WO2019170991A1 - Procédé de production du 2,3,3,3-tétrafluoropropène - Google Patents
Procédé de production du 2,3,3,3-tétrafluoropropène Download PDFInfo
- Publication number
- WO2019170991A1 WO2019170991A1 PCT/FR2019/050479 FR2019050479W WO2019170991A1 WO 2019170991 A1 WO2019170991 A1 WO 2019170991A1 FR 2019050479 W FR2019050479 W FR 2019050479W WO 2019170991 A1 WO2019170991 A1 WO 2019170991A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- stream
- less
- carried out
- catalyst
- reactor
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/204—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being a halogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/16—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
- B01J23/24—Chromium, molybdenum or tungsten
- B01J23/26—Chromium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/093—Preparation of halogenated hydrocarbons by replacement by halogens
- C07C17/20—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
- C07C17/202—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
- C07C17/206—Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C17/00—Preparation of halogenated hydrocarbons
- C07C17/25—Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C21/00—Acyclic unsaturated compounds containing halogen atoms
- C07C21/02—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
- C07C21/18—Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine
Definitions
- the present invention relates to the production of hydrofluoroolefins. More particularly, the present invention relates to the production of 2,3,3,3-tetrafluoropropene.
- Halogenated hydrocarbons particularly fluorinated hydrocarbons such as hydrofluoroolefins, are compounds which have a useful structure as functional materials, solvents, refrigerants, blowing agents and monomers for functional polymers or starting materials for such monomers.
- Hydrofluoroolefins such as 2,3,3,3-tetrafluoropropene (HFO-1234yf) are attracting attention because they offer promising behavior as low global warming potential refrigerants.
- the processes for producing fluoroolefins are usually carried out in the presence of a starting material such as an alkane containing chlorine or a chlorine-containing alkene, and in the presence of a fluorinating agent such as hydrogen fluoride. These processes can be carried out in the gas phase or in the liquid phase, in the absence or absence of catalyst.
- US 2009/0240090 discloses a gas phase process for the preparation of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) from 1,1,1,2,3-pentachloropropane (HCC -240db).
- HCFO-1233xf 2-chloro-3,3,3-trifluoropropene
- HCC -240db 1,1,1,2,3-pentachloropropane
- a 2,3,3,3-tetrafluoropropene preparation process comprising in particular a step of contacting 2-chloro-3,3,3-trifluoropropene with HF in the gas phase in the presence of a fluorination catalyst.
- the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the steps of: i) in a first reactor, contacting a stream A comprising 2-chloro-3,3,3-trifluoropropene with hydrofluoric acid in the gas phase in the presence of a catalyst to produce a stream B comprising 2, Unreacted 3,3,3-tetrafluoropropene, HCl, HF and 2-chloro-3,3,3-trifluoropropene; and
- a second reactor contacted in the gas phase in the presence or absence of a hydrofluoric acid catalyst with a stream comprising at least one chlorinated compound selected from the group consisting of 1,1,1,2,3- pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream C comprising 2-chloro-3,3,3 -trifluoropropesse,
- step i) characterized in that the stream B obtained in step i) feeds said second reactor used for step ii); and in that the electrical conductivity of said stream A supplied in step i) is less than 15 mS / cm.
- the present process optimizes and improves the production of 2,3,3,3-tetrafluoropropene.
- An electrical conductivity value of less than 15 mS / cm of the current A before the fluorination or dehydrohalogenation step is carried out makes it possible to guarantee optimum efficiency of the reaction in terms of conversion and selectivity. If a catalyst is present, such a value also ensures optimal catalyst efficiency.
- step i) is carried out in the presence of a catalyst, preferably a chromium-based catalyst, in particular said catalyst comprises a chromium oxyfluoride or a chromium oxide or a fluoride of chromium or a mixture thereof; and step ii) is carried out in the presence or absence of a catalyst, advantageously step ii) is carried out in the presence of a catalyst, preferably a chromium-based catalyst, in particular said catalyst comprises a chromium oxyfluoride or a chromium oxide or a chromium fluoride or a mixture thereof.
- the catalyst is based on chromium and also comprises a co-catalyst selected from the group consisting of Ni, Zn, Co, Mn or Mg, preferably the content of cocatalyst is between 0, 01% and 10% based on the total weight of the catalyst.
- the stream C also comprises 2,3,3,3-tetrafluoropropene, HF, HCl and 1,1,1,2,2-pentafluoropropane.
- the stream C is purified, preferably by distillation, to form a stream C1 comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and a stream C2 comprising HF and 2-chloro-3,3,3-trifluoropropene.
- said stream C2 is recycled in step i).
- said stream C2 recycled in step i) has an electrical conductivity of less than 15 mS / cm.
- said stream B and said at least one chlorinated compound are contacted prior to the entry thereof into said second reactor.
- the pressure at the inlet of said first reactor of step i) is greater than the pressure at the inlet of said second reactor of step ii), preferably the pressure difference between the pressure at the inlet of said first reactor and the pressure at the inlet of said second reactor is from 100 mbar to 3.5 bar, advantageously from 150 mbar to 3.0 bar, preferably from 300 mbar to 2.5 bar, more preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar.
- the temperature at which step i) is implemented is different from that at which step ii) is implemented; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, advantageously greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C; and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably lower at 30 ° C, preferentially preferred lower than 25 ° C, particularly preferably less than 20 ° C.
- step i) is carried out at a temperature below the temperature at which step ii) is carried out; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, preferably greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C; and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably lower at 30 ° C, preferentially preferred lower than 25 ° C, particularly preferably less than 20 ° C.
- the stream C is cooled to a temperature below 100 ° C, and then distilled to form a stream C1 comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2 pentafluoropropane, and a stream C2 comprising HF and 2-chloro-3,3,3-trifluoropropene; the temperature at the top of the distillation column is -35 ° C to 10 ° C and the distillation is carried out at a pressure of 2 to 6 bara; said second stream obtained at the bottom of the distillation column is recycled in step i).
- step i) and / or step ii) are carried out in the presence of hydrofluoric acid having an electrical conductivity of less than 10 mS / cm.
- the present invention relates to a process for producing 2,3,3,3-tetrafluoropropene comprising the steps of:
- a second reactor contacted in the gas phase in the presence or absence of a hydrofluoric acid catalyst with a stream comprising at least one chlorinated compound selected from the group consisting of 1,1,1,2,3- pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream C comprising 2-chloro-3,3,3 -trifluoropropesse.
- a stream comprising at least one chlorinated compound selected from the group consisting of 1,1,1,2,3- pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene to produce a stream C comprising 2-chloro-3,3,3 -trifluoropropesse.
- the stream B obtained in step i) feeds said second reactor used for step ii).
- the electrical conductivity of said current A supplied in step i) is less than 15 mS / cm.
- the electrical conductivity of said current A supplied in step i) is less than 14 mS / cm, preferably less than 13 mS / cm, more preferably less than 12 mS / cm, in particular less than 11 mS / cm, more especially less than 10 mS / cm, preferably less than 9 mS / cm, advantageously preferred less than 8 mS / cm, preferentially preferred less than 7 mS / cm, more preferably preferred less than 6 mS / cm cm, particularly preferably less than 5 mS / cm.
- the electrical conductivity is measured using an inductive conductivity measuring cell and according to the practice known to those skilled in the art.
- the measurement of the electrical conductivity is carried out at ambient temperature.
- the measurement of the electrical conductivity is carried out at a pressure equal to the pressure at which step b) is implemented.
- the electrical conductivity of the current A may be reduced to reach a conductivity of less than 15 ms / cm by decreasing the electrolyte concentration that may be present therein according to the techniques known to those skilled in the art (distillation, cooling and decantation, passage on molecular sieves of 3 to 5 A or zeolites).
- the measuring cell is coated with a material resistant to a corrosive medium, in particular resistant to hydrofluoric acid.
- the electrical conductivity of said current A is measured prior to step i).
- the electrical conductivity of said current A is measured when it is in liquid form.
- Said method according to the present invention may therefore comprise a step of heating and vaporization of said current A prior to the implementation of step i) to supply said current A in gaseous form.
- said stream A used in stage i) is in gaseous form when it is put in contact with HF.
- step i) is carried out in the presence of a catalyst.
- step ii) is carried out in the presence or absence of a catalyst, in particular step ii) is carried out in the presence of a catalyst.
- the catalyst is chromium-based.
- the chromium-based catalyst can be a chromium oxide (for example Cr2O, CrC3 or Cr2C3), a chromium oxyfluoride or a chromium fluoride (for example CrFs) or a mixture thereof. .
- the chromium oxyfluoride may contain a fluorine content of between 1 and 60% by weight based on the total weight of the chromium oxyfluoride, advantageously between 5 and 55% by weight, preferably between 10 and 52% by weight, more preferably between 15 and 52% by weight, in particular between 20 and 50% by weight, more particularly between 25 and 45% by weight, preferably between 30 and 45% by weight, more preferably from 35 to 45% by weight. by weight of fluorine based on the total weight of the chromium oxyfluoride.
- the catalyst may also comprise a co-catalyst selected from the group consisting of Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb; preferably Ni, Co, Zn, Mg, Mn; in particular Ni, Co, Zn.
- the content by weight of the cocatalyst is between 1 and 10% by weight based on the total weight of the catalyst.
- the catalyst can be supported or not.
- a carrier such as alumina, activated alumina, aluminum halides (AIF3 for example), aluminum oxyhalides, activated carbon, magnesium fluoride or graphite can be used.
- the catalyst may have a specific surface area between 70 and 225 m 2 / g, preferably between 90 and 200 m 2 / g, preferably between 100 and 190 m 2 / g, in particular between 125 and 180 m 2 / g ⁇
- the catalyst may have a specific surface area between 1 and 100 m 2 / g, preferably between 5 and 80 m 2 / g, more preferably between 5 and 70 m 2 / g, ideally between 5 and 50 m 2 / g, in particular between 10 and 50 m 2 / g, more particularly between 15 and 45 m 2 / g.
- the electrical conductivity of said stream comprising at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3,3-tetrachloropropene and 1,1,2,3-tetrachloropropene is less than 15 mS / cm.
- the electrical conductivity of said stream comprising at least one chlorinated compound selected from the group consisting of 1,1,1,2,3-pentachloropropane, 2,3-dichloro-1,1,1-trifluoropropane, 2,3,3 , 3-tetrachloropropene and 1,1,2,3-tetrachloropropene is less than 14 mS / cm, preferably less than 13 mS / cm, more preferably less than 12 mS / cm, in particular less than 11 mS / cm, more particularly less than 10 mS / cm, preferably less than 9 mS / cm, advantageously preferred less than 8 mS / cm, preferably less than 7 mS / cm, more preferentially preferred less than 6 mS / cm particularly preferably less than 5 mS / cm.
- the hydrofluoric acid used in step ii) is derived from stream B of step i). Hydrofluoric acid may also be added to stream B before, or simultaneously with, bringing it into contact with said stream comprising at least one chlorinated compound as defined in the present invention.
- said stream B, to which hydrofluoric acid is optionally added, and said at least one chlorinated compound are brought into contact prior to the entry thereof into said second reactor.
- said at least one chlorinated compound is in the liquid state. This is vaporized by mixing with said stream B, to which hydrofluoric acid is optionally added. The resulting mixture is then in gaseous form.
- the mixture between said stream B, to which hydrofluoric acid is optionally added, and the said at least one chlorinated compound is carried out in a static mixer.
- said at least one chlorinated compound is introduced into the static mixer via one or more spray nozzles.
- Said at least one chlorinated compound is thus sprayed in the form of droplets before being vaporized by mixing with said stream B, to which hydrofluoric acid is optionally added; thus forming a mixture in gaseous form.
- Spraying said at least one chlorinated compound into form fine droplets ensures a more effective vaporization of it.
- the average diameter of the droplets thus produced may be less than 500 ⁇ m.
- the pressure at the inlet of said first reactor is atmospheric pressure or a pressure greater than it, advantageously the pressure at the inlet of said first reactor is greater than 1.5 bara, preferably greater than at 2.0 bara, in particular greater than 2.5 bara, more particularly greater than 3.0 bara.
- step i) is carried out at a pressure at the inlet of said first reactor between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
- step i) of the present process is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s.
- the molar ratio HF / 1233xf can vary between 1: 1 and 150: 1, preferably between 2: 1 and 125: 1, more preferably between 3: 1 and 100: 1.
- An oxidant, such as oxygen or chlorine, can be added during step i).
- the molar ratio of the oxidant to the hydrocarbon compound may be between 0.005 and 2, preferably between 0.01 and 1.5.
- the oxidant may be pure oxygen, air or a mixture of oxygen and nitrogen.
- the pressure at the inlet of said first reactor of step i) is greater than the pressure at the inlet of said second reactor of step ii), preferably the pressure difference between the pressure at the inlet of said first reactor and the pressure at the inlet of said second reactor is from 100 mbar to 3.5 bar, advantageously from 150 mbar to 3.0 bar, preferably from 300 mbar to 2.5 bar, more preferably from 400 mbar to 2.0 bar, in particular from 750 mbar to 1.75 bar, more particularly from 1 to 1.5 bar.
- the pressure at the inlet of said second reactor is lower than that at the inlet of said first reactor.
- the pressure at the inlet of said second reactor may be lower than atmospheric pressure.
- the pressure at the inlet of said second reactor may be greater than 1.5 bara while being lower than that at the inlet of said first reactor, preferably greater than 2.0 bara while being lower than that at the inlet of said reactor first reactor, in particular greater than 2.5 bara while being lower than that at the inlet of said first reactor, more particularly greater than 3.0 bara while being lower than that at the inlet of said first reactor.
- step ii) is carried out at a pressure between atmospheric pressure and 20 bara while being less than that at the inlet of said first reactor, preferably between 2 and 18 bara while being lower than that at the inlet of said first reactor, more preferably between 3 and 15 bara while being lower than that at the inlet of said first reactor.
- step ii) of the present process is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s.
- the HF / chlorine compound molar ratio may vary between 1: 1 and 150: 1, preferably between 2: 1 and 125: 1, more preferably between 3: 1 and 100: 1.
- An oxidant, such as oxygen or chlorine, may be added during step ii).
- the molar ratio of the oxidant to the hydrocarbon compound may be between 0.005 and 2, preferably between 0.01 and 1.5.
- the oxidant may be pure oxygen, air or a mixture of oxygen and nitrogen.
- step i) is carried out at a temperature of between 310 ° C. and 420 ° C., advantageously between 310 ° C. and 400 ° C., preferably between 310 ° C. and 375 ° C. more preferably between 310 ° C and 360 ° C, in particular between 330 ° C and 360 ° C.
- step ii) is carried out at a temperature of between 320 ° C. and 440 ° C., advantageously between 320 ° C. and 420 ° C., preferably between 330 ° C. and 400 ° C. more preferably between 330 ° C and 390 ° C, in particular between 340 ° C and 380 ° C.
- Step i) can be carried out at a temperature different from or equal to that of step ii).
- step i) can be carried out at a temperature lower than that of step ii) or at a higher temperature. to that of step ii).
- the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C., advantageously greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C; and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably lower at 30 ° C, preferentially preferred lower than 25 ° C, particularly preferably less than 20 ° C.
- step i) is carried out at a temperature below the temperature at which step ii) is carried out; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, preferably greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C.
- step i) is carried out at a temperature below the temperature at which step ii) is implemented; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, preferably greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C, and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably less than 30 ° C, preferably preferably less than 25 ° C, particularly preferably less than 20 ° C.
- step i) is carried out at a temperature greater than the temperature at which step ii) is implemented; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, preferably greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C.
- step i) is carried out at a temperature higher than the temperature at which step ii) is implemented; and the difference between the temperature at which step i) is carried out and the temperature at which step ii) is carried out is greater than 0.2 ° C, preferably greater than 0.5 ° C, preferably greater than 1 ° C, more preferably greater than 5 ° C, in particular greater than 10 ° C, and less than 60 ° C, preferably less than 55 ° C, preferably less than 50 ° C, more preferably less than 45 ° C, in particular less than 40 ° C, more preferably less than 35 ° C, preferably less than 30 ° C, preferably preferably less than 25 ° C, particularly preferably less than 20 ° C.
- stream C also comprises 2,3,3,3-tetrafluoropropene, HF, HCl and 1,1,1,2,2-pentafluoropropane.
- This may be purified, preferably by distillation, to form a Cl stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and a C2 stream comprising HF and 2 chloro-3,3,3-trifluoropropene.
- said stream C is distilled under conditions sufficient to form said stream C1 comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and said stream C2 comprising HF and 2 chloro-3,3,3-trifluoropropene.
- distillation can be carried out at a pressure of 2 to 6 bara, more particularly at a pressure of 3 to 5 bara.
- the temperature at the top of the distillation column is from -35 ° C. to 10 ° C., preferably from -20 ° C. to 0 ° C.
- said stream C2 is recycled in step i).
- Said stream C2 may optionally be purified, in particular by distillation, before being recycled to stage i). Purification of said second stream may optionally be carried out for impurities possibly present therein.
- Said stream C2 recycled in step i) may have an electrical conductivity of less than 15 mS / cm.
- said stream C obtained in stage ii) is cooled prior to the purification mentioned above.
- said stream C obtained in stage ii) is cooled to a temperature below 100 ° C., and then distilled to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1, 2,2-pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene; the temperature at the top of the distillation column is -35 ° C. to 10 ° C. and the distillation is carried out at a pressure of 2 to 6 bara; said second stream obtained at the bottom of the distillation column is recycled in step i).
- Said stream C can be cooled, before distillation, to a temperature of less than 95 ° C, advantageously less than 90 ° C, preferably less than 85 ° C, more preferably less than 80 ° C, in particular less than 70 ° C, more preferably less than 60 ° C, preferably less than 55 ° C, advantageously preferably less than 50 ° C, preferentially preferred less than 40 ° C, more preferably preferred less than 30 ° C, so particularly preferred less than 25 ° C, more preferably less than 20 ° C. Cooling the product stream obtained at such temperatures facilitates subsequent distillation.
- the cooling of said stream C may be effected by means of one or a plurality of heat exchangers.
- the cooling of said stream C can be carried out by passing it through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
- step i) and step ii) are carried out in the presence of hydrofluoric acid having an electrical conductivity of less than 10 mS / cm, preferably less than 5 mS / cm.
- the electrical conductivity of hydrofluoric acid can be measured prior to its use in step i) and / or step ii) of the present process.
- the electrical conductivity of the hydrofluoric acid is measured before step i) and / or step ii) and the hydrofluoric acid is in liquid form during the measurement.
- the process may also comprise a step of heating and vaporizing hydrofluoric acid prior to the implementation of step i) and / or step ii) to provide hydrofluoric acid in gaseous form.
- the hydrofluoric acid is in gaseous form when contacted with said stream A or with said at least one chlorinated compound.
- the process according to the present invention is carried out continuously.
- HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) to HFO-1234yf (2,3,3,3-tetrafluoropropene) and optionally to HFC-245cb (1,1,1,2,2 -pentafluoropropane)
- HFC-245cb (1,1,1,2,2 -pentafluoropropane)
- HCC-240db 1,1,1,2,3-pentachloropropane
- the fluorination of HCC-240db in HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) is carried out in the second multitubular reactor.
- a recycling loop whose flow rate is controlled makes it possible to return certain products to the first reactor.
- the first and the second reactor contain a mass catalyst based on chromium oxide.
- the catalyst is activated by a series of steps including drying, fluorination, air treatment and fluorination with recycling. This multi-step treatment makes the catalytic solid active and selective.
- the outflow of said second reactor is distilled to form a stream comprising HFO-1234yf and HCl and optionally HFC-245cb and a stream comprising HF and HCFO-1233xf. This last stream comprising HF and HCFO-1233xf is the current from the recycling loop (current C2).
- the fluorination process is carried out according to the following operating conditions:
- a molar ratio between the HF and the sum of the organic elements fed by the recycling loop of between 15 and 20 i.e. the sum of the organic elements contained in the stream coming from the recycling loop or C2 stream
- a molar ratio between the HF and the sum of the organic elements fed by the recycling loop between 12 and 15
- the process is carried out with a current of HCFO-1233xf having two different electrical conductivity values: 6 and 20 mS / cm. Electrical conductivity was measured at room temperature and 5.5 bara. The run is stopped when the conversion to 2-chloro-3,3,3-trifluoropropene is less than 50% in the first reactor. Table 1 below shows the values obtained.
- the electrical conductivity of the HCFO-1233xf current is measured using a cell marketed by Endress + Hauser and referenced under the term InduMax P CLS 50 coated with a corrosive medium-resistant polymer-perfluoroalkoxy polymer (PFA) coating. containing HF.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
La présente invention concerne un procédé pour la production de 2,3,3,3-tétrafluoropropène comprenant les étapes : i) dans un premier réacteur, mise en contact d'un courant A comprenant 2-chloro-3,3,3- trifluoropropène avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène, HF et 2-chloro-3,3,3- trifluoropropène n'ayant pas réagi; et ii) dans un second réacteur, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec un courant comprenant au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-1,1,1- trifluoropropane, 2,3,3,3-tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant C comprenant 2-chloro-3,3,3-trifluoropropène, caractérisé en ce que le courant B obtenu à l'étape i) alimente ledit second réacteur utilisé pour l'étape ii); et en ce que la conductivité électrique dudit courant A fourni à l'étape i) est inférieure à 15 mS/cm.
Description
Procédé de production du 2,3.3.3-tétrafluoropropène
Domaine technique de l'invention
La présente invention concerne la production d'hydrofluorooléfines. Plus particulièrement, la présente invention concerne la production de 2,3,3,3-tétrafluoropropène.
Arrière-plan technologique de l'invention
Les hydrocarbures halogénés, en particulier les hydrocarbures fluorés comme les hydrofluorooléfines, sont des composés qui ont une structure utile comme matériaux fonctionnels, solvants, réfrigérants, agents de gonflage et monomères pour polymères fonctionnels ou matériaux de départ pour de tels monomères. Des hydrofluorooléfines comme le 2,3,3,3-tétrafluoropropène (HFO-1234yf) attirent l'attention parce qu'elles offrent un comportement prometteur comme réfrigérants à faible potentiel de réchauffement global.
Les procédés de production de fluorooléfines sont habituellement effectués en présence d'une substance de départ telle qu'un alcane contenant du chlore ou un alcène contenant du chlore, et en présence d'un agent fluorant tel que le fluorure d'hydrogène. Ces procédés peuvent être effectués en phase gazeuse ou en phase liquide, en absence ou non de catalyseur.
On connaît par exemple par US 2009/0240090, un procédé en phase gazeuse de préparation du 2-chloro-3,3,3-trifluoropropène (HCFO-1233xf) à partir du 1,1, 1,2,3- pentachloropropane (HCC-240db). Le HCFO-1233xf ainsi produit est converti en 2-chloro-
1.1.1.2-tétrafluoropropane (HCFC-244bb) en phase liquide puis ce dernier est converti en
2.3.3.3-tétrafluoropropène.
On connaît également par WO 2011/077192, un procédé de préparation 2,3,3,3- tétrafluoropropène comprenant notamment une étape de mise en contact du 2-chloro-3,3,3- trifluoropropène avec HF en phase gazeuse en présence d'un catalyseur de fluoration.
Il y a toujours un besoin pour des procédés de production du 2,3,3,3-tétrafluoropropène plus performant.
Résumé de l'invention
La présente invention concerne un procédé pour la production de 2,3,3,3- tétrafluoropropène comprenant les étapes :
i) dans un premier réacteur, mise en contact d'un courant A comprenant 2-chloro-3,3,3- trifluoropropène avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène, HCl, HF et 2-chloro-3,3,3- trifluoropropène n'ayant pas réagi ; et
ii) dans un second réacteur, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec un courant comprenant au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l- trifluoropropane, 2,3,3,3-tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant C comprenant 2-chloro-3,3,3-trifluoropropène,
caractérisé en ce que le courant B obtenu à l'étape i) alimente ledit second réacteur utilisé pour l'étape ii) ; et en ce que la conductivité électrique dudit courant A fourni à l'étape i) est inférieure à 15 mS/cm.
Le présent procédé permet d'optimiser et d'améliorer la production de 2,3,3,3- tétrafluoropropène. Une valeur de conductivité électrique inférieure à 15 mS/cm du courant A avant la mise en oeuvre de l'étape de fluoration ou de déhydrohalogénation permet de garantir une efficacité optimale de la réaction en terme de conversion et de sélectivité. Si un catalyseur est présent, une telle valeur permet de garantir également une efficacité optimale du catalyseur.
Selon un mode de réalisation préféré, l'étape i) est mise en oeuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci ; et l'étape ii) est mise en oeuvre en présence ou en l'absence d'un catalyseur, avantageusement l'étape ii) est mise en oeuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci.
Selon un mode de réalisation préféré, le catalyseur est à base de chrome et comprend également un co-catalyseur sélectionné parmi le groupe consistant en Ni, Zn, Co, Mn ou Mg, de préférence la teneur en co-catalyseur est comprise entre 0,01% et 10% sur base du poids total du catalyseur.
Selon un mode de réalisation préféré, le courant C comprend également 2,3,3,3- tétrafluoropropène, HF, HCl et 1,1,1,2,2-pentafluoropropane.
Selon un mode de réalisation préféré, le courant C est purifié, de préférence par distillation, pour former un courant Cl comprenant 2,3,3,3-tétrafluoropropène, HCl et 1,1, 1,2,2- pentafluoropropane, et un courant C2 comprenant HF et 2-chloro-3,3,3-trifluoropropène.
Selon un mode de réalisation préféré, ledit courant C2 est recyclé à l'étape i).
Selon un mode de réalisation préféré, ledit courant C2 recyclé à l'étape i) a une conductivité électrique inférieure à 15 mS/cm.
Selon un mode de réalisation préféré, ledit courant B et ledit au moins un composé chloré sont mis en contact préalablement à l'entrée de ceux-ci dans ledit second réacteur.
Selon un mode de réalisation préféré, la pression à l'entrée dudit premier réacteur de l'étape i) est supérieure à la pression à l'entrée dudit second réacteur de l'étape ii), de préférence la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 100 mbar à 3,5 bar, avantageusement de 150 mbar à 3,0 bar, de préférence de 300 mbar à 2,5 bar, plus préférentiellement de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar.
Selon un mode de réalisation préféré, la température à laquelle l'étape i) est mise en oeuvre est différente de celle à laquelle l'étape ii) est mise en oeuvre ; et l'écart entre la température à laquelle l'étape i) est mise en oeuvre et la température à laquelle l'étape ii) est mise en oeuvre est supérieur à 0,2°C, avantageusement supérieur à 0,5°C, de préférence supérieur à 1°C, plus préférentiellement supérieur à 5°C, en particulier supérieur à 10°C ; et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C.
Selon un mode de réalisation préféré, l'étape i) est mise en oeuvre à une température inférieure à la température à laquelle l'étape ii) est mise en oeuvre ; et l'écart entre la température à laquelle l'étape i) est mise en oeuvre et la température à laquelle l'étape ii) est mise en oeuvre est supérieure à 0,2°C, avantageusement supérieure à 0,5°C, de préférence supérieure à 1°C, plus préférentiellement supérieure à 5°C, en particulier supérieure à 10°C ; et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C.
Selon un mode de réalisation préféré, le courant C est refroidi à une température inférieure à 100°C, puis distillé pour former un courant Cl comprenant 2, 3,3,3- tétrafluoropropène, HCl et 1,1,1,2,2-pentafluoropropane, et un courant C2 comprenant HF et 2- chloro-3,3,3-trifluoropropène ; la température en tête de colonne de distillation est de -35°C à 10°C et la distillation est mise en oeuvre à une pression est de 2 à 6 bara ; ledit second courant obtenu en pied de colonne de distillation est recyclé à l'étape i).
Selon un mode de réalisation préféré, l'étape i) et/ou l'étape ii) sont réalisées en présence d'acide fluorhydrique ayant une conductivité électrique inférieure à 10 mS/cm.
Description détaillée de la présente invention
La présente invention concerne un procédé pour la production de 2, 3,3,3- tétrafluoropropène comprenant les étapes :
i) dans un premier réacteur, mise en contact d'un courant A comprenant 2-chloro-3,3,3- trifluoropropène avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène, HCl, HF et 2-chloro-3,3,3- trifluoropropène n'ayant pas réagi ; et
ii) dans un second réacteur, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec un courant comprenant au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l- trifluoropropane, 2,3,3,3-tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant C comprenant 2-chloro-3,3,3-trifluoropropène.
De préférence, le courant B obtenu à l'étape i) alimente ledit second réacteur utilisé pour l'étape ii).
Selon un mode de réalisation préféré, la conductivité électrique dudit courant A fourni à l'étape i) est inférieure à 15 mS/cm. Avantageusement, la conductivité électrique dudit courant A fourni à l'étape i) est inférieure 14 mS/cm, de préférence inférieure à 13 mS/cm, plus préférentiellement inférieure à 12 mS/cm, en particulier inférieure à 11 mS/cm, plus particulièrement inférieure à 10 mS/cm, de manière privilégiée inférieure à 9 mS/cm, de manière avantageusement privilégiée inférieure à 8 mS/cm, de manière préférentiellement privilégiée inférieure à 7 mS/cm, de manière plus préférentiellement privilégiée inférieure à 6 mS/cm, de manière particulièrement privilégiée inférieure à 5 mS/cm. La conductivité électrique est mesurée à l'aide d'une cellule de mesure de conductivité inductive et selon la pratique connue de l'homme du métier. La mesure de la conductivité électrique est effectuée à
température ambiante. La mesure de la conductivité électrique est effectuée à une pression égale à la pression à laquelle l'étape b) est mise en oeuvre. La conductivité électrique du courant A peut-être diminuée pour atteindre une conductivité inférieure à 15 ms/cm en diminuant la concentration en électrolyte éventuellement présent dans celui-ci selon les techniques connues de l'homme du métier (distillation, refroidissement et décantation, passage sur des tamis moléculaires de 3 à 5 A ou des zéolites). De préférence, la cellule de mesure est revêtue d'un matériau résistant à un milieu corrosif, en particulier résistant à l'acide fluorhydrique.
La conductivité électrique dudit courant A est mesurée préalablement à l'étape i). De préférence, la conductivité électrique dudit courant A est mesurée lorsque celui-ci est sous forme liquide. Ledit procédé selon la présente invention peut donc comprendre une étape de chauffage et vaporisation dudit courant A préalable à la mise en oeuvre de l'étape i) pour fournir ledit courant A sous forme gazeuse. De préférence, ledit courant A mis en oeuvre à l'étape i) est sous forme gazeuse lors de sa mise en contact avec HF.
De préférence, l'étape i) est mise en oeuvre en présence d'un catalyseur. De préférence, l'étape ii) est mise en oeuvre en présence ou en l'absence d'un catalyseur, en particulier l'étape ii) est mise en oeuvre en présence d'un catalyseur. De préférence, le catalyseur est à base de chrome. De préférence, le catalyseur à base de chrome peut être un oxyde de chrome (par exemple CrÜ2, CrC>3 ou Cr2C>3), un oxyfluorure de chrome ou un fluorure de chrome (par exemple CrFs) ou un mélange de ceux-ci. L' oxyfluorure de chrome peut contenir une teneur en fluor comprise entre 1 et 60% en poids sur base du poids total de l'oxyfluorure de chrome, avantageusement entre 5 et 55% en poids, de préférence entre 10 et 52% en poids, plus préférentiellement entre 15 et 52% en poids, en particulier entre 20 et 50% en poids, plus particulièrement entre 25 et 45% en poids, de manière privilégiée entre 30 et 45% en poids, de manière plus privilégiée de 35 à 45% en poids de fluor sur base du poids total de l'oxyfluorure de chrome. Le catalyseur peut également comprendre un co-catalyseur choisi parmi le groupe consistant en Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb ; de préférence Ni, Co, Zn, Mg, Mn ; en particulier Ni, Co, Zn. La teneur en poids du co-catalyseur est comprise entre 1 et 10% en poids sur base du poids total du catalyseur. Le catalyseur peut être supporté ou non. Un support tel que l'alumine, de l'alumine activée, les halogénures d'aluminium (AIF3 par exemple), les oxyhalogénures d'aluminium, du charbon actif, fluorure de magnésium ou du graphite peut être utilisé.
De préférence, le catalyseur peut avoir une surface spécifique entre 70 et 225 m2/g, avantageusement entre 90 et 200 m2/g, de préférence entre 100 et 190 m2/g, en particulier
entre 125 et 180 m2/g· Alternativement, le catalyseur peut avoir une surface spécifique entre 1 et 100 m2/g, de préférence entre 5 et 80 m2/g, plus préférentiellement entre 5 et 70 m2/g, idéalement entre 5 et 50 m2/g, en particulier entre 10 et 50 m2/g, plus particulièrement entre 15 et 45 m2/g.
Selon un mode de réalisation préféré, la conductivité électrique dudit courant comprenant au moins un composé chloré sélectionné parmi le groupe consistant en 1,1, 1,2, 3- pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2,3,3,3-tétrachloropropène et 1,1,2,3-tétrachloropropène est inférieure à 15 mS/cm. Avantageusement, la conductivité électrique dudit courant comprenant au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2,3,3,3- tétrachloropropène et 1,1,2,3-tétrachloropropène est inférieure 14 mS/cm, de préférence inférieure à 13 mS/cm, plus préférentiellement inférieure à 12 mS/cm, en particulier inférieure à 11 mS/cm, plus particulièrement inférieure à 10 mS/cm, de manière privilégiée inférieure à 9 mS/cm, de manière avantageusement privilégiée inférieure à 8 mS/cm, de manière préférentiellement privilégiée inférieure à 7 mS/cm, de manière plus préférentiellement privilégiée inférieure à 6 mS/cm, de manière particulièrement privilégiée inférieure à 5 mS/cm.
Selon un mode de réalisation particulier, l'acide fluorhydrique utilisé à l'étape ii) est issu du courant B de l'étape i). De l'acide fluorhydrique peut également être ajouté au courant B avant, ou simultanément à, sa mise en contact avec ledit courant comprenant au moins un composé chloré tel que défini dans la présente invention.
Selon un mode de réalisation préféré, ledit courant B, auquel de l'acide fluorhydrique est optionnellement additionné, et ledit au moins un composé chloré sont mis en contact préalablement à l'entrée de ceux-ci dans ledit second réacteur. De préférence, ledit au moins un composé chloré est à l'état liquide. Celui-ci est vaporisé par mélange avec ledit courant B, auquel de l'acide fluorhydrique est optionnellement additionné. Le mélange résultant est alors sous forme gazeuse. En particulier, le mélange entre ledit courant B, auquel de l'acide fluorhydrique est optionnellement additionné, et ledit au moins un composé chloré est effectué dans un mélangeur statique. De préférence, ledit au moins un composé chloré est introduit dans le mélangeur statique via une ou plusieurs buses de pulvérisation. Ledit au moins un composé chloré est ainsi pulvérisé sous forme de gouttelettes avant d'être vaporisé par mélange avec ledit courant B, auquel de l'acide fluorhydrique est optionnellement additionné ; formant ainsi un mélange sous forme gazeuse. La pulvérisation dudit au moins un composé chloré sous forme
de fines gouttelettes permet d'assurer une vaporisation plus efficace de celui-ci. Par exemple, le diamètre moyen des gouttelettes ainsi produites peut être inférieur à 500 pm.
Selon un mode de réalisation préféré, la pression à l'entrée dudit premier réacteur est la pression atmosphérique ou une pression supérieure à celle-ci, avantageusement la pression à l'entrée dudit premier réacteur est supérieure à 1,5 bara, de préférence supérieure à 2,0 bara, en particulier supérieure à 2,5 bara, plus particulièrement supérieure à 3,0 bara. De préférence, l'étape i) est mise en oeuvre à une pression à l'entrée dudit premier réacteur comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et 15 bara.
De préférence, l'étape i) du présent procédé est mise en oeuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. De préférence, le rapport molaire HF/1233xf peut varier entre 1:1 et 150:1, de préférence entre 2:1 et 125:1, plus préférentiellement entre 3:1 et 100:1. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape i). Le rapport molaire de l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote.
Selon un mode de réalisation préféré, la pression à l'entrée dudit premier réacteur de l'étape i) est supérieure à la pression à l'entrée dudit second réacteur de l'étape ii), de préférence la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 100 mbar à 3,5 bar, avantageusement de 150 mbar à 3,0 bar, de préférence de 300 mbar à 2,5 bar, plus préférentiellement de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar.
Comme mentionné ci-dessus, la pression à l'entrée dudit second réacteur est inférieure à celle à l'entrée dudit premier réacteur. Ainsi, la pression à l'entrée dudit second réacteur peut être inférieure à la pression atmosphérique. La pression à l'entrée dudit second réacteur peut être supérieure à 1,5 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, de préférence supérieure à 2,0 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, en particulier supérieure à 2,5 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, plus particulièrement supérieure à 3,0 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur. De préférence, l'étape ii) est mise en oeuvre à une pression comprise entre la pression atmosphérique et 20 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur, de préférence entre 2 et 18 bara tout en étant inférieure à celle à
l'entrée dudit premier réacteur, plus préférentiellement entre 3 et 15 bara tout en étant inférieure à celle à l'entrée dudit premier réacteur.
De préférence, l'étape ii) du présent procédé est mise en oeuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. De préférence, le rapport molaire HF/composé chloré peut varier entre 1:1 et 150:1, de préférence entre 2:1 et 125:1, plus préférentiellement entre 3:1 et 100:1. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape ii). Le rapport molaire de l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote.
Selon un mode de réalisation préféré, l'étape i) est mise en oeuvre à une température comprise entre 310°C et 420°C, avantageusement entre 310°C et 400°C, de préférence entre 310°C et 375°C, plus préférentiellement entre 310°C et 360°C, en particulier entre 330°C et 360°C.
Selon un mode de réalisation préféré, l'étape ii) est mise en oeuvre à une température comprise entre 320°C et 440°C, avantageusement entre 320°C et 420°C, de préférence entre 330°C et 400°C, plus préférentiellement entre 330°C et 390°C, en particulier entre 340°C et 380°C.
L'étape i) peut être mise en oeuvre à une température différente ou égale à celle de l'étape ii). Lorsque l'étape i) est mise en oeuvre à une température différente de celle de l'étape ii), l'étape i) peut être mise en oeuvre à une température inférieure à celle de l'étape ii) ou à une température supérieure à celle de l'étape ii).
Selon un mode de réalisation préféré, l'écart entre la température à laquelle l'étape i) est mise en oeuvre et la température à laquelle l'étape ii) est mise en oeuvre est supérieur à 0,2°C, avantageusement supérieur à 0,5°C, de préférence supérieur à 1°C, plus préférentiellement supérieur à 5°C, en particulier supérieur à 10°C ; et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C.
De préférence, l'étape i) est mise en oeuvre à une température inférieure à la température à laquelle l'étape ii) est mise en oeuvre ; et l'écart entre la température à laquelle l'étape i) est mise en oeuvre et la température à laquelle l'étape ii) est mise en oeuvre est
supérieure à 0,2°C, avantageusement supérieure à 0,5°C, de préférence supérieure à 1°C, plus préférentiellement supérieure à 5°C, en particulier supérieure à 10°C.
De préférence, l'étape i) est mise en œuvre à une température inférieure à la température à laquelle l'étape ii) est mise en œuvre ; et l'écart entre la température à laquelle l'étape i) est mise en œuvre et la température à laquelle l'étape ii) est mise en œuvre est supérieure à 0,2°C, avantageusement supérieure à 0,5°C, de préférence supérieure à 1°C, plus préférentiellement supérieure à 5°C, en particulier supérieure à 10°C, et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C.
Alternativement, l'étape i) est mise en œuvre à une température supérieure à la température à laquelle l'étape ii) est mise en œuvre ; et l'écart entre la température à laquelle l'étape i) est mise en œuvre et la température à laquelle l'étape ii) est mise en œuvre est supérieure à 0,2°C, avantageusement supérieure à 0,5°C, de préférence supérieure à 1°C, plus préférentiellement supérieure à 5°C, en particulier supérieure à 10°C.
De préférence, l'étape i) est mise en œuvre à une température supérieure à la température à laquelle l'étape ii) est mise en œuvre ; et l'écart entre la température à laquelle l'étape i) est mise en œuvre et la température à laquelle l'étape ii) est mise en œuvre est supérieure à 0,2°C, avantageusement supérieure à 0,5°C, de préférence supérieure à 1°C, plus préférentiellement supérieure à 5°C, en particulier supérieure à 10°C, et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C.
De préférence, outre le 2-chloro-3,3,3-trifluoropropène, le courant C comprend également 2,3,3,3-tétrafluoropropène, HF, HCl et 1,1,1,2,2-pentafluoropropane. Celui-ci peut être purifié, de préférence par distillation, pour former un courant Cl comprenant 2,3,3,3- tétrafluoropropène, HCl et 1,1,1,2,2-pentafluoropropane, et un courant C2 comprenant HF et 2- chloro-3,3,3-trifluoropropène.
De préférence, ledit courant C est distillé dans des conditions suffisantes pour former ledit courant Cl comprenant 2,3,3,3-tétrafluoropropène, HCl et 1,1,1,2,2-pentafluoropropane, et ledit courant C2 comprenant HF et 2-chloro-3,3,3-trifluoropropene. En particulier, la
distillation peut être effectuée à une pression de 2 à 6 bara, plus particulièrement à une pression de 3 à 5 bara. En particulier, la température en tête de colonne de distillation est de -35°C à 10°C, de préférence de -20°C à 0°C.
De préférence, ledit courant C2 est recyclé à l'étape i). Ledit courant C2 peut éventuellement être purifié, en particulier par distillation, avant d'être recyclé à l'étape i). La purification dudit second courant peut éventuellement être mise en oeuvre pour des impuretés éventuellement présentes dans celui-ci. Ledit courant C2 recyclé à l'étape i) peut avoir une conductivité électrique inférieure à 15 mS/cm.
Selon un mode réalisation préféré, ledit courant C obtenu à l'étape ii) est refroidi préalablement à la purification mentionnée ci-dessus. En particulier, ledit courant C obtenu à l'étape ii) est refroidi à une température inférieure à 100°C, puis distillé pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et 1,1,1,2,2-pentafluoropropane, et ledit second courant comprenant H F et 2-chloro-3,3,3-trifluoropropène; la température en tête de colonne de distillation est de -35°C à 10°C et la distillation est mise en oeuvre à une pression de 2 à 6 bara ; ledit second courant obtenu en pied de colonne de distillation est recyclé à l'étape i).
Ledit courant C peut être refroidi, avant distillation, à une température inférieure à 95°C, avantageusement inférieure à 90°C, de préférence inférieure à 85°C, plus préférentiellement inférieure à 80°C, en particulier inférieure à 70°C, plus particulièrement inférieure à 60°C, de manière privilégiée inférieure à 55°C, de manière avantageusement privilégiée inférieure à 50°C, de manière préférentiellement privilégiée inférieure à 40°C, de manière plus préférentiellement privilégiée inférieure à 30°C, de manière particulièrement privilégiée inférieure à 25°C, de manière plus particulièrement privilégiée inférieure à 20°C. Le refroidissement du flux de produits obtenu à de telles températures facilite la distillation ultérieure.
Le refroidissement dudit courant C peut être effectué grâce à un ou une pluralité d'échangeurs de chaleur. Le refroidissement dudit courant C peut être effectué en faisant passer celui-ci au travers de un, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix échangeurs de chaleur, de préférence le nombre d'échangeurs de chaleur est compris entre 2 et 8, en particulier entre 3 et 7.
Selon un mode de réalisation préféré, l'étape i) et l'étape ii) sont réalisées en présence d'acide fluorhydrique ayant une conductivité électrique inférieure à 10 mS/cm, de préférence inférieure à 5 mS/cm. La conductivité électrique de l'acide fluorhydrique peut être mesurée préalablement à son utilisation à l'étape i) et/ou à l'étape ii) du présent procédé. De préférence,
la conductivité électrique de l'acide fluorhydrique est mesurée préalablement à l'étape i) et/ou à l'étape ii) et l'acide fluorhydrique est sous forme liquide lors de la mesure. Le procédé peut également comprendre une étape de chauffage et de vaporisation de l'acide fluorhydrique préalablement à la mise en oeuvre de à l'étape i) et/ou à l'étape ii) pour fournir de l'acide fluorhydrique sous forme gazeuse. De préférence, l'acide fluorhydrique est sous forme gazeuse lors de la mise en contact avec ledit courant A ou avec ledit au moins un composé chloré.
De préférence, le procédé selon la présente invention est mis en oeuvre en continu.
Exemple
La fluoration du HCFO-1233xf (2-chloro-3,3,3-trifluoropropène) en HFO-1234yf (2, 3,3,3- tétrafluoropropène) et optionnellement en HFC-245cb (1,1,1,2,2-pentafluoropropane) est réalisée dans un premier réacteur multitubulaire. Le courant de produits issu de cette fluoration alimente un second réacteur. Ledit second réacteur est également alimenté avec un flux d'acide fluorhydrique et de 1,1,1,2,3-pentachloropropane (HCC-240db). La fluoration du HCC-240db en HCFO-1233xf (2-chloro-3,3,3-trifluoropropène) est réalisée dans le second réacteur multitubulaire. Une boucle de recyclage dont le débit est contrôlé permet de ramener certains produits vers le premier réacteur. Le premier et le second réacteur contiennent un catalyseur massique à base d'oxyde de chrome. Le catalyseur est activé par une série d’étapes comprenant séchage, fluoration, traitement sous air et fluoration avec recyclage. Ce traitement en plusieurs étapes permet de rendre le solide catalytique actif et sélectif. Le flux sortant dudit second réacteur est traitée par distillation pour former un courant comprenant HFO-1234yf et HCl et optionnellement HFC-245cb et un courant comprenant HF et HCFO-1233xf. Ce dernier courant comprenant HF et HCFO-1233xf constitue le courant issu de la boucle de recyclage (courant C2).
Dans le premier réacteur, le procédé de fluoration est mis en oeuvre suivant les conditions opératoires suivantes :
Une pression absolue dans le réacteur de fluoration de 6,1 bars absolu
Un ratio molaire entre l'HF et la somme des organiques alimentés par la boucle de recyclage compris entre 15 et 20 (i.e. la somme des organiques contenus dans le courant issu de la boucle de recyclage ou courant C2)
Un temps de contact compris entre 18 et 20 secondes
Une température constante dans le réacteur de 330°C.
Dans le second réacteur, le procédé de fluoration est mis en oeuvre suivant les conditions opératoires suivantes :
Une pression absolue dans le réacteur de fluoration de 5,5 bars absolu
Un ratio molaire entre l'HF et la somme des organiques alimentés par la boucle de recyclage compris entre 12 et 15
Un temps de contact compris entre 11 et 13 secondes
Une température constante dans le réacteur de 340°C.
Le procédé est mis en oeuvre avec un courant de HCFO-1233xf ayant deux valeurs de conductivité électrique différentes : 6 et 20 mS/cm. La conductivité électrique a été mesurée à température ambiante et à 5,5 bara. Le run est stoppé lorsque la conversion en 2-chloro-3,3,3- trifluoropropène est inférieure à 50% dans le premier réacteur. Le tableau 1 ci-dessous reprend les valeurs obtenues. La conductivité électrique du courant de HCFO-1233xf est mesurée à l'aide d'une cellule commercialisée par Endress+Hauser et référencée sous le terme InduMax P CLS 50 revêtue d'un revêtement polymère de type perfluoroalkoxy (PFA) résistant à un milieu corrosif contenant HF.
Tableau 1
Les résultats détaillés dans le tableau 1 démontrent qu'un courant comprenant HCFO- 1233xf et ayant une conductivité électrique inférieure à 15 mS/cm permet de maintenir une conversion suffisamment élevée pour une durée importante. En effet, une conversion supérieure à 50% peut être maintenue jusqu'à 400 h lorsque la conductivité électrique est de 6 mS/cm (exemple 1). Au contraire, la conversion en HCFO-1233xf chute fortement lorsque la conductivité électrique est trop élevée (exemple 2).
Claims
1. Procédé pour la production de 2,3,3,3-tétrafluoropropène comprenant les étapes :
i) dans un premier réacteur, mise en contact d'un courant A comprenant 2-chloro-3,3,3- trifluoropropène avec de l'acide fluorhydrique en phase gazeuse en présence d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène, HCl, HF et 2-chloro-3,3,3- trifluoropropène n'ayant pas réagi ; et
ii) dans un second réacteur, mise en contact en phase gazeuse en présence ou non d'un catalyseur d'acide fluorhydrique avec au moins un composé chloré sélectionné parmi le groupe consistant en 1,1,1,2,3-pentachloropropane, 2,3-dichloro-l,l,l-trifluoropropane, 2, 3,3,3- tétrachloropropène et 1,1,2,3-tétrachloropropène pour produire un courant C comprenant 2- chloro-3,3,3-trifluoropropène,
caractérisé en ce que le courant B obtenu à l'étape i) alimente ledit second réacteur utilisé pour l'étape ii) ; et en ce que la conductivité électrique dudit courant A fourni à l'étape i) est inférieure à 15 mS/cm.
2. Procédé selon la revendication 1 caractérisé en ce que l'étape i) est mise en oeuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci ; et l'étape ii) est mise en oeuvre en présence ou en l'absence d'un catalyseur, avantageusement l'étape ii) est mise en oeuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci.
3. Procédé selon la revendication précédente caractérisé en ce que le catalyseur est à base de chrome et comprend également un co-catalyseur sélectionné parmi le groupe consistant en Ni, Zn, Co, Mn ou Mg, de préférence la teneur en co-catalyseur est comprise entre 0,01% et 10% sur base du poids total du catalyseur.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant C comprend également 2,3,3,3-tétrafluoropropène, HF, HCl et 1,1, 1,2,2- pentafluoropropane.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant C est purifié, de préférence par distillation, pour former un courant Cl comprenant 2,3,3,3-tétrafluoropropène, HCl et 1,1,1,2,2-pentafluoropropane, et un courant C2 comprenant HF et 2-chloro-3,3,3-trifluoropropène.
6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit courant C2 est recyclé à l'étape i).
7. Procédé selon la revendication précédente caractérisé en ce que ledit courant C2 recyclé à l'étape i) a une conductivité électrique inférieure à 15 mS/cm.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que ledit courant B et ledit au moins un composé chloré sont mis en contact préalablement à l'entrée de ceux-ci dans ledit second réacteur.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la pression à l'entrée dudit premier réacteur de l'étape i) est supérieure à la pression à l'entrée dudit second réacteur de l'étape ii), de préférence la différence de pression entre la pression à l'entrée dudit premier réacteur et la pression à l'entrée dudit second réacteur est de 100 mbar à 3,5 bar, avantageusement de 150 mbar à 3,0 bar, de préférence de 300 mbar à 2,5 bar, plus préférentiellement de 400 mbar à 2,0 bar, en particulier de 750 mbar à 1,75 bar, plus particulièrement de 1 à 1,5 bar.
10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la température à laquelle l'étape i) est mise en oeuvre est différente de celle à laquelle l'étape ii) est mise en oeuvre ; et l'écart entre la température à laquelle l'étape i) est mise en oeuvre et la température à laquelle l'étape ii) est mise en oeuvre est supérieur à 0,2°C, avantageusement supérieur à 0,5°C, de préférence supérieur à 1°C, plus préférentiellement supérieur à 5°C, en particulier supérieur à 10°C ; et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière
préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C.
11. Procédé selon la revendication précédente caractérisé en ce que l'étape i) est mise en oeuvre à une température inférieure à la température à laquelle l'étape ii) est mise en oeuvre ; et l'écart entre la température à laquelle l'étape i) est mise en oeuvre et la température à laquelle l'étape ii) est mise en oeuvre est supérieure à 0,2°C, avantageusement supérieure à 0,5°C, de préférence supérieure à 1°C, plus préférentiellement supérieure à 5°C, en particulier supérieure à 10°C ; et inférieur à 60°C, avantageusement inférieur à 55°C, de préférence inférieur à 50°C, plus préférentiellement inférieur à 45°C, en particulier inférieur à 40°C, plus particulièrement inférieur à 35°C, de manière privilégiée inférieur à 30°C, de manière préférentiellement privilégiée inférieur à 25°C, de manière particulièrement privilégiée inférieur à 20°C.
12. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant C est refroidi à une température inférieure à 100°C, puis distillé pour former un courant
Cl comprenant 2,3,3,3-tétrafluoropropène, HCl et 1,1,1,2,2-pentafluoropropane, et un courant C2 comprenant HF et 2-chloro-3,3,3-trifluoropropène ; la température en tête de colonne de distillation est de -35°C à 10°C et la distillation est mise en oeuvre à une pression est de 2 à 6 bara ; ledit second courant obtenu en pied de colonne de distillation est recyclé à l'étape i).
13. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape i) et/ou l'étape ii) sont réalisées en présence d'acide fluorhydrique ayant une conductivité électrique inférieure à 10 mS/cm.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980015511.1A CN111770908A (zh) | 2018-03-07 | 2019-03-04 | 2,3,3,3-四氟丙烯的生产工艺 |
EP19715971.8A EP3762355A1 (fr) | 2018-03-07 | 2019-03-04 | Procédé de production du 2,3,3,3-tétrafluoropropène |
US16/976,599 US11084768B2 (en) | 2018-03-07 | 2019-03-04 | Process for the production of 2,3,3,3-tetrafluoropropene |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1851954A FR3078700B1 (fr) | 2018-03-07 | 2018-03-07 | Procede de production du 2,3,3,3-tetrafluoropropene |
FR1851954 | 2018-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019170991A1 true WO2019170991A1 (fr) | 2019-09-12 |
Family
ID=62528616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2019/050479 WO2019170991A1 (fr) | 2018-03-07 | 2019-03-04 | Procédé de production du 2,3,3,3-tétrafluoropropène |
Country Status (5)
Country | Link |
---|---|
US (1) | US11084768B2 (fr) |
EP (1) | EP3762355A1 (fr) |
CN (1) | CN111770908A (fr) |
FR (1) | FR3078700B1 (fr) |
WO (1) | WO2019170991A1 (fr) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3023286B1 (fr) | 2014-07-02 | 2018-02-16 | Arkema France | Procede de fabrication de tetrafluoropropene |
FR3078699B1 (fr) | 2018-03-07 | 2020-02-21 | Arkema France | Procede de production du 2,3,3,3-tetrafluoropropene |
FR3078698B1 (fr) | 2018-03-07 | 2020-02-21 | Arkema France | Procede de production du 2-chloro-3,3,3-trifluoropropene |
FR3081158B1 (fr) | 2018-05-16 | 2020-07-31 | Arkema France | Procede de production du 1-chloro-3,3,3-trifluoropropene. |
FR3083232B1 (fr) | 2018-06-27 | 2021-11-12 | Arkema France | Procede de production du 1-chloro-3,3,3-trifluoropropene |
FR3086287B1 (fr) | 2018-09-26 | 2020-09-18 | Arkema France | Stabilisation du 1-chloro-3,3,3-trifluoropropene |
CN116143583B (zh) * | 2023-04-19 | 2023-07-07 | 山东澳帆新材料有限公司 | 一种2,3,3,3-四氟丙烯和1,3,3,3-四氟丙烯的联产制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090240090A1 (en) | 2004-04-29 | 2009-09-24 | Honeywell International Inc. | Integrated process to produce 2,3,3,3-tetrafluoropropene |
US20090287026A1 (en) * | 2004-04-29 | 2009-11-19 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
WO2011077192A1 (fr) | 2009-12-23 | 2011-06-30 | Arkema France | Fluoration catalytique en phase gazeuse du 1233xf en 1234yf |
WO2013088195A1 (fr) * | 2011-12-14 | 2013-06-20 | Arkema France | Procédé pour la préparation de 2,3,3,3-tétrafluoropropène |
US20160237009A1 (en) * | 2012-02-03 | 2016-08-18 | Arkema France | Method for producing 2,3,3,3-tetrafluoropropene |
WO2017178857A1 (fr) * | 2016-04-13 | 2017-10-19 | Arkema France | Procédé de fabrication du 2,3,3,3-tétrafluoropropène |
CN107540011A (zh) * | 2016-06-23 | 2018-01-05 | 中化近代环保化工(西安)有限公司 | 一种高比表面积的催化剂、其制备方法及应用 |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE527988A (fr) | 1953-04-09 | |||
US4902838A (en) | 1988-12-28 | 1990-02-20 | E. I. Du Pont De Nemours And Company | Isomerization of saturated fluorohydrocarbons |
GB9007029D0 (en) | 1990-03-29 | 1990-05-30 | Ici Plc | Chemical process |
US5227350A (en) | 1990-09-14 | 1993-07-13 | Imperial Chemical Industries Plc | Fluorination catalyst regeneration |
GB9224594D0 (en) | 1991-12-10 | 1993-01-13 | Ici Plc | Water separation process |
US5322597A (en) | 1992-07-30 | 1994-06-21 | Minnesota Mining And Manufacturing Company | Bipolar flow cell and process for electrochemical fluorination |
JPH10113562A (ja) | 1996-04-17 | 1998-05-06 | Ausimont Spa | ハロゲン化炭化水素の弗素化用触媒 |
EP0939071B1 (fr) | 1998-02-26 | 2003-07-30 | Central Glass Company, Limited | Procédé pour la préparation de propanes fluorées |
FR2808268B1 (fr) | 2000-04-26 | 2002-08-30 | Atofina | Liquides ioniques derives d'acides de lewis a base de titane, niobium, tantale, etain ou antimoine, et leurs applications |
EP2336102A1 (fr) * | 2005-11-03 | 2011-06-22 | Honeywell International Inc. | Procédé de production de composés organiques fluorés |
US8952208B2 (en) * | 2006-01-03 | 2015-02-10 | Honeywell International Inc. | Method for prolonging a catalyst's life during hydrofluorination |
WO2007079431A2 (fr) | 2006-01-03 | 2007-07-12 | Honeywell International Inc. | Procédé de fabrication de composés organiques fluorés |
BRPI0717091A2 (pt) | 2006-10-03 | 2013-11-26 | Ineos Fluor Holdings Ltd | Processos para preparação de um composto e para isomerização de um composto, uso de um catalisador, fluido, mistura refrigerante, e, automóvel. |
CN103553871A (zh) | 2006-10-31 | 2014-02-05 | 纳幕尔杜邦公司 | 氟丙烷、卤代丙烯以及2-氯-3,3,3-三氟-1-丙烯与hf的共沸组合物和1,1,1,2,2-五氟丙烷与hf的共沸组合物的制备方法 |
FR2916755B1 (fr) | 2007-05-31 | 2009-08-21 | Arkema France | Procede de preparation d'(hydro)(chloro)(fluoro)olefines |
US8076521B2 (en) | 2007-06-27 | 2011-12-13 | Arkema Inc. | Process for the manufacture of hydrofluoroolefins |
FR2929271B1 (fr) | 2008-03-28 | 2010-04-16 | Arkema France | Procede pour la preparation du 1,2,3,3,3-pentafluoropropene- 1 |
KR101656109B1 (ko) | 2008-05-07 | 2016-09-08 | 이 아이 듀폰 디 네모아 앤드 캄파니 | 2,3-다이클로로-1,1,1-트라이플루오로프로판, 2-클로로-1,1,1-트라이플루오로프로펜, 2-클로로-1,1,1,2-테트라플루오로프로판 또는 2,3,3,3-테트라플루오로프로펜을 포함하는 조성물 |
ES2598484T3 (es) | 2009-04-23 | 2017-01-27 | Daikin Industries, Ltd. | Procedimiento para la preparación de 2,3,3,3-tetrafluoropropeno |
GB201010958D0 (en) | 2010-06-30 | 2010-08-11 | 3M Innovative Properties Co | Process for manufacturing perfluoroolefins by pyrolysis of perfluorocarbons in the presence of hydrogen |
US9120716B2 (en) | 2010-10-22 | 2015-09-01 | Arkema France | Process for the preparation of 2,3,3,3 tetrafluoropropene |
RU2541541C1 (ru) | 2011-01-21 | 2015-02-20 | Аркема Франс | Каталитическое газофазное фторирование |
EP3257832B2 (fr) | 2011-01-21 | 2022-10-19 | Arkema France | Fluoration catalytique en phase gazeuse |
FR2980474B1 (fr) | 2011-09-27 | 2013-08-30 | Arkema France | Procede de fabrication du 2,3,3,3-tetrafluoropropene |
WO2013055894A1 (fr) * | 2011-10-14 | 2013-04-18 | Selma Bektesevic | Procédé pour la production de 2,3,3,3-tétrafluoropropène |
JP5821633B2 (ja) * | 2011-12-29 | 2015-11-24 | セントラル硝子株式会社 | 1−クロロ−3,3,3−トリフルオロプロペンの製造方法 |
WO2013154059A1 (fr) | 2012-04-09 | 2013-10-17 | 旭硝子株式会社 | Composition azéotropique ou de type azéotrope, et procédé de production de 2,3,3,3-tétrafluoropropène ou de chlorométhane |
FR2991598B1 (fr) | 2012-06-08 | 2015-08-07 | Arkema France | Regeneration de catalyseur par injection de gaz chauffe |
US9708234B2 (en) | 2012-07-10 | 2017-07-18 | Daikin Industries, Ltd. | Process for producing fluorine-containing olefin |
JP5930077B2 (ja) * | 2012-08-08 | 2016-06-08 | ダイキン工業株式会社 | 2,3,3,3−テトラフルオロプロペンの製造方法 |
FR3013606B1 (fr) | 2013-11-28 | 2015-11-13 | Arkema France | Procede de purification d'acide chlorhydrique |
US9255045B2 (en) | 2014-01-13 | 2016-02-09 | Arkema France | E-1-chloro-3,3,3-trifluoropropene production process from 1,1,3,3-tetrachloropropene |
FR3023286B1 (fr) | 2014-07-02 | 2018-02-16 | Arkema France | Procede de fabrication de tetrafluoropropene |
TWI770558B (zh) * | 2014-10-16 | 2022-07-11 | 捷克商史波克專業化學杭尼維洛普合股公司 | 用於製備高純度1,1,1,2,3-五氯丙烷產物之方法 |
FR3036398B1 (fr) | 2015-05-22 | 2019-05-03 | Arkema France | Compositions a base de 1,1,3,3-tetrachloropropene |
FR3078699B1 (fr) | 2018-03-07 | 2020-02-21 | Arkema France | Procede de production du 2,3,3,3-tetrafluoropropene |
FR3078698B1 (fr) | 2018-03-07 | 2020-02-21 | Arkema France | Procede de production du 2-chloro-3,3,3-trifluoropropene |
-
2018
- 2018-03-07 FR FR1851954A patent/FR3078700B1/fr active Active
-
2019
- 2019-03-04 EP EP19715971.8A patent/EP3762355A1/fr not_active Withdrawn
- 2019-03-04 US US16/976,599 patent/US11084768B2/en active Active
- 2019-03-04 CN CN201980015511.1A patent/CN111770908A/zh active Pending
- 2019-03-04 WO PCT/FR2019/050479 patent/WO2019170991A1/fr unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090240090A1 (en) | 2004-04-29 | 2009-09-24 | Honeywell International Inc. | Integrated process to produce 2,3,3,3-tetrafluoropropene |
US20090287026A1 (en) * | 2004-04-29 | 2009-11-19 | Honeywell International Inc. | Method for producing fluorinated organic compounds |
WO2011077192A1 (fr) | 2009-12-23 | 2011-06-30 | Arkema France | Fluoration catalytique en phase gazeuse du 1233xf en 1234yf |
WO2013088195A1 (fr) * | 2011-12-14 | 2013-06-20 | Arkema France | Procédé pour la préparation de 2,3,3,3-tétrafluoropropène |
US20160237009A1 (en) * | 2012-02-03 | 2016-08-18 | Arkema France | Method for producing 2,3,3,3-tetrafluoropropene |
WO2017178857A1 (fr) * | 2016-04-13 | 2017-10-19 | Arkema France | Procédé de fabrication du 2,3,3,3-tétrafluoropropène |
CN107540011A (zh) * | 2016-06-23 | 2018-01-05 | 中化近代环保化工(西安)有限公司 | 一种高比表面积的催化剂、其制备方法及应用 |
Also Published As
Publication number | Publication date |
---|---|
EP3762355A1 (fr) | 2021-01-13 |
FR3078700B1 (fr) | 2020-07-10 |
FR3078700A1 (fr) | 2019-09-13 |
US11084768B2 (en) | 2021-08-10 |
CN111770908A (zh) | 2020-10-13 |
US20210002188A1 (en) | 2021-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019170991A1 (fr) | Procédé de production du 2,3,3,3-tétrafluoropropène | |
EP3762353A1 (fr) | Procédé de production du 2,3,3,3-tétrafluoropropène | |
EP3762354A1 (fr) | Procédé de production du 2-chloro-3,3,3-trifluoropropène | |
FR3068969B1 (fr) | Procede de production du 2,3,3,3-tetrafluoropropene. | |
FR3073516B1 (fr) | Procede de production du 2,3,3,3-tetrafluoropropene. | |
WO2019170992A1 (fr) | Procédé de déhydrofluoration d'un composé hydrocarbure | |
EP3655381B1 (fr) | Procede de production du 2,3,3,3-tetrafluoropropene | |
WO2019239037A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène et réacteur pour la mise en œuvre de celui-ci | |
EP3807238A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en ouvre de celui-ci | |
WO2019086816A1 (fr) | Procede de production de composes fluores | |
FR3098127A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène et réacteur pour la mise en œuvre de celui-ci | |
FR3098216A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci | |
WO2019239038A1 (fr) | Procédé de production de 2-chloro-3,3,3-trifluoropropène et installation pour la mise en œuvre de celui-ci | |
WO2019239041A1 (fr) | Procédé de production de 2,3,3,3-tétrafluoropropène, réacteur et installation pour la mise en œuvre de celui-ci | |
EP1381584A2 (fr) | Procede de preparation d'une olefine halogenee |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19715971 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019715971 Country of ref document: EP Effective date: 20201007 |