EP3762353A1 - Procédé de production du 2,3,3,3-tétrafluoropropène - Google Patents

Procédé de production du 2,3,3,3-tétrafluoropropène

Info

Publication number
EP3762353A1
EP3762353A1 EP19715969.2A EP19715969A EP3762353A1 EP 3762353 A1 EP3762353 A1 EP 3762353A1 EP 19715969 A EP19715969 A EP 19715969A EP 3762353 A1 EP3762353 A1 EP 3762353A1
Authority
EP
European Patent Office
Prior art keywords
stream
catalyst
tetrafluoropropene
carried out
electrical conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
EP19715969.2A
Other languages
German (de)
English (en)
Inventor
Laurent Wendlinger
Dominique Deur-Bert
Anne Pigamo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arkema France SA
Original Assignee
Arkema France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France SA filed Critical Arkema France SA
Publication of EP3762353A1 publication Critical patent/EP3762353A1/fr
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/20Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms
    • C07C17/202Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction
    • C07C17/206Preparation of halogenated hydrocarbons by replacement by halogens of halogen atoms by other halogen atoms two or more compounds being involved in the reaction the other compound being HX
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/25Preparation of halogenated hydrocarbons by splitting-off hydrogen halides from halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C21/00Acyclic unsaturated compounds containing halogen atoms
    • C07C21/02Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds
    • C07C21/18Acyclic unsaturated compounds containing halogen atoms containing carbon-to-carbon double bonds containing fluorine

Definitions

  • the present invention relates to the production of hydrofluoroolefins. More particularly, the present invention relates to the production of 2,3,3,3-tetrafluoropropene.
  • Halogenated hydrocarbons particularly fluorinated hydrocarbons such as hydrofluoroolefins, are compounds which have a useful structure as functional materials, solvents, refrigerants, blowing agents and monomers for functional polymers or starting materials for such monomers.
  • Hydrofluoroolefins such as 2,3,3,3-tetrafluoropropene (HFO-1234yf) are attracting attention because they offer promising behavior as low global warming potential refrigerants.
  • the processes for producing fluoroolefins are usually carried out in the presence of a starting material such as an alkane containing chlorine or a chlorine-containing alkene, and in the presence of a fluorinating agent such as hydrogen fluoride. These processes can be carried out in the gas phase or in the liquid phase, in the absence or absence of catalyst.
  • US 2009/0240090 discloses a gas phase process for the preparation of 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf) from 1,1,1,2,3-pentachloropropane (HCC -240db).
  • HCFO-1233xf 2-chloro-3,3,3-trifluoropropene
  • HCC -240db 1,1,1,2,3-pentachloropropane
  • a 2,3,3,3-tetrafluoropropene preparation process comprising in particular a step of contacting 2-chloro-3,3,3-trifluoropropene with HF in the gas phase in the presence of a fluorination catalyst.
  • the present invention relates to a process for the production of 2,3,3,3-tetrafluoropropene comprising the steps of: a) providing a stream A comprising at least one starting compound selected from the group consisting of 2-chloro-3,3,3-trifluoropropene and 2,3-dichloro-1,1,1-trifluoropropane,
  • step a) characterized in that the electrical conductivity of said stream A supplied in step a) is less than 15 mS / cm.
  • the present process optimizes and improves the production of 2,3,3,3-tetrafluoropropene.
  • An electrical conductivity value of less than 15 mS / cm of the current A before the fluorination and / or dehydrofluorination step is carried out makes it possible to guarantee optimum efficiency of the reaction in terms of conversion and selectivity. If a catalyst is present, such a value also ensures optimal catalyst efficiency.
  • step b) is carried out in the gaseous phase in the presence of a catalyst.
  • the electrical conductivity of said current A is less than 10 mS / cm.
  • step b) is carried out in the presence of a chromium-based catalyst, in particular said catalyst comprises a chromium oxyfluoride or a chromium oxide or a chromium fluoride or a mixture of them.
  • the catalyst is based on chromium and also comprises a co-catalyst selected from the group consisting of Ni, Zn, Co, Mn or Mg, preferably the content of cocatalyst is between 0, 01% and 10% based on the total weight of the catalyst.
  • stream A comprises 2-chloro-3,3,3-trifluoropropene, HF and optionally 1,1,1,2,2-pentafluoropropane.
  • the stream B comprises, besides 2,3,3,3-tetrafluoropropene, HF, HCl, unreacted 2-chloro-3,3,3-trifluoropropene and optionally 1,1,1 , 2,2-pentafluoropropane.
  • step b) is carried out at a temperature of between 310 ° C. and 420 ° C.
  • step b) is carried out in the presence of hydrofluoric acid having an electrical conductivity of less than 10 mS / cm.
  • the present invention relates to a process for producing 2,3,3,3-tetrafluoropropene comprising the steps of:
  • the electrical conductivity of said current A supplied in step a) is less than 15 mS / cm.
  • the electrical conductivity of said current A supplied in step a) is less than 14 mS / cm, preferably less than 13 mS / cm, more preferably less than 12 mS / cm, in particular less than 11 mS / cm, more especially less than 10 mS / cm, preferably less than 9 mS / cm, advantageously preferred less than 8 mS / cm, preferentially preferred less than 7 mS / cm, more preferably preferred less than 6 mS / cm cm, particularly preferably less than 5 mS / cm.
  • the electrical conductivity is measured using an inductive conductivity measuring cell and according to the practice known to those skilled in the art.
  • the measurement of the electrical conductivity is carried out at ambient temperature.
  • the measurement of the electrical conductivity is carried out at a pressure equal to the pressure at which step b) is implemented.
  • the electrical conductivity of the current A can be decreased to reach a conductivity of less than 15 ms / cm by decreasing the concentration of electrolyte possibly present therein according to the techniques known to those skilled in the art (distillation, cooling and decantation, passage over 3 to 5 A molecular sieves or zeolites).
  • the measuring cell is coated with a material resistant to a corrosive medium, in particular resistant to hydrofluoric acid.
  • the electrical conductivity of said current A is measured prior to step b).
  • the electrical conductivity of said current A is measured when it is in liquid form.
  • Said method according to the present invention may therefore comprise a step of heating and vaporization of said stream A prior to the implementation of step b) to supply said stream A in gaseous form.
  • said stream A implemented in step b) is in gaseous form when it is brought into contact with HF.
  • step b) is carried out in the presence of a catalyst, preferably a chromium-based catalyst.
  • a catalyst preferably a chromium-based catalyst.
  • the chromium-based catalyst may be a chromium oxide (for example CrO 2, CrC 3 or Cr 2 C 3), an oxyfluoride of chromium or a chromium fluoride (eg CrFs) or a mixture thereof.
  • the chromium oxyfluoride may contain a fluorine content of between 1 and 60% by weight based on the total weight of the chromium oxyfluoride, advantageously between 5 and 55% by weight, preferably between 10 and 52% by weight, more preferably between 15 and 52% by weight, in particular between 20 and 50% by weight, more particularly between 25 and 45% by weight, preferably between 30 and 45% by weight, more preferably from 35 to 45% by weight. by weight of fluorine based on the total weight of the chromium oxyfluoride.
  • the catalyst may also comprise a co-catalyst selected from the group consisting of Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb; preferably Ni, Co, Zn, Mg, Mn; in particular Ni, Co, Zn.
  • the content by weight of the cocatalyst is between 1 and 10% by weight based on the total weight of the catalyst.
  • the catalyst can be supported or not.
  • a carrier such as alumina, activated alumina, aluminum halides (AlF 3 for example), aluminum oxyhalides, activated carbon, magnesium fluoride or graphite can be used.
  • the catalyst may have a specific surface area of between 70 and 225 m 2 / g, advantageously between 90 and 200 m 2 / g, preferably between 100 and 190 m 2 / g, in particular between 125 and 180 m 2 / g .
  • the catalyst may have a specific surface area of between 1 and 100 m 2 / g, preferably between 5 and 80 m 2 / g, more preferably between 5 and 70 m 2 / g, ideally between 5 and 50 m 2 / g, in particular between 10 and 50 m 2 / g, more particularly between 15 and 45 m 2 / g.
  • the pressure at which step b) is carried out is atmospheric pressure or a pressure greater than this, advantageously the pressure at which step b) is carried out is greater than 1.5 bara, preferably greater than 2.0 bara, in particular greater than 2.5 bara, more particularly greater than 3.0 bara.
  • step b) is carried out at a pressure of between atmospheric pressure and 20 bara, preferably between 2 and 18 bara, more preferably between 3 and 15 bara.
  • step b) of the present process is carried out with a contact time between 1 and 100 s, preferably between 2 and 75 s, in particular between 3 and 50 s.
  • the HF molar ratio and said at least one of the compounds of said stream A ie 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1-trifluoropropane, may vary between 1: 1 and 150: 1, preferably between 2: 1 and 125: 1, more preferably between 3: 1 and 100: 1.
  • An oxidant such as oxygen or chlorine, can be added during step b).
  • the molar ratio of the oxidant on the hydrocarbon compound may be between 0.005 and 2, preferably between 0.01 and 1.5.
  • the oxidant may be pure oxygen, air or a mixture of oxygen and nitrogen.
  • step b) is carried out at a temperature of between 310 ° C. and 420 ° C., advantageously between 310 ° C. and 400 ° C., preferably between 310 ° C. and 375 ° C. more preferably between 310 ° C and 360 ° C, in particular between 330 ° C and 360 ° C.
  • stream A comprises 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1-trifluoropropane, HF and optionally 1, 1,1,2,2- pentafluoropropane.
  • the stream B comprises, besides 2, 3,3,3-tetrafluoropropene, HF, HCl, 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1 unreacted trifluoropropane and optionally 1,1,1,2,2-pentafluoropropane.
  • stream B is purified, preferably by distillation, to form a first stream comprising 2,3,3,3-tetrafluoropropene, HCl and optionally 1,1,1,2,2-pentafluoropropane, and a second stream comprising HF and 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1-trifluoropropane.
  • said stream B is distilled under conditions sufficient to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1,2,2-pentafluoropropane, and said second stream comprising HF and 2 chloro-3,3,3-trifluoropropene.
  • the distillation can be carried out at a pressure of 2 to 6 bara, more particularly at a pressure of 3 to 5 bara.
  • the temperature at the top of the distillation column is from -35 ° C. to 10 ° C., preferably from -20 ° C. to 0 ° C.
  • said stream B obtained in step b) is cooled prior to the purification mentioned above.
  • said stream B obtained in step b) is cooled to a temperature below 100 ° C, and then distilled to form said first stream comprising 2,3,3,3-tetrafluoropropene, HCl and 1,1,1, 2,2-pentafluoropropane, and said second stream comprising HF and 2-chloro-3,3,3-trifluoropropene or 2,3-dichloro-1,1,1-trifluoropropane; the temperature at the top of the distillation column is -35 ° C. to 10 ° C. and the distillation is carried out at a pressure of 2 to 6 bara.
  • Said stream B can be cooled, before distillation, to a temperature below 95 ° C, preferably below 90 ° C, preferably below 85 ° C, more preferably below 80 ° C, in particular below 70 ° C, more particularly lower than 60 ° C, preferably below 55 ° C, advantageously preferred lower than 50 ° C, preferably preferentially less than 40 ° C, more preferably preferably less than 30 ° C, particularly preferably less than 25 ° C, more preferably less than 20 ° C. Cooling the resulting product stream at such temperatures can facilitate subsequent distillation.
  • the cooling of said stream B can be carried out by means of one or a plurality of heat exchangers.
  • the cooling of said stream B can be carried out by passing it through one, two, three, four, five, six, seven, eight, nine or ten heat exchangers, preferably the number of heat exchangers is between 2 and 8, in particular between 3 and 7.
  • step b) is carried out in the presence of hydrofluoric acid having an electrical conductivity of less than 10 mS / cm, preferably less than 5 mS / cm.
  • the electrical conductivity of hydrofluoric acid can be measured prior to its use in step b) of the present process.
  • the electrical conductivity of the hydrofluoric acid is measured before step b) and the hydrofluoric acid is in liquid form during the measurement.
  • the method may also comprise a step of heating and vaporizing the hydrofluoric acid prior to the implementation of step b) to provide hydrofluoric acid in gaseous form.
  • the hydrofluoric acid is in gaseous form when contacted with said stream A.
  • the process according to the present invention is carried out continuously.
  • the fluorination of HCFO-1233xf (2-chloro-3,3,3-trifluoropropene) to HFO-1234yf (2,3,3,3-tetrafluoropropene) and optionally to HFC-245cb (1,1,1,2,2 -pentafluoropropane) is carried out in a multitubular reactor.
  • the reactor contains a mass catalyst based on chromium oxide.
  • the catalyst is activated by a series of steps including drying, fluorination, air treatment and fluorination with recycling. This multi-step treatment makes the catalytic solid active and selective.
  • the fluorination process is carried out according to the following operating conditions:
  • a molar ratio between the HF and the sum of the organic feeds by the recycling loop between 15 and 20
  • the process is carried out with a current of HCFO-1233xf having three different electrical conductivity values: 6, 10 and 35 mS / cm. Electrical conductivity was measured at room temperature and 5.8 bara. The run is stopped when the conversion to 2-chloro-3,3,3-trifluoropropene is less than 50%. Table 1 below shows the values obtained.
  • the electrical conductivity of the HCFO-1233xf current is measured using a cell marketed by Endress + Hauser and referenced under the term InduMax P CLS 50 coated with a corrosive medium-resistant polymer-perfluoroalkoxy polymer (PFA) coating. containing HF.
  • PFA corrosive medium-resistant polymer-perfluoroalkoxy polymer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Abrégé Procédé de production du 2,3,3,3-tétrafluoropropène La présente invention concerne un procédé de production du 2,3,3,3-tétrafluoropropène comprenant les étapes de: a) fourniture d'un courant Acomprenant au moins un des composés sélectionnés parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropèneet 2,3-dichloro-,1,1-trifluoropropane; b) dans un réacteur, mise en contact dudit courant Aavec HF en présence ou non d'un catalyseur de fluoration pour produire un courant Bcomprenant 2,3,3,3- tétrafluoropropène; caractérisé en ce que la conductivité électrique dudit courant Afourni à 10 l'étape a) est inférieure à 15 mS/cm.

Description

Procédé de production du 2,3.3.3-tétrafluoropropène
Domaine technique de l'invention
La présente invention concerne la production d'hydrofluorooléfines. Plus particulièrement, la présente invention concerne la production de 2,3,3,3-tétrafluoropropène.
Arrière-plan technologique de l'invention
Les hydrocarbures halogénés, en particulier les hydrocarbures fluorés comme les hydrofluorooléfines, sont des composés qui ont une structure utile comme matériaux fonctionnels, solvants, réfrigérants, agents de gonflage et monomères pour polymères fonctionnels ou matériaux de départ pour de tels monomères. Des hydrofluorooléfines comme le 2,3,3,3-tétrafluoropropène (HFO-1234yf) attirent l'attention parce qu'elles offrent un comportement prometteur comme réfrigérants à faible potentiel de réchauffement global.
Les procédés de production de fluorooléfines sont habituellement effectués en présence d'une substance de départ telle qu'un alcane contenant du chlore ou un alcène contenant du chlore, et en présence d'un agent fluorant tel que le fluorure d'hydrogène. Ces procédés peuvent être effectués en phase gazeuse ou en phase liquide, en absence ou non de catalyseur.
On connaît par exemple par US 2009/0240090, un procédé en phase gazeuse de préparation du 2-chloro-3,3,3-trifluoropropène (HCFO-1233xf) à partir du 1,1, 1,2,3- pentachloropropane (HCC-240db). Le HCFO-1233xf ainsi produit est converti en 2-chloro-
1.1.1.2-tétrafluoropropane (HCFC-244bb) en phase liquide puis ce dernier est converti en
2.3.3.3-tétrafluoropropène.
On connaît également par WO 2011/077192, un procédé de préparation 2,3,3,3- tétrafluoropropène comprenant notamment une étape de mise en contact du 2-chloro-3,3,3- trifluoropropène avec HF en phase gazeuse en présence d'un catalyseur de fluoration.
Il y a toujours un besoin pour des procédés de production du 2,3,3,3-tétrafluoropropène plus performant.
Résumé de l'invention
La présente invention concerne un procédé pour la production de 2,3,3,3- tétrafluoropropène comprenant les étapes : a) fourniture d'un courant A comprenant au moins un composé de départ sélectionné parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène et 2,3-dichloro-l,l,l- trifluoropropane,
b) dans un réacteur, mise en contact dudit courant A avec HF en présence ou non d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène,
caractérisé en ce que la conductivité électrique dudit courant A fourni à l'étape a) est inférieure à 15 mS/cm.
Le présent procédé permet d'optimiser et d'améliorer la production de 2,3,3,3- tétrafluoropropène. Une valeur de conductivité électrique inférieure à 15 mS/cm du courant A avant la mise en oeuvre de l'étape de fluoration et/ou de déhydrofluoration permet de garantir une efficacité optimale de la réaction en terme de conversion et de sélectivité. Si un catalyseur est présent, une telle valeur permet de garantir également une efficacité optimale du catalyseur.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre en phase gazeuse en présence d'un catalyseur.
Selon un mode de réalisation préféré, la conductivité électrique dudit courant A est inférieure à 10 mS/cm.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre en présence d'un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci.
Selon un mode de réalisation préféré, le catalyseur est à base de chrome et comprend également un co-catalyseur sélectionné parmi le groupe consistant en Ni, Zn, Co, Mn ou Mg, de préférence la teneur en co-catalyseur est comprise entre 0,01% et 10% sur base du poids total du catalyseur.
Selon un mode de réalisation préféré, le courant A comprend 2-chloro-3,3,3- trifluoropropène, HF et optionnellement 1,1,1,2,2-pentafluoropropane.
Selon un mode de réalisation préféré, le courant B comprend, outre 2,3,3,3- tétrafluoropropène, HF, HCl, 2-chloro-3,3,3-trifluoropropène n'ayant pas réagi et optionnellement 1,1,1,2,2-pentafluoropropane.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre à une température comprise entre 310°C et 420°C.
Selon un mode de réalisation préféré, l'étape b) est réalisée en présence d'acide fluorhydrique ayant une conductivité électrique inférieure à 10 mS/cm. Description détaillée de la présente invention
La présente invention concerne un procédé pour la production de 2, 3,3,3- tétrafluoropropène comprenant les étapes :
a) fourniture d'un courant A comprenant au moins un des composés sélectionnés parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène et 2,3-dichloro-l,l,l-trifluoropropane, b) dans un réacteur, mise en contact dudit courant A avec HF en présence ou non d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène.
Selon un mode de réalisation préféré, la conductivité électrique dudit courant A fourni à l'étape a) est inférieure à 15 mS/cm. Avantageusement, la conductivité électrique dudit courant A fourni à l'étape a) est inférieure 14 mS/cm, de préférence inférieure à 13 mS/cm, plus préférentiellement inférieure à 12 mS/cm, en particulier inférieure à 11 mS/cm, plus particulièrement inférieure à 10 mS/cm, de manière privilégiée inférieure à 9 mS/cm, de manière avantageusement privilégiée inférieure à 8 mS/cm, de manière préférentiellement privilégiée inférieure à 7 mS/cm, de manière plus préférentiellement privilégiée inférieure à 6 mS/cm, de manière particulièrement privilégiée inférieure à 5 mS/cm. La conductivité électrique est mesurée à l'aide d'une cellule de mesure de conductivité inductive et selon la pratique connue de l'homme du métier. La mesure de la conductivité électrique est effectuée à température ambiante. La mesure de la conductivité électrique est effectuée à une pression égale à la pression à laquelle l'étape b) est mise en oeuvre. La conductivité électrique du courant A peut être diminuée pour atteindre une conductivité inférieure à 15 ms/cm en diminuant la concentration en électrolyte éventuellement présent dans celui-ci selon les techniques connues de l'homme du métier (distillation, refroidissement et décantation, passage sur des tamis moléculaires de 3 à 5 A ou des zéolites). De préférence, la cellule de mesure est revêtue d'un matériau résistant à un milieu corrosif, en particulier résistant à l'acide fluorhydrique.
La conductivité électrique dudit courant A est mesurée préalablement à l'étape b). De préférence, la conductivité électrique dudit courant A est mesurée lorsque celui-ci est sous forme liquide. Ledit procédé selon la présente invention peut donc comprendre une étape de chauffage et vaporisation dudit courant A préalable à la mise en oeuvre de l'étape b) pour fournir ledit courant A sous forme gazeuse. De préférence, ledit courant A mis en oeuvre à l'étape b) est sous forme gazeuse lors de sa mise en contact avec HF.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre en présence d'un catalyseur, de préférence un catalyseur à base de chrome. De préférence, le catalyseur à base de chrome peut être un oxyde de chrome (par exemple CrÜ2, CrC>3 ou Cr2C>3), un oxyfluorure de chrome ou un fluorure de chrome (par exemple CrFs) ou un mélange de ceux-ci. L'oxyfluorure de chrome peut contenir une teneur en fluor comprise entre 1 et 60% en poids sur base du poids total de l'oxyfluorure de chrome, avantageusement entre 5 et 55% en poids, de préférence entre 10 et 52% en poids, plus préférentiellement entre 15 et 52% en poids, en particulier entre 20 et 50% en poids, plus particulièrement entre 25 et 45% en poids, de manière privilégiée entre 30 et 45% en poids, de manière plus privilégiée de 35 à 45% en poids de fluor sur base du poids total de l'oxyfluorure de chrome. Le catalyseur peut également comprendre un co-catalyseur choisi parmi le groupe consistant en Ni, Co, Zn, Mg, Mn, Fe, Zn, Ti, V, Zr, Mo, Ge, Sn, Pb, Sb ; de préférence Ni, Co, Zn, Mg, Mn ; en particulier Ni, Co, Zn. La teneur en poids du co-catalyseur est comprise entre 1 et 10% en poids sur base du poids total du catalyseur. Le catalyseur peut être supporté ou non. Un support tel que l'alumine, de l'alumine activée, les halogénures d'aluminium (AIF3 par exemple), les oxyhalogénures d'aluminium, du charbon actif, fluorure de magnésium ou du graphite peut être utilisé.
De préférence, le catalyseur peut avoir une surface spécifique entre 70 et 225 m2/g, avantageusement entre 90 et 200 m2/g, de préférence entre 100 et 190 m2/g, en particulier entre 125 et 180 m2/g. Alternativement, le catalyseur peut avoir une surface spécifique entre 1 et 100 m2/g, de préférence entre 5 et 80 m2/g, plus préférentiellement entre 5 et 70 m2/g, idéalement entre 5 et 50 m2/g, en particulier entre 10 et 50 m2/g, plus particulièrement entre 15 et 45 m2/g.
Selon un mode de réalisation préféré, la pression à laquelle l'étape b) est mise en oeuvre est la pression atmosphérique ou une pression supérieure à celle-ci, avantageusement la pression à laquelle l'étape b) est mise en oeuvre est supérieure à 1,5 bara, de préférence supérieure à 2,0 bara, en particulier supérieure à 2,5 bara, plus particulièrement supérieure à 3,0 bara. De préférence, l'étape b) est mise en oeuvre à une pression comprise entre la pression atmosphérique et 20 bara, de préférence entre 2 et 18 bara, plus préférentiellement entre 3 et 15 bara.
De préférence, l'étape b) du présent procédé est mise en oeuvre avec un temps de contact entre 1 et 100 s, de préférence entre 2 et 75 s, en particulier entre 3 et 50 s. De préférence, le rapport molaire HF et ledit au moins un des composés dudit courant A, i.e. 2- chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l-trifluoropropane, peut varier entre 1:1 et 150:1, de préférence entre 2:1 et 125:1, plus préférentiellement entre 3:1 et 100:1. On peut ajouter un oxydant, comme l'oxygène ou le chlore, en cours de l'étape b). Le rapport molaire de l'oxydant sur le composé hydrocarbure peut être entre 0,005 et 2, de préférence entre 0,01 et 1,5. L'oxydant peut être de l'oxygène pur, de l'air ou un mélange d'oxygène et d'azote.
Selon un mode de réalisation préféré, l'étape b) est mise en oeuvre à une température comprise entre 310°C et 420°C, avantageusement entre 310°C et 400°C, de préférence entre 310°C et 375°C, plus préférentiellement entre 310°C et 360°C, en particulier entre 330°C et 360°C.
Selon un mode de réalisation préféré, le courant A comprend 2-chloro-3,3,3- trifluoropropène ou 2,3-dichloro-l,l,l-trifluoropropane, HF et optionnellement 1, 1,1, 2,2- pentafluoropropane.
Selon un mode de réalisation préféré, le courant B comprend, outre 2, 3,3,3- tétrafluoropropène, HF, HCl, 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l- trifluoropropane n'ayant pas réagi et optionnellement 1,1,1,2,2-pentafluoropropane.
Selon un mode de réalisation préféré, le courant B est purifié, de préférence par distillation, pour former un premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et optionnellement 1,1,1,2,2-pentafluoropropane, et un second courant comprenant HF et 2- chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l-trifluoropropane.
De préférence, ledit courant B est distillé dans des conditions suffisantes pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et 1,1,1,2,2- pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3-trifluoropropene. En particulier, la distillation peut être effectuée à une pression de 2 à 6 bara, plus particulièrement à une pression de 3 à 5 bara. En particulier, la température en tête de colonne de distillation est de -35°C à 10°C, de préférence de -20°C à 0°C.
Selon un mode réalisation préféré, ledit courant B obtenu à l'étape b) est refroidi préalablement à la purification mentionnée ci-dessus. En particulier, ledit courant B obtenu à l'étape b) est refroidi à une température inférieure à 100°C, puis distillé pour former ledit premier courant comprenant 2,3,3,3-tétrafluoropropène, HCl et 1,1,1,2,2-pentafluoropropane, et ledit second courant comprenant HF et 2-chloro-3,3,3-trifluoropropène ou 2,3-dichloro-l,l,l- trifluoropropane ; la température en tête de colonne de distillation est de -35°C à 10°C et la distillation est mise en oeuvre à une pression de 2 à 6 bara.
Ledit courant B peut être refroidi, avant distillation, à une température inférieure à 95°C, avantageusement inférieure à 90°C, de préférence inférieure à 85°C, plus préférentiellement inférieure à 80°C, en particulier inférieure à 70°C, plus particulièrement inférieure à 60°C, de manière privilégiée inférieure à 55°C, de manière avantageusement privilégiée inférieure à 50°C, de manière préférentiellement privilégiée inférieure à 40°C, de manière plus préférentiellement privilégiée inférieure à 30°C, de manière particulièrement privilégiée inférieure à 25°C, de manière plus particulièrement privilégiée inférieure à 20°C. Le refroidissement du flux de produits obtenu à de telles températures peut faciliter la distillation ultérieure.
Le refroidissement dudit courant B peut être effectué grâce à un ou une pluralité d'échangeurs de chaleur. Le refroidissement dudit courant B peut être effectué en faisant passer celui-ci au travers de un, deux, trois, quatre, cinq, six, sept, huit, neuf ou dix échangeurs de chaleur, de préférence le nombre d'échangeurs de chaleur est compris entre 2 et 8, en particulier entre 3 et 7.
Selon un mode de réalisation préféré, l'étape b) est réalisée en présence d'acide fluorhydrique ayant une conductivité électrique inférieure à 10 mS/cm, de préférence inférieure à 5 mS/cm. La conductivité électrique de l'acide fluorhydrique peut être mesurée préalablement à son utilisation à l'étape b) du présent procédé. De préférence, la conductivité électrique de l'acide fluorhydrique est mesurée préalablement à l'étape b) et l'acide fluorhydrique est sous forme liquide lors de la mesure. Le procédé peut également comprendre une étape de chauffage et de vaporisation de l'acide fluorhydrique préalablement à la mise en oeuvre de l'étape b) pour fournir de l'acide fluorhydrique sous forme gazeuse. De préférence, l'acide fluorhydrique est sous forme gazeuse lors de la mise en contact avec ledit courant A.
De préférence, le procédé selon la présente invention est mis en oeuvre en continu.
Exemple
La fluoration du HCFO-1233xf (2-chloro-3,3,3-trifluoropropène) en HFO-1234yf (2, 3,3,3- tétrafluoropropène) et optionnellement en HFC-245cb (1,1,1,2,2-pentafluoropropane) est réalisée dans un réacteur multitubulaire. Le réacteur contient un catalyseur massique à base d'oxyde de chrome. Le catalyseur est activé par une série d’étapes comprenant séchage, fluoration, traitement sous air et fluoration avec recyclage. Ce traitement en plusieurs étapes permet de rendre le solide catalytique actif et sélectif.
Le procédé de fluoration est mis en oeuvre suivant les conditions opératoires suivantes :
Une pression absolue dans le réacteur de fluoration de 5,8 bars absolu
Un ratio molaire entre l'HF et la somme des organiques alimentés par la boucle de recyclage compris entre 15 et 20
Un temps de contact 16 secondes
Une température constante dans le réacteur de 350°C. Le procédé est mis en œuvre avec un courant de HCFO-1233xf ayant trois valeurs de conductivité électrique différente : 6, 10 et 35 mS/cm. La conductivité électrique a été mesurée à température ambiante et à 5,8 bara. Le run est stoppé lorsque la conversion en 2-chloro-3,3,3- trifluoropropène est inférieure à 50%. Le tableau 1 ci-dessous reprend les valeurs obtenues.
La conductivité électrique du courant de HCFO-1233xf est mesurée à l'aide d'une cellule commercialisée par Endress+Hauser et référencée sous le terme InduMax P CLS 50 revêtue d'un revêtement polymère de type perfluoroalkoxy (PFA) résistant à un milieu corrosif contenant HF.
Tableau 1
Les résultats détaillés dans le tableau 1 démontrent qu'un courant comprenant HCFO- 1233xf et ayant une conductivité électrique inférieure à 15 mS/cm permet de maintenir une conversion suffisamment élevée pour une durée importante. En effet, une conversion supérieure à 50% peut être maintenue pendant plus de 240 h (exemple 2) et même jusqu'à 400 h lorsque la conductivité électrique est de 6 mS/cm (exemple 1). Au contraire, la conversion en HCFO-1233xf chute fortement lorsque la conductivité électrique est trop élevée (exemple 3).

Claims

Revendications
1. Procédé de production du 2,3,3,3-tétrafluoropropène comprenant les étapes de :
a) fourniture d'un courant A comprenant au moins un composé de départ sélectionné parmi le groupe consistant en 2-chloro-3,3,3-trifluoropropène et 2,3-dichloro-l,l,l- trifluoropropane ;
b) dans un réacteur, mise en contact dudit courant A avec HF en présence ou non d'un catalyseur pour produire un courant B comprenant 2,3,3,3-tétrafluoropropène ;
caractérisé en ce que la conductivité électrique dudit courant A fourni à l'étape a) est inférieure à 15 mS/cm.
2. Procédé selon la revendication 1 caractérisé en ce que l'étape b) est mise en oeuvre en phase gazeuse en présence d'un catalyseur.
3. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que la conductivité électrique dudit courant A est inférieure à 10 mS/cm.
4. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) est mise en oeuvre en présence d'un catalyseur à base de chrome, en particulier ledit catalyseur comprend un oxyfluorure de chrome ou un oxyde de chrome ou un fluorure de chrome ou un mélange de ceux-ci.
5. Procédé selon la revendication précédente caractérisé en ce que le catalyseur est à base de chrome et comprend également un co-catalyseur sélectionné parmi le groupe consistant en Ni, Zn, Co, Mn ou Mg, de préférence la teneur en co-catalyseur est comprise entre 0,01% et 10% sur base du poids total du catalyseur.
6. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que le courant A comprend 2-chloro-3,3,3-trifluoropropène, HF et 1,1,1,2,2-pentafluoropropane.
7. Procédé selon la revendication précédente caractérisé en ce que le courant B comprend, outre 2,3,3,3-tétrafluoropropène, HF, HCl, 2-chloro-3,3,3-trifluoropropène n'ayant pas réagi et 1,1,1,2,2-pentafluoropropane.
8. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) est mise en oeuvre à une température comprise entre 310°C et 420°C.
9. Procédé selon l'une quelconque des revendications précédentes caractérisé en ce que l'étape b) est réalisée en présence d'acide fluorhydrique ayant une conductivité électrique inférieure à 10 mS/cm.
EP19715969.2A 2018-03-07 2019-03-04 Procédé de production du 2,3,3,3-tétrafluoropropène Pending EP3762353A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1851956A FR3078699B1 (fr) 2018-03-07 2018-03-07 Procede de production du 2,3,3,3-tetrafluoropropene
PCT/FR2019/050477 WO2019170989A1 (fr) 2018-03-07 2019-03-04 Procédé de production du 2,3,3,3-tétrafluoropropène

Publications (1)

Publication Number Publication Date
EP3762353A1 true EP3762353A1 (fr) 2021-01-13

Family

ID=62683343

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19715969.2A Pending EP3762353A1 (fr) 2018-03-07 2019-03-04 Procédé de production du 2,3,3,3-tétrafluoropropène

Country Status (5)

Country Link
US (1) US11034635B2 (fr)
EP (1) EP3762353A1 (fr)
CN (1) CN111712479B (fr)
FR (1) FR3078699B1 (fr)
WO (1) WO2019170989A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3023286B1 (fr) 2014-07-02 2018-02-16 Arkema France Procede de fabrication de tetrafluoropropene
WO2018165624A1 (fr) 2017-03-10 2018-09-13 The Chemours Company Fc, Llc Procédé amélioré de préparation de 3,3,3-trifluoroprop-1-ene
FR3078698B1 (fr) 2018-03-07 2020-02-21 Arkema France Procede de production du 2-chloro-3,3,3-trifluoropropene
FR3078700B1 (fr) 2018-03-07 2020-07-10 Arkema France Procede de production du 2,3,3,3-tetrafluoropropene
FR3081158B1 (fr) 2018-05-16 2020-07-31 Arkema France Procede de production du 1-chloro-3,3,3-trifluoropropene.
FR3083232B1 (fr) 2018-06-27 2021-11-12 Arkema France Procede de production du 1-chloro-3,3,3-trifluoropropene
FR3086287B1 (fr) 2018-09-26 2020-09-18 Arkema France Stabilisation du 1-chloro-3,3,3-trifluoropropene

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL98704C (fr) 1953-04-09
US4902838A (en) 1988-12-28 1990-02-20 E. I. Du Pont De Nemours And Company Isomerization of saturated fluorohydrocarbons
GB9007029D0 (en) 1990-03-29 1990-05-30 Ici Plc Chemical process
US5227350A (en) 1990-09-14 1993-07-13 Imperial Chemical Industries Plc Fluorination catalyst regeneration
GB9224594D0 (en) 1991-12-10 1993-01-13 Ici Plc Water separation process
US5322597A (en) * 1992-07-30 1994-06-21 Minnesota Mining And Manufacturing Company Bipolar flow cell and process for electrochemical fluorination
ATE223753T1 (de) 1996-04-17 2002-09-15 Ausimont Spa Katalysator für die fluorierung von halogenierten kohlwasserstoffen
DE69909860T2 (de) 1998-02-26 2004-05-27 Central Glass Co., Ltd., Ube Verfahren zur Herstellung von fluorierten Propanen
FR2808268B1 (fr) 2000-04-26 2002-08-30 Atofina Liquides ioniques derives d'acides de lewis a base de titane, niobium, tantale, etain ou antimoine, et leurs applications
US8058486B2 (en) 2004-04-29 2011-11-15 Honeywell International Inc. Integrated process to produce 2,3,3,3-tetrafluoropropene
US8067649B2 (en) 2004-04-29 2011-11-29 Honeywell International Inc. Method for producing fluorinated organic compounds
US8952208B2 (en) * 2006-01-03 2015-02-10 Honeywell International Inc. Method for prolonging a catalyst's life during hydrofluorination
HUE061083T2 (hu) 2006-01-03 2023-05-28 Honeywell Int Inc Eljárás fluorozott szerves vegyületek elõállítására
KR101397113B1 (ko) 2006-10-03 2014-05-19 멕시켐 아만코 홀딩 에스.에이. 데 씨.브이. 탄소수 3-6의 (하이드로)플루오로알켄의 생성을 위한 탈수소할로겐화 방법
CN101528645B (zh) 2006-10-31 2013-10-30 纳幕尔杜邦公司 氟丙烷、卤代丙烯以及2-氯-3,3,3-三氟-1-丙烯与hf的共沸组合物和1,1,1,2,2-五氟丙烷与hf的共沸组合物的制备方法
FR2916755B1 (fr) 2007-05-31 2009-08-21 Arkema France Procede de preparation d'(hydro)(chloro)(fluoro)olefines
US8076521B2 (en) 2007-06-27 2011-12-13 Arkema Inc. Process for the manufacture of hydrofluoroolefins
US8563789B2 (en) * 2007-06-27 2013-10-22 Arkema Inc. Process for the manufacture of hydrofluoroolefins
FR2929271B1 (fr) 2008-03-28 2010-04-16 Arkema France Procede pour la preparation du 1,2,3,3,3-pentafluoropropene- 1
SG10201701868UA (en) * 2008-05-07 2017-04-27 Du Pont Compositions comprising 2,3-dichloro-1,1,1-trifluoropropane, 2-chloro-1,1,1-trifluoropropene, 2 chloro-1,1,1,2-tetrafluoropropane or 2,3,3,3-tetrafluoropropene
US8975454B2 (en) * 2008-07-31 2015-03-10 Honeywell International Inc. Process for producing 2,3,3,3-tetrafluoropropene
CN102405203B (zh) 2009-04-23 2015-04-08 大金工业株式会社 制备2,3,3,3-四氟丙烯的方法
EP2516366B1 (fr) 2009-12-23 2016-11-16 Arkema France Fluoration catalytique en phase gazeuse du 1233xf en 1234yf
GB201010958D0 (en) 2010-06-30 2010-08-11 3M Innovative Properties Co Process for manufacturing perfluoroolefins by pyrolysis of perfluorocarbons in the presence of hydrogen
WO2012052797A1 (fr) 2010-10-22 2012-04-26 Arkema France Procédé de synthèse de 2,3,3,3-tétrafluoropropène
RU2541541C1 (ru) 2011-01-21 2015-02-20 Аркема Франс Каталитическое газофазное фторирование
RU2571415C2 (ru) 2011-01-21 2015-12-20 Аркема Франс Каталитическое газофазное фторирование
FR2980474B1 (fr) * 2011-09-27 2013-08-30 Arkema France Procede de fabrication du 2,3,3,3-tetrafluoropropene
CN109251123A (zh) * 2011-10-14 2019-01-22 塞尔马·贝克特什维克 生产2,3,3,3-四氟丙烯的方法
PL2791093T3 (pl) 2011-12-14 2018-01-31 Arkema France Sposób wytwarzania 2,3,3,3-tetrafluoropropenu
FR2986525B1 (fr) 2012-02-03 2014-02-14 Arkema France Procede de production de 2,3,3,3-tetrafluoropropene
WO2013154059A1 (fr) 2012-04-09 2013-10-17 旭硝子株式会社 Composition azéotropique ou de type azéotrope, et procédé de production de 2,3,3,3-tétrafluoropropène ou de chlorométhane
FR2991598B1 (fr) 2012-06-08 2015-08-07 Arkema France Regeneration de catalyseur par injection de gaz chauffe
JP6213480B2 (ja) 2012-07-10 2017-10-18 ダイキン工業株式会社 含フッ素オレフィンの製造方法
EP2882704B1 (fr) * 2012-08-08 2018-02-28 Daikin Industries, Ltd. Procédé pour produire le 2,3,3,3-tétrafluoropropène
FR3013606B1 (fr) 2013-11-28 2015-11-13 Arkema France Procede de purification d'acide chlorhydrique
US9255045B2 (en) 2014-01-13 2016-02-09 Arkema France E-1-chloro-3,3,3-trifluoropropene production process from 1,1,3,3-tetrachloropropene
FR3023286B1 (fr) 2014-07-02 2018-02-16 Arkema France Procede de fabrication de tetrafluoropropene
WO2016058569A1 (fr) * 2014-10-16 2016-04-21 Spolek Pro Chemickou A Hutni Vyrobu, Akciova Spolecnost Procédé
FR3036398B1 (fr) 2015-05-22 2019-05-03 Arkema France Compositions a base de 1,1,3,3-tetrachloropropene
MX2018012546A (es) 2016-04-13 2019-07-08 Arkema France Proceso para la produccion de 2,3,3,3-tetrafluoropropeno.
CN107540011A (zh) 2016-06-23 2018-01-05 中化近代环保化工(西安)有限公司 一种高比表面积的催化剂、其制备方法及应用
FR3068970B1 (fr) 2017-07-17 2019-07-26 Arkema France Procede de production du 2,3,3,3-tetrafluoropropene.
FR3068969B1 (fr) 2017-07-17 2019-07-26 Arkema France Procede de production du 2,3,3,3-tetrafluoropropene.
FR3078700B1 (fr) 2018-03-07 2020-07-10 Arkema France Procede de production du 2,3,3,3-tetrafluoropropene
FR3078698B1 (fr) 2018-03-07 2020-02-21 Arkema France Procede de production du 2-chloro-3,3,3-trifluoropropene

Also Published As

Publication number Publication date
CN111712479B (zh) 2024-08-13
FR3078699B1 (fr) 2020-02-21
US11034635B2 (en) 2021-06-15
CN111712479A (zh) 2020-09-25
US20200407293A1 (en) 2020-12-31
FR3078699A1 (fr) 2019-09-13
WO2019170989A1 (fr) 2019-09-12

Similar Documents

Publication Publication Date Title
EP3762353A1 (fr) Procédé de production du 2,3,3,3-tétrafluoropropène
EP3762355A1 (fr) Procédé de production du 2,3,3,3-tétrafluoropropène
EP3762354A1 (fr) Procédé de production du 2-chloro-3,3,3-trifluoropropène
FR3068969B1 (fr) Procede de production du 2,3,3,3-tetrafluoropropene.
EP3634620B1 (fr) Procede de modification de la distribution en fluor dans un compose hydrocarbure
FR3073516B1 (fr) Procede de production du 2,3,3,3-tetrafluoropropene.
EP3655381B1 (fr) Procede de production du 2,3,3,3-tetrafluoropropene
WO2019170992A1 (fr) Procédé de déhydrofluoration d'un composé hydrocarbure
FR3073221B1 (fr) Procede de production du 2,3,3,3-tetrafluoropropene.
FR3056210A1 (fr) Procede de separation du 2-chloro-1,1,1,2-tetrafluoropropane et du 2-chloro-3,3,3-trifluoropropene.
WO2019239037A1 (fr) Procédé de production de 2,3,3,3-tétrafluoropropène et réacteur pour la mise en œuvre de celui-ci
EP3807238A1 (fr) Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en ouvre de celui-ci
FR3098127A1 (fr) Procédé de production de 2,3,3,3-tétrafluoropropène et réacteur pour la mise en œuvre de celui-ci
FR3098216A1 (fr) Procédé de production de 2,3,3,3-tétrafluoropropène et installation pour la mise en œuvre de celui-ci
FR3082201A1 (fr) Procede de production de 2,3,3,3-tetrafluoropropene, reacteur et installation pour la mise en oeuvre de celui-ci.
EP3807240A1 (fr) Procede de production de 2-chloro-3,3,3-trifluoropropene et installation pour la mise en oeuvre de celui-ci

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA