WO2019171550A1 - ガス配管内のガス置換方法 - Google Patents

ガス配管内のガス置換方法 Download PDF

Info

Publication number
WO2019171550A1
WO2019171550A1 PCT/JP2018/009061 JP2018009061W WO2019171550A1 WO 2019171550 A1 WO2019171550 A1 WO 2019171550A1 JP 2018009061 W JP2018009061 W JP 2018009061W WO 2019171550 A1 WO2019171550 A1 WO 2019171550A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
pipe
replacement
valve
vent
Prior art date
Application number
PCT/JP2018/009061
Other languages
English (en)
French (fr)
Inventor
宗晶 徳冨
康治 岩本
賢吾 頼定
Original Assignee
中国電力株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国電力株式会社 filed Critical 中国電力株式会社
Priority to PCT/JP2018/009061 priority Critical patent/WO2019171550A1/ja
Priority to JP2018530913A priority patent/JPWO2019171550A1/ja
Priority to JP2019029449A priority patent/JP2019158140A/ja
Publication of WO2019171550A1 publication Critical patent/WO2019171550A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L55/00Devices or appurtenances for use in, or in connection with, pipes or pipe systems
    • F16L55/07Arrangement or mounting of devices, e.g. valves, for venting or aerating or draining
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C7/00Methods or apparatus for discharging liquefied, solidified, or compressed gases from pressure vessels, not covered by another subclass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23KFEEDING FUEL TO COMBUSTION APPARATUS
    • F23K5/00Feeding or distributing other fuel to combustion apparatus

Definitions

  • the present invention relates to a gas replacement method in a gas pipe.
  • An object of the present invention is to provide a gas replacement method in a gas pipe capable of performing gas replacement in a short time.
  • the present invention provides the following method. Both ends of the gas pipe and the vent valve are closed in a gas pipe in which both ends can be opened and closed, a vent pipe is connected via a vent valve, and a replacement gas inflow pipe is connected via a replacement gas inflow valve Then, the replacement gas inflow valve is opened to start the inflow of the replacement gas, the pressure inside the gas pipe is increased by the replacement gas, and the vent valve is opened when the inside of the gas pipe becomes a certain pressure or more, A gas replacement method in a gas pipe, wherein the gas to be replaced that has existed in the gas pipe is discharged from the vent pipe together with the replacement gas.
  • the replacement gas may be smaller than the specific gravity of the replacement gas.
  • the replacement gas may be a combustion gas and the replacement gas may be an inert gas.
  • the replacement gas may be natural gas, and the replacement gas may be nitrogen gas.
  • a plurality of the gas pipes connected to each other may be provided, and the gas replacement may be sequentially performed from the gas pipes arranged on the upstream side into which the gas to be replaced flows in the plurality of gas pipes.
  • (A) to (b) is a diagram for explaining the gas replacement method of the first embodiment. It is a flowchart which shows the gas substitution method to the nitrogen gas of the gas piping 1 of 1st Embodiment. It is a figure explaining the gas replacement method in a comparison form. It is a figure which shows the gas piping in a boiler combustion installation with which the gas replacement method of 2nd Embodiment is implemented. It is the figure which showed the state at the time of gas replacement of the high pressure gas piping through which the high pressure natural gas supplied from a fuel gas supply part flows. It is the figure which showed the state at the time of gas replacement of the decompression gas piping containing the decompression part which decompresses high pressure natural gas. It is the figure which showed the state at the time of gas replacement of the boiler side gas piping which isolate
  • FIGS. 1A to 1B are diagrams illustrating a gas replacement method for replacing the natural gas in the gas pipe 1 with nitrogen gas.
  • the gas pipe 1 is a fuel gas pipe that sends natural gas (substitute gas) as fuel to a boiler.
  • the gas pipe 1 is provided with gas pipe opening / closing valves T at both ends.
  • a vent pipe 20 for exhausting the gas in the gas pipe 1 is connected to one end side of the gas pipe 1 via a vent valve V.
  • a nitrogen gas inflow pipe 30 for flowing nitrogen gas as an inert gas not containing oxygen is connected to the other end side of the gas pipe 1 through a nitrogen gas inflow valve N.
  • a pressure gauge P and a gas detector G are also attached to the gas pipe 1.
  • FIG. 2 is a flowchart showing a gas replacement method with nitrogen gas in the gas pipe 1 of the first embodiment.
  • the nitrogen gas inflow valve N When the vent valve V is closed, the nitrogen gas inflow valve N is opened to start the inflow of nitrogen gas (FIG. 1 (a), step S2). Then, the pressure in the gas pipe 1 is increased by the inflow of nitrogen gas (FIG. 1 (b)). At this time, since nitrogen gas is lighter than natural gas, nitrogen gas exists above the natural gas on the vent valve V side.
  • the pressure in the gas pipe 1 is monitored by the pressure gauge P, and when the pressure in the gas pipe 1 reaches a predetermined pressure, for example, 0.4 MPa or more (step S3, YES), the vent valve V is opened (FIG. 1 (c)). , Step S4). If it does so, the natural gas in the gas piping 1 will be pressed by nitrogen gas, and will be discharge
  • a predetermined pressure for example, 0.4 MPa or more
  • step S5 the concentration of natural gas is monitored by the gas detector G, and when the internal natural gas concentration falls below a predetermined amount (step S5, YES), the nitrogen gas inflow valve N is closed. Then, the inflow of nitrogen gas is stopped (step S6). This completes the nitrogen gas replacement step. After that, the vent pipe 20 is kept open. Then, since the internal nitrogen gas is lighter than air, the inside of the gas pipe 1 is replaced with air.
  • FIG. 3 is a view for explaining a gas replacement method with nitrogen gas in the gas pipe 1 in the comparative embodiment.
  • the gas pipe opening / closing valves T at both ends of the gas pipe 1 are closed in a state where natural gas is present in the gas pipe 1.
  • the nitrogen gas inflow valve N is opened while the vent valve V is open, and the inflow of the replacement gas is started.
  • the pressure in the gas pipe 1 is constant, and a constant gas flow is generated in the gas pipe 1. Since nitrogen gas has a lower specific gravity than natural gas, the nitrogen gas flows upward in the gas pipe 1 and flows out from the vent valve V. Since natural gas is located below the nitrogen gas in the gas pipe 1 in the vicinity of the vent valve V, natural gas does not flow out of the vent valve V. Therefore, the replacement of natural gas with nitrogen gas is difficult to proceed.
  • the gas pipe 1 is pressurized.
  • the vent valve V is opened in this increased pressure state, the natural gas is pressed by the nitrogen gas and is released from the vent pipe 20 together with the nitrogen gas.
  • turbulent flow is generated by being released all at once, so that natural gas is mixed with nitrogen gas and flows out to the vent pipe 20. Is more promoted. Therefore, the replacement time of natural gas with nitrogen gas is shorter than that of the comparative mode, and the working efficiency is improved.
  • FIG. 4 is a diagram showing the gas piping 1 (1A, 1B, 1C) in the boiler combustion facility 100 in which the gas replacement method of the second embodiment is performed, and shows the state of the boiler combustion facility 100 during normal combustion. Show.
  • the high-pressure natural gas supplied from the fuel gas supply unit 101 is decompressed by the decompression unit 104 and further separated into an ignition gas and a combustion gas, and the burner ignition burner 103a of the boiler 103 is obtained. And the combustion burner 103b.
  • the gas pipe 1 of the boiler combustion facility 100 is as long as 500 m, for example, if the gas pipe 1 is replaced with nitrogen gas all at once, it is difficult for the nitrogen gas to reach the whole. Therefore, the gas pipe 1 is divided into three parts, and gas replacement is performed in each of them.
  • the three parts are: a high-pressure gas pipe 1A through which high-pressure natural gas supplied from the fuel gas supply unit 101 flows from the upstream side of the fuel gas, and a decompression gas pipe 1B including a decompression unit 104 that decompresses the high-pressure natural gas.
  • the boiler-side gas pipe 1 ⁇ / b> C separates the natural gas after being decompressed into an ignition gas and a combustion gas and supplies the gas into the boiler 103.
  • a gas pipe opening / closing valve T1 is provided upstream of the high-pressure gas pipe 1A, and a gas pipe opening / closing valve T2 is provided downstream.
  • a gas pipe open / close valve T2 is provided upstream of the decompression gas pipe 1B, and a gas pipe open / close valve T3 is provided downstream.
  • a gas pipe opening / closing valve T3 is provided on the upstream side of the boiler-side gas pipe 1C, and a gas pipe opening / closing valve T4 is provided on the downstream side.
  • Nitrogen gas inflow pipes 30A, 30B, and 30C are connected to the gas pipes 1A, 1B, and 1C from the nitrogen gas supply unit 102, respectively.
  • Nitrogen gas inflow valves NA, NB, and NC are provided in the vicinity of the connecting portions of the nitrogen gas inflow pipes 30A, 30B, and 30C to the gas pipes 1A, 1B, and 1C, respectively.
  • nitrogen gas on-off valves MA, MB, and MC are provided in the vicinity of the connecting portion to the nitrogen gas supply unit 102 in the nitrogen gas inflow pipes 30A, 30B, and 30C, respectively.
  • Vent pipes 20A, 20B, and 20C are connected to the gas pipes 1A, 1B, and 1C, respectively.
  • Vent valves VA, VB, and VC are provided in the vicinity of the connecting portions of the vent pipes 20A, 20B, and 20C to the gas pipes 1A, 1B, and 1C, respectively.
  • the gas pipe opening / closing valves T1, T2, T3 are open. Nitrogen gas inflow valves NA, NB, NC, nitrogen gas on / off valves MA, Mb, MC, and vent valves VA, VB, VC are closed. Therefore, the high-pressure natural gas supplied from the fuel gas supply unit 101 passes through the gas pipe 1, is decompressed by the decompression unit 104, and is sent to the burner ignition burner 103a and the combustion burner 103b of the boiler 103.
  • FIG. 5 is a diagram illustrating a state of the high-pressure gas pipe 1A through which high-pressure natural gas supplied from the fuel gas supply unit 101 flows is replaced.
  • the gas pipe opening / closing valve T1 provided on the upstream side of the high-pressure gas pipe 1A and the gas pipe opening / closing valve T2 provided on the downstream side are closed.
  • the vent valve VA closed the nitrogen gas on-off valve MA and the nitrogen gas inflow valve NA are opened to start the inflow of nitrogen gas into the high pressure gas pipe 1A.
  • the pressure in the high-pressure gas pipe 1A is increased by the inflow of nitrogen gas.
  • the pressure in the high-pressure gas pipe 1A is monitored by the pressure gauge P, and when the pressure in the high-pressure gas pipe 1A becomes equal to or higher than a certain pressure, the vent valve VA is opened. Then, the natural gas in the high-pressure gas pipe 1 ⁇ / b> A is pressed by the nitrogen gas and is released from the vent pipe 20 ⁇ / b> A at a stretch together with the nitrogen gas. After that, while the inflow of nitrogen gas is continued, the concentration of natural gas is monitored by the gas detector G, and when the internal natural gas concentration falls below the specified amount, the nitrogen gas on-off valve MA and the nitrogen gas inflow valve NA are closed. Stop the inflow of nitrogen gas.
  • FIG. 6 is a diagram illustrating a state during gas replacement of the decompression gas pipe 1B including the decompression unit 104 that decompresses the high-pressure natural gas.
  • the gas pipe opening / closing valve T2 provided on the upstream side of the decompression gas pipe 1B and the gas pipe opening / closing valve T3 provided on the downstream side are closed.
  • the vent valve VB closed the nitrogen gas on-off valve MB and the nitrogen gas inflow valve NB are opened to start the inflow of nitrogen gas into the decompression gas pipe 1B.
  • the pressure in the decompression gas pipe 1B is increased by the inflow of nitrogen gas.
  • the pressure in the decompression gas pipe 1B is monitored by the pressure gauge P, and when the pressure in the decompression gas pipe 1B exceeds a certain pressure, the vent valve VB is opened. If it does so, the natural gas in the decompression gas piping 1B will be pressed by nitrogen gas, and will be discharge
  • FIG. 7 is a diagram showing a state of gas replacement in the boiler-side gas pipe 1 ⁇ / b> C that separates the natural gas after decompression into an ignition gas and a combustion gas and supplies the gas to the boiler 103.
  • the gas pipe opening / closing valve T3 provided on the upstream side of the boiler-side gas pipe 1C and the gas pipe opening / closing valve T4 provided on the downstream side are closed.
  • the gas pipe opening / closing valve T4 and the vent valve VC are common.
  • the vent valve VC closed, the nitrogen gas on-off valve MC and the nitrogen gas inflow valve NC are opened to start the inflow of nitrogen gas into the boiler side gas piping 1C. Then, the pressure in the boiler-side gas pipe 1C is increased by the inflow of nitrogen gas. The pressure in the boiler side gas pipe 1C is monitored by the pressure gauge P, and when the pressure in the boiler side gas pipe 1C becomes equal to or higher than a certain pressure, the vent valve VC is opened. If it does so, the natural gas in boiler side gas piping 1C will be pressed by nitrogen gas, and will be discharged from vent pipe 20C at a stretch with nitrogen gas.
  • the gas detector G monitors the natural gas concentration, and when the internal natural gas concentration falls below the specified amount, close the nitrogen gas on-off valve MC and the nitrogen gas inflow valve NC. Stop the inflow of nitrogen gas. Thereafter, if the vent valve VC is kept open, the nitrogen gas in the boiler side gas pipe 1C is lighter than air, so that the boiler side gas pipe 1C is replaced with air.
  • the gas pipe 1 is pressurized because the vent valve V is closed when nitrogen gas flows into each divided pipe.
  • the vent valve V is opened in this increased pressure state, the natural gas is pressed by the nitrogen gas and released from the vent pipe 20 together with the nitrogen gas.
  • turbulent flow is generated by being released all at once, and natural gas is mixed with nitrogen gas and flows out, so that the outflow of natural gas is further promoted. The Therefore, the replacement time of the natural gas with the inert gas is shorter than that of the comparative form, and the working efficiency is improved.
  • the long gas pipe 1 is divided and replaced, the area where the replacement gas is difficult to reach in the gas pipe 1 is reduced compared to the case where the entire gas pipe 1 is replaced with nitrogen gas all at once. be able to. Furthermore, there is little backflow of the natural gas that is the gas to be replaced, which replaces the divided gas pipes 1A, 1B, and 1C from the upstream high pressure side.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Pipeline Systems (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Feeding And Controlling Fuel (AREA)

Abstract

ガスの置換を短時間に行うことが可能な、ガス配管内のガス置換方法を提供する。 本発明のガス配管1内のガス置換方法は、両端が開閉可能で、ベント管20がベントバルブVVを介して接続され、且つ置換ガス流入管30が置換ガス流入バルブNを介して接続されたガス配管1において、前記ガス配管1の両端及び前記ベントバルブVが閉じた状態で、前記置換ガス流入バルブNを開いて置換ガスの流入を開始し、前記置換ガスにより前記ガス配管1の内部を昇圧し、前記ガス配管1の内部が一定の圧力以上になったら前記ベントバルブVを開き、前記ガス配管1の内部に存在していた被置換ガスを前記置換ガスとともに前記ベント管20より放出する。

Description

ガス配管内のガス置換方法
 本発明は、ガス配管内のガス置換方法に関する。
 ボイラへ天然ガス等の燃料ガスを送る配管や、燃料ガスのガスタンク等の容器の点検等を行う際、作業安全性向上のため、燃料ガスの空気への置換操作が実施される。この際、燃料ガスは酸素を含む空気と混合すると引火する可能性があるため、まず、燃料ガスを、不活性ガスで置換し、その後、不活性ガスから空気への置換が実施される。
 しかし、燃料ガスが不活性ガスよりも重い場合、不活性ガスにより配管や容器をパージしても燃料ガスが容器から抜けにくく、置換に時間がかかる。燃料ガスの不活性ガスへの置換中は、配管や容器付近で実施される他の作業は、安全性の観点から火気使用禁止や立ち入り禁止等にされるため、置換に時間がかかると作業効率が悪化する。
 このため、従来、ガスタンクにおいて、燃料ガスから不活性ガスへの置換を安全且つ短時間に行うため、向きの異なる複数のノズルをタンク上部と下部とに設ける技術が開示されている(例えば特許文献1参照)。
特開2001-32998号公報
 しかし、上記従来技術のような、向きの異なる複数のノズルを容器の上部と下部とに設ける技術は、燃料ガスを送るための細長い配管には適用しにくい。
 本発明は、ガスの置換を短時間に行うことが可能な、ガス配管内のガス置換方法を提供することを目的とする。
 (1)上記課題を解決するために、本発明は以下の方法を提供する。
 両端が開閉可能で、ベント管がベントバルブを介して接続され、且つ置換ガス流入管が置換ガス流入バルブを介して接続されたガス配管において、前記ガス配管の両端及び前記ベントバルブが閉じた状態で、前記置換ガス流入バルブを開いて置換ガスの流入を開始し、前記置換ガスにより前記ガス配管の内部を昇圧し、前記ガス配管の内部が一定の圧力以上になったら前記ベントバルブを開き、前記ガス配管の内部に存在していた被置換ガスを前記置換ガスとともに前記ベント管より放出する、ガス配管内のガス置換方法。
 (2)前記置換ガスが、前記被置換ガスの比重よりも小さくてもよい。
 (3)前記被置換ガスが燃焼ガスで、前記置換ガスが不活性ガスであってもよい。
 (4)前記被置換ガスが天然ガスで、前記置換ガスが窒素ガスであってもよい。
 (5)互いに接続された前記ガス配管を複数備え、複数の前記ガス配管における、前記被置換ガスが流入する上流側に配置されたガス配管から、順にガス置換を行ってもよい。
 本発明によれば、ガスの置換を短時間に行うことが可能な、ガス配管内のガス置換方法を提供することができる。
(a)から(b)は、第1実施形態のガス置換方法を説明する図である。 第1実施形態のガス配管1の窒素ガスへのガス置換方法を示すフローチャートである。 比較形態におけるガス置換方法を説明する図である。 第2実施形態のガス置換方法が実施される、ボイラ燃焼設備におけるガス配管を示す図である。 燃料ガス供給部から供給される高圧の天然ガスが流れる高圧ガス配管のガス置換時の状態を示した図である。 高圧の天然ガスを減圧する減圧部を含む減圧ガス配管のガス置換時の状態を示した図である。 減圧された後の天然ガスを、点火用のガスと燃焼用のガスとに分離して、ボイラに供給するボイラ側ガス配管のガス置換時の状態を示した図である。
(第1実施形態)
 以下、本発明の第1実施形態のガス配管1のガス置換方法について説明する。図1(a)から(b)は、ガス配管1内の天然ガスを窒素ガスに置換するガス置換方法を説明する図である。
 ガス配管1は、燃料としての天然ガス(被置換ガス)をボイラへ送る燃料ガス配管である。ガス配管1は、両端にガス配管開閉バルブTが設けられている。
 ガス配管1の一端側には、ガス配管1内のガスを排気するベント管20がベントバルブVを介して接続されている。
 さらに、ガス配管1の他端側には、酸素を含まない不活性ガスとして窒素ガスを流し込む窒素ガス流入管30が窒素ガス流入バルブNを介して接続されている。また、ガス配管1には、圧力計P及びガス検知器Gも取り付けられている。
(ガス置換方法)
 図2は、第1実施形態のガス配管1の窒素ガスへのガス置換方法を示すフローチャートである。
 まず、ガス配管1内に天然ガスが存在している状態で、ガス配管1の両端のガス配管開閉バルブTを閉じる(ステップS1)。
 ベントバルブVが閉じた状態で窒素ガス流入バルブNを開いて窒素ガスの流入を開始する(図1(a),ステップS2)。そうすると、窒素ガスの流入によりガス配管1内が昇圧される(図1(b))。このとき、窒素ガスは天然ガスより軽いので、ベントバルブV側において窒素ガスは天然ガスよりも上方に存在する。
 圧力計Pによりガス配管1内の圧力を監視し、ガス配管1内の圧力が所定圧力、例えば0.4MPa以上になったら(ステップS3,YES)、ベントバルブVを開く(図1(c),ステップS4)。そうすると、ガス配管1内の天然ガスは、窒素ガスによって押圧されて、窒素ガスとともに一気にベント管20より放出される。
 この際、ガス配管1内のベントバルブV付近では、一気に解放されることにより、乱流が発生して、天然ガスが窒素ガスと混合されて流出されるため、天然ガスの流出がより促進される。
 その後も窒素ガスの流入を継続しつつ、ガス検知器Gによって天然ガスの濃度を監視し、内部の天然ガス濃度が所定量以下になったら(ステップS5,YES),窒素ガス流入バルブNを閉じて窒素ガスの流入を停止する(ステップS6)。これにより、窒素ガス置換工程を終了する。
 なお、その後、ベント管20を開いたままにする。そうすると、内部の窒素ガスは空気よりも軽いため、ガス配管1内は空気に置換されていく。
(比較形態)
 図3は比較形態におけるガス配管1の窒素ガスへのガス置換方法を説明する図である。
 比較形態も、まず、ガス配管1内に、天然ガスが存在している状態で、ガス配管1の両端のガス配管開閉バルブTを閉じる。
 しかし、比較形態では、ベントバルブVが開いている状態で窒素ガス流入バルブNを開いて置換ガスの流入を開始する。
 比較形態ではガス配管1内の圧力は一定であり、ガス配管1内には一定のガスの流れが生じている。窒素ガスは天然ガスよりも比重が軽いので、窒素ガスはガス配管1内において上方を流れ、ベントバルブVから流出する。天然ガスは、ベントバルブVの近傍では、ガス配管1内で窒素ガスよりも下方に位置するので、ベントバルブVから流出しくい。したがって天然ガスの窒素ガスによる置換が進行しにくい。
 一方、本実施形態によると、上述したように、窒素ガスの流入時にベント管20が閉じているのでガス配管1が昇圧される。この昇圧状態でベントバルブVを開くと、天然ガスが、窒素ガスによって押圧されて、窒素ガスとともに一気にベント管20より放出される。この際、ガス配管1内のベントバルブV付近では、一気に解放されることにより、乱流が発生して、天然ガスが窒素ガスと混合されてベント管20へ流出されるため、天然ガスの流出がより促進される。ゆえに、天然ガスの窒素ガスへの置換時間が比較形態と比べて短時間ですみ、作業効率が向上する。
(第2実施形態)
 図4は、第2実施形態のガス置換方法が実施される、ボイラ燃焼設備100におけるガス配管1(1A,1B,1C)を示す図であり、ボイラ燃焼設備100の通常の燃焼時の状態を示す。
 ボイラ燃焼設備100は、燃料ガス供給部101から供給された高圧の天然ガスを、減圧部104で減圧し、さらに点火用ガスと燃焼用ガスとに分離して、ボイラ103のバーナ点火用バーナ103aと燃焼用バーナ103bとに供給する設備である。
 ボイラ燃焼設備100のガス配管1は、例えば500mと長いため、ガス配管1全体に対して一気に窒素ガスへの置換作業を行うと、窒素ガスが全体に行きわたりにくい。したがって、ガス配管1を3つの部分に分けて、それぞれにおいてガス置換を行う。
 3つの部分は、燃料ガスの上流側から、燃料ガス供給部101から供給される高圧の天然ガスが流れる高圧ガス配管1Aと、高圧の天然ガスを減圧する減圧部104を含む減圧ガス配管1Bと、減圧された後の天然ガスを、点火用のガスと燃焼用のガスとに分離して、ボイラ103内に供給するボイラ側ガス配管1Cとである。
 高圧ガス配管1Aの上流側にはガス配管開閉バルブT1、下流側にはガス配管開閉バルブT2が設けられている。減圧ガス配管1Bの上流側にはガス配管開閉バルブT2、下流側にはガス配管開閉バルブT3が設けられている。ボイラ側ガス配管1Cの上流側にはガス配管開閉バルブT3、下流側にはガス配管開閉バルブT4が設けられている。
 ガス配管1A,1B,1Cには、窒素ガス供給部102より、それぞれ窒素ガス流入管30A,30B,30Cが接続されている。窒素ガス流入管30A,30B,30Cにおける、それぞれのガス配管1A,1B,1Cへの連結部近傍には、それぞれ窒素ガス流入バルブNA,NB,NCが設けられている。
 また、窒素ガス流入管30A,30B,30Cにおける窒素ガス供給部102への連結部近傍には、それぞれ窒素ガス開閉バルブMA,MB,MCが設けられている。
 ガス配管1A,1B,1Cには、それぞれベント管20A,20B,20Cが連結されている。ベント管20A,20B,20Cの、それぞれのガス配管1A,1B,1Cへの連結部近傍には、それぞれベントバルブVA,VB,VCが設けられている。
 図4に示す、通常の燃焼時の状態を示す状態では、ガス配管開閉バルブT1,T2、T3は開いている。窒素ガス流入バルブNA,NB,NCと、窒素ガス開閉バルブMA,Mb,MCと、ベントバルブVA,VB,VCとは閉じている。
 したがって、燃料ガス供給部101から供給された高圧の天然ガスは、ガス配管1内を通過し、減圧部104で減圧され、ボイラ103のバーナ点火用バーナ103aと燃焼用バーナ103bへと送られる。
(高圧ガス配管1Aのガス置換)
 図5は、燃料ガス供給部101から供給される高圧の天然ガスが流れる高圧ガス配管1Aのガス置換時の状態を示した図である。
 図示するように、高圧ガス配管1Aの上流側に設けられたガス配管開閉バルブT1と、下流側に設けられたガス配管開閉バルブT2とを閉じる。
 そして、ベントバルブVAが閉じた状態で窒素ガス開閉バルブMA及び窒素ガス流入バルブNAを開いて高圧ガス配管1Aへの窒素ガスの流入を開始する。そうすると、窒素ガスの流入により高圧ガス配管1A内が昇圧される。
 圧力計Pにより高圧ガス配管1A内の圧力を監視し、高圧ガス配管1A内の圧力が一定の圧力以上になったら、ベントバルブVAを開く。
 そうすると、高圧ガス配管1A内の天然ガスは、窒素ガスによって押圧されて、窒素ガスとともに一気にベント管20Aより放出される。
 その後も窒素ガスの流入を継続しつつ、ガス検知器Gによって天然ガスの濃度を監視し、内部の天然ガス濃度が規定量以下になったら窒素ガス開閉バルブMA及び窒素ガス流入バルブNAを閉じて窒素ガスの流入を停止する。
 その後、ベントバルブVAを開いたままにしておくと、高圧ガス配管1A内の窒素ガスは空気よりも軽いため、高圧ガス配管1A内の窒素ガスは徐々に空気に置換されていく。この状態で次の減圧ガス配管1Bのガス置換に移る。
(減圧ガス配管1Bのガス置換)
 図6は、高圧の天然ガスを減圧する減圧部104を含む減圧ガス配管1Bのガス置換時の状態を示した図である。
 図示するように、減圧ガス配管1Bの上流側に設けられたガス配管開閉バルブT2と、下流側に設けられたガス配管開閉バルブT3とを閉じる。
 そして、ベントバルブVBが閉じた状態で窒素ガス開閉バルブMB及び窒素ガス流入バルブNBを開いて減圧ガス配管1Bへの窒素ガスの流入を開始する。そうすると、窒素ガスの流入により減圧ガス配管1B内が昇圧される。
 圧力計Pにより減圧ガス配管1B内の圧力を監視し、減圧ガス配管1B内の圧力が一定の圧力以上になったら、ベントバルブVBを開く。
 そうすると、減圧ガス配管1B内の天然ガスは、窒素ガスによって押圧されて、窒素ガスとともに一気にベント管20Bより放出される。
 その後も窒素ガスの流入を継続しつつ、ガス検知器Gによって天然ガスの濃度を監視し、内部の天然ガス濃度が規定量以下になったら窒素ガス開閉バルブMB及び窒素ガス流入バルブNBを閉じて窒素ガスの流入を停止する。
 その後、ベントバルブVBを開いたままにしておくと、減圧ガス配管1B内の内部の窒素ガスは空気よりも軽いため、減圧ガス配管1B内の窒素ガスは徐々に空気に置換されていく。この状態で次のボイラ側ガス配管1Cのガス置換に移る。
(減圧ガス配管1Bのガス置換)
 図7は、減圧された後の天然ガスを、点火用のガスと燃焼用のガスとに分離して、ボイラ103に供給するボイラ側ガス配管1Cのガス置換時の状態を示した図である。
 図示するように、ボイラ側ガス配管1Cの上流側に設けられたガス配管開閉バルブT3と、下流側に設けられたガス配管開閉バルブT4とを閉じる。なお、この場合、ガス配管開閉バルブT4とベントバルブVCとは共通である。
 そして、ベントバルブVCが閉じた状態で窒素ガス開閉バルブMC及び窒素ガス流入バルブNCを開いてボイラ側ガス配管1Cへの窒素ガスの流入を開始する。そうすると、窒素ガスの流入によりボイラ側ガス配管1C内が昇圧される。
 圧力計Pによりボイラ側ガス配管1C内の圧力を監視し、ボイラ側ガス配管1C内の圧力が一定の圧力以上になったら、ベントバルブVCを開く。
 そうすると、ボイラ側ガス配管1C内の天然ガスは、窒素ガスによって押圧されて、窒素ガスとともに一気にベント管20Cより放出される。
 その後も窒素ガスの流入を継続しつつ、ガス検知器Gによって天然ガスの濃度を監視し、内部の天然ガス濃度が規定量以下になったら窒素ガス開閉バルブMC及び窒素ガス流入バルブNCを閉じて窒素ガスの流入を停止する。
 その後、ベントバルブVCを開いたままにしておくと、ボイラ側ガス配管1C内の窒素ガスは空気よりも軽いため、ボイラ側ガス配管1C内は空気に置換されていく。
 以上、第2実施形態においても、分割されたそれぞれの配管における窒素ガスの流入時にベントバルブVが閉じているのでガス配管1が昇圧される。この、昇圧状態でベントバルブVを開くと、天然ガスが、窒素ガスによって押圧されて、窒素ガスとともに一気にベント管20より放出される。
 この際、ガス配管1内のベントバルブV付近では、一気に解放されることにより、乱流が発生して、天然ガスが窒素ガスと混合されて流出されるため、天然ガスの流出がより促進される。
 ゆえに、天然ガスの不活性ガスへの置換時間が比較形態と比べて短時間ですみ、作業効率が向上する。
 また、長いガス配管1を分割して置換していくので、全体を一気に窒素ガスで置換する場合と比べて、ガス配管1内において置換ガスが到達しにくい領域が減少され、隅々まで置換することができる。
 さらに、分割されたガス配管1A、1B、1Cを上流の高圧側から置換していく、被置換ガスである天然ガスの逆流が少ない。
 N,NA,NB,NC  窒素ガス流入バルブ
 P  圧力計
 T,T1,T2,T3,T4  ガス配管開閉バルブ
 V  ベントバルブ
 VA,VB,VC  ベントバルブ
 1  ガス配管
 1A  高圧ガス配管
 1B  減圧ガス配管
 1C  ボイラ側配管
 20,20A,20B,20C  ベント管
 30,30A,30B,30C  窒素ガス流入管
 100  ボイラ燃焼設備
 101  燃料ガス供給部
 102  窒素ガス供給部

Claims (5)

  1.  両端が開閉可能で、ベント管がベントバルブを介して接続され、且つ置換ガス流入管が置換ガス流入バルブを介して接続されたガス配管において、
     前記ガス配管の両端及び前記ベントバルブが閉じた状態で、前記置換ガス流入バルブを開いて置換ガスの流入を開始し、
     前記置換ガスにより前記ガス配管の内部を昇圧し、
     前記ガス配管の内部が一定の圧力以上になったら前記ベントバルブを開き、前記ガス配管の内部に存在していた被置換ガスを前記置換ガスとともに前記ベント管より放出する、
    ガス配管内のガス置換方法。
  2.  前記置換ガスの比重が、前記被置換ガスよりも小さい、
    請求項1に記載のガス配管内のガス置換方法。
  3.  前記被置換ガスが燃焼ガスで、
     前記置換ガスが不活性ガスである、
    請求項1または2に記載のガス配管内のガス置換方法。
  4.  前記被置換ガスが天然ガスで、
     前記置換ガスが窒素ガスである、
    請求項1から3のいずれか1項に記載のガス配管内のガス置換方法。
  5.  互いに接続された前記ガス配管を複数備え、
     複数の前記ガス配管における、前記被置換ガスが流入する上流側に配置されたガス配管から、順にガス置換を行う、
    請求項1から4のいずれか1項に記載のガス配管内のガス置換方法。
PCT/JP2018/009061 2018-03-08 2018-03-08 ガス配管内のガス置換方法 WO2019171550A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2018/009061 WO2019171550A1 (ja) 2018-03-08 2018-03-08 ガス配管内のガス置換方法
JP2018530913A JPWO2019171550A1 (ja) 2018-03-08 2018-03-08 ガス配管内のガス置換方法
JP2019029449A JP2019158140A (ja) 2018-03-08 2019-02-21 ガス配管内のガス置換方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/009061 WO2019171550A1 (ja) 2018-03-08 2018-03-08 ガス配管内のガス置換方法

Publications (1)

Publication Number Publication Date
WO2019171550A1 true WO2019171550A1 (ja) 2019-09-12

Family

ID=67845637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/009061 WO2019171550A1 (ja) 2018-03-08 2018-03-08 ガス配管内のガス置換方法

Country Status (2)

Country Link
JP (2) JPWO2019171550A1 (ja)
WO (1) WO2019171550A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102447393B1 (ko) * 2020-12-16 2022-09-27 주식회사 포스코 가스 퍼지 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122498A (ja) * 1996-06-18 1998-05-15 L'air Liquide 複数のガスの何れか1つを機器に輸送するための装置
JP2001324093A (ja) * 2000-05-18 2001-11-22 Nihonkai Lng Co Ltd Lngのローリー出荷方法
JP2001355800A (ja) * 2000-06-14 2001-12-26 Nippon Applied Flow Kk ガス供給装置
US20020152797A1 (en) * 2001-01-09 2002-10-24 Mcandrew James J.F. Gas delivery apparatus and method for monitoring a gas phase species therein

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2561667Y2 (ja) * 1991-10-14 1998-02-04 石川島播磨重工業株式会社 液化ガス受入用ローディングアーム内の不活性ガス置換装置
JPH11300190A (ja) * 1998-04-27 1999-11-02 Sony Corp 半導体製造用薬液調合装置
JP3574965B2 (ja) * 1999-07-13 2004-10-06 日本酸素株式会社 ガス供給装置及びガス置換方法
JP2001032998A (ja) * 1999-07-23 2001-02-06 Ishikawajima Harima Heavy Ind Co Ltd 大型タンクのガス置換方法及びそれを用いるタンク構造
JP3920895B2 (ja) * 2005-04-27 2007-05-30 北九州エル・エヌ・ジー株式会社 Lngの出荷方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122498A (ja) * 1996-06-18 1998-05-15 L'air Liquide 複数のガスの何れか1つを機器に輸送するための装置
JP2001324093A (ja) * 2000-05-18 2001-11-22 Nihonkai Lng Co Ltd Lngのローリー出荷方法
JP2001355800A (ja) * 2000-06-14 2001-12-26 Nippon Applied Flow Kk ガス供給装置
US20020152797A1 (en) * 2001-01-09 2002-10-24 Mcandrew James J.F. Gas delivery apparatus and method for monitoring a gas phase species therein

Also Published As

Publication number Publication date
JP2019158140A (ja) 2019-09-19
JPWO2019171550A1 (ja) 2020-04-16

Similar Documents

Publication Publication Date Title
US11286424B2 (en) Systems and methods for on-line pigging and spalling of coker furnace outlets
WO2016031219A1 (ja) ガスタービンエンジンシステム
US7707816B2 (en) Gas turbine system burning heavy-oil modified fuel and method of operating same
CN102678337A (zh) 用于燃烧系统的燃料供应之间的转换的系统和方法
WO2019171550A1 (ja) ガス配管内のガス置換方法
JP2006322702A (ja) 可燃性ガス製品の圧縮機のシール装置に収集された可燃性ガス製品を利用する方法
KR20030004085A (ko) 실린더캐비넷과 그 배관내의 잔류가스의 퍼지방법
US10429067B2 (en) Dynamic multi-legs ejector for use in emergency flare gas recovery system
JPWO2010001849A1 (ja) 真空処理装置及びガス供給方法
JP4886386B2 (ja) 高圧ガス供給方法
JP5792608B2 (ja) 液化ガス供給装置及び方法
JP2006138332A (ja) ガス供給装置およびガス供給方法
KR101686910B1 (ko) Lng 재기화 시스템의 고압펌프 가압 시스템 및 방법
JP2016209436A (ja) ガス系消火設備及び圧力調整器
KR101984654B1 (ko) 보일러 소음기 스팀의 재활용 장치
US9732870B2 (en) System and method for safer venting of hydrogen or other combustible gases
US20240133522A1 (en) Methane Retention System
CN201827651U (zh) 供气管路系统
CN112639352B (zh) 含氟气的气体的供给方法和供给设备
US20220364679A1 (en) Methane Retention System
WO2024029563A1 (ja) 水素ガス供給系統の運用方法
KR101732563B1 (ko) 전력생산장치
KR101842942B1 (ko) 복수의 공기압축기 제어 시스템 및 그 제어 방법
WO2020208815A1 (ja) パイロット式安全弁の検査方法
JP6683077B2 (ja) ガラス合成用流体供給装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018530913

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908544

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908544

Country of ref document: EP

Kind code of ref document: A1