WO2019174285A1 - 集成铜排及大功率电机控制器 - Google Patents

集成铜排及大功率电机控制器 Download PDF

Info

Publication number
WO2019174285A1
WO2019174285A1 PCT/CN2018/115036 CN2018115036W WO2019174285A1 WO 2019174285 A1 WO2019174285 A1 WO 2019174285A1 CN 2018115036 W CN2018115036 W CN 2018115036W WO 2019174285 A1 WO2019174285 A1 WO 2019174285A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
hole
row
copper row
strip
Prior art date
Application number
PCT/CN2018/115036
Other languages
English (en)
French (fr)
Inventor
肖齐
Original Assignee
苏州汇川联合动力系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州汇川联合动力系统有限公司 filed Critical 苏州汇川联合动力系统有限公司
Publication of WO2019174285A1 publication Critical patent/WO2019174285A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters

Definitions

  • the utility model relates to a copper bar structure, and more particularly to an integrated copper bar and a high power motor controller.
  • the schematic diagram of the inverter in the motor controller the inverter realizes the motor speed and torque by inverting the input DC power into alternating current, and changing the frequency and current of the alternating current. control.
  • the positive DC bus DC+, the negative DC bus DC-, and the three-phase output of the motor and the power devices Q1 ⁇ Q6 are connected by copper busbars.
  • FIG. 2 a circuit diagram of an inverter in a motor controller that realizes high-power output using a plurality of discrete devices (power devices), which realizes a function of a large-power device by connecting a plurality of low-power power devices in parallel.
  • the positive DC bus DC+ needs to be connected to the output positive pole of the battery, and also needs to be connected to n power transistors Q1, n power transistors Q2 and the drains of n power transistors Q3; negative DC bus DC- needs to be connected to the output negative pole of the battery, and also needs to be connected to the n power tube Q4, n power tubes Q51 and the source of n power tubes Q6; the U phase output needs to be connected to the source of n power tubes Q1 And the drain of n power transistors Q4; the V-phase output needs to connect the source of n power transistors Q2 and the drains of n power transistors Q5; the W-phase output needs to connect the sources of n power transistors Q3 and n powers The drain of tube Q6.
  • n is an integer greater than or equal to 2.
  • the connection of the printed circuit board or the cord is not satisfactory, and the connection of the current main circuit is realized by the copper bus.
  • each pin of these discrete devices needs to be connected to the positive DC bus DC+, the negative DC bus DC-, and/or the motor three-phase output through the copper bus, respectively.
  • the copper strips of the traditional copper strip structure are difficult to be routed, and the copper strips of the copper strip structure are complicated in design and complicated in assembly.
  • the technical problem to be solved by the utility model is that an integrated copper busbar and a high-power motor controller are provided for the problem that the copper busbar connection is complicated and the assembly is complicated in the above-mentioned high-power motor controller.
  • the technical solution for solving the above technical problem is to provide an integrated copper row, comprising a first copper row, a second copper row and a third copper row which are sequentially stacked and insulated from each other;
  • the first copper row has a first through hole, a second through hole has a second through hole, and the first through hole and the second through hole have a corresponding position;
  • the first copper row further has a plurality of first connecting pins,
  • the second copper row has a plurality of second connection pins,
  • the third copper row has a plurality of third connection pins, and the first connection pins extend to the discrete portions above the first copper pads a device mounting surface, at least a portion of the second connection pin extending through the first via to the discrete device mounting surface, at least a portion of the third connection pin passing through the second via and first A through hole extends to the discrete device mounting surface.
  • the first copper row and the second copper row are sheet-like monomers;
  • the third copper row includes a plurality of independent, mutually insulated strip-shaped cells, and Each of the strip-shaped cells has a plurality of third connecting pins thereon.
  • each of the third copper strips has an insulating layer, and each of the insulating layers has a third through hole corresponding to the first through hole, and the discrete device mounting surface is located above the first copper strip.
  • the first copper row has a first terminal for connecting a positive pole of a power supply
  • the second copper row has a negative pole for connecting the power supply.
  • a second terminal wherein the plurality of strip-shaped cells of the third copper row have third terminals for respectively connecting the respective phase lines of the motor.
  • the first terminal, the second terminal and the third terminal are staggered.
  • a plurality of the first through holes are arranged in three parallel rows, and the plurality of the first connecting pins are arranged in parallel three Rows, and the three rows of the first connection pins respectively protrude into the three rows of the first through holes and extend vertically upward;
  • the plurality of the second through holes are arranged in parallel Three rows, a plurality of the second connecting pins are arranged in three parallel rows, and one of the second connecting pins protrudes vertically from the edge of the second copper bar and extends vertically upwards, and the other two rows are The second connecting pins respectively protrude into the two rows of the second through holes and extend vertically upward.
  • the third copper row comprises three strip-shaped cells, and each strip-shaped unit has two rows of third connecting pins respectively; one of the strip-shaped cells is a row of third connection pins extending through the row of second vias and first vias respectively to the discrete device mounting surface, and another row of third connection pins from the first copper row and the second copper row side Extending to the discrete device mounting surface, two rows of third connecting pins on the other two strip-shaped cells respectively pass through the adjacent two rows of second through holes and the first through holes and then extend to the discrete device mounting surface.
  • each of the insulating layers respectively have protruding first ears, and each of the first ears has a first fixing hole;
  • the first copper row, the second copper row and/or the third copper row have a second ear portion corresponding to the first ear portion, and each of the second ear portions has a second fixing hole,
  • the first copper row, the second copper row, the third copper row, and the plurality of insulating layers are fixed by screws passing through the first fixing holes and the second fixing holes.
  • the first copper row has a plurality of fourth terminals and a fourth through hole, and the size of the fourth terminal is smaller than the size of the fourth through hole
  • the second copper row has a fifth terminal corresponding to the fourth through hole and a fifth through hole corresponding to the fourth terminal, and the size of the fifth through hole and the first Corresponding to the size of the four through holes, the size of the fifth terminal is matched with the size of the fourth terminal; each of the insulating layers has a sixth through hole corresponding to the fourth through hole and The seventh through hole corresponding to the fourth terminal, and the sizes of the sixth through hole and the seventh through hole are matched with the size of the fourth through hole.
  • the utility model also provides a high-power motor controller, comprising an inverter unit, the inverter unit has a plurality of discrete devices, and each discrete device comprises a plurality of upper bridge power tubes and a plurality of lower bridge power tubes;
  • the controller further includes an integrated copper bus as described above, and sources of the plurality of upper bridge power tubes are respectively connected to the plurality of the first connection pins; and drains of the plurality of lower bridge power tubes are respectively a plurality of the second connection pins are connected; a drain of the plurality of upper bridge power tubes and a source of the plurality of lower bridge power tubes are respectively connected to the plurality of the third connection pins.
  • the integrated copper row and high power motor controller of the present invention has the following beneficial effects: by superposing the first copper row, the second copper row and the third copper row into one body, and through the first connection on the same discrete device mounting surface
  • the pin, the second connection pin, and the third connection pin are connected to the discrete device, making copper bus processing and assembly simple and fast.
  • the structure of the utility model is also suitable for using a heat sink to dissipate heat from the copper strip, thereby reducing the thickness of the copper strip and reducing the cost.
  • FIG. 1 is a schematic diagram of an inverter principle
  • FIG. 2 is a schematic diagram of the principle of using an inverter in parallel with a plurality of discrete devices
  • FIG. 3 is a schematic view of an embodiment of an integrated copper bar of the present invention.
  • FIG. 4 is an exploded perspective view of an embodiment of the integrated copper bar of the present invention.
  • Figure 5 is a schematic view of the first copper row in the embodiment of the integrated copper row of the present invention.
  • FIG. 6 is a schematic view of a second copper row in the embodiment of the integrated copper bar of the present invention.
  • Figure 7 is a schematic view of a strip-shaped monomer of a third copper row in the integrated copper busbar embodiment of the present invention.
  • FIG. 3-7 it is a schematic diagram of an integrated copper busbar embodiment of the present invention, which can be used for the connection of discrete devices in an inverter.
  • the integrated copper row in this embodiment includes a first copper row 2, a second copper row 4, and a third copper row, and the first copper row 2, the second copper row 4, and the third copper row are sequentially stacked and insulated from each other. .
  • the first copper row 2, the second copper row 4, and the third copper row can be insulated by the plurality of insulating layers 1, 3, 5, and 7, that is, the insulating layer 1 is added over the first copper row 2.
  • An insulating layer 3 is added between the first copper busbar 2 and the second copper busbar 4, an insulating layer 5 is added between the second copper busbar 4 and the third copper busbar, and an insulating layer 7 is added under the third copper busbar.
  • the above insulating layers 1, 3, 5, 7 may be processed by an insulating heat conductive material to conduct heat conduction in addition to insulation.
  • the first copper strip 2 has a first through hole 21, the second copper strip has a second through hole 41, and the first through hole 21 and the second through hole 41 have corresponding positions (the same size).
  • each of the insulating layers 1, 3, 5, 7 has a third through hole corresponding to the position and size of the first through hole 21, respectively.
  • the first copper strip 2 further has a plurality of first connecting pins 22, the second copper strip 4 has a plurality of second connecting pins 42, and the third copper strip has a plurality of third connecting pins 62, and
  • the first connection pin 22 extends to (through the third via hole on the insulating layer 1) a discrete device mounting surface above the first copper bus 2 (the discrete device mounting surface may be specifically located above the first copper bus 2)
  • At least a portion of the second connecting pin 42 extends through the first through hole 21 (and the third through hole on the insulating layers 1 and 3) to the discrete device mounting surface (the other second connecting pin 42 passes through a side of the copper strip 2 extends to the discrete device mounting surface)
  • at least a portion of the third connecting pin 62 passes through the second through hole 41 and the first through hole 21 (and the third through hole on the insulating layers 1, 3, 5) Extending to the discrete device mounting surface (other third connecting pins 62 extend through the second copper strip 4 and the side of the first copper strip 2
  • the integrated copper busbar is integrally formed by stacking the first copper busbar 2, the second copper busbar 4, and the third copper busbar, and passes through the first connecting pin 22, the second connecting pin 42, and the first portion on the same discrete device mounting surface.
  • the three connection pins 62 connect the different pins of the discrete devices, making copper bus processing and assembly simple and fast.
  • the above integrated copper row structure is also suitable for using a heat sink to dissipate heat from the copper strip, thereby reducing the thickness of the copper strip and reducing the cost.
  • the above integrated copper busbar can be used in a three-phase motor controller, in which case the first copper busbar 2 and the second copper busbar 4 can be sheet-like monomers, and the third copper busbar includes a plurality of independent, mutually insulated strips.
  • the cells 6 (the three strip cells 6 are located in the same layer), and each strip-shaped cell 6 has a plurality of third connecting pins 62.
  • the first copper strip 2 may further have a first terminal 23 for connecting the positive DC+ of the power supply, that is, the first copper row is a positive DC bus copper row; and the second copper row 4 may have a power supply for connecting the power supply.
  • the second terminal 43 of the negative DC-, that is, the second copper row is a negative DC bus copper row; each strip-shaped unit 6 of the third copper row has a third terminal 63 for respectively connecting the respective phase lines of the motor That is, the third copper row is the motor output copper row, and the three strip cells 6 are respectively connected to the U, V, W phase outputs.
  • the first terminal 23, the second terminal 43, and the third terminal 63 are staggered.
  • the plurality of first through holes 21 are arranged in three parallel rows, and the plurality of first connecting pins 22 are arranged in three parallel rows. And the three rows of first connecting pins 22 respectively protrude into the three rows of first through holes 21 and extend vertically upward; on the second copper bar 4, the plurality of second through holes 41 are arranged in parallel three rows, a plurality of The second connecting pins 42 are arranged in three parallel rows, and one of the second connecting pins 42 protrudes from the edge of the second copper strip 4 and extends vertically upward, and the other two rows of the second connecting pins 42 respectively protrude into the bottom The two rows of second through holes 41 extend vertically upward.
  • Each strip of cells 6 of the third copper row has two rows of third connection pins 62, respectively.
  • a row of third connection pins 62 on one of the strip-shaped cells 6 respectively pass through the row of the second through holes 41 and the first through holes 21 and then extend to the discrete device mounting surface and the other row of the third connection pins.
  • 62 extends from the side of the first copper strip 2 and the second copper strip 4 to the discrete device mounting surface; the two rows of third connecting pins 62 on the other two strip-shaped cells 6 respectively pass through the adjacent two rows and the second The through hole 41 and the first through hole 21 extend rearward to the discrete device mounting surface.
  • the above integrated copper row can be superposed and fixed by providing a protruding first ear portion 11 at two opposite sides of each insulating layer and a second ear portion at a corresponding position of the second copper row 4 47 (a second ear portion may also be disposed on the strip-shaped cells 6 of the first copper strip 2 and/or the third copper strip), and each of the first ears 11 has a first fixing hole, and each second a second fixing hole is disposed on the ear portion 47; the second copper strip 4, and the plurality of insulating layers 1, 3, 5, 7 are fixed by screws passing through the first fixing hole and the second fixing hole (first copper strip 2 The strip-shaped cells 6 of the third copper row are clamped and fixed by corresponding insulating layers).
  • the first copper strip 2 may further have a plurality of fourth terminals 25 and fourth through holes 26, and the fourth terminal 25 has a smaller size than the fourth through holes 26.
  • the second copper strip 4 has a fifth terminal 45 corresponding to the fourth through hole 26 and a fifth through hole 46 corresponding to the fourth terminal 25, and the size of the fifth through hole 46 is the fourth pass.
  • the size of the hole 26 corresponds to the size of the fifth terminal 45 matching the size of the fourth terminal 25; each of the insulating layers 1, 3, 5, 7 has a sixth through hole corresponding to the fourth through hole 26, respectively.
  • the integrated copper busbar can connect components such as busbar capacitors to the first copper busbar 2 and the second copper busbar 4.
  • each strip-shaped unit 6 of the third copper strip may have a sixth connection terminal 65 protruding from the side of the integrated copper strip, and the related elements may be connected through the sixth connection terminal 65.
  • the utility model also provides a high-power motor controller.
  • the inverter unit of the high-power motor controller comprises a plurality of discrete devices connected in parallel and an integrated copper bus as described above, and each discrete device comprises a plurality of upper bridge power tubes Q1, Q2, Q3 and a plurality of lower bridge power tubes Q4, Q5, Q6; the sources of the plurality of upper bridge power tubes Q1, Q2, Q3 are respectively connected to the plurality of first connection pins; The drains of the lower bridge power transistors Q4, Q5, and Q6 are respectively connected to the plurality of second connection pins; the drains of the plurality of upper bridge power transistors Q1, Q2, and Q3 and the source Q4 of the plurality of lower bridge power transistors, Q5 and Q6 are respectively connected to a plurality of third connection pins.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

集成铜排及大功率电机控制器,集成铜排包括依次叠加设置并相互绝缘的第一铜排(2)、第二铜排(4)以及第三铜排(6);第一铜排(2)具有第一通孔(21)及多个第一连接引脚(22),第二铜排(4)具有第二通孔(41)及多个第二连接引脚(42),第三铜排(6)具有多个第三连接引脚(62),且第一连接引脚(22)、第二连接引脚(42)和第三连接引脚(62)分别延伸到第一铜排(2)上方的分立器件安装面。第一铜排(2)、第二铜排(4)以及第三铜(6)排叠加为一体并通过位于同一分立器件安装面的第一、第二以及第三连接引脚(22、42、62)连接分立器件,使得铜排加工和装配变得简单、快捷。

Description

集成铜排及大功率电机控制器 技术领域
本实用新型涉及铜排结构,更具体地说,涉及一种集成铜排及大功率电机控制器。
背景技术
如图1所示,为电机控制器中逆变器的原理图,逆变器通过把输入的直流电逆变成为交流电,同时通过改变交流电的频率、电流的大小等,实现对电机转速及转矩的控制。在大功率控制器中,正直流母线DC+、负直流母线DC-及电机三相输出与功率器件Q1~Q6的连接均需通过铜排来连接。
为了降低成本和提高器件的可采购性,常常采用多个小电流器件并联的方式获得大功率输出。如图2所示,为使用多个分立器件(功率器件)实现大功率输出的电机控制器中的逆变器的电路图,其通过多个小功率的功率器件并联,实现一个大功器件的功能。
在该大功率电机控制器中,正直流母线DC+需要连接到电池的输出正极,同时还需要连接到n个功率管Q1、n个功率管Q2以及n个功率管Q3的漏极;负直流母线DC-则需要连接到电池的输出负极,同时还需要连接到n个功率管Q4、n个功率管Q51以及n个功率管Q6的源极;U相输出需要连接n个功率管Q1的源极和n个功率管Q4的漏极;V相输出需要连接n个功率管Q2的源极和n个功率管Q5的漏极;W相输出需要连接n个功率管Q3的源极和n个功率管Q6的漏极。其中,上述n为大于或等于2的整数。
在上述大功率电机控制器中,由于电流较大(常常达到数百安培),印刷电路板或者软线的连接已经不能满足要求,电流主回路的连接通过铜排来实现。并且,由于上述大功率电机控制器中的分立器件较多,且这些分立器件的各个引脚都需要通过铜排分别连接正直流母线DC+、负直流母线DC-和/或电机三相输出,使得传统的铜条结构的铜排很难走线,并且铜条结构的铜排设计加工复杂,装配也复杂。
技术问题
本实用新型要解决的技术问题在于,针对上述大功率电机控制器中铜排连接复杂、装配复杂的问题,提供一种集成铜排及大功率电机控制器。
技术解决方案
本实用新型解决上述技术问题的技术方案是,提供一种集成铜排,包括依次叠加设置并相互绝缘的第一铜排、第二铜排以及第三铜排;所述第一铜排上具有第一通孔,第二铜排上具有第二通孔,且所述第一通孔和第二通孔的位置对应;所述第一铜排上还具有多个第一连接引脚,所述第二铜排上具有多个第二连接引脚,所述第三铜排上具有多个第三连接引脚,且所述第一连接引脚延伸到所述第一铜排上方的分立器件安装面,至少部分所述第二连接引脚穿过所述第一通孔延伸到所述分立器件安装面,至少部分所述第三连接引脚穿过所述第二通孔和第一通孔延伸到所述分立器件安装面。
在本实用新型所述的集成铜排中,所述第一铜排和第二铜排为片状单体;所述第三铜排包括多个独立的、相互绝缘的条状单体,且每一所述条状单体上具有多个第三连接引脚。
在本实用新型所述的集成铜排中,所述第一铜排上方、所述第一铜排和第二铜排之间、所述第二铜排和第三铜排之间以及所述第三铜排下方分别具有绝缘层,且每一所述绝缘层上具有与所述第一通孔对应的第三通孔,所述分立器件安装面位于所述第一铜排上方的绝缘层的上方。
在本实用新型所述的集成铜排中,所述第一铜排上具有用于连接供电电源正极的第一接线端子,所述第二铜排上具有用于连接所述供电电源的负极的第二接线端子,所述第三铜排的多个条状单体上具有用于分别连接电机各个相线的第三接线端子。
在本实用新型所述的集成铜排中,所述第一接线端子、第二接线端子、第三接线端子错开设置。
在本实用新型所述的集成铜排中,在所述第一铜排上,多个所述第一通孔排列成平行的三行,多个所述第一连接引脚排列成平行的三行,且三行所述第一连接引脚分别突伸入三行所述第一通孔后垂直向上延伸;在所述第二铜排上,多个所述第二通孔排列成平行的三行,多个所述第二连接引脚排列成平行的三行,且其中一行所述第二连接引脚突伸出所述第二铜排的边缘后垂直向上延伸,另两行所述第二连接引脚分别突伸入两行所述第二通孔后垂直向上延伸。
在本实用新型所述的集成铜排中,所述第三铜排包括三个条状单体,且每一条状单体上分别具有两行第三连接引脚;其中一个条状单体上的一行第三连接引脚分别穿过一行第二通孔和第一通孔后延伸到所述分立器件安装面、另一行第三连接引脚从所述第一铜排和第二铜排侧面延伸到所述分立器件安装面,另两个条状单体上的两行第三连接引脚分别穿过相邻的两行第二通孔和第一通孔后延伸到所述分立器件安装面。
在本实用新型所述的集成铜排中,每一所述绝缘层的两个相对的侧边分别具有突出的第一耳部,且每一所述第一耳部具有第一固定孔;所述第一铜排、第二铜排和/或第三铜排上具有与所述第一耳部对应的第二耳部,且每一所述第二耳部具有第二固定孔,所述第一铜排、第二铜排、第三铜排以及多个绝缘层通过穿过所述第一固定孔和第二固定孔的螺钉固定。
在本实用新型所述的集成铜排中,所述第一铜排上具有多个第四接线端子及第四通孔,且所述第四接线端子的尺寸小于所述第四通孔的尺寸;所述第二铜排上具有与所述第四通孔对应的第五接线端子和与所述第四接线端子对应的第五通孔,且所述第五通孔的尺寸与所述第四通孔的尺寸对应,所述第五接线端子的尺寸与第四接线端子的尺寸相匹配;每一所述绝缘层上具有与所述第四通孔对应的第六通孔以及与所述第四接线端子对应的第七通孔,且所述第六通孔和第七通孔的尺寸都与第四通孔的尺寸相匹配。
本实用新型还提供一种大功率电机控制器,包括逆变单元,所述逆变单元多个分立器件,且每一分立器件包括多个上桥功率管和多个下桥功率管;所述控制器还包括如上所述的集成铜排,且所述多个上桥功率管的源极分别与多个所述第一连接引脚连接;所述多个下桥功率管的漏极分别与多个所述第二连接引脚连接;所述多个上桥功率管的漏极和所述多个下桥功率管的源极分别与多个所述第三连接引脚连接。
有益效果
本实用新型的集成铜排及大功率电机控制器具有以下有益效果:通过将第一铜排、第二铜排以及第三铜排叠加为一体,并通过位于同一分立器件安装面的第一连接引脚、第二连接引脚以及第三连接引脚连接分立器件,使得铜排加工和装配变得简单、快捷。本实用新型的结构还适于使用散热器对铜排散热,从而可减低铜排的厚度,降低成本。
附图说明
图1是逆变器原理示意图;
图2是使用多个分立器件并联的逆变器的原理示意图;
图3是本实用新型集成铜排实施例的示意图;
图4是本实用新型集成铜排实施例的分解示意图;
图5是本实用新型集成铜排实施例中第一铜排的示意图;
图6是本实用新型集成铜排实施例中第二铜排的示意图;
图7是本实用新型集成铜排实施例中第三铜排的条状单体的示意图。
本发明的实施方式
为了使本实用新型的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本实用新型进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
如图3-7所示,是本实用新型集成铜排实施例的示意图,该集成铜排可用于逆变器中的分立器件的连接。本实施例中的集成铜排包括第一铜排2、第二铜排4以及第三铜排,且上述第一铜排2、第二铜排4以及第三铜排依次叠加设置并相互绝缘。具体地,上述第一铜排2、第二铜排4以及第三铜排可通过多个绝缘层1、3、5、7实现绝缘,即在第一铜排2上方增加绝缘层1、在第一铜排2和第二铜排4之间增加绝缘层3、在第二铜排4和第三铜排之间增加绝缘层5以及在第三铜排下方增加绝缘层7。上述绝缘层1、3、5、7可由绝缘导热材料加工而成,从而除了绝缘,还可进行导热。
上述第一铜排2上具有第一通孔21,第二铜排上具有第二通孔41,且第一通孔21和第二通孔41的位置对应(大小可相同)。相应地,各个绝缘层1、3、5、7上分别具有与第一通孔21的位置和大小对应的第三通孔。
上述第一铜排2上还具有多个第一连接引脚22,第二铜排4上具有多个第二连接引脚42,第三铜排上具有多个第三连接引脚62,且第一连接引脚22延伸到(穿过绝缘层1上的第三通孔)第一铜排2上方的分立器件安装面(该分立器件安装面具体可位于第一铜排2上方的绝缘层1的上方),至少部分第二连接引脚42穿过第一通孔21(及绝缘层1、3上的第三通孔)延伸到分立器件安装面(其他第二连接引脚42经由第一铜排2侧部延伸到分立器件安装面),至少部分第三连接引脚62穿过第二通孔41和第一通孔21(及绝缘层1、3、5上的第三通孔)延伸到分立器件安装面(其他第三连接引脚62经由第二铜排4及第一铜排2侧部延伸到分立器件安装面)。在分立器件安装面,第一连接引脚22、第二连接引脚42、第三连接引脚62错开设置,以便连接分立器件的不同引脚。
上述集成铜排通过将第一铜排2、第二铜排4以及第三铜排叠加为一体,并通过位于同一分立器件安装面的第一连接引脚22、第二连接引脚42以及第三连接引脚62连接分立器件的不同引脚,使得铜排加工和装配变得简单、快捷。并且上述的集成铜排结构还适于使用散热器对铜排散热,从而可减低铜排的厚度,降低成本。
上述集成铜排可用于三相电机控制器中,此时第一铜排2和第二铜排4可为片状单体,而第三铜排则包括多个独立的、相互绝缘的条状单体6(该三个条状单体6位于同一层),且每一条状单体上6具有多个第三连接引脚62。
上述第一铜排2上还可具有用于连接供电电源正极DC+的第一接线端子23,即第一铜排为正直流母线铜排;第二铜排4上则可具有用于连接供电电源的负极DC-的第二接线端子43,即第二铜排为负直流母线铜排;第三铜排的每一条状单体6上具有用于分别连接电机各个相线的第三接线端子63,即第三铜排为电机输出铜排,且三个条状单体6分别连接U、V、W相输出。特别地,为方便接线操作,上述第一接线端子23、第二接线端子43、第三接线端子63错开设置。
在上述集成铜排应用于三相电机控制器时,在第一铜排2上,多个第一通孔21排列成平行的三行,多个第一连接引脚22排列成平行的三行,且三行第一连接引脚22分别突伸入三行第一通孔21后垂直向上延伸;在第二铜排4上,多个第二通孔41排列成平行的三行,多个第二连接引脚42排列成平行的三行,且其中一行第二连接引脚42突伸出第二铜排4的边缘后垂直向上延伸,另两行第二连接引脚42分别突伸入两行第二通孔41后垂直向上延伸。
第三铜排的每一条状单体6上分别具有两行第三连接引脚62。在叠加时,其中一个条状单体6上的一行第三连接引脚62分别穿过一行第二通孔41和第一通孔21后延伸到分立器件安装面、另一行第三连接引脚62则从第一铜排2和第二铜排4侧面延伸到分立器件安装面;另两个条状单体6上的两行第三连接引脚62分别穿过相邻的两行第二通孔41和第一通孔21后延伸到分立器件安装面。
上述的集成铜排可通过以下方式实现叠加固定:在每一绝缘层的两个相对的侧边分别设置突出的第一耳部11,并在第二铜排4的对应位置设置第二耳部47(也可在第一铜排2和/或第三铜排的条状单体6上设置第二耳部),且每一第一耳部11上具有第一固定孔,每一第二耳部47上设有第二固定孔;第二铜排4、以及多个绝缘层1、3、5、7通过穿过第一固定孔和第二固定孔的螺钉固定(第一铜排2、第三铜排的条状单体6则通过对应的绝缘层夹持固定)。
为实现与其他部件,例如母线电容的连接,上述第一铜排2上还可具有多个第四接线端子25及第四通孔26,且第四接线端子25的尺寸小于第四通孔26的尺寸;第二铜排4上具有与第四通孔26对应的第五接线端子45和与第四接线端子25对应的第五通孔46,且第五通孔46的尺寸与第四通孔26的尺寸对应,第五接线端子45的尺寸与第四接线端子25的尺寸相匹配;每一绝缘层1、3、5、7上分别具有与第四通孔26对应的第六通孔以及与第四接线端子25对应的第七通孔,且第六通孔和第七通孔的尺寸都与第四通孔的尺寸相匹配。通过上述结构,集成铜排可将母线电容等元件连接到第一铜排2和第二铜排4。
此外,第三铜排的每一条状单体6上可具有凸出于集成铜排侧部的第六连接端子65,并可通过第六连接端子65连接相关元件。
本实用新型还提供一种大功率电机控制器,结合图2,该大功率电机控制器的逆变单元包括多个并联连接的分立器件以及如上所述的集成铜排,且每一分立器件包括多个上桥功率管Q1、Q2、Q3和多个下桥功率管Q4、Q5、Q6;多个上桥功率管Q1、Q2、Q3的源极分别与多个第一连接引脚连接;多个下桥功率管Q4、Q5、Q6的漏极分别与多个第二连接引脚连接;多个上桥功率管Q1、Q2、Q3的漏极和多个下桥功率管的源极Q4、Q5、Q6分别与多个第三连接引脚连接。
工业实用性
以上所述,仅为本实用新型较佳的具体实施方式,但本实用新型的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本实用新型揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本实用新型的保护范围之内。因此,本实用新型的保护范围应该以权利要求的保护范围为准。

Claims (10)

  1. 一种集成铜排,其特征在于,包括依次叠加设置并相互绝缘的第一铜排、第二铜排以及第三铜排;所述第一铜排上具有第一通孔,第二铜排上具有第二通孔,且所述第一通孔和第二通孔的位置对应;所述第一铜排上还具有多个第一连接引脚,所述第二铜排上具有多个第二连接引脚,所述第三铜排上具有多个第三连接引脚,且所述第一连接引脚延伸到所述第一铜排上方的分立器件安装面,至少部分所述第二连接引脚穿过所述第一通孔延伸到所述分立器件安装面,至少部分所述第三连接引脚穿过所述第二通孔和第一通孔延伸到所述分立器件安装面。
  2. 根据权利要求1所述的集成铜排,其特征在于,所述第一铜排和第二铜排为片状单体;所述第三铜排包括多个独立的、相互绝缘的条状单体,且每一所述条状单体上具有多个第三连接引脚。
  3. 根据权利要求2所述的集成铜排,其特征在于,所述第一铜排上方、所述第一铜排和第二铜排之间、所述第二铜排和第三铜排之间以及所述第三铜排下方分别具有绝缘层,且每一所述绝缘层上具有与所述第一通孔对应的第三通孔,所述分立器件安装面位于所述第一铜排上方的绝缘层的上方。
  4. 根据权利要求2所述的集成铜排,其特征在于,所述第一铜排上具有用于连接供电电源的正极的第一接线端子,所述第二铜排上具有用于连接所述供电电源的负极的第二接线端子,所述第三铜排的多个条状单体上具有用于分别连接电机各个相线的第三接线端子。
  5. 根据权利要求4所述的集成铜排,其特征在于,所述第一接线端子、第二接线端子、第三接线端子错开设置。
  6. 根据权利要求2所述的集成铜排,其特征在于,在所述第一铜排上,多个所述第一通孔排列成平行的三行,多个所述第一连接引脚排列成平行的三行,且三行所述第一连接引脚分别突伸入三行所述第一通孔后垂直向上延伸;在所述第二铜排上,多个所述第二通孔排列成平行的三行,多个所述第二连接引脚排列成平行的三行,且其中一行所述第二连接引脚突伸出所述第二铜排的边缘后垂直向上延伸,另两行所述第二连接引脚分别突伸入两行所述第二通孔后垂直向上延伸。
  7. 根据权利要求6所述的集成铜排,其特征在于,所述第三铜排包括三个条状单体,且每一条状单体上分别具有两行第三连接引脚;其中一个条状单体上的一行第三连接引脚分别穿过一行第二通孔和第一通孔后延伸到所述分立器件安装面、另一行第三连接引脚从所述第一铜排和第二铜排侧面延伸到所述分立器件安装面,另两个条状单体上的两行第三连接引脚分别穿过相邻的两行第二通孔和第一通孔后延伸到所述分立器件安装面。
  8. 根据权利要求3所述的集成铜排,其特征在于,每一所述绝缘层的两个相对的侧边分别具有突出的第一耳部,且每一所述第一耳部具有第一固定孔;所述第一铜排、第二铜排和/或第三铜排上具有与所述第一耳部对应的第二耳部,且每一所述第二耳部具有第二固定孔,所述第一铜排、第二铜排、第三铜排以及多个绝缘层通过穿过所述第一固定孔和第二固定孔的螺钉固定。
  9. 根据权利要求3所述的集成铜排,其特征在于,所述第一铜排上具有多个第四接线端子及第四通孔,且所述第四接线端子的尺寸小于所述第四通孔的尺寸;所述第二铜排上具有与所述第四通孔对应的第五接线端子和与所述第四接线端子对应的第五通孔,且所述第五通孔的尺寸与所述第四通孔的尺寸相匹配,所述第五接线端子的尺寸与第四接线端子的尺寸相匹配;每一所述绝缘层上具有与所述第四通孔对应的第六通孔以及与所述第四接线端子对应的第七通孔,且所述第六通孔和第七通孔的尺寸都与第四通孔的尺寸相匹配。
  10. 一种大功率电机控制器,包括逆变单元,所述逆变单元多个分立器件,且每一分立器件包括多个上桥功率管和多个下桥功率管;其特征在于,所述控制器还包括如权利要求1-9中任一项所述的集成铜排,且所述多个上桥功率管的源极分别与多个所述第一连接引脚连接;所述多个下桥功率管的漏极分别与多个所述第二连接引脚连接;所述多个上桥功率管的漏极和所述多个下桥功率管的源极分别与多个所述第三连接引脚连接。
PCT/CN2018/115036 2018-03-14 2018-11-12 集成铜排及大功率电机控制器 WO2019174285A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201820346907.7U CN207926481U (zh) 2018-03-14 2018-03-14 集成铜排及大功率电机控制器
CN201820346907.7 2018-03-14

Publications (1)

Publication Number Publication Date
WO2019174285A1 true WO2019174285A1 (zh) 2019-09-19

Family

ID=63599343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115036 WO2019174285A1 (zh) 2018-03-14 2018-11-12 集成铜排及大功率电机控制器

Country Status (2)

Country Link
CN (1) CN207926481U (zh)
WO (1) WO2019174285A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207926481U (zh) * 2018-03-14 2018-09-28 苏州汇川联合动力系统有限公司 集成铜排及大功率电机控制器
CN111697846B (zh) * 2020-06-10 2021-08-24 中国第一汽车股份有限公司 一种电机控制器及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626592B2 (ja) * 2006-09-06 2011-02-09 日産自動車株式会社 積層ブスバ構造
CN104022414A (zh) * 2014-05-22 2014-09-03 苏州西典机电有限公司 一种新型的叠层母排
CN104167933A (zh) * 2014-09-04 2014-11-26 永济新时速电机电器有限责任公司 叠层喷涂排与复合母排混合使用的新型功率变换单元
CN105680266A (zh) * 2016-04-11 2016-06-15 珠海英搏尔电气股份有限公司 交流电机控制器、叠层母排组件及其制作方法
CN206657736U (zh) * 2017-03-07 2017-11-21 珠海英搏尔电气股份有限公司 一种层叠功率母排滤波电容组件
CN207926481U (zh) * 2018-03-14 2018-09-28 苏州汇川联合动力系统有限公司 集成铜排及大功率电机控制器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4626592B2 (ja) * 2006-09-06 2011-02-09 日産自動車株式会社 積層ブスバ構造
CN104022414A (zh) * 2014-05-22 2014-09-03 苏州西典机电有限公司 一种新型的叠层母排
CN104167933A (zh) * 2014-09-04 2014-11-26 永济新时速电机电器有限责任公司 叠层喷涂排与复合母排混合使用的新型功率变换单元
CN105680266A (zh) * 2016-04-11 2016-06-15 珠海英搏尔电气股份有限公司 交流电机控制器、叠层母排组件及其制作方法
CN206657736U (zh) * 2017-03-07 2017-11-21 珠海英搏尔电气股份有限公司 一种层叠功率母排滤波电容组件
CN207926481U (zh) * 2018-03-14 2018-09-28 苏州汇川联合动力系统有限公司 集成铜排及大功率电机控制器

Also Published As

Publication number Publication date
CN207926481U (zh) 2018-09-28

Similar Documents

Publication Publication Date Title
US10153708B2 (en) Three-level power converter
TWI600038B (zh) 直流電容模組及其疊層母排結構
US8400775B2 (en) Capacitor with direct DC connection to substrate
JP6169250B2 (ja) 電力用半導体装置
KR20110104879A (ko) 전력 변환 장치
WO2014041756A1 (ja) 電子回路装置
JP2021141339A (ja) 積層された端子を有する半導体デバイス
CN107425737B (zh) 功率模块、变流器及风力发电机组
JP2015139270A (ja) 電力変換装置
WO2015053142A1 (ja) ドライバ基板および電力変換装置
KR20140055786A (ko) 균일한 병렬 스위치 특성을 갖는 파워모듈용 기판 및 이를 포함하는 파워모듈
WO2019174285A1 (zh) 集成铜排及大功率电机控制器
JP2018107857A (ja) 電力変換装置
JP6715583B2 (ja) トランジスタリード線の溶接およびはんだ付け
JP2010074994A (ja) 半導体電力変換装置
JP4957842B2 (ja) 電力変換装置
JP2014192936A (ja) 電源ブスバー及びそれを用いる電力変換装置
JP2017005808A (ja) 電力変換装置
JP6901639B1 (ja) 電力変換ユニット
JP6362959B2 (ja) 電力変換回路、その製造方法、および、パワーコンディショナ
KR101252014B1 (ko) 대전류용 병렬 스위치 배열을 갖는 인버터
EP3407478B1 (en) Power conversion device
JP6648613B2 (ja) インバータ装置
TWM547785U (zh) 堆疊式逆變器
US20230344210A1 (en) Busbar design for double sided coldplate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909633

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909633

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18909633

Country of ref document: EP

Kind code of ref document: A1