧電池300の充電側にあるリレー611、612をオフからオンに切り替えた後、ステップS260では充電指示部512により、通常充電時と同じ充電電流による通常充電開始指示を受電装置200に送信する。ステップS260で通常充電開始指示を受電装置200に送信したら、図5の処理フローを終了する。なお、ステップS240で車両側の高圧系統の絶縁性が確認できなかった場合は、ステップS250以降の処理を実施せずに図5の処理フローを終了する。
 ステップS260で電池監視装置500から送信された通常充電開始指示を受電装置200が受信すると、受電装置200は送電装置100に対して、通常時と同様の交流電流を一次コイルL1に流すように指示する。その後は、図3の処理フローで説明した通常充電時と同様の手順により、送電装置100からの無線給電を受けて高圧電池300の充電を行う。これにより、電欠状態にある高圧電池300が充電されて電欠状態から復帰することができる。
 以上説明した本発明の一実施形態によれば、以下の作用効果を奏する。
(1)電池監視装置500は、電動車両に搭載された高圧電池300の充電を制御する充電制御装置として機能する。電池監視装置500は、高圧電池300の電圧を計測するセル電圧計測部520と、セル電圧計測部520による高圧電池300の電圧の計測結果に基づいて、高圧電池300の状態に対応する電池状態が第1の状態(劣化状態)、第2の状態(過放電状態)または第3の状態(通常電欠状態)のいずれであるかを判定する電池状態判定部511と、電池状態判定部511による電池状態の判定結果に基づいて、高圧電池300の充電方法を切り替える充電指示部512と、を備える。このようにしたので、電欠状態に陥った高圧電池300を充電する際に、電池状態に応じた適切な充電制御を行うことができる。
(2)電池監視装置500は、高圧電池300が電欠状態になったときにセル電圧計測部520により計測された高圧電池300の電圧を記録する(ステップS130)記録部540をさらに備える。電池状態判定部511は、記録部540に記録された高圧電池300の電圧と現在の高圧電池300の電圧との差が所定の劣化判定値以上である場合、電池状態が第1の状態(劣化状態)であると判定する(ステップS160:Yes)。充電指示部512は、電池状態が第1の状態であると電池状態判定部511が判定した場合、高圧電池300の充電を禁止する(ステップS220、S230)。このようにしたので、高圧電池300が充電に適さない電池状態にある場合は、危険な充電が行われるのを防止することができる。
(3)高圧電池300は、複数の電池セルを組み合わせて構成されている。セル電圧計測部520は、ステップS130、S150において、複数の電池セルの各々の電圧を計測する。電池状態判定部511は、ステップS160において、複数の電池セルのうち少なくとも一つの電池セルについて記録部540に記録された電圧と現在の電圧との差が劣化判定値以上である場合、電池状態が第1の状態(劣化状態)であると判定する。このようにしたので、複数の電池セルを組み合わせて構成された高圧電池300について、電池状態が第1の状態に該当するか否かを適切に判定することができる。
(4)電池状態判定部511は、高圧電池300の電圧が所定の過放電判定値未満である場合、電池状態が第2の状態(過放電状態)であると判定する(ステップS170:Yes)。充電指示部512は、電池状態が第2の状態であると電池状態判定部511が判定した場合、高圧電池300の充電を制限する(ステップS180~S230)。具体的には、電池状態判定部511は、電池状態が第2の状態であると判定した場合、高圧電池300の電圧が過放電判定値よりも低い所定の充電可能判定値以上であるか否かを判定する(ステップS180)。充電指示部512は、電池状態が第2の状態であり、かつ高圧電池300の電圧が充電可能判定値以上であると電池状態判定部511が判定した場合(ステップS180:Yes)には、通常充電時の電流よりも小さい所定の低電流で高圧電池300を充電させる(ステップS210)。一方、電池状態が第2の状態であり、かつ高圧電池300の電圧が充電可能判定値未満であると電池状態判定部511が判定した場合(ステップS180:No)には、高圧電池300の充電を禁止する(ステップS220、S230)。このようにしたので、高圧電池300の電池状態に応じて、充電可能な場合は適切な充電電流により充電を行い、充電不可能な場合は危険な充電が行われるのを防止することができる。
(5)高圧電池300は、複数の電池セルを組み合わせて構成されている。セル電圧計測部520は、ステップS150において、複数の電池セルの各々の電圧を計測する。電池状態判定部511は、ステップS170において、複数の電池セルのうち少なくとも一つの電池セルの電圧が過放電判定値未満である場合、電池状態が第2の状態(過放電状態)であると判定する。このようにしたので、複数の電池セルを組み合わせて構成された高圧電池300について、電池状態が第2の状態に該当するか否かを適切に判定することができる。
(6)電池状態判定部511は、電池状態が第1の状態および第2の状態のいずれでもないと判定した場合、電池状態が第3の状態(通常電欠状態)であると判定する(ステップS170:No)。充電指示部512は、電池状態が第3の状態であると電池状態判定部511が判定した場合、高圧電池300の充電を許可する(ステップS240~S260)。このようにしたので、高圧電池300の電池状態に応じて、通常時と同様に充電可能な場合は適切な充電電流により充電を行うことができる。
(7)高圧電池300は、地上側に設置された一次コイルL1から放出される交流磁界を受けて無線給電される受電装置200と接続されることで充電される。受電装置200は、二次コイルL2と、二次コイルL2に接続されて所定の共振周波数を有する共振回路を二次コイルL2とともに構成する共振要素である共振コイルLxおよび共振コンデンサCxと、複数のスイッチング素子であるMOSトランジスタQ1、Q2を有し、MOSトランジスタQ1、Q2をそれぞれスイッチング動作させることで、二次コイルL2が交流磁界を受けて共振回路に流れる交流電流iを制御する電力変換部250とを備える。このようにしたので、無線給電により高圧電池300を充電することができる。
 なお、以上説明した実施形態において、駆動制御部240や電池監視装置500が有する各構成要素は、マイクロコンピュータ等で実行されるソフトウェアにより実現してもよいし、FPGA(Field-Programmable Gate Array)等のハードウェアにより実現してもよい。また、これらを混在して使用してもよい。
 上記実施形態では、電気自動車等の車両への無線給電において利用される無線給電システム1を説明したが、車両への無線給電用に限らず、他の用途の無線給電システムに本発明を適用してもよい。また、無線給電ではなく、電線を用いた有線給電により高圧電池300を充電する場合でも、本発明の適用が可能である。
 以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
 1 無線給電システム
 100 送電装置
 110 送電制御部
 120 通信部
 130 交流電源
 140 電力変換部
 200 受電装置
 210 受電制御部
 220 通信部
 230 交流電流検出部
 240 駆動制御部
 241 電圧取得部
 243 駆動信号生成部
 244 ゲート駆動回路
 250 電力変換部
 300 高圧電池
 400 負荷
 500 電池監視装置
 510 演算処理部
 511 電池状態判定部
 512 充電指示部
 520 セル電圧計測部
 530 絶縁診断部
 540 記録部
 550 出力部
 611,612,613,614 リレー
 615 コンバータ
 616 低圧電池
 L1 一次コイル
 L2 二次コイル
 Lx 共振コイル
 Cx 共振コンデンサ
 Tr トランス
 Q1,Q2 MOSトランジスタ

Claims (8)

  1.  電動車両に搭載された電池の充電を制御する充電制御装置であって、
     前記電池の電圧を計測する電圧計測部と、
     前記電圧計測部による前記電池の電圧の計測結果に基づいて、前記電池の状態に対応する電池状態が第1の状態、第2の状態または第3の状態のいずれであるかを判定する電池状態判定部と、
     前記電池状態判定部による前記電池状態の判定結果に基づいて、前記電池の充電方法を切り替える充電指示部と、を備える充電制御装置。
  2.  請求項1に記載の充電制御装置において、
     前記電池が電欠状態になったときに前記電圧計測部により計測された前記電池の電圧を記録する記録部をさらに備え、
     前記電池状態判定部は、前記記録部に記録された前記電池の電圧と現在の前記電池の電圧との差が所定の劣化判定値以上である場合、前記電池状態が前記第1の状態であると判定し、
     前記充電指示部は、前記電池状態が前記第1の状態であると前記電池状態判定部が判定した場合、前記電池の充電を禁止する充電制御装置。
  3.  請求項2に記載の充電制御装置において、
     前記電池は、複数の電池セルを組み合わせて構成されており、
     前記電圧計測部は、前記複数の電池セルの各々の電圧を計測し、
     前記電池状態判定部は、前記複数の電池セルのうち少なくとも一つの電池セルについて前記記録部に記録された電圧と現在の電圧との差が前記劣化判定値以上である場合、前記電池状態が前記第1の状態であると判定する充電制御装置。
  4.  請求項1に記載の充電制御装置において、
     前記電池状態判定部は、前記電池の電圧が所定の過放電判定値未満である場合、前記電池状態が前記第2の状態であると判定し、
     前記充電指示部は、前記電池状態が前記第2の状態であると前記電池状態判定部が判定した場合、前記電池の充電を制限する充電制御装置。
  5.  請求項4に記載の充電制御装置において、
     前記電池状態判定部は、前記電池状態が前記第2の状態であると判定した場合、前記電池の電圧が前記過放電判定値よりも低い所定の充電可能判定値以上であるか否かを判定し、
     前記充電指示部は、
     前記電池状態が前記第2の状態であり、かつ前記電池の電圧が前記充電可能判定値以上であると前記電池状態判定部が判定した場合には、通常充電時の電流よりも小さい所定の低電流で前記電池を充電させ、
     前記電池状態が前記第2の状態であり、かつ前記電池の電圧が前記充電可能判定値未満であると前記電池状態判定部が判定した場合には、前記電池の充電を禁止する充電制御装置。
  6.  請求項4または5に記載の充電制御装置において、
     前記電池は、複数の電池セルを組み合わせて構成されており、
     前記電圧計測部は、前記複数の電池セルの各々の電圧を計測し、
     前記電池状態判定部は、前記複数の電池セルのうち少なくとも一つの電池セルの電圧が前記過放電判定値未満である場合、前記電池状態が前記第2の状態であると判定する充電制御装置。
  7.  請求項1に記載の充電制御装置において、
     前記電池状態判定部は、前記電池状態が前記第1の状態および前記第2の状態のいずれでもないと判定した場合、前記電池状態が前記第3の状態であると判定し、
     前記充電指示部は、前記電池状態が前記第3の状態であると前記電池状態判定部が判定した場合、前記電池の充電を許可する充電制御装置。
  8.  請求項1に記載の充電制御装置において、
     前記電池は、地上側に設置された一次コイルから放出される交流磁界を受けて無線給電される受電装置と接続されることで充電され、
     前記受電装置は、
     二次コイルと、
     前記二次コイルに接続されて所定の共振周波数を有する共振回路を前記二次コイルとともに構成する共振要素と、
     複数のスイッチング素子を有し、前記複数のスイッチング素子をそれぞれスイッチング動作させることで、前記二次コイルが前記交流磁界を受けて前記共振回路に流れる交流電流を制御する電力変換部と、を備える充電制御装置。
PCT/JP2019/003782 2018-03-14 2019-02-04 充電制御装置 WO2019176369A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018046619A JP2021083137A (ja) 2018-03-14 2018-03-14 充電制御装置
JP2018-046619 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019176369A1 true WO2019176369A1 (ja) 2019-09-19

Family

ID=67907663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003782 WO2019176369A1 (ja) 2018-03-14 2019-02-04 充電制御装置

Country Status (2)

Country Link
JP (1) JP2021083137A (ja)
WO (1) WO2019176369A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658476A (zh) * 2019-10-16 2020-01-07 北京航空航天大学 一种随机充放电条件下锂电池容量加速衰减的判定方法
CN110658461A (zh) * 2019-10-16 2020-01-07 北京航空航天大学 一种基于双e指数模型的随机充放电电池容量衰减预测方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236066A (ja) * 2006-02-28 2007-09-13 Ricoh Co Ltd 充電制御用半導体集積回路、その充電制御用半導体集積回路を使用した充電装置及び2次電池接続検出方法
JP2007318913A (ja) * 2006-05-25 2007-12-06 Nissan Motor Co Ltd バッテリの充電状態制御装置
JP2013024617A (ja) * 2011-07-18 2013-02-04 Denso Corp 電池状態監視装置
JP2016125882A (ja) * 2014-12-26 2016-07-11 株式会社リコー 充電状態検出装置、充電状態検出方法、移動体
JP2016140158A (ja) * 2015-01-26 2016-08-04 株式会社デンソー 非接触給電システムの送電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007236066A (ja) * 2006-02-28 2007-09-13 Ricoh Co Ltd 充電制御用半導体集積回路、その充電制御用半導体集積回路を使用した充電装置及び2次電池接続検出方法
JP2007318913A (ja) * 2006-05-25 2007-12-06 Nissan Motor Co Ltd バッテリの充電状態制御装置
JP2013024617A (ja) * 2011-07-18 2013-02-04 Denso Corp 電池状態監視装置
JP2016125882A (ja) * 2014-12-26 2016-07-11 株式会社リコー 充電状態検出装置、充電状態検出方法、移動体
JP2016140158A (ja) * 2015-01-26 2016-08-04 株式会社デンソー 非接触給電システムの送電装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110658476A (zh) * 2019-10-16 2020-01-07 北京航空航天大学 一种随机充放电条件下锂电池容量加速衰减的判定方法
CN110658461A (zh) * 2019-10-16 2020-01-07 北京航空航天大学 一种基于双e指数模型的随机充放电电池容量衰减预测方法

Also Published As

Publication number Publication date
JP2021083137A (ja) 2021-05-27

Similar Documents

Publication Publication Date Title
US9444285B2 (en) Charge controller for vehicle
JP5453232B2 (ja) 電動車両
CN103166283B (zh) 充电电路和具有该充电电路的电池-充电器组件
JP6201319B2 (ja) 変換装置、故障判定方法及び制御プログラム
JP5870307B2 (ja) 電動車両用の電源装置および充電装置
US9493081B2 (en) Power supply system, vehicle equipped with the same, and control method for power supply system
RU2723678C2 (ru) Система электропитания и способ управления системой
CN110707768B (zh) 充电控制设备和充电控制系统
US10158241B2 (en) Electricity storage system
US10114056B2 (en) Deterioration specifying device and deterioration specifying method
US20160301233A1 (en) Power supply device and method for controlling power supply device
JP6759216B2 (ja) 電源装置とこの電源装置を備える電動車両
JP7041600B2 (ja) 電源システム
JP5835136B2 (ja) 車載充電制御装置
RU2683284C1 (ru) Система электропитания и способ управления ею
CN113799629A (zh) 用于对车辆的电池充电的装置及方法
JP7252807B2 (ja) 電源システム
KR101856367B1 (ko) 배터리 전류 검출용 전류 센서의 옵셋 전류 측정 시스템 및 방법
WO2019176369A1 (ja) 充電制御装置
JP2014110666A (ja) 放電制御システム及び放電装置
JP4161692B2 (ja) インバータ検査装置及びインバータ検査方法
WO2019176367A1 (ja) 充電システム、充電装置、充電方法
JP6008735B2 (ja) 荷役車両の電源装置
CN110651424B (zh) 放电装置
JP2015091156A (ja) 充電装置、車両、車両充電システム、充電方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19766949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19766949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP