WO2019174368A1 - 一种无端部盲区小直径丝/棒/管材超声检测系统 - Google Patents

一种无端部盲区小直径丝/棒/管材超声检测系统 Download PDF

Info

Publication number
WO2019174368A1
WO2019174368A1 PCT/CN2019/000053 CN2019000053W WO2019174368A1 WO 2019174368 A1 WO2019174368 A1 WO 2019174368A1 CN 2019000053 W CN2019000053 W CN 2019000053W WO 2019174368 A1 WO2019174368 A1 WO 2019174368A1
Authority
WO
WIPO (PCT)
Prior art keywords
sorting
ultrasonic
discharge
frame
inner ring
Prior art date
Application number
PCT/CN2019/000053
Other languages
English (en)
French (fr)
Inventor
廉德良
李莹
张绪胜
华浩然
Original Assignee
中国科学院金属研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201810214938.1A external-priority patent/CN110274953B/zh
Priority claimed from CN201910172048.3A external-priority patent/CN111659626A/zh
Application filed by 中国科学院金属研究所 filed Critical 中国科学院金属研究所
Priority to US16/980,839 priority Critical patent/US11774410B2/en
Publication of WO2019174368A1 publication Critical patent/WO2019174368A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/27Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the material relative to a stationary sensor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/28Details, e.g. general constructional or apparatus details providing acoustic coupling, e.g. water
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/023Solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/0289Internal structure, e.g. defects, grain size, texture
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/106Number of transducers one or more transducer arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/262Linear objects
    • G01N2291/2626Wires, bars, rods

Definitions

  • the ultrasonic testing method is generally one of the methods that must be adopted in the product quality testing method, and the detection of large-volume materials mostly adopts the automatic detecting method.
  • the equipment manufacturing standard YB4082 stipulates that “the tube end non-explorable area (end blind area) is not more than 200mm”.
  • the test method standard GB5777 stipulates: "Automatic inspection will not be able to effectively check both ends of the steel pipe. This area is regarded as a blind zone for automatic detection. The manufacturer can use effective methods to ensure the quality of this area.”
  • the end detection blind zone one method used by the development unit of the wire/rod/tube is to cut the end, which causes a huge waste of raw materials; the other method is guaranteed by the manufacturing process, which is bound to leave Security risks.
  • Ultrasonic detectors for system integration can be divided into ultrasonic probe mechanical rotation form, ultrasonic phased array electronic rotation, multi-channel detection unit (ZL 2010 1 0146128.0) and the like.
  • the ultrasonic detectors respectively comprise a water coupling cavity and a coupling sleeve on both sides of the water coupling cavity, the water cavity is used to form an ultrasonic coupling medium, and the coupling sleeves on both sides are used for the limit of the material.
  • ZL 2010 1 0146128.0 multi-channel detection unit
  • the relative position of the detection and the probe cannot be guaranteed, and a reliable and stable ultrasonic signal cannot be obtained, forming an end detection blind zone. That is to say, half of the distance between the two coupling sleeves is the end detection dead zone.
  • the ultrasonic rotating probe mechanical rotating form and the ultrasonic phased array electronic rotating form are generally larger in size and larger in the end blind zone.
  • OLYMPUS's BIS system bar inspection system has been optimized for end testing and has a very short end unmeasured length of 20mm.
  • the small size of the multi-channel detection unit in ZL 2010 1 0146128.0 can greatly reduce the detection dead zone at both ends of the sample, and in principle, the detection dead zone cannot be eliminated fundamentally.
  • the invention provides an automatic ultrasonic non-destructive testing system for a small-diameter wire/rod/pipe in a dead zone with no end, the material is accurately entered into the ultrasonic detector by the clamping transmission mode, and the ultrasonic detector is driven at a high speed by the high-speed clamping traction mode.
  • the selection mechanism completes the automatic sorting, which can effectively eliminate the detection blind zone at the beginning and end of the sample, and realize high-speed automatic detection.
  • An endless blind zone small diameter wire/rod/tube ultrasonic detector characterized in that the ultrasonic detector 3 comprises a water reservoir 31, a cover 32, an annular array unit mounting frame 33, an annular array detecting unit 34, a water pump 35, water cycle input and output 36 and sensor 37;
  • the annular array detecting unit 34 includes an outer ring portion and an inner ring portion, and the outer ring portion and the inner ring portion are integrally connected by the wire side end cover 345 and the wire side end cover 346; the outer ring portion is composed of the outer ring base 341 and The outer ring array probe 342 is formed.
  • the inner ring portion is composed of an inner ring inner core 343 and an inner ring inner core locking ring 344.
  • the cover 32 is provided with an opening for leading out the connection port of the outer ring array probe 342 and the water pump 35.
  • the outer ring base body 341 is a torus body, and the outer cylindrical surface of the ring is distributed with a probe mounting hole according to a multi-row annular array structure, and the inner ring hole of the ring is matched with the wire side end cover 345 and the wire side end cover 346 to form a coupling water cavity.
  • the outer ring array probe 342 is sequentially placed in the probe mounting hole; the inner core of the coupling water chamber is placed in the inner ring core 343, the inner ring inner core 343 is a cylindrical member, and the outer cylindrical surface is distributed in a multi-row annular array structure or The strip "eye" and "eye” correspond to the axis of the probe mounting hole; the inner ring of the inner ring core 343 is the sample walking passage; the inner ring core 343 passes through the wire side end cover 345 and the wire in turn.
  • the side end cap 346 is secured by the inner ring core lock ring 344 at the wire side end cap 345 or the wire side end cap 346.
  • the outer ring array probe 342 is fixed in the probe mounting hole by an outer ring probe adjustment locking screw.
  • the outer ring base 341 is a torus made of a high-density plexiglass material
  • the inner ring core 343 is made of copper, aluminum, stainless steel, cemented carbide or polytetrafluoroethylene.
  • the ultrasonic detector of the invention is an integrated design, which can be conveniently and quickly integrated with various ultrasonic transmitting and receiving devices and electromechanical systems to realize high-speed automatic detection.
  • the invention also provides an endless blind zone small diameter wire/rod/tube ultrasonic detecting system, characterized in that the ultrasonic detecting system comprises an automatic clamping input mechanism 1, an operation control platform 2, an ultrasonic detector 3, an ultrasonic signal Processing unit 4, traction output sorting mechanism 5;
  • the operation control platform 2 carries the ultrasonic detector 3 and the ultrasonic signal processing unit 4, and the left and right sides are connected to the automatic clamping input mechanism 1 and the traction output sorting mechanism 5; the ultrasonic detector 3 and the ultrasonic signal processing unit 4 are respectively used for Ultrasonic emission and reception and processing and display of defect information; automatic clamping input mechanism 1 is used for real-time detection of feeding the sample into the ultrasonic detector 3 and the end region of the sample, and the traction output sorting mechanism 5 is used for driving the sample Real-time detection of the main body area and the tail area of the sample by means of and through the ultrasonic detector 3, and automatic sorting according to the defect condition;
  • the automatic grip input mechanism 1 includes a loading shelf frame 11 and an automatic loading mechanism frame 14, and the loading shelf 12 is disposed above the loading shelf frame 11 by a height adjusting mechanism 13, and the loading shelf 12 is provided with one or a plurality of support portions for supporting the sample material, the height adjustment mechanism 13 can adjust the height of the loading shelf 12 for the placement of the sample material and the adjustment of the centripetality; the automatic loading mechanism frame 14 is located on the left side of the loading shelf frame 11
  • the loading unit 15 and the loading centering device 17 are disposed on the loading unit 15 for holding the material, and the loading unit 15 can drive the material to be clamped.
  • the mechanism 16 performs horizontal movement for automatic clamping and feeding during the detection process;
  • the traction output sorting mechanism 5 includes a discharge mechanism frame 51 and a support sorting mechanism 56.
  • the discharge mechanism frame 51 is provided with a discharge traction mechanism and a discharge clamping mechanism 55, and the discharge traction mechanism is disposed at the discharge mechanism.
  • the frame 51 is configured to drive the discharge clamping mechanism 55 to perform horizontal movement; the plurality of support sorting mechanisms 56 are disposed on the discharge mechanism frame 51 for detecting the support and automatic sorting of the sample during the process; and the discharging mechanism On both sides of the frame 51, there are respectively a discharge unqualified area shelf 57 and a discharge qualified area shelf 58 for placement of qualified and unqualified samples after sorting.
  • the support sorting mechanism 56 includes a support sorting mechanism frame 561, a support sorting mechanism control box 562, a lift mechanism cylinder 563, a lifting bracket 564, a clamping cylinder 565, a clamping mechanism 566, a qualified sorting cylinder 567, Unqualified sorting cylinder 568 and sorting pallet 569;
  • the supporting sorting mechanism frame 561 is connected to the discharging mechanism frame 51, and the supporting sorting mechanism frame 561 is provided with a supporting sorting mechanism control box 562 for supporting the electrical control of the sorting mechanism 56, and the other side is provided.
  • a U-shaped lifting bracket 564 is connected to the telescopic direction of the lifting mechanism cylinder 563.
  • the clamping bracket 564 is connected with a clamping cylinder 565 and a clamping mechanism 566.
  • the clamping mechanism 566 is composed of a bracket and three rollers. During the detection process, the sample material is supported and centered; the two sides of the lifting bracket 564 are respectively provided with a qualified sorting cylinder 567 and a unqualified sorting cylinder 568, a qualified sorting cylinder 567 and a unqualified sorting cylinder 568.
  • An "L-shaped" sorting plate 569 is respectively connected for sorting of qualified and unqualified samples, and the mounting directions of the two sorting plates 569 are mirror images, and when they are simultaneously raised, they can support and The sample is fixed, and the long side of the sorting plate 569 is at an angle to the horizontal direction (for example, 10°-30°), so that when the single side is raised, the sample can naturally slide down to the corresponding shelf. .
  • the lifting brackets 564 of each supporting sorting mechanism 56 are sequentially raised, so that the corresponding clamping mechanism 566 is in the clamping state, which plays the role of supporting and limiting the materials; After the movement is stopped, the sorting stage is entered.
  • the clamping mechanism 566 is opened, and then the qualified sorting cylinder 567 and the unqualified sorting cylinder 568 are simultaneously raised, so that the sample is supported by the sorting tray 569 and fixed.
  • the unqualified sorting cylinder 568 falls, and the sample material is naturally slipped onto the discharge qualified area shelf 57 via the sorting tray 569 on the qualified sorting cylinder 567, and finally the sorting is finished, lifting The mechanism cylinder 563 and the qualified sorting cylinder 567 are simultaneously dropped, and vice versa.
  • the discharge traction mechanism is composed of a discharge mechanism guide rail 52, a discharge mechanism rack 53 and a discharge moving unit 54, and the discharge mechanism guide 52 is laid on the discharge mechanism frame 51, and the discharge moving unit 54 is located at the discharge mechanism.
  • the mechanism guide 52 is driven by the discharge mechanism rack 53 and the discharge clamping mechanism 55 is disposed on the discharge moving unit 54.
  • the loading shelf frame 11, the automatic feeding mechanism frame 14, the ultrasonic detector 3, and the discharging mechanism frame 51 are connected and fixed by a connecting plate and a fastening screw, and the ultrasonic detector 3 can be integrated with other automation systems, automatically
  • the clamp input mechanism 1 and the traction output sorting mechanism 5 can also be integrated with other detectors.
  • the small-diameter wire/rod/tube ultrasonic detecting system of the endless blind zone of the invention can realize automatic detection and automatic sorting of the end without dead zone.
  • the ultrasonic detecting system of the invention effectively eliminates the end detection blind zone of the wire/rod/tube, ensures the test quality of the whole sample, and solves the problem that the end of the sample cannot be effectively detected and the end portion needs to be cut off.
  • the problem is to avoid the loss of manpower and material resources caused by the cutting of the end of the sample, and greatly reduce the production cost.
  • the ultrasonic detecting system of the present invention provides a good solution for high-speed automated ultrasonic testing of small-diameter wires/rods/tubes.
  • the direct-injection detection method of the invention greatly improves the detection speed; the whole process automation design of automatic feeding, automatic discharging and automatic sorting simplifies the detection process and ensures fast and high reliability detection. Implementation.
  • Figure 1 shows the overall structure of the device.
  • Figure 2 is a structural diagram of the automatic clamping input mechanism.
  • Figure 3 is a structural diagram of the traction output sorting mechanism.
  • Figure 5 is a basic schematic diagram of a prior art ultrasonic detector.
  • Figure 6 is a basic schematic diagram of the endless blind zone ultrasonic detector.
  • Figure 7 is a side view of the overall structure of the ultrasonic detector.
  • Figure 10 is a circular array probe layout.
  • the ultrasonic probe and the sample are coupled and propagated in an "open" water environment, and when the sample reaches the unconstrained region in the water coupling cavity, the inspection is performed.
  • the position of the end of the material will inevitably oscillate mechanically, and a stable ultrasonic detection signal cannot be obtained, and effective detection cannot be performed.
  • FIG. 6 is a basic schematic diagram of the direct-in type blind-free ultrasonic detector according to the present invention.
  • the core is designed and used to couple and propagate the ultrasonic probe and the sample in an "isolated” environment.
  • the probe sound beam enters the sample through the "sound eye”, and the sample material stably travels under the constraint of the inner core, and stable transmission is obtained even at the end position, and a stable ultrasonic detection signal is obtained.
  • the invention thus achieves an end "no dead zone” detection.
  • the ultrasonic detector 3 includes a water reservoir 31, a cover 32, an annular array unit mount 33, an annular array detecting unit 34, a water pump 35, a water circulation input and output 36, and a sensor 37;
  • the cover 32 is located above the water reservoir 31.
  • the cover 32 is provided with a connection opening for guiding the connection port of the outer ring array probe 342 and the water pump 35.
  • the annular array unit mounting frame 33 is fixed to the water reservoir 31 by welding.
  • the inner ring core 343 distributes the through hole through the multi-row annular array structure along the outer cylindrical surface - "acoustic eye", "acoustic eye” corresponds to the hole axis of the probe mounting hole; inner ring core 343 cylinder
  • the inner hole is the walking path of the sample; the ultrasonic beam passes through the "sound eye” in the coupled water chamber to reach the surface of the sample, and then propagates in the sample; the inner ring core 343 is also distributed with a series of holes or strips.
  • “”Air eye” is a through hole with a diameter of about 3mm, located in the coupling water chamber.
  • the upper middle core 343 is above (ie, the "eye” is the through hole on the inner wall of the inner ring core 343), and the axial position is in the direction in which the sample enters and is 5 mm or more away from the first sound eye. The discharge of gas in the walking channel.
  • Embodiment 1 The difference from Embodiment 1 is that the "eyes" are strip-shaped through holes distributed in the outer cylindrical surface of the inner ring core 343, and other portions and the expected results are the same as in the second embodiment.
  • Embodiment 1 The difference from Embodiment 1 is that the "eyes" are the hole patterns and the strip-shaped through holes which are distributed on the outer cylindrical surface of the inner ring core 343, and the other portions and the expected results are the same as in the second embodiment.
  • Embodiment 2 The difference from Embodiment 1 is that the inner ring core 343 is a cylindrical member made of stainless steel, and other portions and expected results are the same as in Embodiment 2.
  • the first ring probes are probe 1-1, probe 1-2, probe 1-3 and probe 1-4, respectively, and the inner ring core 343 is correspondingly distributed with the sound eye 1-1-1, the sound eye 1-2-2, Sound eye 1-3-3 and sound eye 1-4-4.
  • the second ring probes are arranged at a certain interval along the axial direction of the sample, which are respectively the probe 2-1, the probe 2-2, the probe 2-3 and the probe 2-4, and the inner ring core 343 is distributed correspondingly in the axial direction. eye.
  • the third ring probe is probe 3-1, probe 3-2, probe 3-3 and probe 3-4
  • the fourth ring probe is probe 4-1, probe 4-2, probe 4-3 and
  • a total of 4 rings of 16 probes and 4 rings of 16 sound eyes are arranged to ensure the sound beam coverage of the sample. According to the actual number of probes, the arrangement of "outer ring-N ring M probes, core-N ring M sound eyes" can be flexibly adopted, and the straight-in transmission mode is realized without dead zone detection.
  • a height adjustment mechanism 13 is disposed at each end of the loading shelf frame 11 of the automatic clamping input mechanism 1 , and a loading shelf 12 is disposed above the height adjusting mechanism 13 , and the height adjusting mechanism 13 can be adopted.
  • the centering of the different diameter samples is realized;
  • the feeding shelf 12 is provided with a plurality of PTFE V-shaped grooves (supporting portions) for ensuring the stability during the feeding of the materials;
  • the left side of the loading shelf frame 11 The bottom of the automatic feeding mechanism frame 14 is connected by a connecting plate and a fastening screw, and the automatic feeding mechanism frame 14 is provided with a loading moving unit 15 which is composed of a stepping motor and a toothed belt to form a linear moving unit.
  • the precise displacement of the moving unit 54, the discharge clamping mechanism 55 is provided with a clamping air gripper and a clamping module connected to the air gripper for clamping and pulling of the sample material during the discharging process; the inside of the discharging mechanism frame 51 A plurality of support sorting mechanisms 56 are provided.
  • the support sorting mechanism 56 is sequentially raised to fix and support the sample, wherein the number of rises of the support sorting mechanism 56 is related to the length of the sample; After the material completely passes through the detecting unit, according to the defect condition of the sample, the automatic sorting is completed by the supporting sorting mechanism 56; the rack 51 of the unqualified area is connected to the front of the frame of the discharging mechanism 51, and the shelf of the qualified area is connected to the rear. , used for sorting after passing, no Placing sample cell material.
  • the bottom of the support sorting mechanism frame 561 is fixed on the discharging mechanism frame 51 by fastening screws, and the supporting sorting mechanism frame 561 is provided with a supporting sorting mechanism control box 562 and a lifting mechanism cylinder 563, and the supporting sorting mechanism is controlled.
  • the inside of the box 562 is provided with a programmable controller for the cylinder control, a solenoid valve, a pressure regulating valve, etc., and a U-shaped lifting bracket 564 is connected to the telescopic mechanism cylinder 563 in the telescopic direction, and the lifting bracket 564 is in the process of discharging the material.
  • the raising and lowering actions are carried out under the control of the lift mechanism cylinder 563.
  • a clamping cylinder 565 and a clamping mechanism 566 are connected to the lifting bracket 564.
  • the clamping mechanism 566 is composed of a bracket and three rollers arranged in parallel with each other, and supports and centers the material during the detecting process;
  • the clamping and opening action of the clamping mechanism 566 is completed by the expansion and contraction of the clamping cylinder 565, so as to ensure that the center of the sample is always in a straight line during the discharging process.
  • the two sides of the lifting bracket 564 are respectively provided with a qualified sorting cylinder 567 and a unqualified sorting cylinder 568, and the lifting and sorting of the sample materials are completed by the telescopic movement of the qualified and unqualified cylinders.
  • An "L-shaped" sorting plate 569 is respectively connected to the qualified sorting cylinder 567 and the unqualified sorting cylinder 568 for sorting of qualified and unqualified samples, and the two sorting pallets 569 are mirror mounted.
  • the lifting brackets 564 of each supporting sorting mechanism 56 are sequentially raised.
  • the clamping mechanism 566 is in the clamping state, and after the materials to be tested stop moving, the sorting stage is entered.
  • the clamping mechanism 566 is opened, and the second qualified sorting cylinder 567 and the unqualified sorting cylinder 568 are simultaneously raised, the sample is lifted to a height higher than the discharge shelf, and then qualified according to the qualified or unqualified condition of the sample.
  • the sorting cylinder 567 or the unqualified sorting cylinder 568 is dropped, and the sample material is automatically slid down to the corresponding shelf.
  • the material to be tested completely falls onto the shelf of the discharge area, the lifting bracket 564 is dropped, and the qualified sorting cylinder 567 or the unsuccessful sorting cylinder 568 which is in the raised state also falls, and a sorting process is completed.
  • the sorting tray 569 is composed of two or more than two sorting trays arranged side by side, and the other parts and the expected results are the same as those of the embodiment 7.
  • the rotation of the sample can be used to achieve 100% coverage of the sound beam.
  • one or more probes of the outer ring can be flexibly arranged in the axial or circumferential direction, and the core-corresponding to the sound eye in the axial or circumferential direction, and the spiral transmission mode is detected without dead zone.
  • the detector can be flexibly selected according to requirements.
  • the detector can be replaced with a detector equipped with an eddy current probe to realize automatic eddy current detection of the sample.
  • the ultrasonic detector and the eddy current detector can be used to realize automatic ultrasonic detection and automatic eddy current detection of the sample in the same equipment.
  • the length of the loading mechanism frame 14 and the discharge mechanism frame 51 can be flexibly adjusted, and the number of support sorting mechanisms 56 can be increased or decreased, and the separation distance of the support sorting mechanism 56 can be increased or decreased.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Acoustics & Sound (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

本发明的目的在于提供一种无端部盲区小直径丝/棒/管材超声检测器及自动化超声无损检测系统。所述超声检测器的封盖位于储水器上面;环形阵列单元安装架与水泵固定在储水器内部,环形阵列检测单元与环形阵列单元安装架相连;水泵与水循环输入输出的输入端相连;传感器安装在封盖内检材进入一侧;环形阵列检测单元包括外环部分和内环部分,外环部分和内环部分通过进丝侧端盖和出丝侧端盖连接为一体;外环部分由外环基体和外环阵列探头构成,内环部分由内环内核和内环内核锁紧环构成。本发明所述超声检测器具有独特的"声眼"结构特征,改变了超声波进入检材的方式,能够有效消除丝/棒/管材的端部检测盲区。

Description

一种无端部盲区小直径丝/棒/管材超声检测系统 技术领域
本发明涉及丝/棒/管材无损检测技术,提供一种无端部盲区小直径丝/棒/管材超声检测器及自动化超声无损检测系统。
背景技术
航空、航天、核工业、特种设备及医疗等领域,丝/棒/管材做为基本原料形式应用广泛,如果丝/棒/管材存在裂纹、夹杂等缺陷将严重影响产品的使用安全,造成严重的后果。超声检测方法一般是产品质量检测方法中规定的必须采用的方法之一,大批量检材的检测大都采用自动检测的方法。
目前所有的丝/棒/管材检测系统存在一个共性的问题,那就是端部盲区问题。设备制造标准YB4082规定:“管端不可探区域(端部盲区)不大于200mm”。检测方法标准GB5777规定:“自动检测时对钢管两端将不能有效地检验,此区域视为自动检测的盲区,制造方可采用有效方法来保证此区域质量”。针对端部检测盲区,丝/棒/管材的研制生产单位所采用的一种方法是将端部切除,这造成了原料的巨大浪费;另一种方法是靠制造工艺保证,这势必留下了安全隐患。
用于系统集成的超声检测器可分为超声探头机械旋转形式、超声相控阵电子旋转、多通道检测单元(ZL 2010 1 0146128.0)等形式。上述超声检测器都包括水耦合腔体和水耦合腔体两侧的耦合套,水腔体用于形成超声的耦合介质,两侧的耦合套用于检材的限位。在实际检测中,可以认为当检材位于两个耦合套之间时,检材与探头的相对位置是稳定的,可以获得可靠的超声信号。当检材的尾部离开尾部的耦合套时,检测与探头的相对位置就不能保证了,不能获得可靠稳定的超声信号,形成了端部检测盲区。也就是说两个耦合套间距的一半为端部检测盲区。超声探头机械旋转形式和超声相控阵电子旋转形式两种超声检测器一般尺寸较大,端部盲区也较大。OLYMPUS公司的BIS系统棒材检测系统,针对端部测试进行了优化设计,可获得非常短的端部不可测长度仍为20mm。ZL 2010 1 0146128.0中的多通道检测单元尺寸较小可大大缩小检材两端的检测盲区,就其原理而言,不能从根本上消除检测盲区。
在检材行进方面,检材进出大都采用滚轮摩擦驱动的方式。这种摩擦驱动的方式容易发生丢转或者打滑的情况,速度控制不够精准;不同直径的检材需要调整多个驱动轮的高度来保证对心性,操作过程繁琐,效率低。针对截面形状为非圆形的检材,如方棒、六棱棒等,需按规格设计制作对应滚轮,通用性较差。
本发明提供了一种无端部盲区小直径丝/棒/管材自动化超声无损检测系统,检材以夹持传送方式精准进入超声检测器,以高速夹持牵引方式高速通过超声检测器,升降式分选机构完成自动分选,能够有效消除检材始端和末端的检测盲区,实现高速自动化检测。
发明内容
本发明的目的在于提供一种无端部盲区小直径丝/棒/管材超声检测器及自动化超声无损检测系统。其中,超声检测器具有“声眼”结构特征,与现有超 声检测器相比,改变了超声波进入检材的方式,能够有效消除丝/棒/管材的端部检测盲区,与机电系统集成的超声检测系统,采用检材直线传送的方式,可实现小直径丝/棒/管材直入式快速无盲区超声无损检测。
本发明技术方案如下:
一种无端部盲区小直径丝/棒/管材超声检测器,其特征在于:所述超声检测器3包括储水器31、封盖32、环形阵列单元安装架33、环形阵列检测单元34、水泵35、水循环输入输出36以及传感器37;
其中,封盖32位于储水器31上面;环形阵列单元安装架33与水泵35固定在储水器31内部,环形阵列检测单元34与环形阵列单元安装架33相连;水泵35与水循环输入输出36的输入端相连;传感器37安装在封盖32外检材进入一侧,用于定位检材的头部和尾部;
所述环形阵列检测单元34包括外环部分和内环部分,外环部分和内环部分通过进丝侧端盖345和出丝侧端盖346连接为一体;外环部分由外环基体341和外环阵列探头342构成,内环部分由内环内核343和内环内核锁紧环344构成;封盖32上设有开口,用于引出外环阵列探头342和水泵35的连接端口。
所述外环基体341为圆环体,圆环外圆柱面按多列环状阵列结构分布探头安装孔,圆环内孔配合进丝侧端盖345和出丝侧端盖346形成耦合水腔;外环阵列探头342依次放置在探头安装孔中;耦合水腔芯部放置内环内核343,内环内核343为圆筒形构件,沿外圆柱面按多列环状阵列结构分布孔型或条形“声眼”,“声眼”与探头安装孔的孔轴线对应;内环内核343圆筒内孔为检材行走通道;内环内核343依次穿过进丝侧端盖345和出丝侧端盖346,在进丝侧端盖345或出丝侧端盖346处,由内环内核锁紧环344固定。
外环阵列探头342通过外环探头调节锁紧螺钉固定在探头安装孔中。
外环基体341为由高密度有机玻璃材料制作的圆环体,内环内核343由铜、铝、不锈钢、硬质合金或聚四氟制成。
本发明所述超声检测器为一体化设计,可方便快捷的与各种超声发射接收装置、机电系统集成,实现高速自动化检测。
本发明还提供了一种无端部盲区小直径丝/棒/管材超声检测系统,其特征在于:所述超声检测系统包括自动夹持输入机构1、操作控制平台2、超声检测器3、超声信号处理单元4、牵引输出分选机构5;
其中,操作控制平台2承载超声检测器3和超声信号处理单元4,其左右两侧连接自动夹持输入机构1和牵引输出分选机构5;超声检测器3和超声信号处理单元4分别用于超声波的发射接收以及缺陷信息的处理与显示;自动夹持输入机构1用于将检材送入超声检测器3和检材端部区域的实时检测,牵引输出分选机构5用于带动检材通过和穿出超声检测器3,实现检材主体区域和尾部区域的实时检测,并依据缺陷情况自动分选;
所述自动夹持输入机构1包括上料货架框架11和自动上料机构框架14,上料货架12通过高度调节机构13设置在上料货架框架11上方,所述上料货架12设有一个或多个支撑部,用于支撑检材,高度调节机构13可调节上料货架12的高度,用于检材的放置和对心性的调节;自动上料机构框架14位于上料货架 框架11左侧,其上设有上料移动单元15和上料定心装置17,上料夹持机构16设置在上料移动单元15上,用于夹持检材,上料移动单元15可带动上料夹持机构16做水平运动,用于检测过程中的自动夹持上料;
所述牵引输出分选机构5包括出料机构框架51和支撑分选机构56,出料机构框架51上设有出料牵引机构和出料夹持机构55,出料牵引机构设置在出料机构框架51上,用于带动出料夹持机构55做水平运动;多个支撑分选机构56设置在出料机构框架51上,用于检测过程中检材的支撑和自动分选;出料机构框架51两侧分别设有出料不合格区货架57和出料合格区货架58,用于分选过后合格、不合格检材的放置。
作为优选的技术方案:
所述支撑分选机构56包括支撑分选机构框架561、支撑分选机构控制箱562、举升机构气缸563、举升支架564、夹持气缸565、夹持机构566、合格分选气缸567、不合格分选气缸568和分选托板569;
其中,支撑分选机构框架561与出料机构框架51相连,支撑分选机构框架561一侧设有支撑分选机构控制箱562,用于支撑分选机构56的电气控制,另一侧设有举升机构气缸563;
举升机构气缸563的伸缩方向上连接有U形举升支架564,举升支架564上方连接有夹持气缸565和夹持机构566,所述夹持机构566由支架和三个滚轮构成,在检测过程中对检材起到支撑和定心作用;举升支架564的两侧分别设有合格分选气缸567和不合格分选气缸568,合格分选气缸567和不合格分选气缸568上分别连接有一个“L形”的分选托板569,用于合格、不合格检材的分选,两个分选托板569的安装方向呈镜像,当其同时升起时,能够支撑并固定检材,且分选托板569的长边与水平方向呈一定角度(如10°-30°),使其在单独一侧处于升起状态时,检材能够自然滑落到对应的货架上。在检材移动过程中,每个支撑分选机构56的举升支架564依次升起,使对应的夹持机构566处于夹持状态,对检材起到支撑和限位的作用;待检材停止移动后,进入分选阶段,首先夹持机构566打开,其次合格分选气缸567和不合格分选气缸568同时升起,使检材由分选托板569支撑起并固定,此时根据缺陷情况,若检材合格,则不合格分选气缸568落下,检材经由合格分选气缸567上的分选托板569自然滑落到出料合格区货架57上,最后分选结束,举升机构气缸563和合格分选气缸567同时落下,反之同理。
所述出料牵引机构由出料机构导轨52、出料机构齿条53和出料移动单元54组成,出料机构导轨52铺设于出料机构框架51之上,出料移动单元54位于出料机构导轨52上,并由出料机构齿条53带动其运动,出料夹持机构55设置于出料移动单元54上。
所述上料货架框架11、自动上料机构框架14、超声检测器3、出料机构框架51之间通过连接板和紧固螺丝连接与固定,超声检测器3可与其他自动化系统集成,自动夹持输入机构1和牵引输出分选机构5也可与其他检测器集成。
所述上料定心装置17由可调节高度的支架和支撑滚轮构成。
所检测对象的直径为4mm-28mm,端面为圆形或具有规则几何形状的丝材、 棒材或管材。
本发明所述无端部盲区小直径丝/棒/管材超声检测系统可实现端部无盲区的自动检测和自动分选。
本发明的优点在于:
(1)本发明所述超声检测系统有效消除了丝/棒/管材的端部检测盲区,保障了整根检材的测试质量,解决了检材端部不能有效检测而需将端部切除的问题,避免了检材端部切除造成的人力和物力损失,大幅降低生产成本。
(2)本发明所述超声检测系统为小直径丝/棒/管材高速自动化超声检测提供了良好的解决方案。本发明直入式的检测方式与螺旋检测方式相比,大幅提高了检测速度;自动上料、自动出料和自动分选的全流程自动化设计,简化了检测过程,保障了快速、高可靠性检测的实现。
附图说明
图1设备总体结构图。
图2自动夹持输入机构结构图。
图3牵引输出分选机构结构图。
图4支撑分选机构结构图。
图5现有超声检测器基本原理图。
图6无端部盲区超声检测器基本原理图。
图7超声检测器总体结构侧视图。
图8超声检测器总体结构俯视图。
图9环形阵列检测单元结构图。
图10环形阵列探头布置图。
具体实施方式
实施例1
如图5所示,现有超声检测器中,超声探头与检材之间是在“开放”的水环境下耦合和传播的,当检材到达水耦合腔体中的无约束区域时,检材端部位置会不可避免的机械摆动,无法获得稳定的超声检测信号,无法实施有效的检测。
如图6所示为本发明所述直入式无盲区超声检测器的基本原理图,通过内核的设计使用,使得超声探头与检材之间是在“隔离”的环境下耦合和传播的,超声探头声束通过“声眼”进入检材,检材在内核的约束下稳定行进,即使在端部位置也会获得稳定的传输,获得稳定的超声检测信号。因此本发明实现了端部“无盲区”检测。
如图7、8所示,所述超声检测器3包括储水器31、封盖32、环形阵列单元安装架33、环形阵列检测单元34、水泵35、水循环输入输出36以及传感器37;其中,封盖32位于储水器31上面,封盖32上设有连接开口,用于引出外环阵列探头342和水泵35的连接端口;环形阵列单元安装架33以焊接的方式固定在储水器31底板上,水泵35通过螺纹连接固定在储水器31底板上,环形 阵列检测单元34通过螺丝连接至环形阵列单元安装架33上;水泵35通过导水管与水循环输入输出36的输入端相连,水循环输入输出36的输出端连接另一根导水管,以完成水循环系统的连接;传感器37安装在封盖32内检材进入一侧,用于定位检材的头部和尾部。
如图9所示,环形阵列检测单元34包括外环部分和内环部分,外环部分和内环部分通过进丝侧端盖345和出丝侧端盖346连接为一体;外环部分由外环基体341和按规律分布的外环阵列探头342构成,内环部分由内环内核343和内环内核锁紧环344构成。
所述外环基体341为圆环体,圆环外圆柱面按多列环状阵列结构分布探头安装孔,圆环内孔配合进丝侧端盖345和出丝侧端盖346形成耦合水腔;外环阵列探头342依次通过外环探头调节锁紧螺钉固定在探头安装孔中,探头的数量应确保检材的声覆盖;耦合水腔芯部放置内环内核343,内环内核343为圆筒形构件,其从进丝侧端盖345中心孔穿进,然后从出丝侧端盖346中心孔穿出,内环内核锁紧环344在进丝侧端盖345处将内环内核343锁紧固定;内环内核343沿外圆柱面按多列环状阵列结构分布孔型通孔——“声眼”,“声眼”与探头安装孔的孔轴线对应;内环内核343圆筒内孔为检材行走通道;超声束在耦合水腔内经过“声眼”到达检材表面,继而在检材内传播测试;内环内核343上方还分布有一系列孔型或条形“气眼”,“气眼”为1个直径3mm左右的通孔,位于耦合水腔中内环内核343的上方(即“气眼”为内环内核343筒壁上的通孔),轴向位置位于检材进入方向且距离第1个声眼5mm以上的位置,用于检材行走通道内气体的排出。
所述外环基体341为由高密度有机玻璃材料制作的圆环体,内环内核343为由铜制成的圆筒形构件。
实施例2
与实施例1的不同之处在于:所述“声眼”为分布在内环内核343外圆柱面的条形通孔,其它部分以及预期结果与实施例2相同。
实施例3
与实施例1的不同之处在于:所述“声眼”为分布在内环内核343外圆柱面的孔型以及条形通孔,其它部分以及预期结果与实施例2相同。
实施例4
与实施例1的不同之处在于:内环内核343为由不锈钢制成的圆筒形构件,其它部分以及预期结果与实施例2相同。
实施例5
对于检材直线传送的检测方式,为确保声束对检材的100%覆盖,需在有限的空间内实现多个探头布置。采用“外环-多环多个探头,内核-多环多个声眼”的理念。图10给出了“外环-4环16个探头,内核-4环16个声眼”的探头布置形式。依据声束覆盖要求,外环共布置4环探头,每环间隔90°分布4个探头。第一环探头分别为探头1-1,探头1-2,探头1-3和探头1-4,在内环内核343上对 应分布声眼1-1-1,声眼1-2-2,声眼1-3-3和声眼1-4-4。沿检材轴向方向按一定间距布置第二环探头,分别为探头2-1,探头2-2,探头2-3和探头2-4,内环内核343沿轴向方向对应分布四个声眼。依次类推,第三环探头分别为探头3-1,探头3-2,探头3-3和探头3-4,第四环探头分别为探头4-1,探头4-2,探头4-3和探头4-4,本实施例共布置4环16个探头,4环16个声眼,保证了检材的声束覆盖率。根据实际需要探头的数量可灵活采用“外环-N环M个探头,内核-N环M个声眼”的布置形式,实现直入传送方式无盲区检测。
实施例6
如图1所示,一种无端部盲区小直径丝/棒/管材超声检测系统,包括自动夹持输入机构1、操作控制平台2、超声检测器3、超声信号处理单元4、牵引输出分选机构5;
其中,操作控制平台2承载超声检测器3和超声信号处理单元4,其左右两侧连接自动夹持输入机构1和牵引输出分选机构5;超声检测器3和超声信号处理单元4用于超声波的发射接收以及缺陷信息的处理与显示;自动夹持输入机构1用于将检材送入超声检测器3和检材端部区域的实时检测,牵引输出分选机构5用于将检材通过和穿出超声检测器3,实现检材主体区域和尾部区域的实时检测,并依据缺陷情况自动分选。
超声检测系统的控制系统包括工控机、电源和总控单元、运动控制和驱动单元、夹持控制单元以及五个支撑分选机构控制单元,各个控制单元中设有可编程控制器,与工控机构成总线结构,由工控机的检测软件实现对整个检测过程的控制。检测开始时,检材在自动夹持输入机构1的夹持牵引下穿入超声检测器3,待端头穿出后,自动夹持输入机构1停止,检材在牵引输出分选机构5的牵引下继续穿过超声检测器3,直到检材完全穿出,牵引输出分选机构5根据超声信号处理单元4的检测结果进行合格或不合格分选。
如图2所示,所述自动夹持输入机构1的上料货架框架11两端各安装有一个高度调节机构13,高度调节机构13的上方设有上料货架12,通过高度调节机构13可实现对不同直径检材的定心;上料货架12上设有多个聚四氟V形槽(支撑部),用于保证检材上料过程中的稳定性;上料货架框架11左侧与自动上料机构框架14底部通过连接板和紧固螺钉相连,自动上料机构框架14上设有上料移动单元15,上料移动单元15由步进电机和齿形带构成直线移动单元,其两端设有防撞块,以保证移动过程的安全性,其上方设有可移动滑块,滑块上连接有上料夹持机构16;上料夹持机构16包括气爪和与气爪相连的夹持模块,夹持模块的两端连接有L形挡块,气爪打开时可对检材起到支撑作用;上料定心装置17位于上料移动单元15和超声检测器3的入口之间,用来保证检材与超声检测器3的对心性。
如图3所示,所述牵引输出分选机构5设有出料机构框架51,出料机构框架51上设有出料机构导轨52,外侧设有出料机构齿条53,出料移动单元54和出料夹持机构55,出料移动单元54通过滑块与出料机构导轨52相连,出料移动单元54的移动电机轴上连接有齿轮,通过齿轮与齿条的啮合传动实现出料移 动单元54的精确位移,出料夹持机构55上设有夹持气爪和与气爪相连的夹持模块,用于出料过程中检材的夹持和牵引;出料机构框架51内部设有多个支撑分选机构56,检测过程中支撑分选机构56依次升起,对检材起到固定和支撑作用,其中支撑分选机构56的升起数量与检材的长度有关;检材完全穿出检测单元后根据检材的缺陷情况,由支撑分选机构56完成自动分选;出料机构框架51前方连接有出料不合格区货架57,后方连接有出料合格区货架58,用于分选过后合格、不合格检材的放置。
如图4所示,牵引输出分选机构5设有五个支撑分选机构56,每个支撑分选机构56包括支撑分选机构框架561,支撑分选机构控制箱562,举升机构气缸563,举升支架564,夹持气缸565,夹持机构566,合格分选气缸567,不合格分选气缸568,分选托板569。
其中,支撑分选机构框架561底部通过紧固螺丝固定在出料机构框架51上,支撑分选机构框架561上设有支撑分选机构控制箱562和举升机构气缸563,支撑分选机构控制箱562内部设有用于气缸控制的可编程控制器及电磁阀、调压阀等,举升机构气缸563伸缩方向上连接有U形举升支架564,检材出料过程中,举升支架564在举升机构气缸563的控制下实现升起和落下动作。举升支架564上方连接有夹持气缸565和夹持机构566,所述夹持机构566由支架和三个相互平行设置的滚轮构成,在检测过程中对检材起到支撑和定心作用;通过夹持气缸565的伸缩来完成夹持机构566对检材的夹持和打开动作,保证出料过程中检材的中心始终在一条直线上。
举升支架564的两侧分别设有合格分选气缸567和不合格分选气缸568,通过合格和不合格气缸的伸缩动作完成对检材的托举和分选。合格分选气缸567和不合格分选气缸568上分别连接有一个“L形”的分选托板569,用于合格、不合格检材的分选,两个分选托板569呈镜像安装,当其同时升起时,能够支撑并固定检材,且分选托板569的长边与水平方向呈一定角度,使其在单独一侧处于升起状态时,检材能够自然滑落到对应的货架上。
在检材移动过程中,每个支撑分选机构56的举升支架564依次升起,分选开始前,夹持机构566处于夹持状态,待检材停止移动后,进入分选阶段,首先夹持机构566打开,其次合格分选气缸567和不合格分选气缸568同时升起,检材被举升到高于出料货架的高度上,然后根据检材的合格或不合格情况,合格分选气缸567或不合格分选气缸568落下,检材自动滑落到对应货架上。待检材完全落到出料区货架上,举升支架564落下,同时处于升起状态的合格分选气缸567或不合格分选气缸568也落下,完成一次分选过程。
实施例7
与实施例6的不同之处在于:所述分选托板569由两个或多于两个并列安装的分选托板组成,其它部分以及预期结果与实施例7相同。
实施例8
对于检材螺旋传送的检测方式,与检材直线传送方式相比,可以依靠检材 的旋转实现声束对检材的100%覆盖。根据实际需要可以灵活采用外环一个或多个探头沿轴向或周向布置,内核-对应沿轴向或周向分布声眼,实现螺旋传送方式无盲区检测。
实施例9
对于检测方法不同的检材,可根据需要灵活选用检测器,如将检测器更换为安装有涡流探头的检测器可实现对检材的自动涡流检测。同时使用超声检测器和涡流检测器可在同一设备中实现对检材的自动超声检测和自动涡流检测。
实施例10
根据检材的材料和长度范围,可灵活调整上料机构框架14、出料机构框架51的长度,以及增加或减少支撑分选机构56的数量、增大或缩小支撑分选机构56的间隔距离。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种无端部盲区小直径丝/棒/管材超声检测器,其特征在于:所述超声检测器(3)包括储水器(31)、封盖(32)、环形阵列单元安装架(33)、环形阵列检测单元(34)、水泵(35)、水循环输入输出(36)以及传感器(37);
    其中,封盖(32)位于储水器(31)上面,环形阵列单元安装架(33)与水泵(35)固定在储水器(31)内部,环形阵列检测单元(34)与环形阵列单元安装架(33)相连,水泵(35)与水循环输入输出(36)的输入端相连,传感器(37)安装在封盖(32)外检材进入一侧,用于定位检材的头部和尾部;
    所述环形阵列检测单元(34)包括外环部分和内环部分,外环部分和内环部分通过进丝侧端盖(345)和出丝侧端盖(346)连接为一体;外环部分由外环基体(341)和外环阵列探头(342)构成,内环部分由内环内核(343)和内环内核锁紧环(344)构成;封盖(32)上设有开口,用于引出外环阵列探头(342)和水泵(35)的连接端口。
  2. 按照权利要求1所述无端部盲区小直径丝/棒/管材超声检测器,其特征在于:所述外环基体(341)为圆环体,圆环外圆柱面按多列环状阵列结构分布探头安装孔,圆环内孔配合进丝侧端盖(345)和出丝侧端盖(346)形成耦合水腔;外环阵列探头(342)依次放置在探头安装孔中;耦合水腔芯部放置内环内核(343),内环内核(343)为圆筒形构件,沿外圆柱面按多列环状阵列结构分布孔型或条形“声眼”,“声眼”与探头安装孔的孔轴线对应;内环内核(343)圆筒内孔为检材行走通道;内环内核(343)依次穿过进丝侧端盖(345)和出丝侧端盖(346),在进丝侧端盖(345)或出丝侧端盖(346)处,由内环内核锁紧环(344)固定。
  3. 按照权利要求1或2所述无端部盲区小直径丝/棒/管材超声检测器,其特征在于:外环阵列探头(342)通过外环探头调节锁紧螺钉固定在探头安装孔中。
  4. 按照权利要求1或2所述无端部盲区小直径丝/棒/管材超声检测器,其特征在于:外环基体(341)为由高密度有机玻璃材料制作的圆环体,内环内核(343)由铜、铝、不锈钢、硬质合金或聚四氟制成。
  5. 一种设有权利要求1-4任一所述超声检测器的无端部盲区小直径丝/棒/管材超声检测系统,其特征在于:所述超声检测系统包括自动夹持输入机构(1)、操作控制平台(2)、超声检测器(3)、超声信号处理单元(4)、牵引输出分选机构(5);
    其中,操作控制平台(2)承载超声检测器(3)和超声信号处理单元(4),操作控制平台(2)两侧分别连接自动夹持输入机构(1)和牵引输出分选机构(5);超声检测器(3)用于超声波的发射与接收,超声信号处理单元(4)用于缺陷信息的处理与显示;
    所述自动夹持输入机构(1)包括上料货架框架(11)和自动上料机构框架(14),其中,上料货架(12)通过高度调节机构(13)设置在上料货架框架(11)上方,所述上料货架(12)设有一个或多个支撑部,用于支撑检材;自动上料机构框架(14)位于上料货架框架(11)左侧,其上设有上料移动单元(15)和上料定心装置(17),上料夹持机构(16)设置在上料移动单元(15)上,用 于夹持检材,上料移动单元(15)可带动上料夹持机构(16)做水平运动;
    所述牵引输出分选机构(5)包括出料机构框架(51)和支撑分选机构(56),出料机构框架(51)上设有出料牵引机构和出料夹持机构(55),出料牵引机构设置在出料机构框架(51)上,用于带动出料夹持机构(55)做水平运动;多个支撑分选机构(56)设置在出料机构框架(51)上,用于检测过程中检材的支撑和自动分选;出料机构框架(51)两侧分别设有出料不合格区货架(57)和出料合格区货架(58)。
  6. 按照权利要求5所述无端部盲区小直径丝/棒/管材超声检测系统,其特征在于:所述支撑分选机构(56)包括支撑分选机构框架(561)、支撑分选机构控制箱(562)、举升机构气缸(563)、举升支架(564)、夹持气缸(565)、夹持机构(566)、合格分选气缸(567)、不合格分选气缸(568)和分选托板(569);
    其中,支撑分选机构框架(561)与出料机构框架(51)相连,支撑分选机构框架(561)一侧设有支撑分选机构控制箱(562),另一侧设有举升机构气缸(563);
    举升机构气缸(563)的伸缩方向上连接有U形举升支架(564),举升支架(564)上方连接有夹持气缸(565)和夹持机构(566),所述夹持机构(566)由支架和三个滚轮构成;举升支架(564)的两侧分别设有合格分选气缸(567)和不合格分选气缸(568),合格分选气缸(567)和不合格分选气缸(568)上分别连接有一个L形分选托板(569),两个分选托板(569)的安装方向呈镜像,分选托板(569)的长边与水平方向呈一定角度。
  7. 按照权利要求5所述无端部盲区小直径丝/棒/管材超声检测系统,其特征在于:所述出料牵引机构由出料机构导轨(52)、出料机构齿条(53)和出料移动单元(54)组成,出料机构导轨(52)铺设于出料机构框架(51)之上,出料移动单元(54)位于出料机构导轨(52)上,并由出料机构齿条(53)带动其运动,出料夹持机构(55)设置于出料移动单元(54)上。
  8. 按照权利要求5所述无端部盲区小直径丝/棒/管材超声检测系统,其特征在于:上料货架框架(11)、自动上料机构框架(14)、超声检测器(3)、出料机构框架(51)之间通过连接板和紧固螺丝连接与固定。
  9. 按照权利要求5所述无端部盲区小直径丝/棒/管材超声检测系统,其特征在于:上料定心装置(17)由可调节高度的支架和支撑滚轮构成。
  10. 按照权利要求5所述无端部盲区小直径丝/棒/管材超声检测系统,其特征在于:检材为直径4mm-28mm,端面为圆形或具有规则几何形状的丝材、棒材或管材。
PCT/CN2019/000053 2018-03-15 2019-03-11 一种无端部盲区小直径丝/棒/管材超声检测系统 WO2019174368A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/980,839 US11774410B2 (en) 2018-03-15 2019-03-11 Small-diameter wire/rod/tube ultrasonic detection system without end blind area

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201810214938.1A CN110274953B (zh) 2018-03-15 2018-03-15 一种无端部盲区小直径丝棒管材超声检测器
CN201810214938.1 2018-03-15
CN201910172048.3A CN111659626A (zh) 2019-03-07 2019-03-07 一种无端部盲区小直径丝/棒/管材超声检测系统
CN201910172048.3 2019-03-07

Publications (1)

Publication Number Publication Date
WO2019174368A1 true WO2019174368A1 (zh) 2019-09-19

Family

ID=67907356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/000053 WO2019174368A1 (zh) 2018-03-15 2019-03-11 一种无端部盲区小直径丝/棒/管材超声检测系统

Country Status (2)

Country Link
US (1) US11774410B2 (zh)
WO (1) WO2019174368A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222665A (zh) * 2020-10-12 2021-01-15 利派普(北京)检测技术有限公司 一种自行耦合供水的扫查器
CN114669506A (zh) * 2022-05-30 2022-06-28 山东大星辊轴制造有限公司 一种运输导辊的生产设备
CN116242969A (zh) * 2023-02-14 2023-06-09 江苏科诺锅炉有限公司 一种不锈钢全冷凝热水锅炉废气检测装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112986402B (zh) * 2021-02-07 2023-04-28 阿塔米智能装备(北京)有限公司 一种超声检测传送装置
CN112924549B (zh) * 2021-02-07 2023-02-10 阿塔米智能装备(北京)有限公司 一种超声检测系统
CN112858487B (zh) * 2021-02-07 2023-02-10 阿塔米智能装备(北京)有限公司 一种超声检测模块化水槽
CN113418989B (zh) * 2021-08-19 2022-02-15 南通辰同智能科技有限公司 用于大型轴承滚子的超声液浸检测组件
CN113857071B (zh) * 2021-10-27 2023-04-25 宿迁学院 一种冷链物流无接触分类配送装置及其分拣方法
CN114505243B (zh) * 2022-01-11 2023-08-01 重庆天钧焊接技术有限公司 一种零件的自动上料和螺纹孔检测分拣的方法及系统
CN116500209B (zh) * 2023-06-28 2023-09-08 安徽国麒科技有限公司 一种基于边缘计算的退役电池检测装置及方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233544A (ja) * 1984-05-02 1985-11-20 Tokyo Keiki Co Ltd 超音波探傷機の探触子ホルダ
US5174155A (en) * 1990-03-07 1992-12-29 Mitsubishi Denki Kabushiki Kaisha Ultrasonic pipe inspection system
CN102221577A (zh) * 2010-04-14 2011-10-19 中国科学院金属研究所 一种移动式高精确度丝材超声检测系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2096433A1 (de) * 2008-02-26 2009-09-02 Siemens Aktiengesellschaft Vorrichtung zur zerstörungsfreien Materialprüfung eines Prüfgegenstands mit Ultraschallwellen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60233544A (ja) * 1984-05-02 1985-11-20 Tokyo Keiki Co Ltd 超音波探傷機の探触子ホルダ
US5174155A (en) * 1990-03-07 1992-12-29 Mitsubishi Denki Kabushiki Kaisha Ultrasonic pipe inspection system
CN102221577A (zh) * 2010-04-14 2011-10-19 中国科学院金属研究所 一种移动式高精确度丝材超声检测系统

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112222665A (zh) * 2020-10-12 2021-01-15 利派普(北京)检测技术有限公司 一种自行耦合供水的扫查器
CN112222665B (zh) * 2020-10-12 2024-03-19 阿塔米智能装备(北京)有限公司 一种自行耦合供水的扫查器
CN114669506A (zh) * 2022-05-30 2022-06-28 山东大星辊轴制造有限公司 一种运输导辊的生产设备
CN114669506B (zh) * 2022-05-30 2022-09-13 山东大星辊轴制造有限公司 一种运输导辊的生产设备
CN116242969A (zh) * 2023-02-14 2023-06-09 江苏科诺锅炉有限公司 一种不锈钢全冷凝热水锅炉废气检测装置
CN116242969B (zh) * 2023-02-14 2023-11-03 江苏科诺锅炉有限公司 一种不锈钢全冷凝热水锅炉废气检测装置

Also Published As

Publication number Publication date
US11774410B2 (en) 2023-10-03
US20210018472A1 (en) 2021-01-21

Similar Documents

Publication Publication Date Title
WO2019174368A1 (zh) 一种无端部盲区小直径丝/棒/管材超声检测系统
CN107179170B (zh) 一种阀体检测线
CN106607341B (zh) 一种轴类工件双扁位自动检测设备
CN104535653B (zh) 一种孔类零件内孔缺陷相控阵超声检测装置
CN111659626A (zh) 一种无端部盲区小直径丝/棒/管材超声检测系统
CN104280456B (zh) 一种气瓶缺陷超声检测系统
CN109814285A (zh) 检测显示面板缺陷的装置及系统
CN110346369A (zh) 上下线性滑台式双面缺陷在线检测装置
CN109975411B (zh) 轴零件批量相控阵超声检测流水线
CN112114029A (zh) 汽车燃油无缝钢管涡流超声无损检测装置
CN209849332U (zh) 一种丝/棒/管材检测用自动输出分选装置
CN117160921B (zh) 基于自动化的仪器仪表检测装置
CN213689417U (zh) 一种用于容器视觉检测设备
CA2047420C (en) Rapid changeover multi-diameter ultrasonic tube inspection system
CN110274953B (zh) 一种无端部盲区小直径丝棒管材超声检测器
CN209849322U (zh) 一种无端部盲区小直径丝/棒/管材超声检测系统
CN216285081U (zh) 一种超声波自动检测设备
CN209086210U (zh) 一种钢管探伤装置
JP7416545B2 (ja) 状態感知機能を備えた検査器搬送システム
CN104251885A (zh) 焊管焊缝与超声波探伤小车位置偏差的调整方法
CN210243484U (zh) 一种废液自动检测装置
CN214201309U (zh) 用于桁架探伤设备的长阶梯轴夹持转移支架
CN204758617U (zh) 自动检测装置
CN108534692A (zh) 气门深孔壁厚检测装置
CN104438101A (zh) 一种工件检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19768520

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19768520

Country of ref document: EP

Kind code of ref document: A1