WO2019171708A1 - 振動記録装置 - Google Patents

振動記録装置 Download PDF

Info

Publication number
WO2019171708A1
WO2019171708A1 PCT/JP2018/047148 JP2018047148W WO2019171708A1 WO 2019171708 A1 WO2019171708 A1 WO 2019171708A1 JP 2018047148 W JP2018047148 W JP 2018047148W WO 2019171708 A1 WO2019171708 A1 WO 2019171708A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
calculation
unit
vibration
acceleration
Prior art date
Application number
PCT/JP2018/047148
Other languages
English (en)
French (fr)
Inventor
亮太 中尾
里見 剛
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2019171708A1 publication Critical patent/WO2019171708A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V1/00Seismology; Seismic or acoustic prospecting or detecting

Definitions

  • the present invention relates to a vibration recording apparatus that records vibration data.
  • a vibration storage device that records a vibration history only when vibration occurs is disclosed in Patent Document 1.
  • the vibration storage device disclosed in Patent Document 1 since the IC chip is driven only when vibration is generated, power consumption in a state where vibration is not generated can be reduced.
  • the vibration storage device disclosed in Patent Document 1 includes the first and second accelerometers, a delay member for transmitting the vibrations of the first accelerometer with delay to the second accelerometer, Is necessary and has a complicated configuration.
  • an object of the present invention is to provide a vibration recording apparatus that can reduce power consumption with a simple configuration.
  • a vibration recording apparatus includes an acceleration detection unit that periodically detects acceleration, a calculation unit that calculates vibration intensity from a detection result of the acceleration detection unit, and the calculation unit. And a control device including a storage unit that stores a calculation result, wherein the calculation unit consumes more power than the calculation state from the calculation state after a first predetermined time has elapsed from a timing when the vibration intensity exceeds a threshold value. It is the structure (1st structure) which changes to a small 1st state.
  • the calculation unit may be configured to vary the first predetermined time according to the characteristics of the vibration intensity (second configuration).
  • a vibration recording apparatus includes an acceleration detection unit that periodically detects acceleration, a calculation unit that calculates vibration intensity from a detection result of the acceleration detection unit, and the A control unit including a storage unit that stores a calculation result of the calculation unit, the calculation unit from the calculation state to the calculation state after a second predetermined time from the timing when the vibration intensity becomes a maximum value It is the structure (3rd structure) which changes to the 1st state in which power consumption is smaller than this.
  • the calculation unit consumes more than the calculation state from the calculation state after a second predetermined time has elapsed from the timing when the vibration intensity reaches the maximum value.
  • a configuration (fourth configuration) for transitioning to a first state with low power may be used.
  • the first predetermined time may be longer than the second predetermined time (fifth configuration).
  • the calculation unit is configured to vary the second predetermined time according to the characteristics of the vibration intensity (sixth configuration). Also good.
  • the acceleration detection unit outputs an interrupt signal when the acceleration exceeds a threshold value
  • the calculation unit is configured to output the interrupt when not in the calculation state.
  • a configuration (seventh configuration) for transitioning to the calculation state when a signal is received may be employed.
  • the calculation unit consumes more than the first state from the first state when the first state continues for a predetermined time.
  • a configuration (eighth configuration) for transition to a second state with low power may be used.
  • the output data rate of the arithmetic unit is higher in the first state than in the second state (the ninth configuration). ).
  • the sampling rate of the acceleration detection unit is such that the calculation unit is in the first state than when the calculation unit is in the second state.
  • a higher configuration may be used.
  • the calculation unit determines the period until the first predetermined time elapses from the timing when the vibration intensity exceeds a threshold value.
  • the first A configuration in which a correction value corresponding to the attitude angle of the vibration recording device is calculated and updated in at least one state before the transition to the first state or the second state, and the vibration intensity is calculated using the correction value (12th structure) may be sufficient.
  • the calculation unit sets a correction value according to a posture angle of the acceleration detection unit.
  • the storage unit stores the correction value, and the calculation unit uses the correction value stored in the storage unit (a thirteenth configuration) when calculating the vibration intensity. May be.
  • the calculation unit does not calculate the vibration intensity when the acceleration is equal to or greater than a predetermined value, and from the calculation state after a predetermined time has elapsed.
  • a configuration for changing to the first state (fourteenth configuration) may be employed.
  • the vibration recording apparatus having any one of the first to fourteenth configurations includes a substrate on which the acceleration detection unit and the calculation unit are mounted, and the thickness of the substrate is equal to or greater than the thickness of the acceleration detection unit. (15th structure) may be sufficient.
  • the acceleration detection unit may be configured to be disposed approximately at the center of the substrate (sixteenth configuration).
  • the top view shape of the substrate is a substantially rectangular rectangle, and includes a semiconductor package that seals the arithmetic unit and the storage unit, and the longitudinal direction of the substrate In the direction, the distance from one end of the substrate to the acceleration detection unit and the distance from the semiconductor package to the other end of the substrate are respectively from the distance from the acceleration detection unit to the semiconductor package.
  • a short configuration (a seventeenth configuration) may be used.
  • the top view shape of the substrate may be a rectangle, and solder pads may be formed on a plurality of sides of the rectangle (an eighteenth configuration).
  • the figure which shows the example of 1 structure of a vibration recording device Flow chart showing an outline of an operation example of the vibration recording apparatus
  • a flowchart showing a part of the initialization process Flow chart showing the operation of the vibration recording apparatus related to the arithmetic processing using the correction value
  • Time chart showing the state of the vibration recorder
  • Time chart showing the state of the vibration recorder
  • Time chart showing the state of the vibration recorder
  • Flow chart showing noise determination processing Time chart showing the state of the vibration recorder
  • the perspective view which looked at one structural example of the vibration recording device from the lower side Top view of vibration recording device
  • Cross section of vibration recorder 8A and 8B are top views of the vibration recording apparatus shown in FIGS.
  • the vibration recording apparatus shown in FIG. 1 includes an acceleration detection unit 1, a calculation unit 2, a noise determination unit 3, an earthquake determination unit 4, an input / output unit 5, and a storage unit 6.
  • An MCU (Micro Controller Unit) 7 sealed in the semiconductor package includes a calculation unit 2, a noise determination unit 3, an earthquake determination unit 4, an input / output unit 5, and a storage unit 6.
  • Acceleration detector 1 periodically detects acceleration.
  • a triaxial acceleration sensor is used as the acceleration detection unit 1.
  • the acceleration detection unit 1 increases the output data rate (ODR) according to an instruction from the calculation unit 2 when the calculation unit 2 is in the calculation state or the first standby state, and the calculation unit 2 is in the second standby state. At some point, lower the ODR.
  • the acceleration detection unit 1 performs sampling at, for example, 100 Hz when the ODR is increased, and performs sampling at, for example, 3.125 Hz when the ODR is decreased.
  • the acceleration detection unit 1 outputs an interrupt signal when the acceleration exceeds a threshold value when the calculation unit 2 is not in the calculation state.
  • a pulse signal is used as the interrupt signal.
  • the calculation unit 2 calculates the vibration intensity from the detection result of the acceleration detection unit 1.
  • the SI value and the PGA value are calculated as the vibration intensity.
  • the calculation unit 2 outputs various setting values such as a setting value for designating the sampling rate of the acceleration detection unit 1 and a setting value for notifying whether or not the calculation unit 2 is in a calculation state to the acceleration detection unit 1.
  • the calculation unit 2 executes the above calculation when it is in a calculation state.
  • the calculation unit 2 stores data being calculated in the RAM in the calculation unit 2 when the calculation unit 2 is in the first standby state.
  • the calculation unit 2 checks whether an interrupt signal has been received from the acceleration detection unit 1 when not in the calculation state.
  • the computing unit 2 consumes less current and power consumption than the computation state when in the first standby state, and consumes less current and power consumption than the first standby state when in the second standby state. Become.
  • Calculating unit 2 also calculates triaxial acceleration.
  • the acceleration calculated by the calculation unit 2 includes not only the acceleration itself but also a calculation result obtained by calculation using the acceleration.
  • the noise determination unit 3 performs noise determination based on the acceleration and sends the noise determination result to the calculation unit 2.
  • the calculation unit 2 determines whether or not to calculate the SI value and the PGA value according to the noise determination result. Details of the noise determination will be described later.
  • the earthquake determination unit 4 determines the presence or absence of an earthquake based on the SI value output from the calculation unit 2, and sends the earthquake determination result to the calculation unit 2.
  • the SI value exceeds the threshold value, it is determined that an earthquake has occurred.
  • the PGA value output from the calculation unit 2 may be supplementarily used to improve the determination accuracy.
  • the storage unit 5 stores the earthquake determination result, SI value, and PGA value output from the calculation unit 2 in a nonvolatile manner.
  • the input / output unit 6 outputs the earthquake determination result output from the calculation unit 2 to the outside of the vibration recording device without delay. Further, the input / output unit 6 outputs the SI value and the PGA value stored in the storage unit 5 in a nonvolatile manner to the outside of the vibration recording device in response to a history data output request from the outside of the vibration recording device. The input / output unit 6 outputs the earthquake determination result stored in the storage unit 5 in a nonvolatile manner when the SI value and the PGA value stored in the storage unit 5 in a nonvolatile manner are output to the outside of the vibration recording device. In addition, it may be output to the outside of the vibration recording apparatus.
  • FIG. 2A is a flowchart illustrating an outline of an operation example of the vibration recording apparatus.
  • the vibration recording device starts the flow operation shown in FIG. 2A.
  • step S1 the acceleration detection unit 1 and the MCU 7 perform initialization (step S1).
  • step S2 the calculation unit 2 enters a standby state (step S2).
  • step S3 the calculation unit 2 confirms whether or not an interrupt signal has been received from the acceleration detection unit 1. If an interrupt signal has not been received, the process returns to step S2, and if an interrupt signal has been received, the process proceeds to step S4.
  • step S4 the calculation unit 2 enters a calculation state.
  • step S5 following step S4, the calculation unit 2 determines whether or not the maximum value of the SI value has been detected.
  • the current SI value calculation result is compared with the previous SI value calculation result. If the current SI value calculation result is smaller than the previous SI value calculation result, the previous SI value calculation result is compared.
  • the value calculation result may be the maximum value of the SI value.
  • step S6 If the maximum value of the SI value is not detected, the process proceeds to step S6. If the maximum value of the SI value is detected, the process proceeds to step S7.
  • step S6 the calculation unit 2 determines whether an earthquake is detected based on the earthquake determination result output from the earthquake determination unit 4.
  • step S4 If the earthquake is not detected, the process returns to step S4, and if the earthquake is detected, the process proceeds to step S7.
  • step S7 the calculation unit 2 confirms that the first predetermined time has elapsed from the detection timing of the earthquake or that the second predetermined time has elapsed from the detection timing of the maximum value, and proceeds to step S8 after the confirmation. . If there is an overlap period between the period from the earthquake detection timing until the first predetermined time elapses and the period from the maximum value detection timing until the second predetermined time elapses, the earthquake detection timing After the period until the first predetermined time elapses, the process proceeds to step S8.
  • the first predetermined time, the second predetermined time, and the predetermined time described later may be different in length, and at least two may be the same length.
  • step S8 the calculation unit 2 calculates the correction value and updates the correction value.
  • the acceleration detection unit 1 In order to accurately detect earthquakes, it is necessary to use biaxial data horizontal to the direction of gravity of the earth. Therefore, it is desirable to install the acceleration detection unit 1 so that each of the three axes of the acceleration detection unit 1 is horizontal or vertical with respect to the direction of gravity of the earth. However, the acceleration detector 1 may be installed at an inclination with respect to the ideal installation state. Therefore, the calculation unit 2 calculates a correction value used to correct the value that should be originally indicated (the output value obtained by the acceleration detection unit 1 in the ideal installation state).
  • the process of step S8 When the process of step S8 is completed, the process returns to step S2. By returning to step S2, power consumption can be reduced.
  • the installation state may change due to the vibration. Therefore, before the calculation unit 2 transitions from the first standby state or the second standby state to the calculation state, during the calculation state, or before the transition from the calculation state to the first standby state or the second standby state.
  • the latest correction value may be calculated and the correction value updated by at least one of the above.
  • the method for calculating the angle from the acceleration is defined by the following equation.
  • theta is x axis angle
  • [psi angles around the y-axis, phi is z axis of the angle
  • a X is the x-axis direction of the acceleration
  • a Y is y-axis direction of the acceleration
  • a Z is the z-axis direction Acceleration.
  • FIG. 2A the initial (before update) correction value is calculated by the calculation unit 2 and stored in the storage unit 5 in step S1.
  • FIG. 2B is a flowchart showing a part of the processing (initialization processing) in step S1.
  • step S1a the acceleration detector 1 samples acceleration data.
  • step S1b following step S1a the calculation unit 2 calculates the attitude angle of the acceleration detection unit 1. Specifically, the calculation unit 2 calculates the gravity direction of the earth based on the relationship between the three-axis direction of the acceleration detection unit 1 and the gravity direction of the earth obtained from the three-axis acceleration data sampled by the acceleration detection unit 1. The attitude angle of the acceleration detector 1 is calculated with reference to.
  • step S1c the calculation unit 2 calculates a correction value (rotation matrix component) based on the attitude angle of the acceleration detection unit 1.
  • the rotation matrix in which each component is calculated in step S1c is for calculating and rotating the three axes of the acceleration detector 1 so that each of the three axes of the acceleration detector 1 is horizontal or perpendicular to the direction of the earth's gravity. Is a matrix.
  • step S1d following step S1c the storage unit 5 stores a correction value (rotation matrix component).
  • the correction value (rotation matrix component) stored by the storage unit 5 is used in the calculation process executed by the calculation unit 2 in the calculation state of step S4 shown in FIG. 2A.
  • FIG. 2C is a flowchart showing the operation of the vibration recording apparatus related to the arithmetic processing using the correction value.
  • the vibration recording apparatus performs the operation of the flowchart shown in FIG. 2C in the calculation state of step S4 shown in FIG. 2A.
  • step S4a the acceleration detector 1 samples acceleration data.
  • step S4b subsequent to step S4a, the calculation unit 2 rotates the three-axis acceleration data sampled by the acceleration detection unit 1 by calculation using the correction values (rotation matrix components) stored in the storage unit 5. .
  • the acceleration data sampled in step S4a is rotationally converted into three-axis acceleration data in a state where each of the three axes of the acceleration detector 1 is horizontal or perpendicular to the gravity direction of the earth in the calculation. Is done. That is, the acceleration data that is affected by the attitude angle of the acceleration detection unit 1 is converted into acceleration data that is not affected by the attitude angle of the acceleration detection unit 1 by the process of step S4b.
  • step S4c the calculation unit 2 calculates the SI value and the PGA value using the acceleration data after the rotation conversion.
  • FIGS. 3 to 5 are time charts showing the state of the vibration recording device in three patterns having different vibration characteristics.
  • P1 and P2 are the maximum values of SI values.
  • TH is a threshold value of SI value used for earthquake detection.
  • I1 is the current consumption of the computing unit 2 in the second standby state.
  • I2 is the current consumption of the calculation unit 2 in the first standby state.
  • I3 is the current consumption of the calculation unit 2 when the calculation is not executed in the calculation state.
  • I4 is the current consumption of the calculation unit 2 when the calculation is being executed in the calculation state.
  • Td is the first predetermined time.
  • Tp is the second predetermined time.
  • Ts is a predetermined time.
  • Td is equal to or greater than Tp, for example, Td is 3 minutes, and Tp is 10 seconds.
  • the start timing of Td is the timing when the consumption current of the calculation unit 2 falls for the first time since the SI value exceeds the threshold value TH.
  • the start timing of Tp is the timing when the consumption current of the computing unit 2 falls only after the SI value reaches the maximum value.
  • the transition timing from the calculation state to the first standby state is a timing at which the consumption current of the calculation unit 2 falls only after Td or Tp ends.
  • T1 is the time during which the SI value and the PGA value are calculated.
  • T2 is a period for calculating the SI value and the PGA value.
  • T1 to T3 are fixed values.
  • # 1 is the second standby state.
  • # 2 is a calculation state.
  • # 3 is the first standby state.
  • # 4 is a calculation state in which a correction value is calculated. In FIGS. 3 to 5, illustration regarding # 4 is partially omitted.
  • the calculation unit 2 first calculates triaxial acceleration (step S101).
  • the acceleration calculated by the calculation unit 2 includes not only the acceleration itself but also the calculation result obtained by the calculation using the acceleration, so that the acceleration calculation result can also be referred to as acceleration.
  • step S103 the noise determination unit 3 determines whether the vibration is noise or not.
  • step S104 following step S103 the calculation unit 2 continues the calculation state and ends the noise determination process.
  • step S105 the noise determination unit 3 determines that a sudden acceleration peak with sudden and no continuity that can be clearly determined as noise appears, and determines that the vibration is noise.
  • step S106 the calculation unit 2 transitions from the calculation state to the standby state after a predetermined time has elapsed, and ends the noise determination process.
  • FIG. 7 is a time chart showing an example of the state of the vibration recording apparatus related to the noise determination process.
  • FIGS. 8A and 8B are perspective views showing an example of the structure of the vibration recording apparatus.
  • a one-dot chain line arrow in FIG. 8A indicates the direction of each axis of acceleration detected by the acceleration detector 1.
  • ten solder pads 9 (solder pads 9_1 to 9_10) serving as places where solder used when the vibration recording apparatus is mounted on another apparatus are provided on the substrate 8.
  • the substrate 8 is a printed circuit board.
  • the solder pad 9_1 is a pad for inputting an I2C clock signal, and is connected to the MCU 7 by a printed wiring.
  • the solder pad 9_2 is a pad for inputting / outputting I2C data, and is connected to the MCU 7 by a printed wiring.
  • the solder pad 9_3 is a pad for inputting a program writing clock signal, and is connected to the MCU 7 by a printed wiring.
  • the solder pad 9_4 is a pad for inputting / outputting program writing data, and is connected to the MCU 7 by a printed wiring.
  • the solder pad 9_5 is a pad for inputting a reset signal, and is connected to the MCU 7 by a printed wiring.
  • the solder pad 9_6 is a pad for interrupting and outputting an earthquake determination result, and is connected to the MCU 7 by a printed wiring.
  • the solder pad 9_7 is a pad for interrupting and outputting an access permission notification, and is connected to the MCU 7 by a printed wiring. During the calculation of the MCU 7, since access to the MCU 7 from outside is prohibited, it is notified that the access is impossible.
  • the solder pad 9_8 is a pad for inputting a mode signal for switching between the normal mode (vibration measurement mode) and the maintenance mode, and is connected to the MCU 7 by printed wiring.
  • the solder pad 9_9 is a pad connected to the ground potential and is connected to the acceleration detection unit 1 by a printed wiring.
  • the solder pad 9_10 is a pad to which a power supply voltage is applied, and is connected to the acceleration detection unit 1 by a printed wiring.
  • FIG. 9A is a top view of the vibration recording apparatus.
  • the vibration recording apparatus shown in FIG. 9A has the same basic structure as that of the vibration recording apparatus shown in FIGS. 8A and 8B, except that the acceleration detection unit 1 is arranged at substantially the center of the substrate 8.
  • FIG. 8B the vibration recording apparatus shown in FIG. 8B.
  • this arrangement makes it difficult for the detection result of the acceleration detection unit 1 to be affected by the bending of the substrate 8.
  • Solder pads 9 serving as places where solder used for mounting the vibration recording apparatus on another apparatus is provided are formed on two sides of the substrate 8. By forming the solder pads 9 on a plurality of sides of the substrate 8, the substrate 8 is firmly fixed, and the substrate 8 is difficult to bend.
  • the solder pads 9 are preferably formed on a plurality of sides of the substrate 8 having a rectangular shape when viewed from above. Most preferably, it is formed on four sides of the substrate 8.
  • FIG. 9B is a schematic cross-sectional view of the vibration recording apparatus when the vibration recording apparatus is cut along the one-dot chain line shown in FIG. 9A.
  • the thickness h1 of the substrate 8 is preferably equal to or greater than the thickness h2 of the acceleration detection unit 1. Thereby, the board
  • FIG. 10 is a top view of the vibration recording apparatus shown in FIGS. 8A and 8B. Also in this example, it is desirable that the thickness of the substrate 8 is equal to or greater than the thickness of the acceleration detection unit 1.
  • a distance L1 from one end of the substrate 8 to the acceleration detection unit 1 and a distance L3 from the MCU 7 to the other end of the substrate 1 are respectively acceleration detection units. It is shorter than the distance L2 from 1 to MCU7. Thereby, the acceleration detection part 1 becomes difficult to receive the influence of the heat from MCU7.
  • the substrate 8 can be made smaller than the example shown in FIG. 9A.
  • the distance L1 from one end of the substrate 8 to the acceleration detecting unit 1 and the distance L3 from the MCU 7 to the other end of the substrate 1 may be substantially the same.
  • the vibration recording apparatus that detects an earthquake has been described.
  • a vibration recording apparatus that records vibrations other than earthquakes may be used.
  • the noise determination process shown in FIG. 6 may be applied to a vibration recording apparatus that does not perform the operation shown in FIG. 2A.
  • the noise determination process shown in FIG. 6 may be applied to the vibration recording apparatus disclosed in Patent Document 1.
  • the length of the first predetermined time Td is not limited to a fixed value. That is, the first predetermined time Td may be variable. For example, the first predetermined time Td may be varied according to the vibration intensity characteristics.
  • the length of the second predetermined time Tp is not limited to a fixed value. That is, the second predetermined time Tp may be variable. For example, the second predetermined time Tp may be varied according to the vibration intensity characteristics.
  • the vibration strength characteristics include an average value of SI value change rate, an average value of SI value, an average value of change rate of PGA value, an average value of PGA value, and the like.
  • the first predetermined time Td may be varied according to any one or a combination of the vibration intensity characteristics.
  • the second predetermined time Tp may be varied according to any one or a plurality of combinations of the vibration intensity characteristics.
  • Step S4 ′ when the vibration recording apparatus varies the first predetermined time Td and the second predetermined time Tp according to the average value of the change rate of the SI value, the steps S4 and S5 are performed as shown in the flowchart of FIG. Step S4 ′ may be provided between them.
  • the calculation unit 2 updates the set values of the first predetermined time Td and the second predetermined time Tp
  • the storage unit 5 updates the first predetermined time Td and the second predetermined time Tp after the update. This is a step of storing each set value.
  • step S4 ′ calculates the average of the SI value change rates at the constant time ⁇ 1 that is closest to the time TM_1.
  • Each set value of the first predetermined time Td and the second predetermined time Tp according to the value may be calculated.
  • the calculation unit 2 calculates the average of the change rate of the SI value at a certain fixed time ⁇ x closest to the time TM_x.
  • Each set value of the first predetermined time Td and the second predetermined time Tp according to the value may be calculated.
  • the set value of the first predetermined time Td that is actually used when determining the transition timing of the state of the vibration recording apparatus is the SI value at the constant time ⁇ y that is closest to the time TM_y when the SI value exceeds the threshold value TH. It becomes a set value of the first predetermined time Td according to the average value of the change rate.
  • the set value of the second predetermined time Tp that is actually used when determining the transition timing of the state of the vibration recording device is the SI at the constant time ⁇ z that is closest to the time TM_z at which the SI value becomes the maximum value P1. This is a set value for the second predetermined time Tp corresponding to the average value change rate.
  • the above-mentioned fixed times ⁇ 1, ⁇ y, ⁇ y, and ⁇ z are all the same length.
  • the first predetermined time Td may be varied according to control from an external device.
  • the second predetermined time Tp may be varied according to control from an external device.
  • a first management device that is wired to the vibration recording device and manages the vibration recording device, and a second that is wirelessly connected to the first management device and manages the first management device. Examples include management devices.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Remote Sensing (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

振動記録装置は、周期的に加速度を検出する加速度検出部と、前記加速度検出部の検出結果から振動強度を演算する演算部と、前記演算部の演算結果を記憶する記憶部と、を備える。前記演算部は、前記振動強度が閾値を超えたタイミングから第1の所定時間経過後に、演算状態から前記演算状態よりも消費電力が小さい第1の状態に遷移する。

Description

振動記録装置
 本発明は、振動データを記録する振動記録装置に関する。
 振動が生じたときのみ、その振動履歴を記録する振動記憶装置が特許文献1に開示されている。特許文献1に開示されている振動記憶装置では、振動が生じたときのみICチップが駆動するので、振動が生じていない状態における消費電力を低減することができる。
特開2006-38482号公報
 しかしながら、特許文献1に開示されている振動記憶装置は、第1及び第2の加速度計と、第1の加速度計の振動を第2の加速度計に遅延して伝達するための遅延部材と、が必要であり、複雑な構成である。
 本発明は、上記の状況に鑑み、簡易な構成で消費電力を低減することができる振動記録装置を提供することを目的とする。
 本明細書中に開示されている一局面に係る振動記録装置は、周期的に加速度を検出する加速度検出部と、前記加速度検出部の検出結果から振動強度を演算する演算部及び前記演算部の演算結果を記憶する記憶部を備える制御装置と、を備え、前記演算部は、前記振動強度が閾値を超えたタイミングから第1の所定時間経過後に、演算状態から前記演算状態よりも消費電力が小さい第1の状態に遷移する構成(第1の構成)である。
 また、上記第1の構成の振動記録装置において、前記演算部は、前記振動強度の特性に応じて前記第1の所定時間を可変する構成(第2の構成)であってもよい。
 また、本明細書中に開示されている他の局面に係る振動記録装置は、周期的に加速度を検出する加速度検出部と、前記加速度検出部の検出結果から振動強度を演算する演算部及び前記演算部の演算結果を記憶する記憶部を備える制御装置と、を備え、前記演算部は、前記振動強度が極大値になったタイミングから第2の所定時間経過後に、前記演算状態から前記演算状態よりも消費電力が小さい第1の状態に遷移する構成(第3の構成)である。
 また、上記第1又は第2の構成の振動記録装置において、前記演算部は、前記振動強度が極大値になったタイミングから第2の所定時間経過後に、前記演算状態から前記演算状態よりも消費電力が小さい第1の状態に遷移する構成(第4の構成)であってもよい。
 また、上記第4の構成の振動記録装置において、前記第1の所定時間は前記第2の所定時間以上である構成(第5の構成)であってもよい。
 また、上記第3~第5いずれかの構成の振動記録装置において、前記演算部は、前記振動強度の特性に応じて前記第2の所定時間を可変する構成(第6の構成)であってもよい。
 また、上記第1~第6いずれかの構成の振動記録装置において、前記加速度検出部は、前記加速度が閾値を超えたら割り込み信号を出力し、前記演算部は、前記演算状態でないときに前記割り込み信号を受け取ると、前記演算状態に遷移する構成(第7の構成)であってもよい。
 また、上記第1~第7いずれかの構成の振動記録装置において、前記演算部は、前記第1の状態が所定時間継続した場合に、前記第1の状態から前記第1の状態よりも消費電力が小さい第2の状態に遷移する構成(第8の構成)であってもよい。
 また、上記第8の構成の振動記録装置において、前記演算部の出力データレートは、前記第2の状態であるときよりも前記第1の状態であるときの方が高い構成(第9の構成)であってもよい。
 また、上記第8又は第9の構成の振動記録装置において、前記加速度検出部のサンプリングレートは、前記演算部が前記第2の状態であるときよりも前記演算部が前記第1の状態であるときの方が高い構成(第10の構成)であってもよい。
 また、上記第8~第10いずれかの構成の振動記録装置において、前記振動強度が閾値を超えたタイミングから前記第1の所定時間が経過する迄の期間と、前記振動強度が極大値になったタイミングから前記第2の所定時間が経過する迄の期間とに重複期間がある場合、前記演算部は、前記振動強度が閾値を超えたタイミングから前記第1の所定時間が経過する迄の期間が終了した後に前記演算状態から前記第1の状態に遷移する構成(第11の構成)であってもよい。
 また、上記第1~第11いずれかの構成の振動記録装置において、前記第1の状態若しくは前記第2の状態から前記演算状態に遷移する前、演算状態中、又は、前記演算状態から前記第1の状態若しくは前記第2の状態に遷移する前の少なくとも一つで前記振動記録装置の姿勢角度に応じた補正値を演算して更新し、前記補正値を用いて前記振動強度を演算する構成(第12の構成)であってもよい。
 また、上記第1~第12いずれかの構成の振動記録装置において、前記加速度検出部及び前記制御装置の初期化の際に、前記演算部は前記加速度検出部の姿勢角度に応じた補正値を演算し、前記記憶部は前記補正値を記憶し、前記演算部は、前記振動強度を演算する際に、前記記憶部に記憶されている前記補正値を用いる構成(第13の構成)であってもよい。
 また、上記第1~第13いずれかの構成の振動記録装置において、前記演算部は、前記加速度が所定値以上であれば、前記振動強度を演算することなく、所定時間経過後に前記演算状態から前記第1の状態に遷移する構成(第14の構成)であってもよい。
 また、上記第1~第14いずれかの構成の振動記録装置において、前記加速度検出部及び前記演算部が実装される基板を備え、前記基板の厚みは、前記加速度検出部の厚み以上である構成(第15の構成)であってもよい。
 また、上記第15の構成の振動記録装置において、前記加速度検出部は前記基板の略中央に配置される構成(第16の構成)であってもよい。
 また、上記第15又は第16の構成の振動記録装置において、前記基板の上面視形状は略長方形の矩形であり、前記演算部及び前記記憶部を封止する半導体パッケージを備え、前記基板の長手方向において、前記基板の一方の端部から前記加速度検出部までの距離と、前記半導体パッケージから前記基板の他方の端部までの距離とがそれぞれ、前記加速度検出部から前記半導体パッケージまでの距離より短い構成(第17の構成)であってもよい。
 また、上記第17の構成の振動記録装置において、前記基板の上面視形状が矩形であり、はんだパッドが前記矩形の複数の辺に形成されている構成(第18の構成)であってもよい。
 本明細書中に開示されている発明によれば、簡易な構成で消費電力を低減することができる振動記録装置を提供することが可能となる。
振動記録装置の一構成例を示す図 振動記録装置の動作例の概略を示すフローチャート 初期化処理の一部を示すフローチャート 補正値を用いた演算処理に関連する振動記録装置の動作を示すフローチャート 振動記録装置の状態を示すタイムチャート 振動記録装置の状態を示すタイムチャート 振動記録装置の状態を示すタイムチャート ノイズ判定処理を示すフローチャート 振動記録装置の状態を示すタイムチャート 振動記録装置の一構造例を上側から見た斜視図 振動記録装置の一構造例を下側から見た斜視図 振動記録装置の上面図 振動記録装置の断面図 図8A及び図8Bに示す振動記録装置の上面図 振動記録装置の他の動作例の概略を示すフローチャート SI値のタイムチャート
<振動記録装置の構成例>
 図1に示す振動記録装置は、加速度検出部1と、演算部2と、ノイズ判定部3と、地震判定部4と、入出力部5と、記憶部6と、を備える。半導体パッケージに封止されるMCU(Micro Controller Unit)7は、演算部2と、ノイズ判定部3と、地震判定部4と、入出力部5と、記憶部6と、を含む。
 加速度検出部1は、周期的に加速度を検出する。本実施形態では、3軸加速度センサを加速度検出部1として用いる。加速度検出部1は、演算部2からの指示に従って、演算部2が演算状態又は第1の待機状態であるときに出力データレート(ODR)を高くし、演算部2が第2の待機状態であるときにODRを低くする。加速度検出部1は、ODRを高くしているときに例えば100Hzでサンプリングを行い、ODRを低くしているときに例えば3.125Hzでサンプリングを行う。
 加速度検出部1は、演算部2が演算状態ではないときに加速度が閾値を超えたら割り込み信号を出力する。本実施形態では、割り込み信号としてパルス信号を用いる。
 演算部2は、加速度検出部1の検出結果から振動強度を演算する。本実施形態では、振動強度としてSI値及びPGA値を演算する。また、演算部2は、加速度検出部1のサンプリングレートを指定する設定値、演算部2が演算状態であるか否かを通知する設定値等の各種設定値を加速度検出部1に出力する。
 演算部2は、演算状態であるときに上記の演算を実行する。演算部2は、第1の待機状態であるときに、演算途中のデータを演算部2内のRAMに保存する。演算部2は、演算状態ではないときに、加速度検出部1から割り込み信号を受け取ったか否かを確認する。
 演算部2は、第1の待機状態であるときに演算状態よりも消費電流ひいては消費電力が小さくなり、第2の待機状態であるときに第1の待機状態よりも消費電流ひいては消費電力が小さくなる。
 演算部2は、3軸の加速度も演算する。なお、演算部2によって演算される加速度は、加速度自体のみならず、加速度を用いた演算により得られる演算結果も含まれる。ノイズ判定部3は、加速度に基づいてノイズ判定を行い、ノイズ判定結果を演算部2に送る。演算部2は、ノイズ判定結果に応じてSI値及びPGA値の演算を実行するか否かを決定する。ノイズ判定の詳細については後述する。
 地震判定部4は、演算部2から出力されるSI値に基づいて地震の有無を判定し、地震判定結果を演算部2に送る。ここでは、SI値が閾値を超えると、地震が発生したと判定する。なお、地震の有無判定において演算部2から出力されるPGA値を補助的に用いて判定精度の向上を図ってもよい。
 記憶部5は、演算部2から出力される地震判定結果、SI値、及びPGA値を不揮発的に記憶する。
 入出力部6は、演算部2から出力される地震判定結果を遅滞なく振動記録装置の外部に出力する。また、入出力部6は、振動記録装置の外部からの履歴データ出力要求に応じて、記憶部5に不揮発的に記憶されているSI値及びPGA値を振動記録装置の外部に出力する。なお、入出力部6は、記憶部5に不揮発的に記憶されているSI値及びPGA値を振動記録装置の外部に出力する場合に、記憶部5に不揮発的に記憶されている地震判定結果も合わせて振動記録装置の外部に出力してもよい。
<振動記録装置の動作例>
 図2Aは、振動記録装置の動作例の概略を示すフローチャートである。振動記録装置に電力が投入されると、振動記録装置は図2Aに示すフロー動作を開始する。
 まず初めに、加速度検出部1及びMCU7は初期化を行う(ステップS1)。初期化が完了すると、演算部2は待機状態になる(ステップS2)。
 ステップS2に続くステップS3において、演算部2は、加速度検出部1から割り込み信号を受け取ったか否かを確認する。割り込み信号を受け取っていなければステップS2に戻り、割り込み信号を受け取っていればステップS4に移行する。
 ステップS4において、演算部2は演算状態になる。
 ステップS4に続くステップS5において、演算部2は、SI値の極大値を検知したか否かを判定する。SI値の極大値の検知手法としては、今回のSI値演算結果と前回のSI値演算結果とを比較し、今回のSI値演算結果が前回のSI値演算結果よりも小さければ、前回のSI値演算結果をSI値の極大値とすればよい。
 SI値の極大値を検知していなければステップS6に移行し、SI値の極大値を検知していればステップS7に移行する。
 ステップS6において、演算部2は、地震判定部4から出力される地震判定結果に基づいて、地震を検知したか否かを判定する。
 地震を検知していなければステップS4に戻り、地震を検知していればステップS7に移行する。
 ステップS7において、演算部2は、地震の検知タイミングから第1の所定時間が経過したこと又は極大値の検知タイミングから第2の所定時間が経過したことを確認し、確認後にステップS8に移行する。なお、地震の検知タイミングから第1の所定時間が経過する迄の期間と、極大値の検知タイミングから第2の所定時間が経過する迄の期間とに重複期間がある場合、地震の検知タイミングから第1の所定時間が経過する迄の期間が終了した後にステップS8に移行する。なお、第1の所定時間、第2の所定時間、及び後述する所定時間はそれぞれ異なる長さであってもよく、少なくとも二つが同一の長さであってもよい。
 ステップS8において、演算部2は、補正値を演算して補正値を更新する。地震を正確に検知するために、地球の重力方向に対して水平な2軸のデータを用いる必要がある。したがって、加速度検出部1の3軸それぞれが地球の重力方向に対して水平又は垂直になるように加速度検出部1を設置することが望ましい。しかしながら、加速度検出部1が上記の理想的な設置状態に対して傾いて設置されることがある。そこで、演算部2は、本来示すべき値(加速度検出部1が上記の理想的な設置状態で得られる出力値)に補正するために用いる補正値を演算する。ステップS8の処理が完了すると、ステップS2に戻る。ステップS2に戻ることにより、消費電力の低減を図ることができる。また、振動が発生した場合には振動により設置状態に変化が生じる可能性がある。そこで、演算部2が、第1の待機状態若しくは第2の待機状態から演算状態に遷移する前、演算状態中、又は、演算状態から第1の待機状態若しくは第2の待機状態に遷移する前の少なくとも一つで、最新の補正値を演算して補正値を更新するとよい。
 加速度から角度の算出方法は、以下の式で定義される。なお、θはx軸回りの角度、ψはy軸回りの角度、φはz軸回りの角度、Aはx軸方向の加速度、Aはy軸方向の加速度、Aはz軸方向の加速度である。
Figure JPOXMLDOC01-appb-M000001
 なお、図2Aに示すフローチャートでは、ステップS1において、初期(更新前)の補正値が演算部2によって演算され記憶部5によって記憶される。図2Bは、ステップS1の処理(初期化処理)の一部を示すフローチャートである。
 ステップS1aにおいて、加速度検出部1は、加速度データをサンプリングする。
 ステップS1aに続くステップS1bにおいて、演算部2は加速度検出部1の姿勢角度を算出する。具体的には、演算部2は、加速度検出部1の3軸の方向と加速度検出部1によってサンプリングされた3軸の加速度データから求まる地球の重力方向との関係に基づいて、地球の重力方向を基準とした加速度検出部1の姿勢角度を算出する。
 ステップS1bに続くステップS1cにおいて、演算部2は、加速度検出部1の姿勢角度に基づいて補正値(回転行列成分)を算出する。ステップS1cにおいて各成分が算出される回転行列は、加速度検出部1の3軸それぞれが地球の重力方向に対して水平又は垂直になるように加速度検出部1の3軸を計算上で回転させるための行列である。
 ステップS1cに続くステップS1dにおいて、記憶部5は、補正値(回転行列成分)を記憶する。記憶部5によって記憶された補正値(回転行列成分)は、図2Aに示すステップS4の演算状態の際に演算部2によって実行される演算処理において用いられる。
 図2Cは、補正値を用いた演算処理に関連する振動記録装置の動作を示すフローチャートである。振動記録装置は、図2Aに示すステップS4の演算状態の際に、図2Cに示すフローチャートの動作を行う。
 ステップS4aにおいて、加速度検出部1は、加速度データをサンプリングする。
 ステップS4aに続くステップS4bにおいて、演算部2は、加速度検出部1によってサンプリングされた3軸の加速度データを、記憶部5によって記憶された補正値(回転行列成分)を用いて計算上で回転させる。これにより、ステップS4aでサンプリングされた加速度データが、加速度検出部1の3軸それぞれが計算上で地球の重力方向に対して水平又は垂直になっている状態での3軸の加速度データに回転変換される。つまり、ステップS4bの処理によって、加速度検出部1の姿勢角度の影響を受けている加速度データが、加速度検出部1の姿勢角度の影響を受けていない加速度データに変換される。
 ステップS4bに続くステップS4cにおいて、演算部2は、回転変換後の加速度データを用いてSI値及びPGA値を算出する。
 図3~図5それぞれは、振動の特性が異なる3つのパターンにおける振動記録装置の状態を示すタイムチャートである。
 P1及びP2はSI値の極大値である。THは地震検知で用いるSI値の閾値である。
 I1は第2の待機状態での演算部2の消費電流である。I2は第1の待機状態での演算部2の消費電流である。I3は演算状態において演算を実行していないときの演算部2の消費電流である。I4は演算状態において演算を実行しているときの演算部2の消費電流である。
 Tdは第1の所定時間である。Tpは第2の所定時間である。Tsは所定時間である。TdはTp以上であって、例えばTdは3分であり、Tpは10秒である。Tdの開始タイミングはSI値が閾値THを超えたから初めて演算部2の消費電流が立ち下がったタイミングである。Tpの開始タイミングはSI値が極大値になってから初めて演算部2の消費電流が立ち下がったタイミングである。また、演算状態から第1の待機状態への移行タイミングは、TdまたはTpが終了してから初めて演算部2の消費電流が立ち下がったタイミングである。T1はSI値及びPGA値を演算している時間である。T2はSI値及びPGA値を演算する周期である。T3(=T2-T1)は演算状態においてSI値及びPGA値を演算していない時間である。T1~T3はそれぞれ固定値である。
 #1は第2の待機状態である。#2は演算状態である。#3は第1の待機状態である。#4は演算状態であって補正値を演算している状態である。なお、図3~図5において#4に関する図示を一部省略している。
<ノイズ判定処理>
 上述した振動記録装置の動作においては説明を省略したが、補正値を演算及び更新する場合を除いて、待機状態から演算状態に遷移したときには、演算部2及びノイズ判定部3は図6に示すノイズ判定処理を実行する。
 ノイズ判定処理では、まず演算部2が3軸の加速度を演算する(ステップS101)。
 ステップS101に続くステップS102において、ノイズ判定部3は、加速度を演算した結果(=加速度演算結果)が所定値以上であるか否かを判定する。なお、加速度演算結果の代わりに、1つの加速度(=或る1軸の加速度)を用いてもよい。加速度演算結果が所定値以上でなければステップS103に移行し、加速度演算結果が所定値以上であればステップS105に移行する。なお、上述した通り、演算部2によって演算される加速度は、加速度自体のみならず、加速度を用いた演算により得られる演算結果も含まれるので、加速度演算結果は加速度と言い換えることもできる。
 ステップS103において、ノイズ判定部3は、振動がノイズであるか不明と判定する。ステップS103に続くステップS104において、演算部2は演算状態を継続し、ノイズ判定処理を終了する。
 一方、ステップS105において、ノイズ判定部3は、明らかにノイズと判断できる突発的且つ継続性のない鋭い加速度ピークが現れていると判定し、振動がノイズであると判定する。ステップS105に続くステップS106において、演算部2は所定時間経過後に演算状態から待機状態に遷移し、ノイズ判定処理を終了する。
 図7は、ノイズ判定処理に関連する振動記録装置の状態の一例を示すタイムチャートである。明らかにノイズと判断できる突発的且つ継続性のない鋭い加速度ピークが現れている場合には、SI値及びPGA値を演算することなく待機状態に遷移する。したがって、無駄にSI値及びPGA値を演算することがなくなり、演算部2の消費電力を低減することができる。
<加速度検出部及びMCUの配置>
 図8A及び図8Bは、振動記録装置の一構造例を示す斜視図である。図8A中の一点鎖線矢印は加速度検出部1によって検出される加速度の各軸方向を示している。図8A及び図8Bに示す振動記録装置では、振動記録装置を他の装置に実装する際に用いられる半田が設けられる場所となる10個のはんだパッド9(はんだパッド9_1~9_10)が基板8に設けられている。本実施形態では、基板8はプリント回路基板である。はんだパッド9_1は、I2Cクロック信号を入力するパッドであってプリント配線によってMCU7に接続されている。はんだパッド9_2は、I2Cデータを入出力するパッドであってプリント配線によってMCU7に接続されている。はんだパッド9_3は、プログラム書き込み用クロック信号を入力するパッドであってプリント配線によってMCU7に接続されている。はんだパッド9_4は、プログラム書き込み用データを入出力するパッドであってプリント配線によってMCU7に接続されている。はんだパッド9_5は、リセット信号を入力するパッドであってプリント配線によってMCU7に接続されている。はんだパッド9_6は、地震判定結果を割り込み出力するパッドであってプリント配線によってMCU7に接続されている。はんだパッド9_7は、アクセス可否通知を割り込み出力するパッドであってプリント配線によってMCU7に接続されている。MCU7の演算中は、外部からMCU7へのアクセスを禁止するため、アクセスが不可であることが通知される。はんだパッド9_8は、通常モード(振動計測モード)と保守モードとを切り替えるためのモード信号を入力するパッドであってプリント配線によってMCU7に接続されている。はんだパッド9_9は、グランド電位に接続されるパッドであってプリント配線によって加速度検出部1に接続されている。はんだパッド9_10は、電源電圧が印加されるパッドであってプリント配線によって加速度検出部1に接続されている。
 図9Aは、振動記録装置の上面図である。なお、図9Aに示す振動記録装置は、図8A及び図8Bに示す振動記録装置と基本的な構造が同じであるが、加速度検出部1が基板8の略中央に配置される点で図8A及び図8Bに示す振動記録装置と異なっている。図9Aに示す振動記録装置では、この配置により、加速度検出部1の検出結果が基板8の撓みの影響を受け難くなる。
 振動記録装置を他の装置に実装する際に用いられる半田が設けられる場所となるはんだパッド9が基板8の二辺に形成されている。はんだパッド9を基板8の複数の辺に形成することにより、基板8が強固に固定されることになり、基板8が撓み難くなる。はんだパッド9は上面視形状が矩形である基板8の複数の辺に形成されることが望ましい。基板8の四辺に形成されることが最も望ましい。
 図9Bは、図9Aに示す一点鎖線で振動記録装置を切断した場合における振動記録装置の模式的な断面図である。基板8の厚みh1は、加速度検出部1の厚みh2以上であることが望ましい。これにより、基板8が撓み難くなる。
 図10は、図8A及び図8Bに示す振動記録装置の上面図である。この例においても、基板8の厚みは、加速度検出部1の厚み以上であることが望ましい。この例においては、基板8の長手方向において、基板8の一方の端部から加速度検出部1までの距離L1と、MCU7から基板1の他方の端部までの距離L3とがそれぞれ、加速度検出部1からMCU7までの距離L2より短い。これにより、加速度検出部1がMCU7からの熱の影響を受け難くなる。また、図9Aに示す例よりも基板8を小さくすることができる。なお、基板8の一方の端部から加速度検出部1までの距離L1と、MCU7から基板1の他方の端部までの距離L3とは略同一であってもよい。
<その他>
 本明細書中に開示されている種々の技術的特徴は、上記実施形態のほか、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味及び範囲内に属する全ての変更が含まれると理解されるべきである。
 例えば上述した実施形態では、地震を検知する振動記録装置について説明したが、地震以外の振動を記録対象とした振動記録装置であってもよい。
 図6に示すノイズ判定処理は、図2Aに示す動作を行わない振動記録装置に適用してもよい。例えば、特許文献1に開示されている振動記録装置に図6に示すノイズ判定処理を適用してもよい。
 第1の所定時間Tdの長さは固定値に限定されない。すなわち、第1の所定時間Tdは可変してもよい。例えば、第1の所定時間Tdは振動強度の特性に応じて可変してもよい。
 同様に、第2の所定時間Tpの長さは固定値に限定されない。すなわち、第2の所定時間Tpは可変してもよい。例えば、第2の所定時間Tpは振動強度の特性に応じて可変してもよい。
 振動強度の特性としては、例えば、SI値の変化率の平均値、SI値の平均値、PGA値の変化率の平均値、PGA値の平均値等を挙げることができる。振動強度の各特性の中のいずれか一つ又は複数の組み合わせに応じて第1の所定時間Tdが可変するようにすればよい。同様に、振動強度の各特性の中のいずれか一つ又は複数の組み合わせに応じて第2の所定時間Tpが可変するようにすればよい。
 例えば、振動記録装置がSI値の変化率の平均値に応じて第1の所定時間Td及び第2の所定時間Tpを可変する場合、図11に示すフローチャートのようにステップS4とステップS5との間にステップS4’を設けるとよい。ステップS4’は、演算部2が第1の所定時間Td及び第2の所定時間Tpの各設定値を更新し、記憶部5が更新後の第1の所定時間Td及び第2の所定時間Tpの各設定値を記憶するステップである。
 そして、例えば図12に示すSI値のタイムチャートの時間TM_1のときにステップS4’の処理を行うのであれば、演算部2は、時間TM_1の直近の一定時間Δ1におけるSI値の変化率の平均値に応じた第1の所定時間Td及び第2の所定時間Tpの各設定値を算出すればよい。同様に例えば図12に示すSI値のタイムチャートの時間TM_xのときにステップS4’の処理を行うのであれば、演算部2は、時間TM_xの直近の一定時間ΔxにおけるSI値の変化率の平均値に応じた第1の所定時間Td及び第2の所定時間Tpの各設定値を算出すればよい。
 したがって、振動記録装置の状態の遷移タイミングを判断する際に実際に用いられる第1の所定時間Tdの設定値は、SI値が閾値THを超えた時間TM_yの直近の一定時間ΔyにおけるSI値の変化率の平均値に応じた第1の所定時間Tdの設定値となる。同様に、振動記録装置の状態の遷移タイミングを判断する際に実際に用いられる第2の所定時間Tpの設定値は、SI値が極大値P1になった時間TM_zの直近の一定時間ΔzにおけるSI値の変化率の平均値に応じた第2の所定時間Tpの設定値となる。なお、上述した一定時間Δ1、Δy、Δy、及びΔzは全て同じ長さである。
 上述した変形例とは異なり、第1の所定時間Tdは外部装置からの制御に従って可変してもよい。同様に、第2の所定時間Tpは外部装置からの制御に従って可変してもよい。上述した外部装置としては、例えば、振動記録装置と有線接続され且つ振動記録装置を管理する第1の管理装置、第1の管理装置と無線接続され且つ第1の管理装置を管理する第2の管理装置等が挙げられる。
   1 加速度検出部
   2 演算部
   3 ノイズ判定部
   4 地震判定部
   5 記憶部
   6 入出力部
   7 MCU
   8 基板
   9 はんだパッド

Claims (18)

  1.  周期的に加速度を検出する加速度検出部と、
     前記加速度検出部の検出結果から振動強度を演算する演算部及び前記演算部の演算結果を記憶する記憶部を備える制御装置と、
    を備え、
     前記演算部は、
     前記振動強度が閾値を超えたタイミングから第1の所定時間経過後に、演算状態から前記演算状態よりも消費電力が小さい第1の状態に遷移する、振動記録装置。
  2.  前記演算部は、
     前記振動強度の特性に応じて前記第1の所定時間を可変する、請求項1に記載の振動記録装置。
  3.  周期的に加速度を検出する加速度検出部と、
     前記加速度検出部の検出結果から振動強度を演算する演算部及び前記演算部の演算結果を記憶する記憶部を備える制御装置と、
    を備え、
     前記演算部は、
     前記振動強度が極大値になったタイミングから第2の所定時間経過後に、前記演算状態から前記演算状態よりも消費電力が小さい第1の状態に遷移する、振動記録装置。
  4.  前記演算部は、
     前記振動強度が極大値になったタイミングから第2の所定時間経過後に、前記演算状態から前記演算状態よりも消費電力が小さい第1の状態に遷移する、請求項1又は請求項2に記載の振動記録装置。
  5.  前記第1の所定時間は前記第2の所定時間以上である、請求項4に記載の振動記録装置。
  6.  前記演算部は、
     前記振動強度の特性に応じて前記第2の所定時間を可変する、請求項3~5のいずれか一項に記載の振動記録装置。
  7.  前記加速度検出部は、前記加速度が閾値を超えたら割り込み信号を出力し、
     前記演算部は、
     前記演算状態でないときに前記割り込み信号を受け取ると、前記演算状態に遷移する、請求項1~6のいずれか一項に記載の振動記録装置。
  8.  前記演算部は、
     前記第1の状態が所定時間継続した場合に、前記第1の状態から前記第1の状態よりも消費電力が小さい第2の状態に遷移する、請求項1~7のいずれか一項に記載の振動記録装置。
  9.  前記演算部の出力データレートは、前記第2の状態であるときよりも前記第1の状態であるときの方が高い、請求項8に記載の振動記録装置。
  10.  前記加速度検出部のサンプリングレートは、前記演算部が前記第2の状態であるときよりも前記演算部が前記第1の状態であるときの方が高い、請求項8又は請求項9に記載の振動記録装置。
  11.  前記振動強度が閾値を超えたタイミングから前記第1の所定時間が経過する迄の期間と、前記振動強度が極大値になったタイミングから前記第2の所定時間が経過する迄の期間とに重複期間がある場合、
     前記演算部は、前記振動強度が閾値を超えたタイミングから前記第1の所定時間が経過する迄の期間が終了した後に前記演算状態から前記第1の状態に遷移する、請求項8~10のいずれか一項に記載の振動記録装置。
  12.  前記演算部は、
     前記第1の状態若しくは前記第2の状態から前記演算状態に遷移する前、演算状態中、又は、前記演算状態から前記第1の状態若しくは前記第2の状態に遷移する前の少なくとも一つで前記加速度検出部の姿勢角度に応じた補正値を演算して更新し、
     前記補正値を用いて前記振動強度を演算する、請求項1~11のいずれか一項に記載の振動記録装置。
  13.  前記加速度検出部及び前記制御装置の初期化の際に、前記演算部は前記加速度検出部の姿勢角度に応じた補正値を演算し、前記記憶部は前記補正値を記憶し、
     前記演算部は、前記振動強度を演算する際に、前記記憶部に記憶されている前記補正値を用いる、請求項1~12のいずれか一項に記載の振動記録装置。
  14.  前記演算部は、前記加速度が所定値以上であれば、前記振動強度を演算することなく、所定時間経過後に前記演算状態から前記第1の状態に遷移する、請求項1~13のいずれか一項に記載の振動記録装置。
  15.  前記加速度検出部及び前記演算部が実装される基板を備え、
     前記基板の厚みは、前記加速度検出部の厚み以上である、請求項1~14のいずれか一項に記載の振動記録装置。
  16.  前記加速度検出部は前記基板の略中央に配置される、請求項15に記載の振動記録装置。
  17.  前記基板の上面視形状は略長方形の矩形であり、
     前記演算部及び前記記憶部を封止する半導体パッケージを備え、
     前記基板の長手方向において、前記基板の一方の端部から前記加速度検出部までの距離と、前記半導体パッケージから前記基板の他方の端部までの距離とがそれぞれ、前記加速度検出部から前記半導体パッケージまでの距離より短い、請求項15又は請求項16に記載の振動記録装置。
  18.  はんだパッドが前記矩形の複数の辺に形成されている、請求項17に記載の振動記録装置。
PCT/JP2018/047148 2018-03-06 2018-12-21 振動記録装置 WO2019171708A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018040033 2018-03-06
JP2018-040033 2018-03-06

Publications (1)

Publication Number Publication Date
WO2019171708A1 true WO2019171708A1 (ja) 2019-09-12

Family

ID=67845977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047148 WO2019171708A1 (ja) 2018-03-06 2018-12-21 振動記録装置

Country Status (2)

Country Link
TW (1) TWI708059B (ja)
WO (1) WO2019171708A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435419B2 (ja) 2020-11-24 2024-02-21 オムロン株式会社 感震センサ

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697310A (ja) * 1992-07-24 1994-04-08 Hewlett Packard Co <Hp> ハイブリッド回路
JPH0943269A (ja) * 1995-07-28 1997-02-14 Omron Corp 加速度トランスデューサ
JP2012182362A (ja) * 2011-03-02 2012-09-20 Dainippon Printing Co Ltd 電子部品、及びその製造方法
WO2013125200A1 (ja) * 2012-02-21 2013-08-29 パナソニック株式会社 慣性力センサ
JP2013257642A (ja) * 2012-06-11 2013-12-26 Fujitsu Ltd 情報端末装置及びセンサ制御方法
JP2015011616A (ja) * 2013-07-01 2015-01-19 株式会社デンソーウェーブ 携帯型無線タグおよび無線認証システム
JP2017015604A (ja) * 2015-07-02 2017-01-19 東京瓦斯株式会社 感震センサ及び地震判定方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4315204B2 (ja) * 2007-02-21 2009-08-19 ソニー株式会社 振動検出装置、撮像装置、振動検出方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0697310A (ja) * 1992-07-24 1994-04-08 Hewlett Packard Co <Hp> ハイブリッド回路
JPH0943269A (ja) * 1995-07-28 1997-02-14 Omron Corp 加速度トランスデューサ
JP2012182362A (ja) * 2011-03-02 2012-09-20 Dainippon Printing Co Ltd 電子部品、及びその製造方法
WO2013125200A1 (ja) * 2012-02-21 2013-08-29 パナソニック株式会社 慣性力センサ
JP2013257642A (ja) * 2012-06-11 2013-12-26 Fujitsu Ltd 情報端末装置及びセンサ制御方法
JP2015011616A (ja) * 2013-07-01 2015-01-19 株式会社デンソーウェーブ 携帯型無線タグおよび無線認証システム
JP2017015604A (ja) * 2015-07-02 2017-01-19 東京瓦斯株式会社 感震センサ及び地震判定方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7435419B2 (ja) 2020-11-24 2024-02-21 オムロン株式会社 感震センサ

Also Published As

Publication number Publication date
TWI708059B (zh) 2020-10-21
TW201939038A (zh) 2019-10-01

Similar Documents

Publication Publication Date Title
US10739476B2 (en) Seismic sensor and earthquake determination method
WO2019026791A1 (ja) 感震モジュール
US11548780B2 (en) Systems and methods for operating a MEMS device based on sensed temperature gradients
JP2008032521A (ja) 転倒検出装置、転倒検出方法及びコンピュータプログラム
US20070225947A1 (en) Fall detection device
WO2019171708A1 (ja) 振動記録装置
US10209157B2 (en) Dual-sealed MEMS package with cavity pressure monitoring
JP2006292690A (ja) 落下判定装置及び落下判定方法
WO2018079126A1 (ja) 感震モジュールおよび感震システム
JP6106850B2 (ja) 慣性力センサ及びこれを用いた電子機器
JP2010054374A (ja) 移動検知装置
JP6268281B2 (ja) 電子機器
JP5540926B2 (ja) アナログ電子時計
CN112556688A (zh) 测量装置
US20170167945A1 (en) Identification of a seal failure in mems devices
JP2008076264A (ja) 複合センサ
JP2006337197A (ja) 加速度検出装置
JP2016213958A (ja) 振動検出装置及び方法
US8898033B2 (en) Vehicle stability systems and methods
EP2161546A2 (en) Electrical equipment device
US8978474B2 (en) Inertial measurement systems, and methods of use and manufacture thereof
JP7308065B2 (ja) 感震センサ
US20230010626A1 (en) Intrinsically-Safe Sensor System
CN104136887B (zh) 惯性力传感器以及使用其的电子设备
JP2006337194A (ja) 加速度検出装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908703

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP