WO2019170992A1 - Procédé de déhydrofluoration d'un composé hydrocarbure - Google Patents

Procédé de déhydrofluoration d'un composé hydrocarbure Download PDF

Info

Publication number
WO2019170992A1
WO2019170992A1 PCT/FR2019/050480 FR2019050480W WO2019170992A1 WO 2019170992 A1 WO2019170992 A1 WO 2019170992A1 FR 2019050480 W FR2019050480 W FR 2019050480W WO 2019170992 A1 WO2019170992 A1 WO 2019170992A1
Authority
WO
WIPO (PCT)
Prior art keywords
stream
catalyst
hydrocarbon compound
pentafluoropropane
tetrafluoropropene
Prior art date
Application number
PCT/FR2019/050480
Other languages
English (en)
Inventor
Laurent Wendlinger
Dominique Deur-Bert
Anne Pigamo
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Publication of WO2019170992A1 publication Critical patent/WO2019170992A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons

Definitions

  • the present invention relates to a process for the dehydrofluorination of a hydrocarbon compound.
  • the present process allows the production of olefins, preferably fluorinated olefins.
  • Halogenated hydrocarbons particularly fluorinated hydrocarbons such as hydrofluoroolefins, are compounds which have a useful structure as functional materials, solvents, refrigerants, blowing agents and monomers for functional polymers or starting materials for such monomers.
  • Hydrofluoroolefins such as 2,3,3,3-tetrafluoropropene (HFO-1234yf) are attracting attention because they offer promising behavior as low global warming potential refrigerants.
  • the processes for producing fluoroolefins are usually carried out in the presence of a starting material such as an alkane containing chlorine or a chlorine-containing alkene, and in the presence of a fluorinating agent such as hydrogen fluoride. These processes can be carried out in the gas phase or in the liquid phase, in the absence or absence of catalyst.
  • US 2009/0240090 discloses a gas phase process for the preparation of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) from 1,1,1,2,3-pentachloropropane (HCC -240db).
  • HCFO-1233xf 2-chloro-3,3,3-trifluoropropene
  • HCC -240db 1,1,1,2,3-pentachloropropane
  • a 2,3,3,3-tetrafluoropropene preparation process comprising in particular a step of contacting 2-chloro-3,3,3-trifluoropropene with HF in the gas phase in the presence of a fluorination catalyst.
  • the present invention relates to a dehydrofluorination process comprising the steps of: a) providing a stream A comprising at least one starting hydrocarbon compound comprising from 2 to 6 carbon atoms, at least one hydrogen atom and at least one fluorine atom;
  • step a) characterized in that the electrical conductivity of said stream A supplied in step a) is less than 15 mS / cm.
  • the starting hydrocarbon compound is selected from the group consisting of 1,1-difluoroethane, 1,1,1-trifluoroethane, 2-chloro-1,1,1-trifluoroethane, 1,1,1 2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoropropane, 1,1,1,3-tetrafluoropropane, 1,1,1,3,3-pentafluoropropane, 1, 1 , 1, 3,3,3-hexafluoropropane, 1,1,1,2,2,3-hexafluoropropane, 1,1,1,2,3,3-hexafluoropropane, 1,1,1,2,2-pentafluoropropane and 1,1,1,2,3-pentafluoropropane, or a mixture thereof.
  • the final hydrocarbon compound is selected from the group consisting of vinyl fluoride, vinylidene fluoride, 2-chloro-1,1-difluoroethylene, trifluoroethylene, 1,1,1-trifluoropropene, 1,3, 3,3-tetrafluoropropene, 1,2,3,3,3-pentafluoropropene, 1,1,3,3,3-pentafluoropropene and 2,3,3,3-tetrafluoropropene, or a mixture thereof.
  • the electrical conductivity of said current A is less than 10 mS / cm.
  • step b) is carried out in the gaseous phase in the presence of a catalyst.
  • step b) is carried out in the presence of a chromium-based catalyst, in particular said catalyst comprises a chromium oxyfluoride or a chromium oxide or a chromium fluoride or a mixture of them.
  • the catalyst is based on chromium and also comprises a co-catalyst selected from the group consisting of Ni, Zn, Co, Mn or Mg, preferably the content of cocatalyst is between 0, 01% and 10% based on the total weight of the catalyst.
  • the stream A comprises 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane or 1,1,1,2,3-pentafluoropropane.
  • the stream B comprises 1, 3,3,3-tetrafluoropropene or 2,3,3,3-tetrafluoropropene.
  • step b) is carried out at a temperature of between 200 ° C. and 450 ° C.
  • the present invention relates to a dehydrofluorination process of a starting hydrocarbon compound comprising at least one fluorine atom and at least one hydrogen atom for removing at least one HF molecule during the dehydrofluorination reaction.
  • the starting hydrocarbon compound comprising from 2 to 6 carbon atoms, at least one fluorine atom and at least one hydrogen atom.
  • the starting hydrocarbon compound comprising from 2 to 6 carbon atoms, at least one hydrogen atom and at least one fluorine atom.
  • the starting hydrocarbon compound is a saturated hydrocarbon of the general formula C n H a F d , where n is an integer between 2 and 6, a is an integer between 1 and 13, d is an integer between 1 and 13, and the sum of a and d is 2n + 2.
  • said starting compound is selected from the group consisting of 1,1-difluoroethane, 1,1,1-trifluoroethane, 2-chloro-1,1,1-trifluoroethane, 1,1,1,2-tetrafluoroethane, 1,1,2,2-tetrafluoroethane, 1,1,1,2-tetrafluoropropane, 1,1,1,3-tetrafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3, 3,3-hexafluoropropane, 1,1,1,2,2,3-hexafluoropropane, 1,1,1,2,3,3-hexafluoropropane, 1,1,1,2,2-pentafluoropropane and 1,1,1,2,2-pentafluoropropane; 1,2,3-pentafluoropropane.
  • said starting compound is selected from the group consisting of 1,1,1,2,2-pentafluoropropane, 1,1,1,2,3-pentafluoropropane and 1,1,1,3,3-pentafluoropropane .
  • said final hydrocarbon compound has the same number of carbon atoms as said starting hydrocarbon compound.
  • said final hydrocarbon compound has one hydrogen atom and one fluorine atom less than said starting hydrocarbon compound.
  • said final hydrocarbon compound comprises at least one carbon-carbon double bond.
  • the final hydrocarbon compound is a saturated hydrocarbon of the general formula C n H a F d , where n is an integer between 2 and 6, a is an integer between 0 and 12, d is an integer between 0 and 12, and the sum of a and d is equal to 2n. More particularly, said final hydrocarbon compound is selected from the group consisting of vinyl fluoride, vinylidene fluoride, 2-chloro-1,1-difluoroethylene, trifluoroethylene,
  • said final hydrocarbon compound is selected from the group consisting of 1,3,3,3-tetrafluoropropene and 2,3,3,3-tetrafluoropropene, or a mixture thereof.
  • gas phase dehydrofluorination reactions that can be carried out using the catalysts of this invention include conversion of the
  • CF3CF CFl2 or FIFO-1234yf
  • CF3CHFCH2F or FIFC-245eb 1,1,1,2,3-pentafluoropropane
  • CF3CF CFl2 or HFO-1234yf
  • the starting hydrocarbon compound is 1,1,1,2,2-pentafluoropropane (FIFC-245cb) or 1,1,1,2,3-pentafluoropropane (FIFC-245eb) for the production of 2, 3,3,3-tetrafluoropropene (FIFO-1234yf).
  • the starting hydrocarbon compound is 1,1,1,2,2-pentafluoropropane (FIFC-245cb) or 1,1,1,2,3-pentafluoropropane (FIFC-245eb) for the production of 2, 3,3,3-tetrafluoropropene (FIFO-1234yf).
  • the starting hydrocarbon compound is 1,1,1,2,2-pentafluoropropane (FIFC-245cb) or 1,1,1,2,3-pentafluoropropane (FIFC-245eb) for the production of 2, 3,3,3-tetrafluoropropene (FIFO-1234yf).
  • the starting hydrocarbon compound is 1,1,1,2,2-penta
  • the present process comprising the steps of: a) supplying a stream A comprising at least one hydrocarbon starting compound as defined above;
  • the electrical conductivity of said stream A supplied in step a) is less than 15 mS / cm.
  • the electrical conductivity of said current A supplied in step a) is less than 15 mS / cm.
  • the electrical conductivity of said current A supplied in step a) is less than 14 mS / cm, preferably less than 13 mS / cm, more preferably less than 12 mS / cm, in particular less than 11 mS / cm, more especially less than 10 mS / cm, preferably less than 9 mS / cm, advantageously preferred less than 8 mS / cm, preferentially preferred less than 7 mS / cm, more preferably preferred less than 6 mS / cm cm, particularly preferably less than 5 mS / cm.
  • the electrical conductivity is measured using an inductive conductivity measuring cell and according to the practice known to those skilled in the art.
  • the measurement of the electrical conductivity is carried out at ambient temperature.
  • the measurement of the electrical conductivity is carried out at a pressure equal to the pressure at which step b) is carried out or making it possible to obtain the stream A in liquid form.
  • the electrical conductivity of the current A may be reduced to reach a conductivity of less than 15 ms / cm by decreasing the electrolyte concentration that may be present therein according to the techniques known to those skilled in the art (distillation, cooling and decantation, passage on molecular sieves of 3 to 5 A or zeolites).
  • the measuring cell is coated with a material resistant to a corrosive medium, in particular resistant to hydrofluoric acid.
  • step b) is carried out in the presence of a catalyst, preferably a chromium-based catalyst.
  • the chromium-based catalyst can be a chromium oxide (for example Cr2O, CrC3 or Cr2C3), a chromium oxyfluoride or a chromium fluoride (for example CrFs) or a mixture thereof. .
  • the chromium oxyfluoride may contain a fluorine content of between 1 and 60% by weight based on the total weight of the chromium oxyfluoride, advantageously between 5 and 55% by weight, preferably between 10 and 52% by weight, more preferably between 15 and 52% by weight, in particular between 20 and 50% by weight, more particularly between 25 and 45% by weight, preferably between 30 and 45% by weight, more preferably from 35 to 45% by weight. by weight of fluorine based on the total weight of the chromium oxyfluoride.
  • the catalyst may also comprise a co-catalyst selected from the group consisting of Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb; preferably Ni, Co, Zn, Mg, Mn; in particular Ni, Co, Zn.
  • the content by weight of the cocatalyst is between 1 and 10% by weight based on the total weight of the catalyst.
  • the catalyst can be supported or not.
  • a support such as alumina, for example in its alpha form, activated alumina, aluminum halides (AIF3 for example), aluminum oxyhalides, activated carbon, magnesium fluoride or graphite can be used. used.
  • the catalyst may have a specific surface area of between 70 and 225 m 2 / g, advantageously between 90 and 200 m 2 / g, preferably between 100 and 190 m 2 / g, in particular between 125 and 180 m 2 / g .
  • the catalyst may have a specific surface area of between 1 and 100 m 2 / g, preferably between 5 and 80 m 2 / g, more preferably between 5 and 70 m 2 / g, ideally between 5 and 50 m 2 / g, in particular between 10 and 50 m 2 / g, more particularly between 15 and 45 m 2 / g.
  • step b) of the present process is carried out in the gaseous phase in the presence of a catalyst.
  • the pressure at which step b) is carried out is atmospheric pressure or a pressure greater than this, advantageously the pressure at which step b) is carried out is greater than 1.5 bara, preferably greater than 2.0 bara, in particular greater than 2.5 bara, more particularly greater than 3.0 bara.
  • step b) is carried out at a pressure of between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
  • step b) of the present process is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s.
  • step b) can be carried out in the presence of hydrofluoric acid.
  • the HF molar ratio and said at least one starting compound of said stream A may vary between 1: 1 and 150: 1, preferably between 2: 1 and 125: 1, more preferably between 3: 1 and 100: 1.
  • An oxidant such as oxygen or chlorine, can be added during step b).
  • the molar ratio of the oxidant to the hydrocarbon compound may be between 0.005 and 2, preferably between 0.01 and 1.5.
  • the oxidant may be pure oxygen, air or a mixture of oxygen and nitrogen.
  • the method may also comprise a step of heating and vaporizing the hydrofluoric acid prior to the implementation of step b) to provide hydrofluoric acid in gaseous form.
  • the hydrofluoric acid is in gaseous form when contacted with said stream A.
  • step b) is carried out at a temperature of between 200 ° C. and 450 ° C., advantageously between 250 ° C. and 400 ° C., preferably between 280 ° C. and 380 ° C.
  • the stream B comprises, in addition to said final hydrocarbon compound as defined above, HF.
  • the stream B comprises, besides 2,3,3,3-tetrafluoropropene or 1,3,3,3-tetrafluoropropene, HF.
  • stream B is purified, preferably by distillation, to form a first stream comprising said final hydrocarbon compound as defined above, and a second stream comprising HF.
  • stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene or 1,3,3,3-tetrafluoropropene, and a second stream comprising HF.
  • the distillation can be carried out at a pressure of 2 to 18 bara, more particularly at a pressure of 3 to 15 bara.
  • said stream B obtained in step b) is cooled prior to the purification mentioned above.
  • said stream B obtained in step b) is cooled to a temperature below 100 ° C, and then distilled to form said first stream comprising said final hydrocarbon compound as defined above, and said second stream comprising HF.
  • Said stream B can be cooled, before distillation, to a temperature below 95 ° C, preferably below 90 ° C, preferably below 85 ° C, more preferably below 80 ° C, in particular below 70 ° C, more preferably less than 60 ° C, preferably less than 55 ° C, advantageously preferably less than 50 ° C, preferably less than 40 ° C, more preferentially preferred less than 30 ° C, particularly preferably less than 25 ° C, more preferably less than 20 ° C. Cooling the resulting product stream at such temperatures can facilitate subsequent distillation.
  • the cooling of said stream B can be carried out by means of one or a plurality of heat exchangers.
  • the cooling of said stream B can be carried out by passing it through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
  • the process according to the present invention is carried out continuously.
  • the process is typically conducted in a tubular reactor.
  • the reactor and associated feedlines, effluent lines and associated equipment shall be constructed of hydrogen chloride resistant materials.
  • Typical building materials well known in the state of the art of fluorination include stainless steels, in particular of the austenitic type, the well-known alloys having a high nickel content, such as nickel-copper alloys Monel ®, nickel based alloys and Hastelloy ® nickel-chromium alloys Inconel ®.
  • HFC-245cb (1,1,1,2,2-pentafluoropropane) to HFO-1234yf (2,3,3,3-tetrafluoropropene)
  • the reactor contains a mass catalyst based on chromium oxide.
  • the catalyst is activated by a series of steps including drying, fluorination, air treatment and fluorination with recycling. This multi-step treatment makes the catalytic solid active and selective.
  • the dehydrofluorination process is carried out according to the following operating conditions:
  • the process is carried out with a HFC-245cb stream having two different electrical conductivity values: 6 and 35 mS / cm.
  • the value of the conductivity is measured at ambient temperature before carrying out the reaction.
  • the run is stopped when the conversion to 1,1,1,2,2-pentafluoropropane is less than 50%.
  • Table 1 shows the values obtained.
  • the electrical conductivity of the HFC-245cb current is measured using a cell marketed by Endress + Hauser and referenced under the term InduMax P CLS 50 coated with a polymer coating of perfluoroalkoxy type (PFA) resistant to a corrosive medium containing HF.
  • PFA perfluoroalkoxy type

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

La présente invention concerne un procédé de déhydrofluoration comprenant les étapes de: a) fourniture d'un courant A comprenant au moins un composé hydrocarbure de départ comprenant de 2 à 6 atomes de carbone, au moins un atome d'hydrogène et au moins un atome de fluor; b) dans un réacteur, mise en contact dudit courant A en présence ou non d'un catalyseur de déhydrofluoration pour produire un courant B comprenant un composé hydrocarbure final comprenant de 2 à 6 atomes de carbone et un nombre d'atomes de fluor inférieur à celui dudit hydrocarbure de départ; caractérisé en ce que la conductivité électrique dudit courant A fourni à l'étape a) est inférieure à 15 mS/cm.

Description

Procédé de déhydrofluoration d'un composé hydrocarbure
Domaine technique de l'invention
La présente invention concerne un procédé de déhydrofluoration d'un composé hydrocarbure. En particulier, le présent procédé permet la production d'oléfines, de préférence d'oléfines fluorées.
Arrière-plan technologique de l'invention
Les hydrocarbures halogénés, en particulier les hydrocarbures fluorés comme les hydrofluorooléfines, sont des composés qui ont une structure utile comme matériaux fonctionnels, solvants, réfrigérants, agents de gonflage et monomères pour polymères fonctionnels ou matériaux de départ pour de tels monomères. Des hydrofluorooléfines comme le 2,3,3,3-tétrafluoropropène (HFO-1234yf) attirent l'attention parce qu'elles offrent un comportement prometteur comme réfrigérants à faible potentiel de réchauffement global.
Les procédés de production de fluorooléfines sont habituellement effectués en présence d'une substance de départ telle qu'un alcane contenant du chlore ou un alcène contenant du chlore, et en présence d'un agent fluorant tel que le fluorure d'hydrogène. Ces procédés peuvent être effectués en phase gazeuse ou en phase liquide, en absence ou non de catalyseur.
On connaît par exemple par US 2009/0240090, un procédé en phase gazeuse de préparation du 2-chloro-3,3,3-trifluoropropène (HCFO-1233xf) à partir du 1,1, 1,2,3- pentachloropropane (HCC-240db). Le HCFO-1233xf ainsi produit est converti en 2-chloro-
1.1.1.2-tétrafluoropropane (HCFC-244bb) en phase liquide puis ce dernier est converti en
2.3.3.3-tétrafluoropropène.
On connaît également par WO 2011/077192, un procédé de préparation 2,3,3,3- tétrafluoropropène comprenant notamment une étape de mise en contact du 2-chloro-3,3,3- trifluoropropène avec HF en phase gazeuse en présence d'un catalyseur de fluoration.
Il y a toujours un besoin pour des procédés de production du 2,3,3,3-tétrafluoropropène plus performant.
Résumé de l'invention
La présente invention concerne un procédé de déhydrofluoration comprenant les étapes de : a) fourniture d'un courant A comprenant au moins un composé hydrocarbure de départ comprenant de 2 à 6 atomes de carbone, au moins un atome d'hydrogène et au moins un atome de fluor ;
b) dans un réacteur, déhydrofluoration dudit composé hydrocarbure de départ contenu dans ledit courant A dans des conditions suffisantes et en présence ou non d'un catalyseur de déhydrofluoration pour produire un courant B comprenant un composé hydrocarbure final comprenant de 2 à 6 atomes de carbone et un nombre d'atomes de fluor inférieur à celui dudit hydrocarbure de départ ;
caractérisé en ce que la conductivité électrique dudit courant A fourni à l'étape a) est inférieure à 15 mS/cm.
Selon un mode de réalisation préféré, le composé hydrocarbure de départ est sélectionné parmi le groupe consistant en 1,1-difluoroéthane, 1,1,1-trifluoroéthane, 2-chloro- 1,1,1-trifluoroéthane, 1,1,1,2-tétrafluoroéthane, 1,1,2,2-tétrafluoroéthane, 1, 1,1,2- tétrafluoropropane, 1,1,1,3-tétrafluoropropane, 1,1,1,3,3-pentafluoropropane, 1, 1,1, 3,3,3- hexafluoropropane, 1,1,1,2,2,3-hexafluoropropane, 1,1,1,2,3,3-hexafluoropropane, 1,1, 1,2,2- pentafluoropropane et 1,1,1,2,3-pentafluoropropane, ou un mélange de ceux-ci.
Selon un mode de réalisation préféré, le composé hydrocarbure final est sélectionné parmi le groupe consistant en fluorure de vinyle, fluorure de vinylidène, 2-chloro-l,l- difluoroéthylène, trifluoroéthylène, 1,1,1-trifluoropropène, 1,3,3,3-tétrafluoropropène, 1,2,3,3,3-pentafluoropropène, 1,1,3,3,3-pentafluoropropène et 2,3,3,3-tétrafluoropropène, ou un mélange de ceux-ci.
Selon un mode de réalisation préféré, la conductivité électrique dudit courant A est inférieure à 10 mS/cm.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre en phase gazeuse en présence d'un catalyseur.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre en présence d'un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci.
Selon un mode de réalisation préféré, le catalyseur est à base de chrome et comprend également un co-catalyseur sélectionné parmi le groupe consistant en Ni, Zn, Co, Mn ou Mg, de préférence la teneur en co-catalyseur est comprise entre 0,01% et 10% sur base du poids total du catalyseur. Selon un mode de réalisation préféré, le courant A comprend 1,1, 1,2, 2- pentafluoropropane, 1,1,1,3,3-pentafluoropropane ou 1,1,1,2,3-pentafluoropropane.
Selon un mode de réalisation préféré, le courant B comprend 1, 3,3,3- tétrafluoropropène ou 2,3,3,3-tétrafluoropropène.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre à une température comprise entre 200°C et 450°C.
Description détaillée de la présente invention
La présente invention concerne un procédé de déhydrofluoration d'un composé hydrocarbure de départ comprenant au moins un atome de fluor et au moins un atome d'hydrogène pour éliminer au moins une molécule d'HF lors de la réaction de déhydrofluoration. De préférence, le composé hydrocarbure de départ comprenant de 2 à 6 atomes de carbone, au moins un atome de fluor et au moins un atome d'hydrogène. De préférence, le composé hydrocarbure de départ comprenant de 2 à 6 atomes de carbone, au moins un atome d'hydrogène et au moins un atome de fluor. En particulier, le composé hydrocarbure de départ est un hydrocarbure saturé de formule générale CnHaFd, où n est un entier entre 2 et 6, a est un entier entre 1 et 13, d est un entier entre 1 et 13, et la somme de a et d est égale à 2n+2. Plus particulièrement, ledit composé de départ est sélectionné parmi le groupe consistant en 1,1- difluoroéthane, 1,1,1-trifluoroéthane, 2-chloro-l,l,l-trifluoroéthane, 1, 1,1,2- tétrafluoroéthane, 1,1,2,2-tétrafluoroéthane, 1,1,1,2-tétrafluoropropane, 1, 1,1,3- tétrafluoropropane, 1,1,1,3,3-pentafluoropropane, 1,1,1,3,3,3-hexafluoropropane, 1, 1,1, 2,2,3- hexafluoropropane, 1,1,1,2,3,3-hexafluoropropane, 1,1,1,2,2-pentafluoropropane et 1,1,1,2,3- pentafluoropropane. De manière privilégiée, ledit composé de départ est sélectionné parmi le groupe consistant en 1,1,1,2,2-pentafluoropropane, 1,1,1,2,3-pentafluoropropane et 1,1,1,3,3- pentafluoropropane.
De préférence, ledit composé hydrocarbure final comporte le même nombre d'atomes de carbone que ledit composé hydrocarbure de départ. De préférence, ledit composé hydrocarbure final comporte un atome d'hydrogène et un atome de fluor de moins que ledit composé hydrocarbure de départ. De préférence, ledit composé hydrocarbure final comporte au moins une double liaison carbone-carbone. En particulier, le composé hydrocarbure final est un hydrocarbure saturé de formule générale CnHaFd, où n est un entier entre 2 et 6, a est un entier entre 0 et 12, d est un entier entre 0 et 12, et la somme de a et d est égale à 2n. Plus particulièrement, ledit composé hydrocarbure final est sélectionné parmi le groupe consistant en fluorure de vinyle, fluorure de vinylidène, 2-chloro-l,l-difluoroéthylène, trifluoroéthylène,
1.1.1-trifluoropropène, 1,3,3,3-tétrafluoropropène, 1,2,3,3,3-pentafluoropropène, 1, 1,3, 3,3- pentafluoropropène, 1,2,3,3,3-pentafluoropropène et 2,3,3,3-tétrafluoropropène, ou un mélange de ceux-ci. De manière privilégiée, ledit composé hydrocarbure final est sélectionné parmi le groupe consistant en 1,3,3,3-tétrafluoropropène et 2,3,3,3-tétrafluoropropène, ou un mélange de ceux-ci.
Des exemples spécifiques de réactions de déshydrofluoration en phase gazeuse qui peuvent être effectuées en utilisant les catalyseurs de cette invention incluent la conversion du
1.1-difluoroéthane (CHF2CH3 ou HFC-152a) en fluorure de vinyle (CH F=CH2 ou FIFO-1141), la conversion du 1,1,1-trifluoroéthane (CF3CFI3 ou FIFC-143a) en fluorure de vinylidène (CF2=CFl2 ou FIFO-1132a), la conversion du 2-chloro-l,l,l-trifluoroéthane (CF3CH2CI ou FICFC-133a) en 2- chloro-l,l-difluoroéthylène (CF2=CHCI ou FICFO-1122), la conversion du 1, 1,1,2- tétrafluoroéthane (CF3CFI2F ou FIFC-134a) en trifluoroéthylène (CF2=CFIF ou FIFO-1123), la conversion du 1,1,2,2-tétrafluoroéthane (CFIF2CFIF2 ou FIFC-134) en trifluoroéthylène (CF2=CFIF ou FIFO-1123), la conversion du 1,1,1,2-tétrafluoropropane (CH3CHFCF3 ou FIFC-254eb) en 1,1,1- trifluoropropène (CH2=CHCF3 OU FIFO-1243zf), la conversion du 1,1,1,3-tétrafluoropropane (CH2FCH2CF3 ou HFC-254fb) en 1,1,1-trifluoropropène (CH2=CHCF3 ou HFO-1243zf), la conversion du 1,1,1,3,3-pentafluoropropane (CH F2CH2CF3 ou FIFC-245fa) en 1,3,3,3- tétrafluoropropène (CH F=CHCF3 OU FIFO-1234ze), la conversion du 1, 1,1, 2,3,3- hexafluoropropane (CHF2CHFCF3 ou FIFC-236ea) en 1,2,3,3,3-pentafluoropropène (CFIF=CFCF3 ou FIFO-1225ye), la conversion du 1,1,1,3,3,3-hexafluoropropane (CF3CFI2CF3 ou FIFC-236fa) en
1.1.3.3.3-pentafluoropropène (CF3CFI=CF2 ou FIFO-1225zc), la conversion du 1, 1,1, 2,2,3- hexafluoropropane (CF3CF2CFFI2 ou FIFC-236cb) en 1,2,3,3,3-pentafluoropropène (CFIF=CFCF3 ou FIFO-1225ye), la conversion du 1,1,1,2,2-pentafluoropropane (CF3CF2CFI3 ou FIFC-245cb) en
2.3.3.3-tétrafluoropropène (CF3CF=CFl2 ou FIFO-1234yf) et la conversion du 1, 1,1, 2,3- pentafluoropropane (CF3CHFCH2F ou FIFC-245eb) en 2,3,3,3-tétrafluoropropène (CF3CF=CFl2 ou HFO-1234yf).
En particulier, le composé hydrocarbure de départ est du 1,1,1,2,2-pentafluoropropane (FIFC-245cb) ou le 1,1,1,2,3-pentafluoropropane (FIFC-245eb) pour la production de 2,3,3,3- tétrafluoropropène (FIFO-1234yf). Alternativement, le composé hydrocarbure de départ est du
1.1.1.3.3-pentafluoropropane (FIFC-245fa) pour la production de 1,3,3,3-tétrafluoropropène (HFO-1234ze).
De préférence, le présent procédé comprenant les étapes de : a) fourniture d'un courant A comprenant au moins un composé hydrocarbure de départ tel que défini ci-dessus ;
b) dans un réacteur, déhydrofluoration dudit composé hydrocarbure de départ contenu dans ledit courant A dans des conditions suffisantes et en présence ou non d'un catalyseur de déhydrofluoration pour produire un courant B comprenant un composé hydrocarbure final comprenant de 2 à 6 atomes de carbone et un nombre d'atomes de fluor inférieur à celui dudit hydrocarbure de départ .
De préférence, la conductivité électrique dudit courant A fourni à l'étape a) est inférieure à 15 mS/cm.
Selon un mode de réalisation préféré, la conductivité électrique dudit courant A fourni à l'étape a) est inférieure à 15 mS/cm. Avantageusement, la conductivité électrique dudit courant A fourni à l'étape a) est inférieure 14 mS/cm, de préférence inférieure à 13 mS/cm, plus préférentiellement inférieure à 12 mS/cm, en particulier inférieure à 11 mS/cm, plus particulièrement inférieure à 10 mS/cm, de manière privilégiée inférieure à 9 mS/cm, de manière avantageusement privilégiée inférieure à 8 mS/cm, de manière préférentiellement privilégiée inférieure à 7 mS/cm, de manière plus préférentiellement privilégiée inférieure à 6 mS/cm, de manière particulièrement privilégiée inférieure à 5 mS/cm. La conductivité électrique est mesurée à l'aide d'une cellule de mesure de conductivité inductive et selon la pratique connu de l'homme du métier. La mesure de la conductivité électrique est effectuée à température ambiante. La mesure de la conductivité électrique est effectuée à une pression égale à la pression à laquelle l'étape b) est mise en oeuvre ou permettant d'obtenir le courant A sous forme liquide. La conductivité électrique du courant A peut-être diminuée pour atteindre une conductivité inférieure à 15 ms/cm en diminuant la concentration en électrolyte éventuellement présent dans celui-ci selon les techniques connues de l'homme du métier (distillation, refroidissement et décantation, passage sur des tamis moléculaires de 3 à 5 A ou des zéolites). De préférence, la cellule de mesure est revêtue d'un matériau résistant à un milieu corrosif, en particulier résistant à l'acide fluorhydrique.
La conductivité électrique dudit courant A est mesurée préalablement à l'étape b). De préférence, la conductivité électrique dudit courant A est mesurée lorsque celui-ci est sous forme liquide. Ledit procédé selon la présente invention peut donc comprendre une étape de chauffage et vaporisation dudit courant A préalable à la mise en oeuvre de l'étape b) pour fournir ledit courant A sous forme gazeuse. Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome. De préférence, le catalyseur à base de chrome peut être un oxyde de chrome (par exemple CrÜ2, CrC>3 ou Cr2C>3), un oxyfluorure de chrome ou un fluorure de chrome (par exemple CrFs) ou un mélange de ceux-ci. L' oxyfluorure de chrome peut contenir une teneur en fluor comprise entre 1 et 60% en poids sur base du poids total de l'oxyfluorure de chrome, avantageusement entre 5 et 55% en poids, de préférence entre 10 et 52% en poids, plus préférentiellement entre 15 et 52% en poids, en particulier entre 20 et 50% en poids, plus particulièrement entre 25 et 45% en poids, de manière privilégiée entre 30 et 45% en poids, de manière plus privilégiée de 35 à 45% en poids de fluor sur base du poids total de l'oxyfluorure de chrome. Le catalyseur peut également comprendre un co-catalyseur choisi parmi le groupe consistant en Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb ; de préférence Ni, Co, Zn, Mg, Mn ; en particulier Ni, Co, Zn. La teneur en poids du co-catalyseur est comprise entre 1 et 10% en poids sur base du poids total du catalyseur. Le catalyseur peut être supporté ou non. Un support tel que l'alumine, par exemple sous sa forme alpha, de l'alumine activée, les halogénures d'aluminium (AIF3 par exemple), les oxyhalogénures d'aluminium, du charbon actif, fluorure de magnésium ou du graphite peut être utilisé.
De préférence, le catalyseur peut avoir une surface spécifique entre 70 et 225 m2/g, avantageusement entre 90 et 200 m2/g, de préférence entre 100 et 190 m2/g, en particulier entre 125 et 180 m2/g. Alternativement, le catalyseur peut avoir une surface spécifique entre 1 et 100 m2/g, de préférence entre 5 et 80 m2/g, plus préférentiellement entre 5 et 70 m2/g, idéalement entre 5 et 50 m2/g, en particulier entre 10 et 50 m2/g, plus particulièrement entre 15 et 45 m2/g.
De préférence, l'étape b) du présent procédé est mise en oeuvre en phase gazeuse en présence d'un catalyseur.
Selon un mode de réalisation préféré, la pression à laquelle l'étape b) est mise en oeuvre est la pression atmosphérique ou une pression supérieure à celle-ci, avantageusement la pression à laquelle l'étape b) est mise en oeuvre est supérieure à 1,5 bara, de préférence supérieure à 2,0 bara, en particulier supérieure à 2,5 bara, plus particulièrement supérieure à 3,0 bara. De préférence, l'étape b) est mise en oeuvre à une pression comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et 15 bara.
De préférence, l'étape b) du présent procédé est mise en oeuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. Optionnellement, l'étape b) peut être mise en œuvre en présence d'acide fluorhydrique. De préférence, le rapport molaire HF et ledit au moins un composé de départ dudit courant A, peut varier entre 1:1 et 150:1, de préférence entre 2:1 et 125:1, plus préférentiellement entre 3:1 et 100:1. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape b). Le rapport molaire de l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote. Le procédé peut également comprendre une étape de chauffage et de vaporisation de l'acide fluorhydrique préalablement à la mise en œuvre de l'étape b) pour fournir de l'acide fluorhydrique sous forme gazeuse. De préférence, l'acide fluorhydrique est sous forme gazeuse lors de la mise en contact avec ledit courant A.
Selon un mode de réalisation préféré, l'étape b) est mise en œuvre à une température comprise entre 200°C et 450°C, avantageusement entre 250°C et 400°C, de préférence entre 280°C et 380°C.
Selon un mode de réalisation préféré, le courant B comprend, outre ledit composé hydrocarbure final tel que défini ci-dessus, HF. De préférence, le courant B comprend, outre 2,3,3,3-tétrafluoropropène ou 1,3,3,3-tétrafluoropropène, HF.
Selon un mode de réalisation préféré, le courant B est purifié, de préférence par distillation, pour former un premier courant comprenant ledit composé hydrocarbure final tel que défini ci-dessus, et un second courant comprenant HF. De préférence, le courant B est purifié, de préférence par distillation, pour former un premier courant comprenant 2,3,3,3- tétrafluoropropène ou 1,3,3,3-tétrafluoropropène, et un second courant comprenant HF.
En particulier, la distillation peut être effectuée à une pression de 2 à 18 bara, plus particulièrement à une pression de 3 à 15 bara.
Selon un mode réalisation préféré, ledit courant B obtenu à l'étape b) est refroidi préalablement à la purification mentionnée ci-dessus. En particulier, ledit courant B obtenu à l'étape b) est refroidi à une température inférieure à 100°C, puis distillé pour former ledit premier courant comprenant ledit composé hydrocarbure final tel que défini ci-dessus, et ledit second courant comprenant HF.
Ledit courant B peut être refroidi, avant distillation, à une température inférieure à 95°C, avantageusement inférieure à 90°C, de préférence inférieure à 85°C, plus préférentiellement inférieure à 80°C, en particulier inférieure à 70°C, plus particulièrement inférieure à 60°C, de manière privilégiée inférieure à 55°C, de manière avantageusement privilégiée inférieure à 50°C, de manière préférentiellement privilégiée inférieure à 40°C, de manière plus préférentiellement privilégiée inférieure à 30°C, de manière particulièrement privilégiée inférieure à 25°C, de manière plus particulièrement privilégiée inférieure à 20°C. Le refroidissement du flux de produits obtenu à de telles températures peut faciliter la distillation ultérieure.
Le refroidissement dudit courant B peut être effectué grâce à un ou une pluralité d'échangeurs de chaleur. Le refroidissement dudit courant B peut être effectué en faisant passer celui-ci au travers de un, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix échangeurs de chaleur, de préférence le nombre d'échangeurs de chaleur est compris entre 2 et 8, en particulier entre 3 et 7.
De préférence, le procédé selon la présente invention est mis en oeuvre en continu.
Le procédé est mené typiquement dans un réacteur tubulaire. Le réacteur et ses lignes d'alimentation associées, lignes d'effluent et appareils associés doivent être construits dans des matériaux résistants au chlorure d'hydrogène. Les matériaux de construction typiques, bien connus en l'état de l'art de la fluoration, incluent les aciers inox, en particulier de type austénitique, les alliages bien connus à haute teneur en nickel, comme les alliages nickel-cuivre Monel®, les alliages à base de nickel Hastelloy® et les alliages nickel-chrome Inconel®.
Exemple
La déhydrofluoration du HFC-245cb (1,1,1,2,2-pentafluoropropane) en HFO-1234yf (2,3,3,3-tétrafluoropropène) est mise en oeuvre dans un réacteur multitubulaire. Le réacteur contient un catalyseur massique à base d'oxyde de chrome. Le catalyseur est activé par une série d’étapes comprenant séchage, fluoration, traitement sous air et fluoration avec recyclage. Ce traitement en plusieurs étapes permet de rendre le solide catalytique actif et sélectif.
Le procédé de déhydrofluoration est mis en oeuvre suivant les conditions opératoires suivantes :
Pression atmosphérique
Un temps de contact 40 secondes
Une température constante dans le réacteur de 400°C
3% en volume d'oxygène rapporté au volume de HFC-245cb.
Le procédé est mis en oeuvre avec un courant de HFC-245cb ayant deux valeurs de conductivité électrique différentes : 6 et 35 mS/cm. La valeur de la conductivité est mesurée à température ambiante avant la mise en oeuvre de la réaction. Le run est stoppé lorsque la conversion en 1,1,1,2,2-pentafluoropropane est inférieure à 50%. Le tableau 1 ci-dessous reprend les valeurs obtenues. La conductivité électrique du courant de HFC-245cb est mesurée à l'aide d'une cellule commercialisée par Endress+Hauser et référencée sous le terme InduMax P CLS 50 revêtue d'un revêtement polymère de type perfluoroalkoxy (PFA) résistant à un milieu corrosif contenant HF. Tableau 1
Figure imgf000010_0001
Les résultats détaillés dans le tableau 1 démontrent qu'un courant comprenant HFC- 245cb et ayant une conductivité électrique inférieure à 15 mS/cm permet de maintenir une conversion suffisamment élevée pour une durée importante.

Claims

Revendications
1. Procédé de déhydrofluoration comprenant les étapes de :
a) fourniture d'un courant A comprenant au moins un composé hydrocarbure de départ comprenant de 2 à 6 atomes de carbone, au moins un atome d'hydrogène et au moins un atome de fluor ;
b) dans un réacteur, déhydrofluoration dudit composé hydrocarbure de départ contenu dans ledit courant A dans des conditions suffisantes et en présence ou non d'un catalyseur de déhydrofluoration pour produire un courant B comprenant un composé hydrocarbure final comprenant de 2 à 6 atomes de carbone et un nombre d'atomes de fluor inférieur à celui dudit hydrocarbure de départ ;
caractérisé en ce que la conductivité électrique dudit courant A fourni à l'étape a) est inférieure à 15 mS/cm.
2. Procédé selon la revendication 1 caractérisé en ce que le composé hydrocarbure de départ est sélectionné parmi le groupe consistant en 1,1-difluoroéthane, 1,1,1-trifluoroéthane, 2- chloro-l,l,l-trifluoroéthane, 1,1,1,2-tétrafluoroéthane, 1,1,2,2-tétrafluoroéthane, 1, 1,1,2- tétrafluoropropane, 1,1,1,3-tétrafluoropropane, 1,1,1,3,3-pentafluoropropane, 1, 1,1, 2,3,3- hexafluoropropane, 1,1,1,2,2,3-hexafluoropropane, 1,1,1,3,3,3-hexafluoropropane, 1,1, 1,2,2- pentafluoropropane et 1,1,1,2,3-pentafluoropropane, ou un mélange de ceux-ci.
3. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le composé hydrocarbure final est sélectionné parmi le groupe consistant en fluorure de vinyle, fluorure de vinylidène, 2-chloro-l,l-difluoroéthylène, trifluoroéthylène, 1,1,1-trifluoropropène,
1.3.3.3-tétrafluoropropène, 1,1,3,3,3-pentafluoropropène, 1,2,3,3,3-pentafluoropropène et
2.3.3.3-tétrafluoropropène, ou un mélange de ceux-ci.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la conductivité électrique dudit courant A est inférieure à 10 mS/cm.
5. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) est mise en oeuvre en phase gazeuse en présence d'un catalyseur.
6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) est mise en oeuvre en présence d'un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci.
7. Procédé selon la revendication précédente caractérisé en ce que le catalyseur est à base de chrome et comprend également un co-catalyseur sélectionné parmi le groupe consistant en Ni, Zn, Co, Mn ou Mg, de préférence la teneur en co-catalyseur est comprise entre 0,01% et 10% sur base du poids total du catalyseur.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant A comprend 1,1,1,2,2-pentafluoropropane, 1,1,1,3,3-pentafluoropropane ou 1,1, 1,2,3- pentafluoropropane.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant B comprend 1,3,3,3-tétrafluoropropène ou 2,3,3,3-tétrafluoropropène.
10. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) est mise en oeuvre à une température comprise entre 200°C et 450°C.
PCT/FR2019/050480 2018-03-07 2019-03-04 Procédé de déhydrofluoration d'un composé hydrocarbure WO2019170992A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851953 2018-03-07
FR1851953A FR3078697B1 (fr) 2018-03-07 2018-03-07 Procede de dehydrofluoration d'un compose hydrocarbure.

Publications (1)

Publication Number Publication Date
WO2019170992A1 true WO2019170992A1 (fr) 2019-09-12

Family

ID=62683342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2019/050480 WO2019170992A1 (fr) 2018-03-07 2019-03-04 Procédé de déhydrofluoration d'un composé hydrocarbure

Country Status (2)

Country Link
FR (1) FR3078697B1 (fr)
WO (1) WO2019170992A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090240090A1 (en) 2004-04-29 2009-09-24 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
WO2011077192A1 (fr) 2009-12-23 2011-06-30 Arkema France Fluoration catalytique en phase gazeuse du 1233xf en 1234yf
WO2011140013A1 (fr) * 2010-05-03 2011-11-10 Arkema Inc. Formation de tétrafluoro-oléfines par déhydrofluoration de pentafluoroalkanes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090240090A1 (en) 2004-04-29 2009-09-24 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
WO2011077192A1 (fr) 2009-12-23 2011-06-30 Arkema France Fluoration catalytique en phase gazeuse du 1233xf en 1234yf
WO2011140013A1 (fr) * 2010-05-03 2011-11-10 Arkema Inc. Formation de tétrafluoro-oléfines par déhydrofluoration de pentafluoroalkanes

Also Published As

Publication number Publication date
FR3078697A1 (fr) 2019-09-13
FR3078697B1 (fr) 2020-02-21

Similar Documents

Publication Publication Date Title
EP3762353A1 (fr) Procédé de production du 2,3,3,3-tétrafluoropropène
JP5992532B2 (ja) 2,3,3,3−テトラフルオロプロペンを調製する方法
WO2019170991A1 (fr) Procédé de production du 2,3,3,3-tétrafluoropropène
BE1011765A3 (fr) Procede d'hydrofluoration d'hydrocarbures.
FR3078698A1 (fr) Procede de production du 2-chloro-3,3,3-trifluoropropene
EP3057929B1 (fr) Procédé de production de composes fluores
EP2334622A1 (fr) Procede de preparation de composes trifluores et tetrafluores
BE1011954A3 (fr) Synthese du 1,1,1,3,3-pentafluoropropane.
EP3504001B1 (fr) Procédé de modification de la distribution en fluor dans un composé hydrocarbure à l'aide d'une composition de catalyseur comprenant un oxyfluorure ou fluorure de chrome
WO2019170992A1 (fr) Procédé de déhydrofluoration d'un composé hydrocarbure
EP3634620B1 (fr) Procede de modification de la distribution en fluor dans un compose hydrocarbure
FR3068969B1 (fr) Procede de production du 2,3,3,3-tetrafluoropropene.
EP3655381B1 (fr) Procede de production du 2,3,3,3-tetrafluoropropene
WO2018224475A1 (fr) Procede de modification de la distribution en fluor dans un compose hydrocarbure
FR3073516B1 (fr) Procede de production du 2,3,3,3-tetrafluoropropene.
JP6216832B2 (ja) 2,3,3,3−テトラフルオロプロペンを調製する方法
EP4251317A1 (fr) Procédé de traitement d'un catalyseur avant déchargement
EP3707116A1 (fr) Procede de production de composes fluores

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19715972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19715972

Country of ref document: EP

Kind code of ref document: A1