WO2019171673A1 - アキシャルギャップ型回転電機 - Google Patents

アキシャルギャップ型回転電機 Download PDF

Info

Publication number
WO2019171673A1
WO2019171673A1 PCT/JP2018/043708 JP2018043708W WO2019171673A1 WO 2019171673 A1 WO2019171673 A1 WO 2019171673A1 JP 2018043708 W JP2018043708 W JP 2018043708W WO 2019171673 A1 WO2019171673 A1 WO 2019171673A1
Authority
WO
WIPO (PCT)
Prior art keywords
yoke
rotor
electrical machine
rotating electrical
type rotating
Prior art date
Application number
PCT/JP2018/043708
Other languages
English (en)
French (fr)
Inventor
佐藤 大祐
博洋 床井
榎本 裕治
憲一 相馬
Original Assignee
株式会社日立産機システム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立産機システム filed Critical 株式会社日立産機システム
Priority to CN201880084944.8A priority Critical patent/CN111566902A/zh
Publication of WO2019171673A1 publication Critical patent/WO2019171673A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present invention relates to a rotating electrical machine, and more particularly to an axial gap type rotating electrical machine.
  • the axial gap type rotating electric machine has a structure in which a disk-shaped rotor and a cylindrical stator are opposed to each other from the direction of the rotation axis. Since the gap surface that generates torque increases in proportion to the square of the diameter, it is particularly effective for reducing the size and efficiency of a thin rotary electric machine.
  • the stator core can be configured in a simple column shape.
  • Patent Document 1 discloses an axial gap type rotating electrical machine that facilitates attachment of a rotor and replacement of a permanent magnet. Among them, a structure is disclosed in which a recess is formed in the rotor, a back yoke is disposed in the recess, and a magnet is disposed on the surface of the back yoke.
  • a yoke is arranged on the back surface of the magnet of the rotor to constitute a magnetic circuit.
  • the magnetic flux in the yoke is mainly a DC component by the magnet, but an AC component is also generated due to the interaction with the stator core.
  • the AC component generates an eddy current on the yoke surface, leading to a decrease in output and an increase in loss, that is, a decrease in efficiency.
  • the simple stator core as described above, since the magnetic resistance of the stator viewed in the circumferential direction has a large distribution, the AC component in the yoke is increased, and the efficiency is significantly reduced.
  • the magnets are stacked in the direction of the rotating shaft, so each member that occurs due to variations in the thickness of the low-conductivity yoke, surface irregularities, adhesives, etc. Due to the gaps between them, the distance between the magnet and the stator core, that is, the gap length tends to vary. Variation in gap length causes variation in motor characteristics and collision between the magnet and the stator.
  • the low-conductivity yoke material that is actually used is a laminate of magnetic steel sheets in the circumferential direction or radial direction, a dust core formed by compression-molding iron powder coated with insulation, and a magnetic SUS powder with low conductivity.
  • the height of the high-conductivity yoke recess can be made larger than the thickness of the low-conductivity yoke so that the magnet is in contact with the yoke.
  • a gap is generated between the magnet and the low-conductivity yoke, and the magnetic resistance increases, so that the motor output and motor efficiency are reduced.
  • An object of the present invention is to provide a highly efficient axial gap type rotating electrical machine that reduces eddy currents on the yoke surface and has small variations in characteristics.
  • a plurality of magnets arranged in the circumferential direction, a rotor having a yoke that forms a magnetic path between the magnets, and the rotor are opposed to each other via a gap in the rotation axis direction.
  • the yoke has a first yoke and a second yoke having a conductivity lower than that of the first yoke, and the surface of the magnet has the first yoke
  • This is an axial gap type rotating electrical machine arranged so as to be in contact with the surface of the yoke on the stator side and in contact with the surface of the second yoke on the stator side.
  • an eddy current on the yoke surface can be reduced, and a highly efficient axial gap type rotating electrical machine with small variation in characteristics can be obtained.
  • FIG. 3 is a configuration diagram of a rotating electric machine in a rotating shaft direction according to the first embodiment.
  • FIG. The figure which shows the radial direction of the rotor of the rotary electric machine in Example 3 and demonstrates the positional relationship of a magnet and a yoke.
  • FIG. 5 The figure which shows the structure of the radial direction of the rotor of the rotary electric machine in Example 5.
  • FIG. 1 is a configuration diagram of a rotating electric machine direction 40 of the rotating electrical machine 1 according to the first embodiment.
  • the rotating electrical machine 1 includes a stator 2 and a two-rotor-one-stator type axial composed of a stator 2 and a pair of rotors 3 arranged with a predetermined gap length in the rotation axis direction 40 with the stator 2. It is a gap type rotating electrical machine.
  • the stator 2 is configured by arranging a plurality of stator windings 21 wound around the outer periphery of the stator core 22 in the circumferential direction, filled with an insulating resin, and fixed to the housing 4.
  • the stator core 22 is composed of, for example, a laminated body of magnetic thin plates such as an electromagnetic steel plate or an amorphous foil strip, or a powder magnetic core obtained by compression molding iron powder coated with insulation. .
  • the rotor 3 includes a yoke a31 fastened to the rotating shaft 5, a yoke b32 made of a material different from the yoke a31, and a magnet 33.
  • the magnet 33 is formed in a ring shape, and is magnetized in the rotation axis direction 40 so that the poles adjacent in the circumferential direction are opposite to each other.
  • the magnet 33 is held in contact with the surface of the yoke a31 facing the stator 2, that is, the surface on the stator 2 side.
  • the yoke b32 is disposed in a through hole formed in the rotation axis direction 40 of the yoke a31, and the surface of the yoke b32 on the stator 2 side is disposed on the back surface of the magnet 33. After the magnet 33 is held in contact with the surface of the yoke a31 on the stator 2 side, the magnet b and the yoke b32 can be reliably brought into contact with each other by inserting the yoke b32 from the through hole until it comes into contact with the magnet 33. In addition, the surface of the yoke b32 opposite to the back side of the magnet 33 in the rotation axis direction 40 is not in contact with the yoke a31 or the like.
  • the housing 4 is provided with a through hole through which the rotating shaft 5 passes, and a bearing 6 is provided in the through hole.
  • the rotating shaft 5 is configured to be rotatably held by a bearing 6.
  • FIG. 2 is a diagram illustrating a radial configuration of the rotor 3 of the rotating electrical machine 1 according to the first embodiment.
  • the radial direction refers to the direction of the diameter of the circular rotor 3 as one section of FIG.
  • the yoke a31 has a structure in which a plurality of through holes are formed in the circumferential direction 41, the side surface of the through hole and the side surface of the yoke b32 are arranged to face each other, and the yoke b32 is held by bonding the side surfaces.
  • the material of the yoke b32 is made of, for example, an electromagnetic steel plate, a dust core, an electromagnetic SUS, or the like having a conductivity lower than that of the yoke a31.
  • the yoke a31 is made of a structural material having a magnetic property higher than that of the yoke b32, such as a mechanical structural carbon steel such as S45C or a general structural rolled steel material such as SS400. . Further, the yoke a31 has higher dimensional accuracy in the rotation axis direction than the yoke b32.
  • the electrical resistance of the rotor 3 constituted by the yoke b32 made of a low conductivity material increases, and eddy currents generated in the rotor 3 can be suppressed.
  • the magnet 33 is bonded to the yoke a31 via an adhesive adhesive layer. Therefore, the variation in the thickness dimension of the yoke b32 does not affect the gap length. Since the yoke b32 and the magnet 33 are securely in contact with each other, the magnetic resistance is not increased by the gap. Therefore, characteristic variation can be reduced with high efficiency.
  • FIG. 3 shows a configuration diagram of the rotating electrical machine 1 according to the second embodiment in the rotation axis direction 40.
  • FIG. 4 is a diagram illustrating a configuration in the radial direction of the rotor 3 of the rotating electrical machine 1.
  • An insulating layer 34 such as resin, ceramic, or metal oxide is formed on the side surface of the yoke a31 or the yoke b32.
  • the yoke a31 and the yoke b32 are electrically insulated by the insulating layer 34.
  • the electrical resistance of the rotor 3 increases because the path through which the eddy current flows becomes a narrow region. Thereby, the eddy current generated in the rotor 3 can be suppressed.
  • FIG. 5 shows the radial direction of the rotor 3 of the rotating electrical machine 1 according to the third embodiment, and illustrates the positional relationship between the magnet 33, the yoke a31, and the yoke b32.
  • the magnetic pole 33 a of the magnet 33 is arranged in the circumferential direction 41. Further, the magnetic flux passing through the yoke faces the magnetic flux direction 33b.
  • the yoke b32 is arranged so as to overlap the boundary line between the adjacent magnetic poles 33a.
  • the magnetic resistance between the side surfaces of the yoke a31 and the yoke b32 is higher than that of the yoke a31 and the yoke b32 because of the gap between the side surfaces.
  • the sides facing the yoke a31 and the yoke b32 are arranged between the boundary lines such as near the center of the plurality of boundary lines so as to be separated from the magnetic path between the adjacent magnetic poles 33a having a high magnetic flux density. doing. Thereby, it can prevent that magnetic flux is reduced between the side surfaces of the yoke a31 and the yoke b32, and can suppress the fall of output torque.
  • FIG. 6 is a diagram illustrating a radial configuration of the rotor 3 of the rotating electrical machine 1 according to the fourth embodiment.
  • the through-hole formed in the yoke a31 and the yoke b32 are circular in the radial direction of the rotor 3.
  • the through hole of the yoke a31 can be formed by a general cutting process. Thereby, the manufacturing cost of the yoke a31 can be reduced. Further, in the compression molding process of the yoke b32, the mold can be manufactured by a general cutting process, and the yoke b32 can be pressed and processed uniformly, so that the manufacturing cost of the yoke b32 can be reduced.
  • FIG. 7 is a diagram illustrating a radial configuration of the rotor 3 of the rotating electrical machine 1 according to the fifth embodiment.
  • FIG. 7B shows a rotor 3 of a model in which the diameter of the rotating electrical machine 1 is larger than that in FIG.
  • the yoke b32 has such a dimension that two or more yokes b32 can be installed in the radial direction of the rotor 3.
  • the yoke b32 can be applied to the rotor 3 having a different diameter by changing the number of the yoke b32 arranged on the rotor 3. Thereby, the number of types of yoke b32 can be reduced and manufacturing cost can be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

アキシャルギャップ型回転電機は、周方向に配置された複数の磁石と、磁石の間で磁路を構成するヨークを備えた回転子と、回転軸方向にギャップを介して、回転子に対向して配置された固定子とを有し、ヨークは、第1のヨークと、導電率が第1のヨークより低い第2のヨークとを有し、磁石の面は、第1のヨークの固定子の側の面と接触するともに、第2のヨークの固定子の側の面と接触するように配置されている。

Description

アキシャルギャップ型回転電機
 本発明は、回転電機に関し、特に、アキシャルギャップ型の回転電機に関する。
 アキシャルギャップ型回転電機は、円盤状の回転子と円筒状の固定子とが、回転軸方向から対向する構造をなしている。トルクを発生するギャップ面が、おおよそ径の2乗に比例して増加するため、特に、薄型形状の回転電機を小型、高効率化するために有効である。また、2枚の回転子で固定子を挟み込んだダブルロータ型のアキシャルギャップ型回転電機では、固定子コアを単純な柱状に構成できる。
 特許文献1は、ロータの取り付け、及び永久磁石の交換を容易としたアキシャルギャップ型の回転電機を開示している。その中で、ロータに凹部を形成し、その凹部に、バックヨークを配置し、バックヨークの表面に磁石を配置した構造が開示されている。
特開2012-152020号公報
 ダブルロータ型のアキシャルギャップ型回転電機や、1枚の回転子と1つの固定子が対向したアキシャルギャップ型回転電機では、回転子の磁石背面に、ヨークを配置し、磁気回路を構成する。ヨーク内の磁束は、磁石による直流成分が主であるが、固定子鉄心との相互作用があるため交流成分も発生する。交流成分は、ヨーク表面に渦電流を発生させ、出力の低下や損失の増加すなわち効率の低下を招く。特に、上述したような単純な固定子鉄心では、周方向にみた固定子の磁気抵抗が大きな分布をもつため、ヨーク内の交流成分が増加し、効率の低下が顕著である。
 特許文献1に記載の構造で、上記のヨーク表面の渦電流を低減させようとすると、凹部に配置したバックヨークとして、低導電率の材料を配置することが考えられる。しかしながら、その場合には、以下の課題がある。
 回転軸に締結されたヨークが、低導電率ヨークの場合、磁石が回転軸方向に積層されるため、低導電率ヨークの厚み寸法のばらつき、および表面の凹凸や、接着剤などで生じる各部材間の隙間により、磁石と固定子鉄心との間の距離、すなわちギャップ長がばらつき易い。ギャップ長のばらつきは、モータ特性のばらつきや磁石と固定子との衝突の原因となる。
 実際に利用されている低導電率ヨーク材には、電磁鋼板を周方向または径方向に積層したものや、絶縁コートした鉄粉を圧縮成型した圧粉磁心、導電率の低い磁性SUS粉を圧縮成型して焼結したものなどがあるが、いずれも加工方法に起因し、回転軸方向の寸法精度は比較的低い。成型品の表面を追加工することで精度向上を図れるが、コストの増加を招く。
 一方、回転軸方向の寸法精度を高めるため、高導電率のヨーク凹部の高さを、低導電率ヨークの厚みよりも大きくし、磁石が、ヨークに接するように構成することも可能である。ただし、この場合には、磁石と低導電率ヨークとの間に隙間が発生し、磁気抵抗が増加するため、モータ出力やモータ効率が低下する。
 本発明の目的は、ヨーク表面の渦電流を低減させるとともに、特性ばらつきが小さく、高効率なアキシャルギャップ型回転電機を提供することである。
 本発明の好ましい一例は、周方向に配置された複数の磁石と、前記磁石の間における磁路を構成するヨークを備えた回転子と、回転軸方向にギャップを介して、前記回転子に対向して配置された固定子とを有し、前記ヨークは、第1のヨークと、導電率が前記第1のヨークより低い第2のヨークとを有し、前記磁石の面は、前記第1のヨークの前記固定子の側の面と接触するともに、前記第2のヨークの前記固定子の側の面と接触するように配置されているアキシャルギャップ型回転電機である。
 本発明によれば、ヨーク表面の渦電流を低減させるとともに、特性ばらつきが小さく、高効率なアキシャルギャップ型回転電機を得ることができる。
実施例1における回転電機の回転軸方向の構成図。 実施例1における回転電機の回転子の径方向の構成を示す図。 実施例2における回転電機を回転軸方向の構成図。 実施例2における回転電機の回転子の径方向の構成を示す図。 実施例3における回転電機の回転子の径方向を示し、磁石とヨークとの位置関係を説明する図。 実施例4における回転電機の回転子の径方向の構成を示す図。 実施例5における回転電機の回転子の径方向の構成を示す図。
 以下、アキシャルギャップ型回転電機の実施例について図面を用いて説明する。
 図1は、実施例1における回転電機1の回転軸方向40の構成図である。回転電機1は、固定子2と、この固定子2と回転軸方向40に所定のギャップ長のギャップを介して配置された1対の回転子3で構成された2ロータ-1ステータ型のアキシャルギャップ型回転電機である。
 固定子2は、固定子巻線21が固定子鉄心22外周を巻回したものを周方向に複数配置して構成され、絶縁樹脂が充填されてハウジング4に固定されている。固定子鉄心22は、渦電流の発生を抑制するために、例えば、電磁鋼板やアモルファス箔帯などの磁性薄板の積層体、または絶縁コートした鉄粉を圧縮成形した圧粉磁心で構成されている。
 回転子3は、回転軸5と締結されたヨークa31と、ヨークa31と異なる素材で構成されたヨークb32と、磁石33で構成されている。磁石33は、リング状に成形されており、周方向に隣接する極が逆向きとなるよう回転軸方向40に着磁されている。磁石33は、ヨークa31の固定子2に対向する面、つまり固定子2側の面に接触して保持される。
 ヨークb32は、ヨークa31の回転軸方向40に形成された貫通孔に配置され、磁石33の背面に、ヨークb32の固定子2側の面が接触して配置される。磁石33を、ヨークa31の固定子2側の面に接触して保持した後、貫通孔からヨークb32を、磁石33と接触するまで差し込むことで、磁石33とヨークb32とを確実に接触できる。また、回転軸方向40で、磁石33の背面側と反対側のヨークb32の面は、ヨークa31などと接触した構成ではない。つまり、空間のある開放した構成となっている。従って、ヨークb32の厚み寸法のばらつき、および表面の凹凸は、開放された側では生じるが、ギャップ長のばらつきには影響を与えない。磁石33の隣合う磁極は、互いに反対を向いており、ヨークa31、ヨークb32は隣合う磁極間の磁路となる。ハウジング4には回転軸5が貫通する貫通孔が設けられ、貫通孔には軸受6が設けられている。回転軸5は、軸受6によって回転可能に保持する構造となっている。
 図2は、実施例1による回転電機1の回転子3の径方向の構成を示す図である。径方向は、図2の一断面としての円形状の回転子3の直径の方向をいう。ヨークa31は、貫通孔が周方向41に複数形成され、その貫通孔の側面とヨークb32の側面を対向して配置し、側面間を接着することでヨークb32を保持する構造となっている。ヨークb32の素材は、導電率がヨークa31よりも小さい、例えば、電磁鋼板、圧粉磁心、電磁SUS等で構成されている。一方、ヨークa31は、例えば、S45Cのような機械構造用炭素鋼や、SS400のような一般構造用圧延鋼材といった、導電率がヨークb32より高く、磁性を持った、構造用材料で構成される。また、ヨークa31は、ヨークb32に比較して、回転軸方向の寸法精度が高い。
 以上の構造により、低導電率な素材のヨークb32で構成された回転子3の電気抵抗は、増大し、回転子3に発生する渦電流を抑制できる。また、磁石33が、ヨークa31に、接着剤の接着層を介して接着されている。そのため、ヨークb32の厚み寸法のばらつきはギャップ長に影響を及ぼさない。ヨークb32と磁石33は、確実に接触して保持されるため、隙間により磁気抵抗が増加することもない。したがって、高効率で特性ばらつきを小さくできる。
 図3は、実施例2における回転電機1を回転軸方向40の構成図を示す。図4は、回転電機1の回転子3の径方向の構成を示す図である。ヨークa31、または、ヨークb32側面に絶縁層34、例えば樹脂、セラミック、金属酸化物を形成する。
 絶縁層34により、ヨークa31、ヨークb32間は電気的に絶縁される。回転子3の電気抵抗は、渦電流の流れるパスが狭い領域になるため、増大する。これにより、回転子3に発生する渦電流を抑制できる。
 図5は、実施例3における回転電機1の回転子3の径方向を示し、磁石33とヨークa31、ヨークb32との位置関係を説明する図を示す。磁石33の磁極33aは、周方向41に配置される。また、ヨークを通る磁束は、磁束方向33bを向く。隣合う磁極33a間の境界線が、回転軸方向に投影したとき、ヨークb32が、隣合う磁極33a間の境界線に重なるように配置されている。
 ヨークa31、ヨークb32の側面間は、側面間の隙間のためヨークa31、ヨークb32よりも磁気抵抗が高い。実施例3では、ヨークa31、ヨークb32が対向する側面間を、磁束密度の高い、隣合う磁極33a間の磁路から離すように、前記複数の境界線の中央付近などの境界線間に配置している。これにより、ヨークa31、ヨークb32の側面間で磁束が低減されることを防ぎ、出力トルクの低下を抑制できる。
 図6は、実施例4における回転電機1の回転子3の径方向の構成を示す図である。ヨークa31に形成される貫通孔およびヨークb32は、回転子3の径方向に、円形形状となる。
 ヨークa31の貫通孔は、一般的な切削加工により形成できる。これにより、ヨークa31の製造コストを低減できる。また、ヨークb32の圧縮成形加工において、一般的な切削加工により金型を製造でき、ヨークb32を均一に加圧して加工できるので、ヨークb32の製造コストを低減できる。
 図7は、実施例5における回転電機1の回転子3の径方向の構成を示す図である。図7(b)は、図7(a)よりも回転電機1の直径が大きいモデルの回転子3を示す。ヨークb32は、回転子3の径方向に、2個以上設置可能な寸法とする。
 ヨークb32の回転子3に配置する個数を変えることで、ヨークb32は、径の異なる回転子3に適用できる。これにより、ヨークb32の種類数を削減して、製造コストを低減できる。
 上記の実施例では、2ローター1ステータ型のアキシャルギャップ型回転電機の例で説明したが、1ローター1ステータ型など、その他のアキシャルギャップ型回転電機であっても適用できる。
1…回転電機、2…固定子、3…回転子、5…回転軸、6…軸受、21…固定子巻線、22…固定子鉄心、31…ヨークa、32…ヨークb、33…磁石、34…絶縁層

Claims (9)

  1. 周方向に配置された複数の磁石と、前記磁石の間で磁路を構成するヨークを備えた回転子と、
    回転軸方向にギャップを介して、前記回転子に対向して配置された固定子とを有し、
    前記ヨークは、第1のヨークと、導電率が前記第1のヨークより低い第2のヨークとを有し、
    前記磁石の面は、前記第1のヨークの前記固定子の側の面と接触するともに、前記第2のヨークの前記固定子の側の面と接触するように配置されていることを特徴とするアキシャルギャップ型回転電機。
  2. 請求項1に記載のアキシャルギャップ型回転電機において、前記第1のヨークと前記第2のヨークとが対向する面には、絶縁層を配置したことを特徴とするアキシャルギャップ型回転電機。
  3. 請求項1に記載のアキシャルギャップ型回転電機において、前記第2のヨークの前記固定子の側には、前記磁石の隣り合う磁極の境界が配置されたことを特徴とするアキシャルギャップ型回転電機。
  4. 請求項1に記載のアキシャルギャップ型回転電機において、前記回転子の周方向に、円形の前記第2のヨークが配置されたことを特徴とするアキシャルギャップ型回転電機。
  5. 請求項1に記載のアキシャルギャップ型回転電機において、前記回転子の径方向に、複数の前記第2のヨークが配置されたことを特徴とするアキシャルギャップ型回転電機。
  6. 請求項1に記載のアキシャルギャップ型回転電機において、前記第2のヨークの前記固定子の側と反対の側の面は、開放されていることを特徴とするアキシャルギャップ型回転電機。
  7. 請求項6に記載のアキシャルギャップ型回転電機において、前記第2のヨークは、前記回転子に設けられた貫通孔内に配置されたことを特徴とするアキシャルギャップ型回転電機。
  8. 請求項3に記載のアキシャルギャップ型回転電機において、前記第1のヨークと前記第2のヨークとが対向する面は、複数の前記境界の間に配置したことを特徴とするアキシャルギャップ型回転電機。
  9. 請求項1に記載のアキシャルギャップ型回転電機において、前記第1のヨークと前記磁石との間に接着層があり、前記第1のヨークは、回転軸と締結されていることを特徴とするアキシャルギャップ型回転電機。
PCT/JP2018/043708 2018-03-08 2018-11-28 アキシャルギャップ型回転電機 WO2019171673A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880084944.8A CN111566902A (zh) 2018-03-08 2018-11-28 轴向间隙型旋转电机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018041709A JP2019161723A (ja) 2018-03-08 2018-03-08 アキシャルギャップ型回転電機
JP2018-041709 2018-03-08

Publications (1)

Publication Number Publication Date
WO2019171673A1 true WO2019171673A1 (ja) 2019-09-12

Family

ID=67847109

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/043708 WO2019171673A1 (ja) 2018-03-08 2018-11-28 アキシャルギャップ型回転電機

Country Status (3)

Country Link
JP (1) JP2019161723A (ja)
CN (1) CN111566902A (ja)
WO (1) WO2019171673A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267599A (ja) * 2005-01-19 2007-10-11 Daikin Ind Ltd 回転子、アキシャルギャップ型モータ、モータの駆動方法、圧縮機
JP2008187863A (ja) * 2007-01-31 2008-08-14 Daikin Ind Ltd アキシャルギャップ型回転電機及び圧縮機
JP2011091933A (ja) * 2009-10-22 2011-05-06 Hitachi Industrial Equipment Systems Co Ltd アキシャルギャップモータ、圧縮機、モータシステム、および発電機
JP2012152020A (ja) * 2011-01-19 2012-08-09 Ihi Corp アキシャルギャップ型回転機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1866692A (zh) * 2005-05-17 2006-11-22 日产自动车株式会社 轴向间隙型电动机
CN101405925A (zh) * 2006-03-27 2009-04-08 大金工业株式会社 电枢铁芯、使用该电枢铁芯的电动机及其制造方法
FI20075310A0 (fi) * 2007-05-03 2007-05-03 Axco Motors Oy Aksiaalivuoinduktiosähkökone
GB0800225D0 (en) * 2008-01-07 2008-02-13 Evo Electric Ltd A rotor for an electrical machine
CN201608570U (zh) * 2009-09-29 2010-10-13 深圳华任兴科技有限公司 永磁体轴向磁场电机及其盘形转子结构
JP5502463B2 (ja) * 2009-12-28 2014-05-28 株式会社日立産機システム アキシャルギャップ型回転電機及びそれに用いるロータ
JP6055725B2 (ja) * 2013-06-28 2016-12-27 株式会社日立産機システム 回転子および回転子を用いたアキシャル型回転電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007267599A (ja) * 2005-01-19 2007-10-11 Daikin Ind Ltd 回転子、アキシャルギャップ型モータ、モータの駆動方法、圧縮機
JP2008187863A (ja) * 2007-01-31 2008-08-14 Daikin Ind Ltd アキシャルギャップ型回転電機及び圧縮機
JP2011091933A (ja) * 2009-10-22 2011-05-06 Hitachi Industrial Equipment Systems Co Ltd アキシャルギャップモータ、圧縮機、モータシステム、および発電機
JP2012152020A (ja) * 2011-01-19 2012-08-09 Ihi Corp アキシャルギャップ型回転機

Also Published As

Publication number Publication date
JP2019161723A (ja) 2019-09-19
CN111566902A (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
TWI517526B (zh) 永久磁體機
JP5877777B2 (ja) 回転電機、磁極ピース製造方法
JP5128538B2 (ja) アキシャルギャップ型回転電機
JP7007150B2 (ja) アキシャルギャップ型回転電機
EP3751704A1 (en) Electrical machine
WO2017094271A1 (ja) アキシャルギャップ型回転電機およびその製造方法
WO2014208110A1 (ja) アキシャル型回転電機
JP2004056860A (ja) 誘導電動機
JP2015528682A (ja) 永久磁性積層型モータ
JP2013135541A (ja) アキシャルギャップ回転電機
WO2014102950A1 (ja) 回転電機
JP2015012679A (ja) アキシャルギャップ型回転電機
WO2018198866A1 (ja) 電動機要素、電動機、装置
CN211790971U (zh) 用于永磁电机的永磁体模块、永磁电机及风力涡轮机
JP2013150543A (ja) 回転電機
JPWO2018070226A1 (ja) 回転子および回転電機
JPWO2017163886A1 (ja) 回転電機用電機子
WO2013147157A1 (ja) 回転電機
JP2011193564A (ja) アキシャルギャップ型回転電機用ステータとその製造方法
JP5433828B2 (ja) 回転機
WO2019171673A1 (ja) アキシャルギャップ型回転電機
JP5740250B2 (ja) 永久磁石式回転電機
JP6685166B2 (ja) アキシャルギャップ型回転電機
JP2015106946A (ja) 回転電機ロータ
JP2005253280A (ja) リング状の固定子コイルを有するアウターロータ形のブラシレスdcモータ及びacサーボモータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909158

Country of ref document: EP

Kind code of ref document: A1