WO2019172689A1 - 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법 - Google Patents

비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법 Download PDF

Info

Publication number
WO2019172689A1
WO2019172689A1 PCT/KR2019/002675 KR2019002675W WO2019172689A1 WO 2019172689 A1 WO2019172689 A1 WO 2019172689A1 KR 2019002675 W KR2019002675 W KR 2019002675W WO 2019172689 A1 WO2019172689 A1 WO 2019172689A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
vision inspection
image acquisition
image
plane
Prior art date
Application number
PCT/KR2019/002675
Other languages
English (en)
French (fr)
Inventor
유홍준
백경환
배수민
장성하
Original Assignee
(주)제이티
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)제이티 filed Critical (주)제이티
Priority to CN201980017704.0A priority Critical patent/CN111819435A/zh
Publication of WO2019172689A1 publication Critical patent/WO2019172689A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/30Structural arrangements specially adapted for testing or measuring during manufacture or treatment, or specially adapted for reliability measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N2021/1765Method using an image detector and processing of image signal
    • G01N2021/177Detector of the video camera type

Definitions

  • the present invention relates to a vision inspection module, a device inspection system having the same, and a device inspection method using the same, and more particularly, a vision inspection module for performing a vision inspection on a semiconductor device, a device inspection system having the same and a device inspection using the same. It is about a method.
  • the semiconductor device After completion of the package process, the semiconductor device is loaded into a tray and shipped after completion of inspection such as burn-in test.
  • the semiconductor device undergoes a marking process for displaying a serial number, a logo of a manufacturer's logo, etc. on the surface of the semiconductor device before shipment, and finally, whether a lead or a ball grid is damaged,
  • an inspection process for inspecting an outer surface of a semiconductor device generally involves capturing images of one surface of the semiconductor device and four sides adjacent to the surface of the semiconductor device at a time by using one image acquisition means (for example, a camera). This is done by obtaining an image.
  • one image acquisition means for example, a camera
  • a device for performing vision inspection of a conventional semiconductor device may be configured as a vision inspection module of Korean Patent Laid-Open No. 10-2017-0024808.
  • the planar image and the four side images of the device must be contained in the limited inspection area (the light receiving surface of the image acquisition means), so that a total of five images are included. ) Needs to be sufficiently secured.
  • the device configuration is complicated, the manufacturing cost of the device is increased, and the optical path is changed when the size of the semiconductor element to be inspected is changed so that the focal length correction means or other optical There is a problem that the members (reflective members, etc.) need to be replaced.
  • An object of the present invention is to recognize the above problems can utilize the image acquisition device having a minimum FOV to minimize the cost and manufacturing cost of the device, a vision inspection module, a device inspection system having the same and a device inspection method using the same To provide.
  • an object of the present invention by independently obtaining the planar image and the side image of the device, to provide a separate configuration for compensating for the path difference between the first optical path for the planar image and the second optical path for the side image
  • a vision inspection module by independently obtaining the planar image and the side image of the device, to provide a separate configuration for compensating for the path difference between the first optical path for the planar image and the second optical path for the side image
  • the present invention provides a vision inspection module, a device inspection system having the same, and a device inspection method using the same.
  • the present invention was created in order to achieve the object of the present invention as described above, as a vision inspection module 100 for performing a vision inspection of the device 1 of a planar rectangular shape, to obtain an image of the device (1)
  • the optical path forming unit 120 may include a pair of first reflecting members corresponding to a pair of opposite sides of the device 1 and reflecting a pair of side images in parallel to a normal direction of the first plane ( 122 is fixed to the fixed frame portion 126 is installed, and moves relative to the fixed frame portion 126 Vision inspection module 100, characterized in that it comprises a movable frame portion 128 to be selectively installed to selectively form the first optical path (L1) and the pair of second optical path (L2) according to the position. Initiate.
  • the moving frame unit 128 may include a “first position at which the first optical path L1 is formed” and “a pair of second optical paths L2” formed at the fixed frame unit 126. Can be movably coupled between two positions ".
  • the second position may be set at a position at which the moving frame unit 128 blocks the first plane image so that the first plane image does not reach the image acquisition unit 110.
  • the moving frame unit 128 may include the pair of first reflecting members 122 such that the pair of side images reach the vicinity of the central portion of the light receiving surface S of the image acquisition unit 110 at the second position. ) May include a plurality of second reflecting members 124 reflecting the pair of side images reflected by the light toward the image acquisition unit 110.
  • the first position may be set at a position where the moving frame unit 128 does not interfere with the first plane image and the pair of side images.
  • the movable frame 128 may be linearly coupled to the fixed frame 126 in a plane direction perpendicular to the normal direction.
  • the optical path forming unit 120 may further include a guide part 129 for guiding linear movement of the moving frame part 128 with respect to the fixed frame part 126.
  • the fixed frame part 126 may include a plurality of pairs of the first reflecting members 122 to perform vision inspection on the plurality of devices 1.
  • the vision inspection module 100 may further include a focus adjusting unit 130 that adjusts the focus by adjusting the position of the image acquisition unit 110.
  • the vision inspection module 100 is installed between the optical path forming unit 120 and the image acquisition unit 110 to provide the image acquisition unit 110 with the first plane image and the pair of side images. It may further include a main reflecting member 140 for reflecting toward.
  • the main reflection member 140 may be made of a transflective material that can transmit light.
  • the vision inspection module 100 may further include an illumination unit 150 for irradiating light to the first plane and each side surface of the device 1 on the rear surface of the reflective surface of the main reflection member 140. .
  • the present invention is a device inspection method performed in the vision inspection module 100 for performing a vision inspection of the device (1) having a planar rectangular shape, the pair of first reflecting member by a transfer tool for device transfer
  • a first planar image acquisition step of acquiring a first planar image of the device 1 located between the 122 and the image acquisition unit 110; and the pair of four side surfaces of the device 1;
  • a first side image acquisition step of acquiring a pair of side images of a pair of side surfaces facing the first reflective member 122 of the through the image acquisition unit 110, and the other of the four sides
  • the image acquisition unit 110 is rotated about the central axis perpendicular to the first plane by the transfer tool such that the pair of side surfaces face the pair of first reflecting members 122.
  • Acquire a pair of side images for the remaining pair of sides through Discloses a device testing method comprising the acquisition step second side image.
  • the first plane image acquired in the first plane image acquisition step is located between the pair of first reflecting members 122.
  • An alignment step of aligning the position of the device 1 may be further included.
  • the first planar image acquisition step may be performed in a state where the moving frame unit 128 is located at a first position that does not interfere with the first planar image and the pair of side images.
  • the moving frame unit 128 blocks the first plane image so that the first plane image does not reach the image acquisition unit 110. It may be performed after moving to the second position.
  • the loading unit 10 is loaded with a tray (2) is loaded with a plurality of elements (1);
  • a vision inspection module 100 installed at one side of the loading unit 10 to perform vision inspection on the device 1;
  • the first device picks up the device 1 from the tray 2 of the loading unit 10 and transfers the device 1 to the vision inspection module 50, and transfers and loads the device 1 after the vision inspection to the tray 2.
  • a device inspection system comprising a transfer tool 20.
  • the device inspection system may further include an unloading unit 30 for unloading the trays 2 on which the devices 1 that have completed the vision inspection are loaded.
  • the first transfer tool 20 is coupled to the main body portion 21 and the main body portion 21 to attract and secure the rear surface (hereinafter referred to as a second plane) of the first plane of the device 1 or more It may include a plurality of pickers 22 arranged in rows.
  • the first transfer tool 20 may further include a picker rotation driver for rotating the picker 22 about a central axis parallel to the normal direction of the first plane.
  • the first transfer tool 20 may be configured such that a plurality of elements 1 picked up by a plurality of pickers 22 arranged in a row are sequentially positioned between the pair of first reflecting members 122. It may further include a linear moving drive for linearly moving the body portion (21).
  • the vision inspection module according to the present invention the device inspection system having the same, and the device inspection method using the same, by independently obtaining the planar image and the side image of the device, it is possible to utilize the image acquisition device having a minimum FOV, the cost of the device and There is an advantage to minimize the manufacturing cost.
  • the vision inspection module a device inspection system having the same and a device inspection method using the same according to the present invention, by independently obtaining the planar image and the side image of the device, the first optical path for the plane image and the side image for the image; There is no need to separately provide a configuration for compensating the path difference between the two optical paths, there is an advantage that the structure of the device is simple and the manufacturing cost can be reduced.
  • the vision inspection module, the device inspection system having the same, and the device inspection method using the same according to the present invention can be inspected by obtaining only an image of a pair of opposite sides of the four sides of a device whose plane shape is rectangular. Even if the size of the target device is changed, there is an advantage that the conventional device can be used as it is without changing or replacing the components of the device.
  • FIG. 1 is a plan view showing a device inspection system according to an embodiment of the present invention.
  • FIGS. 2 and 3 are side views showing a vision inspection module according to an embodiment of the present invention.
  • FIG. 4 is a conceptual diagram illustrating a process of obtaining a side image of a device in the vision inspection module of FIG. 2.
  • FIG. 5A is a view showing an image obtained by the conventional vision inspection module
  • Figures 5b to 5c is a view showing an image obtained by the vision inspection module of FIGS.
  • 6A to 6B are conceptual views illustrating a vision inspection process for a device transferred to a vision inspection module by a transfer tool in the device inspection system of FIG. 1.
  • FIG. 7A to 7B are side views showing a vision inspection module according to another embodiment of the present invention.
  • FIG. 8 is a perspective view illustrating a part of the vision inspection module of FIGS. 2 and 3
  • FIG. 9 is a perspective view showing a portion of the vision inspection module of FIGS. 7A to 7B.
  • An element inspection system includes a loading unit 10 on which a tray 2 on which a plurality of elements 1 are loaded is loaded; A vision inspection module 100 installed at one side of the loading unit 10 to perform vision inspection on the device 1; A first transfer tool that picks up the device 1 from the tray 2 of the loading unit 10 and transfers the device 1 to the vision inspection module 50, and transfers the devices 1 that have completed the vision inspection to the tray 2 to be loaded. And 20.
  • the device 1 may be a target of any semiconductor device having a planar shape of a rectangle and having completed a semiconductor process such as memory, SD RAM, flash RAM, CPU, and GPU.
  • the tray 2 is a configuration in which one or more elements 1 are stacked in a matrix array of n m m (n, m is a natural number), and is generally standardized according to the type or process step of a stacked element such as a memory element. to be.
  • a mounting groove (not shown) for mounting the device 1 may be formed on the upper surface of the tray 2.
  • the loading unit 10 is configured to load the tray 2 on which the device 1 to be inspected is loaded in order to perform vision inspection, and various configurations are possible.
  • the loading unit 10 may be a guide for guiding the movement of the tray 2 on which the plurality of elements 1 are stacked, as shown in FIG. 1 and Korean Patent Application Laid-Open No. 10-2008-0092671. It may be configured to include a portion (not shown), and a driving portion (not shown) for moving the tray 2 along the guide portion.
  • the vision inspection module 100 is installed on one side of the loading unit 10 to obtain an image of the device 1 by using a camera, a scanner, etc. to perform a vision inspection on the device 1. Therefore, various configurations are possible depending on the type of the device 1 to be inspected, the type of inspection and the configuration of the system.
  • the vision inspection module 50 may be installed at one side of the loading unit 10 to be perpendicular to the conveying direction of the tray 2 in the loading unit 10, but is not limited thereto.
  • the vision inspection module 50 is one side of the X-axis direction perpendicular to the Y-axis direction. Can be installed on
  • the vision inspection module 50 is preferably configured to independently acquire an image of any one surface (hereinafter, referred to as a 'first plane') and a side adjacent to the first plane of the top and bottom surfaces of the device 1.
  • a 'first plane' an image of any one surface
  • the first plane is a backside of one surface (hereinafter referred to as a 'second plane') that is fixed by the first transfer tool 20 to be described later, and is subjected to vision inspection.
  • the vision inspection module 50 is a vision inspection module 100 that performs vision inspection of the device 1 having a rectangular planar shape, as shown in FIGS.
  • An image acquisition unit 110 for acquiring an image of the device 1 and a first optical path L1 for allowing the first plane image of the first plane of the device 1 to reach the image acquisition unit 110.
  • a light path forming unit for selectively forming a pair of second light paths L2 such that a pair of side images of the pair of opposite sides of the device 1 reach the image acquisition unit 110 ( 120).
  • the image acquisition unit 110 may be configured of various imaging devices such as a camera and a scanner to acquire an image of the device 1.
  • the image acquired through the image acquisition unit 110 may be transferred to a controller (not shown), analyzed using a program, and then used for vision inspection, such as whether there is a defect.
  • the light path forming unit 120 may face the first light path L1 and the device 1 to allow the first plane image of the first plane of the device 1 to reach the image acquisition unit 110.
  • Various configurations are possible by selectively forming a pair of second optical paths L2 for allowing the pair of side images of the pair of side surfaces to reach the image acquisition unit 110.
  • a first plane image of the device 1 may be obtained through the image acquisition unit 110, and the optical path forming unit ( When the second optical path L2 is formed by 120, a pair of side images of the device 1 may be obtained through the image acquisition unit 110.
  • the light path forming unit 120 may correspond to a pair of side surfaces of the device 1 corresponding to a pair of side images.
  • a fixed frame portion 126 that is fixedly installed and has a pair of first reflecting members 122 that reflect in parallel to the normal direction of the first plane, and is installed to be movable relative to the fixed frame portion 126
  • the first optical path L1 and the pair of second optical paths L2 may include a moving frame part 128 to selectively form.
  • the fixed frame part 126 is a pair of first reflecting members 122 corresponding to a pair of opposite sides of the element 1 and reflecting a pair of side images in parallel to the normal direction of the first plane. It is equipped with a fixed installation is possible in a variety of configurations.
  • the fixed frame part 126 may be formed of various materials as long as the frame is coupled to the pair of first reflecting members 122 and has a rigidity, and is reflected by the pair of first reflecting members 122. If it does not block the movement path of the side of the image, that is, if the opening corresponding to the portion corresponding to the second light path (L2) is formed, it can be made in various shapes.
  • the pair of first reflecting members 122 are configured to reflect a pair of side images in parallel to the normal direction of the first plane to correspond to a pair of opposite sides of the device 1. If the reflective surface reflects the incident light, it may be made of various members such as a mirror and a prism.
  • the pair of first reflecting members 122 correspond to a pair of opposite sides of the four sides of the device 1, and a pair of side images are formed.
  • the pair of reflecting surfaces are inclined at an angle of 45 ° with respect to the normal direction of the first plane (-Z axis direction) in order to reflect toward the normal direction of the first plane of (1). It can be installed to achieve.
  • a pair of second optical paths L2 for the pair of side images may be formed in parallel with the first optical paths L for the first planar image. Can be.
  • the movable frame portion 128 is installed to be movable relative to the fixed frame portion 126 to selectively form a first optical path L1 and a pair of second optical paths L2 according to a position.
  • Various configurations are possible.
  • the movable frame 128 is movable between the "first position where the first optical path L1 is formed" and the "second position where the pair of second optical path L2 is formed". Can be installed.
  • the first optical path L1 is formed through the combination of the fixed frame unit 126 and the movable frame unit 128 to acquire an image of the first planar image of the device 1. If the position is a variety of positions depending on the shape of the moving frame 128 and the coupling relationship between the members.
  • the first position may be set at a position where the moving frame unit 128 blocks a pair of images of the device 1 or reflects the pair of images so that they do not face the image acquisition unit 110. have.
  • the first position interferes with the pair of side images reflected by the moving frame unit 128 only by the first plane image and the pair of reflecting members 122. It is more preferable in that the configuration of the apparatus can be simplified so that the pair of side images do not reach the image acquisition unit 110 by being set at a position that is not set.
  • the second optical path L1 is formed through the combination of the fixed frame part 126 and the moving frame part 128 to obtain an image of a pair of side images of the device 1. If possible, various positions are possible depending on the shape of the moving frame 128 and the coupling relationship between the members.
  • the second position may include the first plane image between the fixed frame unit 126 and the image acquisition unit 110 so that the moving frame unit 128 does not reach the image acquisition unit 110. It may be set at a position to block or reflect.
  • the second position as shown in Figures 2 and 7a, in terms of simplifying the configuration of the device, blocking the first plane image between the fixed frame portion 126 and the image acquisition unit 110 It is preferably set in position.
  • the moving frame part 128 is movable to the fixed frame part 126 as shown in FIGS. 8 and 9 to improve the positional accuracy of the moving frame part 128 for clear image acquisition. Can be combined.
  • the movable frame part 128 has a first plane of the device 1 to be inspected on one surface of the fixed frame part 126.
  • the optical path forming portion 120 is a guide portion for guiding the linear movement of the moving frame portion 128 relative to the fixed frame portion 126 129 may be further included.
  • the movable frame part 128 includes a fixed frame part such that the movable frame part 128 slides with respect to the fixed frame 126 along the guide part 129. 126 may be slide coupled.
  • the moving frame portion 128, in the second position for forming a pair of second optical path (L2), a pair of side images are the central portion of the light receiving surface (S) of the image acquisition unit 110
  • the plurality of second reflecting members 124 may be configured to reflect a pair of side images, and may be formed of various members such as a mirror and a prism as long as the reflecting surfaces reflect incident incident light. have.
  • the plurality of second reflecting members 124 may reflect a pair of side images in a state in which the moving frame unit 128 is located at the second position, so that the pair of side images is a light receiving surface of the image acquisition unit 110. If it is possible to reach near the center portion of S) may be installed in various positions of the moving frame portion (128).
  • the plurality of second reflecting members 124 reflect a pair of side images reflected in parallel from each other in the pair of first reflecting members 122 toward the inner center portion.
  • the pair of outer reflecting members 124a is configured to reflect a pair of side images, and may have various members such as a mirror and a prism as long as the pair of outer reflecting members 124a has a reflecting surface reflecting incident incident light. have.
  • the pair of outer reflection members 124a may have various shapes and may be installed at various positions as long as the pair of side reflection images can be reflected toward the center portion.
  • the pair of outer reflecting members 124a may be installed to form a symmetrical form with the pair of first reflecting members 122 while forming an inclination of 45 ° with a pair of incident side images. It is not limited.
  • the central reflecting member 124b is configured to reflect a pair of side images, and may have various members such as a mirror and a prism as long as the central reflecting member 124b has a reflecting surface that reflects incident incident light.
  • the central reflecting member 124b may have various shapes and may be installed at various positions as long as it reflects a pair of side images that are reflected from the pair of outer reflecting members 124a toward the center in parallel.
  • the central reflecting member 124b is installed at the center of the pair of outer reflecting members 124a, and has a pair of reflecting surfaces facing in parallel with the reflecting surfaces of the pair of outer reflecting members 124a. This can be formed.
  • the pair of reflecting surfaces may also be installed to form an inclination of 45 ° with a pair of incident side images.
  • a pair of side images may reach the light receiving surface S of the image acquisition unit 110 in a state in which the pair of side images are close to each other.
  • a separate reflective member for changing the traveling direction of the first plane image or the pair of side images between the moving frame portion 128 and the fixed frame portion 126
  • it is also possible to install additional it is also possible to install additional.
  • the vision inspection module 100 is installed between the optical path forming unit 120 and the image acquisition unit 110, the first planar image And a main reflection member 140 for reflecting the pair of side images toward the image acquisition unit 110.
  • the main reflecting member 140 is configured to reflect a pair of side images passing through the first plane image and the moving frame unit 128 and has a reflecting surface reflecting incident incident light. It may be made of various members such as a prism.
  • the traveling direction of the first planar image and the pair of side images may be bent toward the image acquisition unit 110.
  • the vision inspection module 100 may further include an illumination unit 150 for irradiating light to the first plane and the respective side surfaces of the device 1.
  • the lighting unit 150 may be installed in various ways depending on the irradiation method and may be disposed at various positions, and monochromatic light such as laser light, tricolor light such as R, G, and B, depending on the type or type of vision inspection. Various light such as white light may be irradiated, and various light sources such as an LED element may be used.
  • the lighting unit 150 may be configured to irradiate light to the first plane and each side of the element 1 at the back side of the reflecting surface.
  • the lighting unit 150 may be configured to perform irradiation on the first plane and irradiation on each side by a separate light source (not shown).
  • the vision inspection module 100 according to the second embodiment will be described in detail with reference to the differences from the first embodiment described above with reference to FIGS. 7A to 7B.
  • the fixed frame unit 126 may include a pair of first reflecting members 122 to perform vision inspection on the plurality of devices 1. It is provided with a plurality.
  • the fixed frame part 126 includes two pairs of first reflecting members 122, so that image acquisition of two devices at a time is possible, so that vision inspection of a plurality of devices 1 is performed. The speed can be greatly improved.
  • the second reflecting members 124 of the moving frame part 128 may be disposed corresponding to the position and the number of the two pairs of the first reflecting members 122.
  • the vision inspection module 100 is fixedly installed at a predetermined position, and when the moving frame unit 128 is positioned at the first position, two first plane images are received by the light receiving surface of the image acquisition unit 110. Two first plane images are reflected toward the image acquisition unit 110 so as to reach near the center of S), and when the moving frame unit 128 is positioned at the second position, two pairs of side images are acquired. It may include a plurality of third reflecting members 127 for reflecting two pairs of the first plane image toward the image acquisition unit 110 to reach near the central portion of the light receiving surface (S) of 110.
  • the plurality of third reflecting members 127 may be installed in the auxiliary frame part 125 fixedly installed at a predetermined position.
  • the auxiliary frame part 125 may be coupled to the fixed frame part 126 or may be integrally formed with the fixed frame part 126.
  • the moving frame unit 128 may be coupled to the frame unit 125 so as to be slidably movable.
  • the plurality of third reflecting members 127 may be formed of various members such as a mirror and a prism as long as the reflecting surface reflects incident incident light.
  • the plurality of third reflecting members 127 may include a pair of outer reflecting members reflecting the first planar image or the pair of side images toward the inner center portion. 127a) and a central reflection member 127b for reflecting the first planar image or the pair of side images reflected by the pair of outer reflection members 127a back in parallel with each other.
  • the third reflecting members 127 may be the same as or similar to the pair of outer reflecting members 124a and the central reflecting member 124b installed in the moving frame 128, and thus a detailed description thereof will be omitted.
  • the FOV of the vision inspection module 100 required for vision inspection of the plurality of devices 1 may be minimized.
  • This effect of the present invention can be clearly seen when comparing Fig. 5a showing the image obtained in the conventional vision inspection module and Fig. 5b and 5c showing the image acquired in the vision inspection module according to the present invention.
  • 5B is a first plane image of the first plane obtained by the vision inspection module of the present invention
  • FIG. 5C is a pair of side images of a pair of sides obtained by the vision inspection module of the present invention.
  • the large-size device 1 since only a pair of side images of two sides are to be obtained on the light receiving surface of the image acquisition unit 110, the large-size device 1, in particular, the maximum size using conventional low-cost equipment Vision inspection can also be sufficiently performed on the device 1 having (36 mm).
  • the vision inspection module 100 since the vision inspection module 100 having the above-described configuration acquires the first planar image and the pair of side images independently of each other, the first optical path L1 and the second optical path L2.
  • the focal length is different due to the difference between the paths), and thus, when the image is acquired by the image acquisition unit 110, there is an advantage in that a blurry image is not obtained because the focus is not focused on each other.
  • the vision inspection module 100 may be used even if the distance between the pair of first reflecting members 1122 and the side surface of the device 1 is changed or the first optical path L1 is changed (the inspection object). Since only the focus of the first optical path L1 or the pair of second optical paths L2 need to be adjusted, it is simple without replacing components of the vision inspection module 100. By simply adjusting the position of the image acquisition unit 110, the focus can be adjusted to obtain a clear image.
  • the vision inspection module 100 may further include a focus adjustment unit 130 that adjusts the focus by adjusting the position of the image acquisition unit 110.
  • a focus adjustment unit 130 that adjusts the focus by adjusting the position of the image acquisition unit 110.
  • the focus adjusting unit 130 may be combined with the image obtaining unit 110 to form the first image or side surface of the image obtaining unit 110.
  • Various configurations are possible by the linear movement along the incident direction of the image (drawing reference, Y-axis direction).
  • the vision inspection module 100 in acquiring side images of the device 1, does not acquire four side images at once, but uses a pair of first reflecting members 122 at one time. Since a pair of side images of the pair of sides are acquired, as shown in FIG. 5C, when a pair of side images are acquired, a pair of side images are obtained by using a plurality of second reflecting members 124. By collecting the central portion of the light receiving surface 110, there is an advantage that can minimize the FOV of the vision inspection module 100 necessary for vision inspection.
  • the first transfer tool 20 picks up the device 1 from the tray 2 of the loading unit 10 and transfers the device 1 to the vision inspection module 50, and transfers the device 1 having completed the vision inspection to the tray 2.
  • Various configurations are possible by transporting and loading).
  • the first transfer tool 20 may be coupled to the main body portion 21 and the main body portion 21 so as to have a rear surface of the first plane of the device 1 (
  • the second plane) may include a plurality of pickers 22 disposed in one or more rows by fixing and adsorbing the second plane.
  • the plurality of pickers 22 is preferably provided in a plurality, such as a row or a double row in order to increase the inspection speed.
  • the picker 22 is configured to pick up the element 1 by sucking and fixing the second plane by vacuum pressure, and various configurations are possible.
  • the first transfer tool 20 may further include a picker rotation driving unit for rotating the picker 22 about a central axis c parallel to the normal direction (-Z axis direction) of the first plane.
  • the element 1 positioned between the pair of first reflecting members 122 may be rotated together with the picker 22.
  • the first transfer tool 20 may include a plurality of pairs of first elements 1 picked up by a plurality of pickers 22 arranged in a line. It may further include a linear moving drive for linearly moving the body portion 21 to be sequentially positioned between the reflective member 122.
  • the first transfer tool 20 may include a first guide rail 40 disposed in a direction in which the tray 2 moves in the loading unit 10 (in the Y-axis direction of the drawing) and in a vertical direction (the X-axis direction of the drawing). It may be combined with the first guide rail 40 to move along.
  • the first guide rail 40 is arranged perpendicular to the moving direction of the tray 2 in the loading unit 10 to support the first transfer tool 20 and to guide the movement thereof. It is possible.
  • the device inspection system may further include an unloading unit 30 for unloading the trays 2 on which the devices 1 after the vision inspection have been loaded.
  • the unloading unit 30 receives the trays 2 containing the elements 1 that have undergone vision inspection in the loading unit 10 and classifies the trays 2 into the trays 2 according to the vision inspection results. It is possible.
  • the unloading unit 30 has a structure similar to that of the loading unit 10, and the first unloading unit 31 in which the devices 1 of the good quality G are unloaded according to the vision inspection result of the device 1. , A second unloading part 32 in which the devices 1 determined as defective 1 or abnormal 1 (R1) are unloaded, and a third in which the devices 1 determined as defective 2 or abnormal 2 R2 are unloaded. It may include an unloading unit 33.
  • the unloading parts 31, 32, and 33 may include a guide part (not shown) installed in parallel with one side of the loading part 10, and a driving part (not shown) for moving the tray 2 along the guide part. Unloading trays including a plurality may be installed in parallel.
  • the tray 2 may be transferred between the loading unit 10 and the unloading units 31, 32, and 33 by a tray transfer device (not shown), and the unloading units 31, 32, and 33 may be transferred.
  • a tray transfer device (not shown)
  • the unloading units 31, 32, and 33 may be transferred.
  • the sorting tool 50 for transferring the device 1 may be separately installed in the unloading parts 31, 32, and 33 according to the classification class of each unloading tray part. .
  • the sorting tool 50 may have a configuration identical to or similar to the first transfer tool 20 described above, and may have a double or single row structure, and a second guide rail disposed in parallel with the first guide rail 40. 60 may be installed to be movable along.
  • the unloading units 31, 32, and 33 have been described with reference to an embodiment in which the device 1 is unloaded after the device 1 is again loaded in the tray 2 loaded by the loading unit 10.
  • Any configuration may be used as long as the device 1 can be loaded and unloaded, including a so-called tape reel module, which is loaded and unloaded on a carrier tape in which a pocket is formed.
  • the device inspection method performed in the vision inspection module and the device inspection system having the above-described configuration includes a first plane of the device 1 positioned between the pair of first reflection members 122 by a transfer tool for device transfer.
  • the transfer tool is positioned between the pair of first reflecting members 122 in a state of picking up the element 1 to be inspected as the first transfer tool 20 described above.
  • the movable frame part 128 is shown in FIG. As shown in FIG. 3 and FIG. 7B, it is positioned at a first position that does not interfere with the first plane image and the pair of side images.
  • the first plane image acquisition step is performed in a state where the moving frame unit 128 is located at a first position that does not interfere with the first plane image and the pair of side images.
  • the first planar image obtained in the first planar image acquisition step may be utilized for external inspection such as cracking, scratching, ball grid breakage, chipping, etc. of the first plane of the device 1.
  • first planar image acquired in the first planar image acquisition step may be utilized for setup for aligning the position of the device 1 before acquiring side images of the device 1.
  • a device positioned between a pair of first reflecting members 122 by using the first plane image acquired in the first plane image acquisition step before the first side image acquisition step may further include an alignment step of aligning the position of (1).
  • the first transfer tool 20 may align the position of the element 1 and a pair of side surfaces of the four side surfaces of the element 1 may face the pair of first reflective members 122.
  • the movable frame portion 128 is arranged in a first plane, as shown in FIGS. 2 and 7A.
  • the moving frame unit 128 may be performed after the moving frame unit 128 is moved to a second position that blocks the first plane image so that the image does not reach the image acquisition unit 110.
  • the first planar image may be blocked by the central reflective member 124b among the second reflective members 124 of the moving frame part 128.
  • the first side image acquisition step is performed in a state where the moving frame unit 128 blocks the first plane image and is positioned at a second position where the second optical path L2 is formed.
  • the pair of side images acquired in the first side image acquisition step may be utilized for external inspection such as cracking, scratching, ball grid breakage, chipping, etc. of the first plane of the device 1 as shown in FIG. 5C.
  • the second side image acquisition step includes: A pair of side images for the pair of sides 1a can be obtained.
  • the second side image acquisition step is also performed in a state where the moving frame unit 128 blocks the first plane image and is positioned at a second position where the second optical path L2 is formed.
  • the pair of side images acquired in the second side image acquisition step may be utilized for external inspection such as cracking, scratching, ball grid breakage, chipping, etc. of the first plane of the device 1 as shown in FIG. 5C.
  • the first transfer tool 20 moves to the tray 20 to unload the device 1.
  • a plurality of elements 1 are picked up by the first transfer tool 20 in which a plurality of pickers 22 are arranged in a row or more.
  • the first transfer tool 20 moves to the vision inspection module 100, and moves from the vision inspection module 100 to the fourth picker 22d at the front end of the moving direction reference (X-axis direction) of the first transfer tool 20.
  • the picked-up element 1 and the picked-up element 1 at the rear end first picker 22a are sequentially moved so as to be positioned between the pair of reflecting members 122 in sequence.
  • a first side image acquisition step for acquiring a pair of side images may be performed.
  • the first transfer tool 20 rotates the picker 22 about the central axis C to move the first transfer tool 20 from the vision inspection module 100 again.
  • a pair of reflecting members 122 are sequentially arranged with the element 1 picked up by the first picker 22a in the front direction (-X axis direction) and the element 1 picked up by the fourth picker 22d at the rear end. Step by step to be positioned between. Since the first transfer tool 20 reciprocates around the vision inspection module 100, the first picker 22a is first moved between the pair of reflective members 122.
  • the vision inspection module 100 acquires a second side image for acquiring a pair of side images of the other pair of side surfaces 1a with respect to the device 1 positioned between the pair of reflective members 122. Steps may be performed.
  • FIG. 8 shows the movement path P of the element 1 by the first transfer tool 20 when the first transfer tool 20 has a plurality of pickers 22 arranged in one row. .
  • a pair of first reflecting members 122 are installed on both sides of the movement path P of the device 1.
  • FIG. 9 shows the movement path P1 of the element 1 by the second transfer tool 20 when the first transfer tool 20 has a plurality of pickers 22 arranged in a double row, in particular in two rows. , P2).
  • P1 is a movement path of the elements 1 arranged in one of the two columns
  • P2 is a movement path of the elements 1 arranged in the other of the two columns.
  • a pair of first reflecting members 122 are provided on both sides of the movement paths P1 and P2 of the device 1, respectively.
  • the vision inspection of the plurality of devices 1 may be performed by linear reciprocating movement of the first transfer tool 20 around the vision inspection module 100, the device fixed to the picker 22. Since the Z-axis driving of the transfer tool 20 or the picker 22 for positioning (1) between the pair of first reflecting members 122 is unnecessary, device transfer for vision inspection can be made very fast and Therefore, there is an advantage that can greatly improve the vision inspection speed for the plurality of devices (1).
  • the present invention is characterized by the vision inspection module, the configuration of the device inspection system presented is only one embodiment, the vision inspection module according to the present invention is limited to being installed in the device inspection system according to an embodiment of the present invention Of course not.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

본 발명은, 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법에 관한 것으로서, 보다 상세하게는 반도체소자에 대한 비전검사를 수행하는 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법에 관한 것이다. 본 발명은 평면형상이 직사각형인 소자(1)의 비전검사를 수행하는 비전검사모듈(100)로서, 소자(1)의 이미지를 획득하기 위한 이미지획득부(110)와, 소자(1)의 제1평면에 대한 제1평면이미지가 상기 이미지획득부(110)에 도달하도록 하는 제1광경로(L1)와 상기 소자(1)의 대향하는 한 쌍의 측면에 대한 한 쌍의 측면이미지가 상기 이미지획득부(110)에 도달하도록 하는 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 광경로형성부(120)를 포함하는 것을 특징으로 하는 비전검사모듈(100)을 개시한다.

Description

비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법
본 발명은, 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법에 관한 것으로서, 보다 상세하게는 반도체소자에 대한 비전검사를 수행하는 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법에 관한 것이다.
패키지 공정을 마친 반도체소자는 번인테스트 등의 검사를 마친 후에 트레이에 적재되어 출하된다.
그리고 반도체소자는 출하되기 전 반도체소자의 표면에 레이저 등에 의하여 일련번호, 제조사 로고 등의 표지를 표시하기 위한 마킹공정을 거치게 되며, 최종적으로 리드(lead)나 볼 그리드(ball grid)의 파손여부, 크랙(crack), 스크래치(scratch), 칩핑(chipped off) 여부 등과 같은 반도체소자의 외관상태 및 표면에 형성된 마킹의 양호여부를 검사하는 공정을 거치게 된다.
종래 이러한 반도체소자의 외면을 검사하기 위한 검사공정은 일반적으로 반도체소자의 일면과 그 일면에 이웃하는 4개의 측면들에 대한 이미지들을 하나의 이미지획득수단(예로서, 카메라 등)을 이용해 한번에 촬상하여 이미지를 획득하는 방식으로 이루어지고 있다.
예로서, 종래 반도체소자의 비전검사를 수행하는 장치는, 한국공개특허 제10-2017-0024808호의 비전검사모듈과 같이 구성될 수 있다.
이러한 종래의 비전검사모듈의 경우, 한정적인 검사영역(이미지획득수단의 수광면)에 소자의 평면이미지와 4개의 측면이미지들, 총 5개의 이미지가 담겨야 하므로, 이미지획득수단의 FOV(Field of View)가 충분히 확보될 필요가 있다.
그런데, 일정 정도 이상의 해상도를 유지하며 FOV를 크게 확보하려면 고가의 이미지획득수단을 사용할 수 밖에 없어 장치의 원가가 높아지는 문제점이 있다.
또한, 이미지획득수단과 소자의 평면까지의 광경로와 이미지획득수단과 소자의 측면까지의 광경로가 서로 다르므로, 이러한 광경로 차이를 보상하기 위한 별도의 초점거리보정수단 없는 경우 촬상된 이미지의 초점이 맞지 않아 선명한 이미지를 얻을 수 없는 문제점이 있다.
이에 더하여, 별도의 초점거리보정수단을 구비한다고 하더라도, 그에 의해 장치구성이 복잡해지며 장치의 제조비용이 증가되고, 검사대상이 되는 반도체소자의 크기가 달라지면 광경로가 달라져 초점거리보정수단 또는 다른 광학부재(반사부재 등)들을 교체해야 하는 문제점이 있다.
본 발명의 목적은 상기와 같은 문제점을 인식하여 최소의 FOV을 가지는 이미지획득장치를 활용할 수 있어 장치의 원가 및 제조비용을 최소화 할 수 있는 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법을 제공하는데 있다.
또한 본 발명의 목적은, 소자의 평면이미지와 측면이미지를 독립적으로 획득함으로써, 평면이미지를 위한 제1광경로와 측면이미지를 위한 제2광경로 사이의 경로차를 보상하기 위한 구성을 별도로 구비할 필요가 없어 장치의 구조가 단순하며 제조비용을 절감할 수 있는 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법을 제공하는데 있다.
또한, 본 발명의 목적은, 평면형상이 직사각형을 이루는 소자의 4개의 측면들 중 대향하는 한 쌍의 측면에 대한 이미지만을 획득함으로써, 검사대상이 되는 소자의 규격이 달라지더라도 장치의 구성요소에 대한 변경이나 교체 없이 종래의 장치를 그대로 활용할 수 있는 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법을 제공하는데 있다.
본 발명은 상기와 같은 본 발명의 목적을 달성하기 위하여 창출된 것으로서, 평면형상이 직사각형인 소자(1)의 비전검사를 수행하는 비전검사모듈(100)로서, 소자(1)의 이미지를 획득하기 위한 이미지획득부(110)와, 소자(1)의 제1평면에 대한 제1평면이미지가 상기 이미지획득부(110)에 도달하도록 하는 제1광경로(L1)와 상기 소자(1)의 대향하는 한 쌍의 측면에 대한 한 쌍의 측면이미지가 상기 이미지획득부(110)에 도달하도록 하는 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 광경로형성부(120)를 포함하며, 상기 광경로형성부(120)는, 소자(1)의 대향하는 한 쌍의 측면에 대응되어 한 쌍의 측면이미지를 상기 제1평면의 법선방향에 평행하게 반사하는 한 쌍의 제1반사부재(122)를 구비하며 고정설치 되는 고정프레임부(126)와, 상기 고정프레임부(126)에 대해 이동가능하게 설치되어 위치에 따라 상기 제1광경로(L1) 및 상기 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 이동프레임부(128)를 포함하는 것을 특징으로 하는 비전검사모듈(100)을 개시한다.
상기 이동프레임부(128)는, 상기 고정프레임부(126)에 "상기 제1광경로(L1)가 형성되는 제1위치"와 "상기 한 쌍의 제2광경로(L2)가 형성되는 제2위치" 사이에서 이동가능하게 결합될 수 있다.
상기 제2위치는, 상기 제1평면이미지가 상기 이미지획득부(110)에 도달하지 않도록 상기 이동프레임부(128)가 상기 제1평면이미지를 차단하는 위치에 설정될 수 있다.
상기 이동프레임부(128)는, 상기 제2위치에서 상기 한 쌍의 측면이미지가 상기 이미지획득부(110)의 수광면(S)의 중앙부 부근에 도달하도록 상기 한 쌍의 제1반사부재(122)에서 반사된 한 쌍의 측면이미지를 상기 이미지획득부(110)를 향해 반사시키는 복수의 제2반사부재(124)들을 포함할 수 있다.
상기 제1위치는, 상기 이동프레임부(128)가 상기 제1평면이미지 및 상기 한 쌍의 측면이미지와 간섭되지 않는 위치에 설정될 수 있다.
상기 이동프레임부(128)는, 상기 고정프레임부(126)에 상기 법선방향에 수직한 평면방향으로 선형이동가능하게 결합될 수 있다.
상기 광경로형성부(120)는, 상기 고정프레임부(126)에 대한 상기 이동프레임부(128)의 평면방향 선형이동을 가이드하는 가이드부(129)를 추가로 포함할 수 있다.
상기 고정프레임부(126)는, 복수의 소자(1)들에 대한 비전검사를 수행하기 위하여 상기 한 쌍의 제1반사부재(122)를 복수개 구비할 수 있다.
상기 비전검사모듈(100)은, 상기 이미지획득부(110)의 위치를 조정하여 초점을 조정하는 초점조정부(130)를 추가로 포함할 수 있다.
상기 비전검사모듈(100)은, 상기 광경로형성부(120) 및 상기 이미지획득부(110) 사이에 설치되어 상기 제1평면이미지 및 상기 한 쌍의 측면이미지를 상기 이미지획득부(110)를 향하도록 반사시키는 주반사부재(140)를 추가로 포함할 수 있다.
상기 주반사부재(140)는, 광이 투과가능한 반투과재질로 이루어질 수 있다.
상기 비전검사모듈(100)은, 상기 주반사부재(140)의 반사면의 이면에서 상기 소자(1)의 제1평면 및 각 측면에 광을 조사하는 조명부(150)를 추가로 포함할 수 있다.
또한 본 발명은, 평면형상이 직사각형인 소자(1)의 비전검사를 수행하는 비전검사모듈(100)에서 수행되는 소자검사방법으로서, 소자이송을 위한 이송툴에 의해 상기 한 쌍의 제1반사부재(122) 사이에 위치된 소자(1)의 제1평면이미지를 상기 이미지획득부(110)를 통해 획득하는 제1평면이미지획득단계와, 상기 소자(1)의 4개의 측면들 중 상기 한 쌍의 제1반사부재(122)와 대향하는 한 쌍의 측면에 대한 한 쌍의 측면이미지를 상기 이미지획득부(110)를 통해 획득하는 제1측면이미지획득단계와, 상기 4개의 측면들 중 나머지 한 쌍의 측면이 상기 한 쌍의 제1반사부재(122)와 대향하도록 상기 이송툴에 의해 상기 소자(1)를 상기 제1평면에 수직한 중심축에 대해 회전시키고, 상기 이미지획득부(110)를 통해 상기 나머지 한 쌍의 측면에 대한 한 쌍의 측면이미지를 획득하는 제2측면이미지획득단계를 포함하는 것을 특징으로 하는 소자검사방법을 개시한다.
상기 소자비전검사방법은, 상기 제1측면이미지획득단계 전에, 상기 제1평면이미지획득단계에서 획득된 상기 제1평면이미지를 이용하여, 상기 한 쌍의 제1반사부재(122) 사이에 위치된 소자(1)의 위치를 얼라인하는 얼라인단계를 추가로 포함할 수 있다.
상기 제1평면이미지획득단계는, 상기 이동프레임부(128)가 상기 제1평면이미지 및 상기 한 쌍의 측면이미지와 간섭되지 않는 제1위치에 위치된 상태에서 수행될 수 있다.
상기 제1측면이미지획득단계 및 상기 제2측면이미지획득단계는, 상기 제1평면이미지가 상기 이미지획득부(110)에 도달하지 않도록 상기 이동프레임부(128)가 상기 제1평면이미지를 차단하는 제2위치로 이동된 후 수행될 수 있다.
또한, 본 발명은, 복수의 소자(1)들이 적재된 트레이(2)가 로딩되는 로딩부(10)와; 상기 로딩부(10)부의 일측에 설치되어 소자(1)에 대한 비전검사를 수행하는 비전검사모듈(100)과; 상기 로딩부(10)의 트레이(2)로부터 소자(1)를 픽업하여 상기 비전검사모듈(50)로 이송하며, 비전검사를 마친 소자(1)를 트레이(2)로 이송하여 적재하는 제1이송툴(20)을 포함하는 것을 특징으로 하는 소자검사시스템을 개시한다.
상기 소자검사시스템은, 상기 비전검사를 마친 소자(1)들이 적재된 트레이(2)들을 언로딩하는 언로딩부(30)를 추가로 포함할 수 있다.
상기 제1이송툴(20)은, 본체부(21)와, 상기 본체부(21)에 결합되어 상기 소자(1)의 제1평면의 이면(이하, 제2평면)을 흡착고정하며 하나 이상의 열로 배치되는 복수의 픽커(22)들을 포함할 수 있다.
상기 제1이송툴(20)은, 상기 픽커(22)를 상기 제1평면의 법선방향에 평행한 중심축에 대해 회전시키는 픽커회전구동부를 추가로 포함할 수 있다.
상기 제1이송툴(20)은, 일렬로 배치된 복수의 픽커(22)들에 의해 픽업된 복수의 소자(1)들이 상기 한 쌍의 제1반사부재(122) 사이에 순차적으로 위치되도록 상기 본체부(21)를 선형이동시키는 선형이동구동부를 추가로 포함할 수 있다.
본 발명에 따른 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법은, 소자의 평면이미지와 측면이미지를 독립적으로 획득함으로써, 최소의 FOV을 가지는 이미지획득장치를 활용할 수 있어 장치의 원가 및 제조비용을 최소화 할 수 있는 이점이 있다.
또한, 본 발명에 따른 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법은, 소자의 평면이미지와 측면이미지를 독립적으로 획득함으로써, 평면이미지를 위한 제1광경로와 측면이미지를 위한 제2광경로 사이의 경로차를 보상하기 위한 구성을 별도로 구비할 필요가 없어 장치의 구조가 단순하며 제조비용을 절감할 수 있는 이점이 있다.
특히, 본 발명에 따른 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법은, 평면형상이 직사각형을 이루는 소자의 4개의 측면들 중 대향하는 한 쌍의 측면에 대한 이미지만을 획득함으로써, 검사대상이 되는 소자의 규격이 달라지더라도 장치의 구성요소에 대한 변경이나 교체 없이 종래의 장치를 그대로 활용할 수 있는 이점이 있다.
도 1은, 본 발명의 일 실시예에 따른 소자검사시스템을 보여주는 평면도이다.
도 2 및 도 3은, 본 발명의 일 실시예에 따른 비전검사모듈을 보여주는 측면도이다.
도 4는, 도 2의 비전검사모듈에서 소자의 측면이미지를 획득하는 과정을 보여주는 개념도이다.
도 5a는 종래 비전검사모듈에서 획득되는 이미지를 보여주는 도면이고, 도 5b 내지 도 5c는 도 2 및 도 3의 비전검사모듈에서 획득되는 이미지를 보여주는 도면이다.
도 6a 내지 도 6b는, 도 1의 소자검사시스템에서 이송툴에 의해 비전검사모듈로 이송되는 소자에 대한 비전검사과정을 보여주는 개념도이다.
도 7a 내지 도 7b는, 본 발명의 다른 일 실시예에 따른 비전검사모듈을 보여주는 측면도이다.
도 8은 도 2 및 도 3의 비전검사모듈의 구성 일부를 보여주는 사시도이고, 도 9는 도 7a 내지 도 7b의 비전검사모듈의 구성 일부를 보여주는 사시도이다.
이하 본 발명에 따른 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법에 관하여 첨부된 도면을 참조하여 설명하면 다음과 같다.
본 발명의 일 실시예에 따른 소자검사시스템은, 복수의 소자(1)들이 적재된 트레이(2)가 로딩되는 로딩부(10)와; 로딩부(10)부의 일측에 설치되어 소자(1)에 대한 비전검사를 수행하는 비전검사모듈(100)과; 로딩부(10)의 트레이(2)로부터 소자(1)를 픽업하여 비전검사모듈(50)로 이송하며, 비전검사를 마친 소자(1)들을 트레이(2)로 이송하여 적재하는 제1이송툴(20)을 포함한다.
여기서 소자(1)는, 평면형상이 직사각형을 이루며 메모리, SD램, 플래쉬램, CPU, GPU 등 반도체 공정을 마친 반도체소자들이면 모두 그 대상이 될 수 있다.
상기 트레이(2)는, 하나 이상의 소자(1)들이 nΧm 행렬의 기판배열(n, m은 자연수)을 이루어 적재되는 구성으로서, 메모리소자 등 적재되는 소자의 종류 또는 공정단계에 따라 규격화됨이 일반적이다.
상기 트레이(2)에는 소자(1)가 안착되기 위한 안착홈(미도시)가 상면에 형성될 수 있다.
상기 로딩부(10)는, 비전검사를 수행하기 위하여 검사대상인 소자(1)가 적재된 트레이(2)를 로딩하는 구성으로서, 다양한 구성이 가능하다
예로서, 상기 로딩부(10)는, 도 1 및 한국 공개특허공보 제10-2008-0092671호에 도시된 바와 같이, 다수의 소자(1)들이 적재되는 트레이(2)의 이동을 안내하는 가이드부(미도시)와, 트레이(2)를 가이드부를 따라서 이동시키기 위한 구동부(미도시)를 포함하여 구성될 수 있다.
상기 비전검사모듈(100)은, 로딩부(10)부의 일측에 설치되어 소자(1)에 대한 비전검사를 수행하기 위해 소자(1)의 이미지를 카메라, 스캐너 등을 이용하여 이미지를 획득하는 구성으로, 검사대상이 되는 소자(1)의 종류, 검사의 종류 및 시스템의 구성에 따라 다양한 구성이 가능하다.
예로서, 상기 비전검사모듈(50)은, 로딩부(10) 내의 트레이(2)의 이송방향과 수직을 이루어 로딩부(10)의 일측에 설치될 수 있으나, 이에 한정되는 것은 아니다.
구체적으로, 도 1에 도시된 바와 같이, 로딩부(10) 내에서 트레이(2)의 이송방향이 Y축 방향인 경우, 비전검사모듈(50)은 Y축 방향과 수직을 이루는 X축 방향 일측에 설치될 수 있다.
상기 비전검사모듈(50)은, 소자(1)의 상면 및 저면 중 어느 일면(이하, '제1평면'이라 한다) 및 제1평면에 인접된 측면에 대한 이미지를 독립적으로 획득하도록 구성됨이 바람직하다. 여기서, 상기 제1평면은, 후술하는 제1이송툴(20)에 의해 흡착고정 되는 일면(이하, '제2평면'이라 한다)의 이면으로써 비전검사의 대상이 된다.
*제1실시예에서, 상기 비전검사모듈(50)은, 도 2 내지 도 3에 도시된 바와 같이, 평면형상이 직사각형인 소자(1)의 비전검사를 수행하는 비전검사모듈(100)로서, 소자(1)의 이미지를 획득하기 위한 이미지획득부(110)와, 소자(1)의 제1평면에 대한 제1평면이미지가 이미지획득부(110)에 도달하도록 하는 제1광경로(L1)와 소자(1)의 대향하는 한 쌍의 측면에 대한 한 쌍의 측면이미지가 이미지획득부(110)에 도달하도록 하는 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 광경로형성부(120)를 포함할 수 있다.
상기 이미지획득부(110)는, 소자(1)의 이미지를 획득하기 위한 구성으로 카메라, 스캐너 등 다양한 촬상소자로 구성될 수 있다.
그리고 상기 이미지획득부(110)를 통해 획득된 이미지는, 제어부(미도시)로 전달되어 프로그램 등을 이용하여 분석된 후 불량여부 등의 비전검사에 활용될 수 있다.
상기 광경로형성부(120)는, 소자(1)의 제1평면에 대한 제1평면이미지가 이미지획득부(110)에 도달하도록 하는 제1광경로(L1)와 소자(1)의 대향하는 한 쌍의 측면에 대한 한 쌍의 측면이미지가 이미지획득부(110)에 도달하도록 하는 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 구성으로 다양한 구성이 가능하다.
상기 광경로형성부(120)에 의해 제1광경로(L1)가 형성되는 경우 이미지획득부(110)를 통해 소자(1)의 제1평면이미지가 획득될 수 있고, 상기 광경로형성부(120)에 의해 제2광경로(L2)가 형성되는 경우 이미지획득부(110)를 통해 소자(1)의 한 쌍의 측면이미지가 획득될 수 있다.
예로서, 상기 광경로형성부(120)는, 도 2, 도 3 및 도 7a 내지 도 9에 도시된 바와 같이, 소자(1)의 대향하는 한 쌍의 측면에 대응되어 한 쌍의 측면이미지를 제1평면의 법선방향에 평행하게 반사하는 한 쌍의 제1반사부재(122)를 구비하며 고정설치 되는 고정프레임부(126)와, 고정프레임부(126)에 대해 이동가능하게 설치되어 위치에 따라 제1광경로(L1) 및 상기 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 이동프레임부(128)를 포함할 수 있다.
상기 고정프레임부(126)는, 소자(1)의 대향하는 한 쌍의 측면에 대응되어 한 쌍의 측면이미지를 제1평면의 법선방향에 평행하게 반사하는 한 쌍의 제1반사부재(122)를 구비하며 고정설치 되는 구성으로 다양한 구성이 가능하다.
상기 고정프레임부(126)는, 한 쌍의 제1반사부재(122)가 결합되는 프레임으로 강성을 가진다면 다양한 재질로 이루어질 수 있으며, 한 쌍의 제1반사부재(122)에서 반사되는 한 쌍의 측면이미지의 이동경로를 차단하지 않는다면, 즉 제2광경로(L2)와 대응되는 부분이 개방된 개방부분이 형성된다면, 다양한 형상으로 이루어질 수 있다.
상기 한 쌍의 제1반사부재(122)는, 소자(1)의 대향하는 한 쌍의 측면에 대응되어 한 쌍의 측면이미지를 제1평면의 법선방향에 평행하게 반사하기 위한 구성으로, 입사되는 입사광을 반사하는 반사면을 가진다면 거울(mirror), 프리즘(prism) 등 다양한 부재로 이루어질 수 있다.
상기 한 쌍의 제1반사부재(122)는, 도 2 내지 도 4에 도시된 바와 같이, 소자(1)의 네 측면 중 대향하는 한 쌍의 측면에 대응되며, 한 쌍의 측면이미지를 소자(1)의 제1평면의 법선방향(도면기준, -Z축방향)을 향하도록 반사하기 위하여 한 쌍의 반사면이 제1평면의 법선방향(-Z축 방향)에 대하여 45°각도로 경사를 이루도록 설치될 수 있다.
상기 한 쌍의 제1반사부재(122)에 의해, 한 쌍의 측면이미지를 위한 한 쌍의 제2광경로(L2)가 제1평면이미지를 위한 제1광경로(L)와 평행하게 형성될 수 있다.
상기 이동프레임부(128)는, 고정프레임부(126)에 대해 이동가능하게 설치되어 위치에 따라 제1광경로(L1) 및 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 구성으로 다양한 구성이 가능하다.
구체적으로, 상기 이동프레임부(128)는, "제1광경로(L1)가 형성되는 제1위치"와 "한 쌍의 제2광경로(L2)가 형성되는 제2위치" 사이에서 이동가능하게 설치될 수 있다.
여기서, 상기 제1위치는, 고정프레임부(126)와 이동프레임부(128)의 조합을 통해 제1광경로(L1)가 형성되어 소자(1)의 제1평면이미지에 대한 이미지획득이 가능한 위치라면 이동프레임(128)의 형상 및 부재들 사이의 결합관계에 따라 다양한 위치가 가능하다.
예로서, 상기 제1위치는, 이동프레임부(128)가 소자(1)의 한 쌍의 이미지를 차단하거나, 한 쌍의 이미지가 이미지획득부(110)를 향하지 않도록 반사시키는 위치에 설정될 수 있다.
다만, 상기 제1위치는, 도 3 및 도 7b에 도시된 바와 같이, 이동프레임부(128)가 단지 제1평면이미지 및 한 쌍의 반사부재(122)에서 반사된 한 쌍의 측면이미지와 간섭되지 않는 위치에 설정됨으로써, 한 쌍의 측면이미지가 이미지획득부(110)로 도달하지 않도록 구성되는 것이 장치의 구성을 단순화 할 수 있는 측면에서 보다 바람직하다.
마찬가지로, 상기 제2위치는, 고정프레임부(126)와 이동프레임부(128)의 조합을 통해 제2광경로(L1)가 형성되어 소자(1)의 한 쌍의 측면이미지에 대한 이미지획득이 가능한 위치라면 이동프레임(128)의 형상 및 부재들 사이의 결합관계에 따라 다양한 위치가 가능하다.
예로서, 상기 제2위치는, 제1평면이미지가 이미지획득부(110)에 도달하지 않도록 이동프레임부(128)가 고정프레임부(126)와 이미지획득부(110) 사이에서 제1평면이미지를 차단하거나 반사시키는 위치에 설정될 수 있다.
다만, 상기 제2위치는, 도 2 및 도 7a에 도시된 바와 같이, 장치의 구성을 단순화 하는 측면에서, 고정프레임부(126)와 이미지획득부(110) 사이에서 제1평면이미지를 차단하는 위치에 설정됨이 바람직하다.
한편, 상기 이동프레임부(128)는 선명한 이미지획득을 위해 이동프레임부(128)의 위치정밀도를 향상시키기 위하여, 도 8 및 도 9에 도시된 바와 같이, 고정프레임부(126)에 이동가능하게 결합될 수 있다.
구체적으로, 상기 이동프레임부(128)는, 도 2, 도 3 및 도 7a 내지 도 7b에 도시된 바와 같이, 고정프레임부(126)의 일면에 검사대상이 되는 소자(1)의 제1평면의 법선방향에 수직한 평면방향(X-Y 평면방향)으로 선형이동 가능하게 결합될 수 있다.
이때, 상기 이동프레임부(128)의 이동을 가이드 하기 위하며, 광경로형성부(120)는 고정프레임부(126)에 대한 상기 이동프레임부(128)의 평면방향 선형이동을 가이드하는 가이드부(129)를 추가로 포함할 수 있다.
예로서, 상기 이동프레임부(128)는, 도 8 및 도 9에 도시된 바와 같이, 이동프레임부(128)가 가이드부(129)를 따라 고정프레임(126)에 대해 슬라이딩되도록 고정프레임부(126)에 슬라이드결합될 수 있다.
한편, 상기 이동프레임부(128)는, 한 쌍의 제2광경로(L2)를 형성하기 위한 제2위치에서, 한 쌍의 측면이미지가 이미지획득부(110)의 수광면(S)의 중앙부 부근에 도달하도록 한 쌍의 제1반사부재(122)에서 반사된 한 쌍의 측면이미지를 이미지획득부(110)를 향해 반사시키는 복수의 제2반사부재(124)들을 포함할 수 있다.
상기 복수의 제2반사부재(124)들은, 한 쌍의 측면이미지를 반사하기 위한 구성으로, 입사되는 입사광을 반사하는 반사면을 가진다면 거울(mirror), 프리즘(prism) 등 다양한 부재로 이루어질 수 있다.
복수의 제2반사부재(124)들은, 이동프레임부(128)가 제2위치에 위치된 상태에서 한 쌍의 측면이미지를 반사하여 한 쌍의 측면이미지가 이미지획득부(110)의 수광면(S)의 중앙부 부근에 도달하도록 할 수 있다면 이동프레임부(128)의 다양한 위치에 설치될 수 있다.
예로서, 복수의 제2반사부재(124)들은, 도 2에 도시된 바와 같이, 한 쌍의 제1반사부재(122)에서 서로 평행하게 반사된 한 쌍의 측면이미지를 내측 중앙부를 향하도록 반사시키는 한 쌍의 외곽반사부재(124a)와, 한 쌍의 외곽반사부재(124a)에서 반사된 한 쌍의 측면이미지들을 다시 서로 평행하게 반사시키는 중앙반사부재(124b)를 포함할 수 있다.
상기 한 쌍의 외곽반사부재(124a)는, 한 쌍의 측면이미지를 반사하기 위한 구성으로, 입사되는 입사광을 반사하는 반사면을 가진다면 거울(mirror), 프리즘(prism) 등 다양한 부재로 이루어질 수 있다.
상기 한 쌍의 외곽반사부재(124a)는, 한 쌍의 측면이미지를 중앙부로 향하도록 반사시킬 수 있다면 다양한 형상이 가능하며 다양한 위치에 설치될 수 있다.
예로서, 상기 한 쌍의 외곽반사부재(124a)는, 입사되는 한 쌍의 측면이미지와 45°의 경사를 이루며 한 쌍의 제1반사부재(122)와 대칭형태를 이루도록 설치될 수 있으나, 이에 한정되는 것은 아니다.
상기 중앙반사부재(124b)는, 한 쌍의 측면이미지를 반사하기 위한 구성으로, 입사되는 입사광을 반사하는 반사면을 가진다면 거울(mirror), 프리즘(prism) 등 다양한 부재로 이루어질 수 있다.
상기 중앙반사부재(124b)는, 한 쌍의 외곽반사부재(124a)에서 반사되어 중앙부를 향하는 한 쌍의 측면이미지를 서로 평행하게 반사시킬 수 있다면 다양한 형상이 가능하며 다양한 위치에 설치될 수 있다.
예로서, 상기 중앙반사부재(124b)는, 한 쌍의 외곽반사부재(124a)의 중앙에 설치되며, 상기 한 쌍의 외곽반사부재(124a)의 반사면과 평행하게 대향하는 한 쌍의 반사면이 형성될 수 있다.
상기 한 쌍의 반사면 또한 입사되는 한 쌍의 측면이미지와 45°의 경사를 이루도록 설치됨이 바람직하다.
상기 복수의 제2반사부재(124)들에 의해, 한 쌍의 측면이미지가 서로 근접한 상태로 이미지획득부(110)의 수광면(S)에 도달할 수 있다.
또한, 도면 상 도시되지는 않았으나, 장치의 구성에 따라, 이동프레임부(128)와 고정프레임부(126) 사이에 제1평면이미지 또는 한 쌍의 측면이미지의 진행방향을 바꾸기 위한 별도의 반사부재들이 추가로 설치되는 것도 가능함은 물론이다.
한편, 상기 비전검사모듈(100)은, 도 2, 도 3 및 도 7a 내지 도 7b에 도시된 바와 같이, 광경로형성부(120) 및 이미지획득부(110) 사이에 설치되어 제1평면이미지 및 한 쌍의 측면이미지를 이미지획득부(110)를 향하도록 반사시키는 주반사부재(140)를 추가로 포함할 수 있다.
상기 주반사부재(140)는, 제1평면이미지 및 이동프레임부(128)을 통과한 한 쌍의 측면이미지를 반사하기 위한 구성으로, 입사되는 입사광을 반사하는 반사면을 가진다면 거울(mirror), 프리즘(prism) 등 다양한 부재로 이루어질 수 있다.
상기 주반사부재(140)에 의하여, 제1평면이미지 및 한 쌍의 측면이미지의 진행방향이 이미지획득부(110)를 향하도록 꺾일 수 있다.
그리고, 상기 비전검사모듈(100)은, 소자(1)의 제1평면 및 각 측면들에 광을 조사하는 조명부(150)를 추가로 포함할 수 있다.
상기 조명부(150)는, 그 조사방식에 따라서 다양하게 설치될 수 있으며 다양한 위치에 배치될 수 있고, 비전검사의 형태 또는 종류에 따라서, 레이저광 등의 단색광, R, G, B 등의 삼색광, 백색광 등 다양한 광을 조사할 수 있으며, 엘이디소자 등 다양한 광원이 사용될 수 있다.
예로서, 상기 비전검사모듈(100)이 상술한 주반사부재(140)를 포함할 때, 주반사부재(140)가 광이 투과할 수 있는 반투과재질을 가진다면, 조명부(150)는, 반사면의 이면에서 소자(1)의 제1평면 및 각 측면에 광을 조사하도록 구성될 수 있다.
또한, 상기 조명부(150)는, 제1평면에 대한 조사 및 각 측면에 대한 조사가 별도의 광원(미도시)에 의하여 수행되도록 구성될 수 있음은 물론이다.
제2실시예에 따른 비전검사모듈(100)을, 도 7a 내지 도 7b를 참조하여 상술한 제1실시예와의 차이점을 중심으로 자세히 설명한다.
제2실시예에서 고정프레임부(126)는, 도 7a 내지 도 7b에 도시된 바와 같이, 복수의 소자(1)들에 대한 비전검사를 수행하기 위하여 한 쌍의 제1반사부재(122)를 복수개 구비한다.
예로서, 상기 고정프레임부(126)는 두 쌍의 제1반사부재(122)를 구비함으로써, 한 번에 2개의 소자에 대한 이미지획득이 가능하므로, 다수의 소자(1)들에 대한 비전검사의 속도를 크게 향상될 수 있다.
상기 두 쌍의 제1반사부재(122)의 위치 및 개수에 대응되어 이동프레임부(128)의 제2반사부재(124)들이 배치될 수 있다.
이때, 상기 비전검사모듈(100)은, 미리 설정된 위치에 고정 설치되며, 이동프레임부(128)가 제1위치에 위치될 때 두 개의 제1평면이미지가 이미지획득부(110)의 수광면(S)의 중앙부 부근에 도달하도록 두 개의 제1평면이미지를 이미지획득부(110)를 향해 반사시키고, 이동프레임부(128)가 제2위치에 위치될 때 두 쌍의 측면이미지가 이미지획득부(110)의 수광면(S)의 중앙부 부근에 도달하도록 두 쌍의 제1평면이미지를 이미지획득부(110)를 향해 반사시키는 복수의 제3반사부재(127)들을 포함할 수 있다.
상기 복수의 제3반사부재(127)들은, 미리 설정된 위치에 고정설치된 보조프레임부(125)에 설치될 수 있다.
상기 보조프레임부(125)는, 도 9에 도시된 바와 같이, 고정프레임부(126)에 결합거나 고정프레임부(126)과 일체로 형성될 수 있으며, 이때, 고정프레임부(126)와 보조프레임부(125) 사이에는 이동프레임부(128)가 슬라이딩이동 가능하능하게 결합될 수 있다.
상기 복수의 제3반사부재(127)들은, 입사되는 입사광을 반사하는 반사면을 가진다면 거울(mirror), 프리즘(prism) 등 다양한 부재로 이루어질 수 있다.
예로서, 복수의 제3반사부재(127)들은, 도 7a 내지 도 7b에 도시된 바와 같이, 제1평면이미지 또는 한 쌍의 측면이미지를 내측 중앙부를 향하도록 반사시키는 한 쌍의 외곽반사부재(127a)와, 한 쌍의 외곽반사부재(127a)에서 반사된 제1평면이미지 또는 한 쌍의 측면이미지들을 다시 서로 평행하게 반사시키는 중앙반사부재(127b)를 포함할 수 있다.
상기 제3반사부재(127)들은, 이동프레임(128)에 설치되는 한 쌍의 외곽반사부재(124a) 및 중앙반사부재(124b)와 동일하거나 유사하게 구성될 수 있는 바 자세한 설명은 생략한다.
상기 복수의 제3반사부재(127)들에 의해, 복수의 소자(1)들에 대한 비전검사를 위해 요구되는 비전검사모듈(100)의 FOV를 최소화 할 수 있다. 이러한 본 발명의 효과는 종래의 비전검사모듈에서 획득되는 이미지를 보여주는 도 5a와 본 발명에 따른 비전검사모듈에서 획득되는 이미지를 보여주는 도 5b 및 도 5c를 비교해보면 더욱 명확히 알 수 있다. 도 5b는 본 발명의 비전검사모듈에서 획득되는 제1평면에 대한 제1평면이미지 이며, 도 5c는, 본 발명의 비전검사모듈에서 획득되는 한 쌍의 측면에 대한 한 쌍의 측면이미지이다.
도 5a의 경우, 이미지획득부(110)의 수광면에 제1평면 및 4 개의 측면 모두가 획득되므로, 크기가 큰 소자(1)의 비전검사 시 큰 FOV를 확보해야 하고 매우 고가의 장비를 설치해야 하므로, 검사대상이 되는 소자(1)의 크기가 12mm를 넘어가게 되면 일반적인 장비를 가지고 비전검사를 하기 매우 어렵다.
그런데, 도 5c의 경우, 이미지획득부(110)의 수광면에 2 개의 측면에 대한 한 쌍의 측면이미지 만이 획득되면 되므로, 종래의 저가의 장비를 활용하여 대면적의 소자(1) 특히 최대규격(36mm)을 가지는 소자(1)에 대해서도 비전검사가 충분히 수행될 수 있다.
또한, 상술한 구성을 가지는 본 발명에 따른 비전검사모듈(100)은, 제1평면이미지와 한 쌍의 측면이미지를 서로 독립적으로 획득하므로, 제1광경로(L1)와 제2광경로(L2) 사이의 경로차로 인하여 초점거리가 달라 이미지획득부(110)에 의한 이미지획득 시 서로 초점이 맞지 않아 흐릿한 이미지가 획득되는 문제점이 발생하지 않는 이점이 있다.
따라서, 본 발명에 따른 비전검사모듈(100)은, 한 쌍의 제1반사부재(1122)와 소자(1)의 측면 사이의 거리가 달라지거나 제1광경로(L1)가 달라진다고 하더라도(검사대상이 되는 소자(1)의 규격 변화 등) 제1광경로(L1) 또는 한 쌍의 제2광경로(L2)의 초점만 조정하면 되므로, 비전검사모듈(100)의 구성품들에 대한 교체 없이 단순 히 이미지획득부(110)의 위치를 조정하는 것만으로도 초점조정이 가능하여 선명한 이미지를 획득할 수 있는 이점이 있다.
이때, 상기 비전검사모듈(100)은, 이미지획득부(110)의 위치를 조정하여 초점을 조정하는 초점조정부(130)를 추가로 포함할 수 있다. 예로서, 상기 초점조정부(130)는, 도 2, 도 3 및 도 7a 내지 도 7b에 도시된 바와 같이, 이미지획득부(110)와 결합되어 이미지획득부(110)를 제1평면이미지 또는 측면이미지의 입사방향(도면기준, Y축 방향)을 따라 선형이동시키는 구성으로 다양한 구성이 가능하다.
또한, 본 발명에 따른 비전검사모듈(100)은, 소자(1)의 측면이미지 획득에 있어, 네 개의 측면이미지를 한번에 획득하는 것이 아니라, 한 쌍의 제1반사부재(122)를 이용해 한번에 한 쌍의 측면에 대한 한 쌍의 측면이미지를 획득하므로, 도 5c에 도시된 바와 같이, 한 쌍의 측면이미지 획득 시 복수의 제2반사부재(124)들을 이용해 한 쌍의 측면이미지가 이미지획득부(110)의 수광면 중앙부에 모이도록 함으로써, 비전검사를 위해 필요한 비전검사모듈(100)의 FOV를 최소화 할 수 있는 이점이 있다.
상기 제1이송툴(20)은, 로딩부(10)의 트레이(2)로부터 소자(1)를 픽업하여 비전검사모듈(50)로 이송하며, 비전검사를 마친 소자(1)를 트레이(2)로 이송하여 적재하는 구성으로 다양한 구성이 가능하다.
예로서, 상기 제1이송툴(20)은, 도 6a 내지 도 6b에 도시된 바와 같이, 본체부(21)와, 본체부(21)에 결합되어 소자(1)의 제1평면의 이면(이하, 제2평면)을 흡착고정하며 하나 이상의 열로 배치되는 복수의 픽커(22)들을 포함할 수 있다.
상기 복수의 픽커(22)들은, 검사속도 등을 높이기 위하여 일렬 또는 복렬 등 복수개로 설치됨이 바람직하다.
상기 픽커(22)는, 진공압에 의하여 제2평면을 흡착고정하여 소자(1)를 픽업하는 구성으로서 다양한 구성이 가능하다.
상기 제1이송툴(20)은, 픽커(22)를 제1평면의 법선방향(-Z축방향)에 평행한 중심축(c)에 대해 회전시키는 픽커회전구동부를 추가로 포함할 수 있다.
상기 픽커회전구동부를 통해, 한 쌍의 제1반사부재(122) 사이에 위치된 소자(1)가 픽커(22)와 함께 회전될 수 있다.
또한, 상기 제1이송툴(20)은, 도 6a 및 도 6b에 도시된 바와 같이, 일렬로 배치된 복수의 픽커(22)들에 의해 픽업된 복수의 소자(1)들이 한 쌍의 제1반사부재(122) 사이에 순차적으로 위치되도록 본체부(21)를 선형이동시키는 선형이동구동부를 추가로 포함할 수 있다.
상기 제1이송툴(20)은, 로딩부(10)에서의 트레이(2) 이동방향(도면기준 Y축방향)과 수직방향(도면기준 X축방향)으로 배치되는 제1가이드레일(40)을 따라서 이동되도록 제1가이드레일(40)과 결합될 수 있다.
상기 제1가이드레일(40)은, 로딩부(10)에서의 트레이(2) 이동방향과 수직으로 배치되어 제1이송툴(20)을 지지함과 아울러 그 이동을 가이드하는 구성으로서 다양한 구성이 가능하다.
그리고, 상기 소자검사시스템은, 비전검사를 마친 소자(1)들이 적재된 트레이(2)들을 언로딩하는 언로딩부(30)를 추가로 포함할 수 있다.
상기 언로딩부(30)는, 로딩부(10)에서 비전검사를 마친 소자(1)들이 담긴 트레이(2)들을 전달받아 비전검사결과에 따라서 해당 트레이(2)에 분류하는 구성으로서 다양한 구성이 가능하다.
상기 언로딩부(30)는 로딩부(10)와 유사한 구성을 가지며, 소자(1)의 비전검사결과에 따라서 양품(G)의 소자(1)들이 언로딩되는 제1언로딩부(31), 불량1 또는 이상1(R1)으로 판단된 소자(1)들이 언로딩되는 제2언로딩부(32), 불량2 또는 이상2(R2)로 판단된 소자(1)들이 언로딩되는 제3언로딩부(33)를 포함할 수 있다.
그리고 상기 언로딩부(31, 32, 33)는, 로딩부(10)의 일측에 평행하게 설치되는 가이드부(미도시)와, 가이드부를 따라서 트레이(2)를 이동시키기 위한 구동부(미도시)를 포함하는 언로딩트레이부들이 평행하게 복수개로 설치될 수 있다.
한편 트레이(2)는 로딩부(10) 및 언로딩부(31, 32, 33)들 사이에서 서로 트레이이송장치(미도시)에 의하여 이송이 가능하며, 상기 언로딩부(31, 32, 33)에 반도체소자(1)가 적재되지 않은 빈 트레이(2)를 공급하는 빈트레이부(미도시)를 추가적으로 포함할 수 있다.
한편, 상기 언로딩부(31, 32, 33)에는, 각 언로딩트레이부 사이에서 각 언로딩트레이부의 분류등급에 따라서 소자(1)를 이송하기 위한 소팅툴(50)이 별도로 설치될 수 있다.
상기 소팅툴(50)은 앞서 설명한 제1이송툴(20)과 동일하거나 유사한 구성을 가지며 복렬구조 또는 일렬구조를 가질 수 있으며, 제1가이드레일(40)과 평행하게 배치되는 제2가이드레일(60)을 따라 이동가능하게 설치될 수 있다.
한편 상기 언로딩부(31, 32, 33)는, 로딩부(10)에서 로딩되는 트레이(2)에 소자(1)가 다시 적재된 후 언로딩되는 실시예를 들어 설명하였으나, 소자(1)가 담기는 포켓이 형성된 캐리어테이프에 적재시켜 언로딩하는, 소위 테이프 엔 릴 모듈을 포함하는 등 소자(1)를 담아 언로딩할 수 있는 구성이면 어떠한 구성도 가능하다.
상술한 구성을 가지는 비전검사모듈 및 소자검사시스템에서 수행되는 소자검사방법은, 소자이송을 위한 이송툴에 의해 한 쌍의 제1반사부재(122) 사이에 위치된 소자(1)의 제1평면이미지를 이미지획득부(110)를 통해 획득하는 제1평면이미지획득단계와, 소자(1)의 4개의 측면들 중 한 쌍의 제1반사부재(122)와 대향하는 한 쌍의 측면에 대한 한 쌍의 측면이미지를 이미지획득부(110)를 통해 획득하는 제1측면이미지획득단계와, 4개의 측면들 중 나머지 한 쌍의 측면이 한 쌍의 제1반사부재(122)와 대향하도록 이송툴에 의해 소자(1)를 상기 제1평면에 수직한 중심축에 대해 회전시키고, 이미지획득부(110)를 통해 나머지 한 쌍의 측면에 대한 한 쌍의 측면이미지를 획득하는 제2측면이미지획득단계를 포함할 수 있다.
상기 소자검사방법에서, 상기 이송툴은 상술한 제1이송툴(20)로서 검사대상이 되는 소자(1)를 픽업한 상태로 한 쌍의 제1반사부재(122) 사이에 위치시킨다.
상기 제1이송툴(20)에 의해 제1반사부재(122) 사이에 위치된 소자의 제1평면이미지가 획득되도록 제1광경로(L1)를 형성하기 위해서, 이동프레임부(128)는 도 3 및 도 7b에 도시된 바와 같이 제1평면이미지 및 한 쌍의 측면이미지와 간섭되지 않는 제1위치에 위치된다.
즉, 상기 제1평면이미지획득단계는, 이동프레임부(128)가 제1평면이미지 및 상기 한 쌍의 측면이미지와 간섭되지 않는 제1위치에 위치된 상태에서 수행된다.
상기 제1평면이미지획득단계에서 획득된 제1평면이미지는 소자(1)의 제1평면의 크랙, 스크래치, 볼그리드 파손, 칩핑 등의 외면검사를 위해 활용될 수 있다.
이에 더하여, 상기 제1평면이미지획득단계에서 획득된 제1평면이미지는 소자(1)의 측면이미지들 획득 전에 소자(1)의 위치를 얼라인하기 위한 셋업을 위해 활용될 수 있다.
즉, 상기 소자비전검사방법은, 제1측면이미지획득단계 전에, 제1평면이미지획득단계에서 획득된 상기 제1평면이미지를 이용하여, 한 쌍의 제1반사부재(122) 사이에 위치된 소자(1)의 위치를 얼라인하는 얼라인단계를 추가로 포함할 수 있다.
소자(1)의 한 쌍의 측면이미지획득 시, 소자(1)가 한 쌍의 반사부재(122)의 중앙부에 위치되지 않으면 한 쌍의 제2광경로(L2) 사이에 경로차가 발생되므로 흐릿한 이미지가 획득되므로 제1측면이미지획득단계 전에 얼라인단계를 수행함으로써 보다 선명한 이미지를 획득하여 비전검사의 신뢰성을 향상시킬 수 있다.
제1이송툴(20)은 소자(1)의 위치를 얼라인하며 소자(1)의 4개의 측면 들 중 한 쌍의 측면이 한 쌍의 제1반사부재(122)와 대향시킬 수 있다.
제1이송툴(20)에 의한 소자(1) 얼라인이 완료되면, 소자(1)의 한 쌍의 측면이미지를 획득한다.
소자(1)의 한 쌍의 측면이미지가 획득되도록 한 쌍의 제2광경로(L2)를 형성하기 위하여, 이동프레임부(128)는, 도 2 및 도 7a에 도시된 바와 같이, 제1평면이미지가 이미지획득부(110)에 도달하지 않도록 이동프레임부(128)가 제1평면이미지를 차단하는 제2위치로 이동된 후 수행될 수 있다. 이때, 제1평면이미지는 이동프레임부(128) 제2반사부재(124)들 중 중앙반사부재(124b)에 의해 차단될 수 있다.
즉, 상기 제1측면이미지획득단계는, 이동프레임부(128)가 제1평면이미지를 차단하여 제2광경로(L2)가 형성되는 제2위치에 위치된 상태에서 수행된다.
제1측면이미지획득단계에서 획득된 한 쌍의 측면이미지는, 도 5c와 같이, 소자(1)의 제1평면의 크랙, 스크래치, 볼그리드 파손, 칩핑 등의 외면검사를 위해 활용될 수 있다.
상기 제1측면이미지획득단계가 완료되면, 제1이송툴(20)은, 도 4에 도시된 바와 같이, 픽커회전구동부를 통해 소자(1)를 제1평면의 법선방향에 평행한 회전축을 중심으로 회전시킨다.
그에 따라, 제1측면이미지획득단계에서 소자(1)의 4개의 측면들 중 한 쌍의 측면(1b)에 대한 한 쌍의 측면이미지가 획득되었다고 가정할 때, 제2측면이미지획득단계에서는, 나머지 한 쌍의 측면(1a)에 대한 한 쌍의 측면이미지가 획득될 수 있다.
상기 제2측면이미지획득단계 또한 이동프레임부(128)가 제1평면이미지를 차단하여 제2광경로(L2)가 형성되는 제2위치에 위치된 상태에서 수행된다.
제2측면이미지획득단계에서 획득된 한 쌍의 측면이미지는, 도 5c와 같이, 소자(1)의 제1평면의 크랙, 스크래치, 볼그리드 파손, 칩핑 등의 외면검사를 위해 활용될 수 있다.
상기 제2측면이미지획득이 완료되면, 제1이송툴(20)은 소자(1)를 언로딩하기 위해 트레이(20)로 이동한다.
그런데, 복수의 소자(1)들에 대한 비전검사를 빠르게 수행하기 위해서는, 제1이송툴(20)에 의한 소자이송에 따라 비전검사가 순차적으로 수행되도록 비전검사시스템을 구성할 필요가 있다.
이하, 도 6a 내지 6b를 참조하여 제1이송툴(20)의 동작 및 그에 따른 비전검사순서를 자세히 설명한다.
도 6a에 도시된 바와 같이, 복수의 픽커(22)들이 일렬 이상으로 배치된 제1이송툴(20)에 의해 복수의 소자(1)들이 픽업된다. 제1이송툴(20)은 비전검사모듈(100)로 이동하며, 비전검사모듈(100)에서 제1이송툴(20)의 이동방향기준(X축방향) 전단의 제4픽커(22d)에 픽업된 소자(1)부터 후단의 제1픽커(22a)에 픽업된 소자(1)가 순차적으로 한 쌍의 반사부재(122) 사이에 위치되도록 단계적으로 이동한다.
이때, 비전검사모듈(100)에서는 한 쌍의 반사부재(122) 사이에 위치되는 소자(1)에 대하여 제1평면이미지 획득을 휘한 제1평면이미지획득단계 및 한 쌍의 측면(1b)에 대한 한 쌍의 측면이미지 획득을 위한 제1측면이미지획득단계가 수행될 수 있다.
제1측면이미지획득단계가 완료되면, 제1이송툴(20)은, 중심축(C)에 대해 픽커(22)를 회전시켜 다시 비전검사모듈(100)에서 제1이송툴(20)의 이동방향기준(-X축방향) 전단의 제1픽커(22a)에 픽업된 소자(1)부터 후단의 제4픽커(22d)에 픽업된 소자(1)가 순차적으로 한 쌍의 반사부재(122) 사이에 위치되도록 단계적으로 이동한다. 제1이송툴(20)은 비전검사모듈(100)을 중심으로 왕복이동하므로 여기서는 제1픽커(22a)가 가장 먼저 한 쌍의 반사부재(122) 사이로 이동된다.
이때, 비전검사모듈(100)에서는 한 쌍의 반사부재(122) 사이에 위치되는 소자(1)에 대하여 나머지 한 쌍의 측면(1a)에 대한 한 쌍의 측면이미지 획득을 위한 제2측면이미지획득단계가 수행될 수 있다.
도 8은, 제1이송툴(20)이 하나의 열로 배치되는 복수의 픽커(22)들을 구비하는 경우 제1이송툴(20)에 의한 소자(1)의 이동경로(P)를 보여주고 있다. 소자(1)의 이동경로(P)를 중심으로 양 측에 한 쌍의 제1반사부재(122)가 설치된다.
마찬가지로, 도 9는, 제1이송툴(20)이 복렬, 특히 2열로 배치되는 복수의 픽커(22)들을 구비하는 경우, 제2이송툴(20)에 의한 소자(1)의 이동경로(P1, P2)를 보여주고 있다. P1은 2열 중 하나의 열에 배치되는 소자(1)들의 이동경로 이며, P2는 2열 중 나머지 하나의 열에 배치되는 소자(1)들의 이동경로이다. 소자(1)의 이동경로(P1, P2)를 중심으로 양 측에 각각 한 쌍의 제1반사부재(122)가 설치된다.
즉, 비전검사모듈(100)을 중심으로 한 제1이송툴(20)의 선형왕복이동을 통해 복수의 소자(1)들에 대한 비전검사가 수행될 수 있으므로, 픽커(22)에 고정된 소자(1)를 한 쌍의 제1반사부재(122) 사이에 위치시키기 위한 이송툴(20) 또는 픽커(22)의 Z축 방향 구동이 필요 없어 비전검사를 위한 소자이송이 매우 빠르게 이루어질 수 있고 그에 따라 다수의 소자(1)들에 대한 비전검사속도를 크게 향상시킬 수 있는 이점이 있다.
한편 본 발명은, 비전검사모듈에 특징이 있는바, 제시된 소자검사시스템의 구성은 일 실시예일뿐, 본 발명에 따른 비전검사모듈이 본 발명의 실시예에 따른 소자검사시스템에 설치되는 것으로 한정되는 것이 아님은 물론이다.
이상은 본 발명에 의해 구현될 수 있는 바람직한 실시예의 일부에 관하여 설명한 것에 불과하므로, 주지된 바와 같이 본 발명의 범위는 위의 실시예에 한정되어 해석되어서는 안 될 것이며, 위에서 설명된 본 발명의 기술적 사상과 그 근본을 함께하는 기술적 사상은 모두 본 발명의 범위에 포함된다고 할 것이다.

Claims (19)

  1. 평면형상이 직사각형인 소자(1)의 비전검사를 수행하는 비전검사모듈(100)로서,
    소자(1)의 이미지를 획득하기 위한 이미지획득부(110)와,
    소자(1)의 제1평면에 대한 제1평면이미지가 상기 이미지획득부(110)에 도달하도록 하는 제1광경로(L1)와 상기 소자(1)의 대향하는 한 쌍의 측면에 대한 한 쌍의 측면이미지가 상기 이미지획득부(110)에 도달하도록 하는 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 광경로형성부(120)를 포함하며,
    상기 광경로형성부(120)는, 소자(1)의 대향하는 한 쌍의 측면에 대응되어 한 쌍의 측면이미지를 상기 제1평면의 법선방향에 평행하게 반사하는 한 쌍의 제1반사부재(122)를 구비하며 고정설치 되는 고정프레임부(126)와, 상기 고정프레임부(126)에 대해 이동가능하게 설치되어 위치에 따라 상기 제1광경로(L1) 및 상기 한 쌍의 제2광경로(L2)를 선택적으로 형성하는 이동프레임부(128)를 포함하는 것을 특징으로 하는 비전검사모듈(100).
  2. 청구항 1에 있어서,
    상기 이동프레임부(128)는, 상기 고정프레임부(126)에 "상기 제1광경로(L1)가 형성되는 제1위치"와 "상기 한 쌍의 제2광경로(L2)가 형성되는 제2위치" 사이에서 이동가능하게 결합되는 것을 특징으로 하는 비전검사모듈(100).
  3. 청구항 2에 있어서,
    상기 제2위치는, 상기 제1평면이미지가 상기 이미지획득부(110)에 도달하지 않도록 상기 이동프레임부(128)가 상기 제1평면이미지를 차단하는 위치에 설정되는 것을 특징으로 하는 비전검사모듈(100).
  4. 청구항 3에 있어서,
    상기 이동프레임부(128)는, 상기 제2위치에서 상기 한 쌍의 측면이미지가 상기 이미지획득부(110)의 수광면(S)의 중앙부 부근에 도달하도록 상기 한 쌍의 제1반사부재(122)에서 반사된 한 쌍의 측면이미지를 상기 이미지획득부(110)를 향해 반사시키는 복수의 제2반사부재(124)들을 포함하는 것을 특징으로 하는 비전검사모듈(100).
  5. 청구항 3에 있어서,
    상기 제1위치는, 상기 이동프레임부(128)가 상기 제1평면이미지 및 상기 한 쌍의 측면이미지와 간섭되지 않는 위치에 설정되는 것을 특징으로 하는 비전검사모듈(100).
  6. 청구항 1에 있어서,
    상기 이동프레임부(128)는, 상기 고정프레임부(126)에 상기 법선방향에 수직한 평면방향으로 선형이동가능하게 결합되며,
    상기 광경로형성부(120)는, 상기 고정프레임부(126)에 대한 상기 이동프레임부(128)의 평면방향 선형이동을 가이드하는 가이드부(129)를 추가로 포함하는 것을 특징으로 하는 비전검사모듈(100).
  7. 청구항 1에 있어서,
    상기 고정프레임부(126)는, 복수의 소자(1)들에 대한 비전검사를 수행하기 위하여 상기 한 쌍의 제1반사부재(122)를 복수개 구비하는 것을 특징으로 하는 비전검사모듈(100).
  8. 청구항 1에 있어서,
    상기 비전검사모듈(100)은, 상기 이미지획득부(110)의 위치를 조정하여 초점을 조정하는 초점조정부(130)를 추가로 포함하는 것을 특징으로 하는 비전검사모듈(100).
  9. 청구항 1에 있어서,
    상기 비전검사모듈(100)은, 상기 광경로형성부(120) 및 상기 이미지획득부(110) 사이에 설치되어 상기 제1평면이미지 및 상기 한 쌍의 측면이미지를 상기 이미지획득부(110)를 향하도록 반사시키는 주반사부재(140)를 추가로 포함하는 것을 특징으로 하는 비전검사모듈(100).
  10. 청구항 6에 있어서,
    상기 주반사부재(140)는, 광이 투과가능한 반투과재질로 이루어지며,
    상기 비전검사모듈(100)은, 상기 주반사부재(140)의 반사면의 이면에서 상기 소자(1)의 제1평면 및 각 측면에 광을 조사하는 조명부(150)를 추가로 포함하는 것을 특징으로 하는 비전검사모듈(100).
  11. 평면형상이 직사각형인 소자(1)의 비전검사를 수행하는 청구항 1 내지 청구항 10 중 어느 하나의 항의 비전검사모듈(100)에서 수행되는 소자검사방법으로서,
    소자이송을 위한 이송툴에 의해 상기 한 쌍의 제1반사부재(122) 사이에 위치된 소자(1)의 제1평면이미지를 상기 이미지획득부(110)를 통해 획득하는 제1평면이미지획득단계와,
    상기 소자(1)의 4개의 측면들 중 상기 한 쌍의 제1반사부재(122)와 대향하는 한 쌍의 측면에 대한 한 쌍의 측면이미지를 상기 이미지획득부(110)를 통해 획득하는 제1측면이미지획득단계와,
    상기 4개의 측면들 중 나머지 한 쌍의 측면이 상기 한 쌍의 제1반사부재(122)와 대향하도록 상기 이송툴에 의해 상기 소자(1)를 상기 제1평면에 수직한 중심축에 대해 회전시키고, 상기 이미지획득부(110)를 통해 상기 나머지 한 쌍의 측면에 대한 한 쌍의 측면이미지를 획득하는 제2측면이미지획득단계를 포함하는 것을 특징으로 하는 소자검사방법.
  12. 청구항 11에 있어서,
    상기 소자비전검사방법은,
    상기 제1측면이미지획득단계 전에, 상기 제1평면이미지획득단계에서 획득된 상기 제1평면이미지를 이용하여, 상기 한 쌍의 제1반사부재(122) 사이에 위치된 소자(1)의 위치를 얼라인하는 얼라인단계를 추가로 포함하는 것을 특징으로 하는 소자검사방법.
  13. 청구항 11에 있어서,
    상기 제1평면이미지획득단계는, 상기 이동프레임부(128)가 상기 제1평면이미지 및 상기 한 쌍의 측면이미지와 간섭되지 않는 제1위치에 위치된 상태에서 수행되는 것을 특징으로 하는 소자검사방법.
  14. 청구항 11에 있어서,
    상기 제1측면이미지획득단계 및 상기 제2측면이미지획득단계는, 상기 제1평면이미지가 상기 이미지획득부(110)에 도달하지 않도록 상기 이동프레임부(128)가 상기 제1평면이미지를 차단하는 제2위치로 이동된 후 수행되는 것을 특징으로 하는 소자검사방법.
  15. 복수의 소자(1)들이 적재된 트레이(2)가 로딩되는 로딩부(10)와;
    상기 로딩부(10)부의 일측에 설치되어 소자(1)에 대한 비전검사를 수행하는 청구항 1 내지 청구항 10 중 어느 하나의 항에 따른 비전검사모듈(100)과;
    상기 로딩부(10)의 트레이(2)로부터 소자(1)를 픽업하여 상기 비전검사모듈(50)로 이송하며, 비전검사를 마친 소자(1)를 트레이(2)로 이송하여 적재하는 제1이송툴(20)을 포함하는 것을 특징으로 하는 소자검사시스템.
  16. 청구항 15에 있어서,
    상기 소자검사시스템은,
    상기 비전검사를 마친 소자(1)들이 적재된 트레이(2)들을 언로딩하는 언로딩부(30)를 추가로 포함하는 것을 특징으로 하는 소자검사시스템.
  17. 청구항 15에 있어서,
    상기 제1이송툴(20)은,
    본체부(21)와, 상기 본체부(21)에 결합되어 상기 소자(1)의 제1평면의 이면(이하, 제2평면)을 흡착고정하며 하나 이상의 열로 배치되는 복수의 픽커(22)들을 포함하는 것을 특징으로 하는 소자검사시스템.
  18. 청구항 17에 있어서,
    상기 제1이송툴(20)은, 상기 픽커(22)를 상기 제1평면의 법선방향에 평행한 중심축에 대해 회전시키는 픽커회전구동부를 추가로 포함하는 것을 특징으로 하는 소자검사시스템.
  19. 청구항 18에 있어서,
    상기 제1이송툴(20)은, 일렬로 배치된 복수의 픽커(22)들에 의해 픽업된 복수의 소자(1)들이 상기 한 쌍의 제1반사부재(122) 사이에 순차적으로 위치되도록 상기 본체부(21)를 선형이동시키는 선형이동구동부를 추가로 포함하는 것을 특징으로 하는 소자검사시스템.
PCT/KR2019/002675 2018-03-07 2019-03-07 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법 WO2019172689A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980017704.0A CN111819435A (zh) 2018-03-07 2019-03-07 视觉检查模块、其元件检查系统及其元件检查方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180027084A KR20190106098A (ko) 2018-03-07 2018-03-07 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법
KR10-2018-0027084 2018-03-07

Publications (1)

Publication Number Publication Date
WO2019172689A1 true WO2019172689A1 (ko) 2019-09-12

Family

ID=67845739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/002675 WO2019172689A1 (ko) 2018-03-07 2019-03-07 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법

Country Status (3)

Country Link
KR (1) KR20190106098A (ko)
CN (1) CN111819435A (ko)
WO (1) WO2019172689A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614788A (zh) * 2019-10-04 2021-04-06 致茂电子(苏州)有限公司 电子组件检测系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11686690B2 (en) * 2020-11-12 2023-06-27 Kla Corporation System and method for inspection and metrology of four sides of semiconductor devices
KR102563511B1 (ko) * 2022-07-15 2023-08-07 시냅스이미징(주) 카메라를 이용한 다면검사장치 및 검사방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843043A (ja) * 1994-07-26 1996-02-16 Sankyo Seiki Mfg Co Ltd Icパッケージ検査用撮像装置
US20100089884A1 (en) * 2008-10-10 2010-04-15 J.P. Sercel Associates Inc. Laser machining systems and methods with moving laser scanning stage(s) providing force cancellation
KR20110038482A (ko) * 2009-10-08 2011-04-14 엘아이지에이디피 주식회사 고속기판검사장치 및 이를 이용한 고속기판검사방법
KR20170024808A (ko) * 2015-08-26 2017-03-08 (주)제이티 비전검사모듈 및 그를 가지는 소자검사시스템
KR20180010492A (ko) * 2016-07-21 2018-01-31 (주)제이티 비전검사모듈 및 그를 가지는 소자핸들러

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101377568A (zh) * 2008-08-28 2009-03-04 中国电子科技集团公司第四十五研究所 全自动led引线键合机的双光路成像系统
KR20170088071A (ko) * 2016-01-22 2017-08-01 (주)제이티 비전검사모듈, 비전검사모듈의 초점거리조절모듈, 및 그를 가지는 소자검사시스템
CN106443993B (zh) * 2016-11-28 2019-06-21 中国航空工业集团公司洛阳电光设备研究所 一种紧凑型双光路三视场长波红外系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0843043A (ja) * 1994-07-26 1996-02-16 Sankyo Seiki Mfg Co Ltd Icパッケージ検査用撮像装置
US20100089884A1 (en) * 2008-10-10 2010-04-15 J.P. Sercel Associates Inc. Laser machining systems and methods with moving laser scanning stage(s) providing force cancellation
KR20110038482A (ko) * 2009-10-08 2011-04-14 엘아이지에이디피 주식회사 고속기판검사장치 및 이를 이용한 고속기판검사방법
KR20170024808A (ko) * 2015-08-26 2017-03-08 (주)제이티 비전검사모듈 및 그를 가지는 소자검사시스템
KR20180010492A (ko) * 2016-07-21 2018-01-31 (주)제이티 비전검사모듈 및 그를 가지는 소자핸들러

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112614788A (zh) * 2019-10-04 2021-04-06 致茂电子(苏州)有限公司 电子组件检测系统
CN112614788B (zh) * 2019-10-04 2024-05-24 致茂电子(苏州)有限公司 电子组件检测系统

Also Published As

Publication number Publication date
CN111819435A (zh) 2020-10-23
KR20190106098A (ko) 2019-09-18

Similar Documents

Publication Publication Date Title
WO2018016889A1 (ko) 비전검사모듈 및 그를 가지는 소자핸들러
WO2019172689A1 (ko) 비전검사모듈, 그를 가지는 소자검사시스템 및 그를 이용한 소자검사방법
JP6999691B2 (ja) 光学センサを有するコンポーネント受け取り装置
KR100869539B1 (ko) 반도체디바이스 검사장치
US20080014073A1 (en) Robotic die sorter with optical inspection system
US7280197B1 (en) Wafer edge inspection apparatus
WO2018131921A1 (ko) 소자핸들러
JPH0758176A (ja) 半導体ウェハの形状認識装置
WO2017119786A1 (ko) 이송툴모듈 및 그를 가지는 소자핸들러
WO2012033301A4 (ko) 웨이퍼 검사장치 및 이를 구비한 웨이퍼 검사 시스템
US7869021B2 (en) Multiple surface inspection system and method
KR102136084B1 (ko) 웨이퍼의 에지 영역 검사 시스템
KR101442792B1 (ko) 사파이어 웨이퍼의 검사 방법
WO2022211291A1 (ko) 콘택트렌즈 패키지 검사장치 및 검사방법
WO2018146657A1 (ko) 검사 장치, 및 그 장치를 이용한 검사 방법
WO2017052090A1 (ko) 소자핸들러
WO2009119983A2 (ko) 중복 영상을 이용한 에프피디 기판 및 반도체 웨이퍼 검사시스템
WO2021033895A1 (ko) 보정용 패널, 패널검사용 보정장치 및 패널 검사장치의 보정방법
WO2017126854A1 (ko) 비전검사모듈, 비전검사모듈의 초점거리조절모듈, 및 그를 가지는 소자검사시스템
WO2024043403A1 (ko) 반도체 웨이퍼 결함 검사 장치 및 결함 검사 방법
WO2024039231A1 (ko) 비전검사모듈, 그를 포함하는 소자검사시스템 및 비전검사방법
WO2023008637A1 (ko) 원형 배터리 검사장치
WO2017034184A1 (ko) 비전검사모듈 및 그를 가지는 소자검사시스템
WO2017023130A1 (ko) 프로브핀 본딩 장치
WO2020231113A1 (ko) 치수 측정용 지그 및 그를 포함하는 치수 측정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19765092

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19765092

Country of ref document: EP

Kind code of ref document: A1