WO2019169817A1 - 多孔荧光陶瓷气孔率检测装置及其检测方法 - Google Patents

多孔荧光陶瓷气孔率检测装置及其检测方法 Download PDF

Info

Publication number
WO2019169817A1
WO2019169817A1 PCT/CN2018/095489 CN2018095489W WO2019169817A1 WO 2019169817 A1 WO2019169817 A1 WO 2019169817A1 CN 2018095489 W CN2018095489 W CN 2018095489W WO 2019169817 A1 WO2019169817 A1 WO 2019169817A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluorescent ceramic
fluorescent
spot
size
ceramic
Prior art date
Application number
PCT/CN2018/095489
Other languages
English (en)
French (fr)
Inventor
周萌
杜鹏
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019169817A1 publication Critical patent/WO2019169817A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/088Investigating volume, surface area, size or distribution of pores; Porosimetry

Definitions

  • the invention relates to a porous fluorescent ceramic porosity detection device and a detection method thereof, and belongs to the technical field of detection device manufacturing.
  • Fluorescent ceramics are widely used in high-power laser projection sources due to their excellent mechanical properties and high thermal conductivity. Since the projection light source system requires high optical expansion, when the laser spot is excited to convert the fluorescent ceramic into the second wavelength light, the fluorescence spot diffusion phenomenon is required to be small.
  • the pores in the porous fluorescent ceramic mainly scatter the light, and the size of the fluorescent spot is closely related to the content of the scattering center in the ceramic.
  • the size of the fluorescent spot will affect the light efficiency utilization in the light source system, mainly because when the light spread is large.
  • the collecting efficiency of the collecting lens is low, so detecting whether the porosity of the porous fluorescent ceramic meets the shipping standard is the primary prerequisite for ensuring the utilization efficiency of the light.
  • the main method for detecting the porosity of porous fluorescent ceramics is the Archimedes drainage method.
  • the main problem of this method is that the test procedure is cumbersome, and the accuracy of the test is low because the closed pores cannot be tested.
  • the technical problem to be solved by the present invention is to provide a porous fluorescent ceramic porosity detection device and a detection method thereof according to the deficiencies of the prior art, according to the correlation between the fluorescence spot diffusivity and the content of the scattering center, that is, the porosity of the fluorescent ceramic.
  • the spot diffusivity can be characterized, and the prepared fluorescent ceramic sample with the same size can be compared with the standard fluorescent ceramic sample to detect whether the porosity is in compliance with the standard, and the device structure Compact, the test method is simple and fast, and the accuracy is high.
  • a porous fluorescent ceramic porosity detecting device comprises a testing platform on which a laser light source, a beam expander assembly, a relay lens, a collecting lens group and a CCD assembly are sequentially disposed along a same center line, the relay lens and A detection position is set between the collection lens groups, and the fluorescent ceramic to be tested and the standard fluorescent ceramic are respectively placed on the detection position for detection.
  • the beam expander assembly may employ various components as needed. Specifically, the beam expander assembly includes a positive or negative lens group or a diffusion sheet.
  • a light homogenizing component is further disposed between the beam expander assembly and the relay lens; the light homogenizing component includes: a square bar or a fly eye lens.
  • the CCD assembly includes a CCD chip.
  • the imaging size is smaller than the size of the effective area of the CCD chip; the imaging size refers to the size of the spot emerging from the collecting lens group, and the size of the spot is ⁇ the size of the effective area of the CCD chip.
  • a light shielding component is disposed between the relay lens and the detection bit to shield at least part of the incident light; and/or a light shielding component is disposed between the detection bit and the collection lens group to shield at least part of the emitted light.
  • the present invention also provides a method for detecting a porous fluorescent ceramic porosity detecting device as described above, comprising the steps of:
  • Step 100 placing a standard porous fluorescent ceramic on the detection site, testing the size of the fluorescent spot of the standard fluorescent ceramic and recording;
  • Step 200 placing the porous fluorescent ceramic to be tested on the detection position, testing the size of the fluorescent spot of the standard fluorescent ceramic and recording;
  • Step 300 Comparing the size of the fluorescent spot of the standard fluorescent ceramic with the size of the fluorescent spot of the fluorescent ceramic to be tested, and satisfying the condition, the porosity of the fluorescent ceramic to be tested is qualified.
  • the condition in the step 300 is that the ratio of the fluorescent spot of the ceramic to be tested to the fluorescent spot size of the standard ceramic is in the range of 1 ⁇ 0.05; or the spot of the standard fluorescent ceramic and the spot of the fluorescent ceramic to be tested The difference is within ⁇ 0.05 unit area.
  • the standard porous fluorescent ceramic has a porosity of 3%.
  • the standard fluorescent ceramics and the fluorescent ceramics to be tested have the same size.
  • the present invention provides a porous fluorescent ceramic porosity detecting apparatus and a detecting method thereof, which are capable of detecting a fluorescent spot size and a laser according to a correlation between a fluorescent spot diffusing rate and a scattering center in a fluorescent ceramic, that is, a porosity ratio.
  • the ratio of spot size can be used to characterize the diffusivity of the spot.
  • the prepared fluorescent ceramic sample with the same size is compared with the standard fluorescent ceramic sample. It can be tested whether the porosity is in compliance with the standard, the device is compact, and the test method is simple, fast and accurate. The rate is high.
  • FIG. 1 is a schematic structural view of a first embodiment of a detecting device according to the present invention.
  • FIG. 2 is a schematic view showing the shape of a laser spot in the first embodiment of the present invention
  • FIG. 3 is a schematic view showing a spot shape of a standard fluorescent ceramic according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural view of a second embodiment of the detecting device of the present invention.
  • Figure 5 is a schematic view showing the shape of a laser spot in the second embodiment of the present invention.
  • FIG. 6 is a schematic view showing the shape of a spot of a standard fluorescent ceramic according to Embodiment 2 of the present invention.
  • the invention provides a porous fluorescent ceramic porosity detecting device, comprising a testing platform, wherein a laser light source, a beam expanding component, a relay lens, a collecting lens group and a CCD component are sequentially arranged along the same center line on the testing platform, wherein A detection bit is disposed between the lens and the collection lens group, and the fluorescent ceramic to be tested and the standard fluorescent ceramic are respectively placed on the detection position for detection.
  • the beam expander assembly may employ various components as needed.
  • the beam expander assembly includes a positive or negative lens group or a diffusion sheet.
  • a light homogenizing component is further disposed between the beam expander assembly and the relay lens; the light homogenizing component includes: a square bar or a fly eye lens.
  • the CCD assembly includes a CCD chip.
  • the collection lens group can be adjusted such that the imaging size is smaller than the size of the effective area of the CCD chip.
  • the CCD component may include a lens in addition to the CCD chip, and it should be noted that the lens is an optional component.
  • the working principle of the invention is that the incident light emitted by the laser light source is irradiated on the sample to be tested, the sample to be tested is excited, the laser beam is emitted, the laser light is a Lambertian light, the emission angle is large, and the lens group is collected to make the diverging light beam The smaller angle is emitted. Therefore, the imaging size needs to be within the effective range of the CCD chip.
  • the above-mentioned "imaging size” is the size of the spot emitted from the collecting lens, and finally the size of the spot is ensured to fall within the effective area of the CCD chip.
  • a light shielding component is disposed between the relay lens and the detection bit to shield at least part of the incident light; and/or a light shielding component is disposed between the detection bit and the collection lens group to shield at least part of the emitted light.
  • FIG. 1 is a schematic structural view of a first embodiment of a detecting device according to the present invention.
  • the porous fluorescent ceramic porosity detection apparatus in this embodiment includes a test platform (not shown) on which laser light sources 100 and positive and negative lens groups are sequentially disposed along the same center line. 200, a relay lens 300, a collecting lens group 500 and a CCD assembly 600, and a detecting bit 400 is disposed between the relay lens 300 and the collecting lens group 500.
  • the fluorescent ceramic to be tested and the standard fluorescent ceramic are respectively placed in Detection is performed on the detection bit 400.
  • the CCD assembly 600 includes a CCD chip and a lens; the imaging size must be smaller than the size of the effective area of the CCD chip, and the imaging size can be changed by adjusting the focal length and magnification of the lens in the CCD assembly to ensure that the imaging size is effective in the CCD chip.
  • the positive and negative lens group 200 belongs to a beam expander assembly, which is used for expanding the laser beam.
  • other components can be used to achieve the same function, such as: diffusion sheet.
  • the function of the relay lens 300 is to focus the laser beam to converge on the surface of the fluorescent ceramic to form an excitation spot of a predetermined size; for example, a 1:1 ratio spot matching the size of the fluorescent ceramic.
  • the collecting lens group 500 is used for collecting the laser light generated after the fluorescent ceramic to be tested is excited.
  • the laser light is a light beam, and the emission angle is large. Therefore, the collecting lens group 500 can emit the diverging light beam at a small angle.
  • the small-angle beam is easily collected by the imaging lens in the CCD assembly 600, and a clear, bright spot is formed on the surface thereof, which attenuates the interference caused by the noise signal of the CCD itself.
  • the direction of the light is such that the laser beam emitted from the laser light source 100 passes through the positive and negative lens groups 200 to form a light beam having a certain angle, and is irradiated through the relay lens 300.
  • the fluorescent ceramic to be tested placed at the detection site 400 the fluorescent ceramic is excited to emit light of a second wavelength, and the light emitted by the fluorescent ceramic is collected and imaged on the CCD assembly 600 through the collecting lens group 500.
  • FIG. 2 is a schematic view showing the shape of a laser spot in the first embodiment of the present invention
  • FIG. 3 is a schematic view showing the shape of a spot of a standard fluorescent ceramic according to the first embodiment of the present invention.
  • the laser spot irradiated on the fluorescent ceramic in the porous fluorescent ceramic porosity detecting device is a Gaussian spot S, and the shape of the laser spot is as shown in FIG. 2 .
  • test procedure for detecting the porosity of a porous fluorescent ceramic using a porous fluorescent ceramic porosity detecting device is as follows:
  • a standard porous fluorescent ceramic is placed on the detection site 400.
  • the standard porous fluorescent ceramic is a qualified sample produced.
  • the size of the sample is usually 5 mm ⁇ 5 mm ⁇ 0.2 mm, and the porosity is about 3%.
  • the size of the fluorescent spot of the standard fluorescent ceramic was measured, and it was recorded as S1, and the fluorescent spot was as shown in FIG.
  • the porous fluorescent ceramic to be tested is placed on the detection site 400, and the size of the fluorescent spot of the fluorescent ceramic to be tested is measured and recorded as S2.
  • the size of the fluorescent ceramic to be tested and the size and thickness of the standard fluorescent ceramics must be consistent.
  • the fluorescence spot of the ceramic to be tested is compared with the fluorescent spot size of the standard ceramic.
  • the ratio of S1:S2 is within the range of 1 ⁇ 0.05, it can be confirmed that the porosity of the fluorescent ceramic to be tested is acceptable.
  • the fluorescent ceramics may take a variety of shapes, and in addition to the square shape such as a rectangle or a square in the above embodiment, a shape such as a circle or a ring may be employed.
  • a light shielding component is disposed between the relay lens 300 and the detection bit 400 to shield at least part of the incident light; a light shielding component is also disposed between the detection bit 400 and the collection lens group 500 to shield at least part of the emitted light to reduce errors.
  • the size of the incident light incident on the standard or the porous fluorescent ceramic to be tested is not required, and may be larger than the size of the porous fluorescent ceramic.
  • a light-shielding component exists to block part of the incident light from shining on the CCD component, thereby avoiding The error increases.
  • the ceramic is circular
  • the excitation light emitted from the relay lens 300 is difficult to form a circular spot.
  • a light shielding component having a circular hole may be disposed between the detection bit 400 and the relay lens 300, namely: A light shielding plate having a circular hole will block light incident on the outside of the circular hole to prevent the portion of the light from being incident on the CCD assembly 600.
  • the size of the circular hole is the same as that of the fluorescent ceramic, and the light passing through the circular hole can be exactly hit on the surface of the fluorescent ceramic.
  • the corresponding shading assembly can be a visor having an annular aperture, at which point the shading assembly is placed between the detection position and the collection lens assembly.
  • the incident light and the outgoing light may be respectively shielded by the position of the light shielding component, or the incident light and the outgoing light may be shielded at the same time.
  • the porous fluorescent ceramic porosity detection device includes a test platform on which the laser light source 100, the beam expander assembly 201, and the square are sequentially disposed along the same center line.
  • the rod 202, the relay lens 300, the collecting lens group 500, and the CCD assembly 600 are disposed between the relay lens 300 and the collecting lens group 500.
  • the function of the square bar 202 is to shape the geometry and size of the beam that passes through the beam expanding assembly 201 to shape the intensity distribution of the spot to a uniform intensity distribution that fills the specified geometry.
  • other components can be used to achieve the same effect, such as a fly-eye lens.
  • Square rods and fly-eye lenses are commonly used optical components in the field of optics, and are also prior art, as long as it is ensured that all of the light beams that pass through the beam expander assembly are collected, and the specific arrangement thereof will not be described herein.
  • FIG. 5 is a schematic view showing the shape of a laser spot in the second embodiment of the present invention
  • FIG. 6 is a schematic view showing the shape of a spot of a standard fluorescent ceramic according to the second embodiment of the present invention.
  • the laser light irradiated onto the fluorescent ceramic in the porous fluorescent ceramic porosity detecting device is a uniform spot, and the laser spot is as shown in FIG. 5, the spot boundary is clear, and the calculation value error is small.
  • the test results are more accurate. 2
  • the incident light shown in FIG. 5 is a uniform square spot, which is formed by the uniform light and shaping of the square bar 202. If there is no square bar, the incident spot is as shown in FIG. 2 . It is a circular spot with a Gaussian distribution.
  • the porous fluorescent ceramic porosity detecting device can adopt any one of the first embodiment or the second embodiment, and the optical path in the detecting device is consistent with the first embodiment or the second embodiment.
  • the difference between the embodiment and the first embodiment and the second embodiment is that only the calculation method is changed, that is, the spot S1 of the standard fluorescent ceramic and the spot S2 of the fluorescent ceramic to be tested are subtracted, and the two are When the difference S1-S2 is within ⁇ 0.05 unit area, it can be confirmed that the porosity of the fluorescent ceramic to be tested is acceptable.
  • the size of the spot formed may vary depending on the size of the ceramic selected, regardless of the spot size of the standard fluorescent ceramic and the fluorescent ceramic to be tested, in this embodiment, two The difference in spot area is within ⁇ 0.05 unit area, and the porosity of the fluorescent ceramic to be tested is acceptable.
  • the present invention provides a porous fluorescent ceramic porosity detecting apparatus and a detecting method thereof, which are capable of detecting a fluorescent spot size and a laser according to a correlation between a fluorescent spot diffusing rate and a scattering center in a fluorescent ceramic, that is, a porosity ratio.
  • the ratio of spot size can be used to characterize the diffusivity of the spot.
  • the prepared fluorescent ceramic sample with the same size is compared with the standard fluorescent ceramic sample. It can be tested whether the porosity is in compliance with the standard, the device is compact, and the test method is simple, fast and accurate.
  • the rate is high; to ensure the provision of standards-compliant fluorescent ceramics, thereby ensuring optical utilization in the light source system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种多孔荧光陶瓷气孔率检测装置及其检测方法,该检测装置包括测试平台,在测试平台上沿同一中心线顺序设置的激光光源(100)、扩束组件(201,200)、中继透镜(300)、收集透镜组(500)和CCD组件(600),中继透镜(300)和收集透镜组(500)之间设置检测位(400),待测荧光陶瓷和标准荧光陶瓷分别放置在检测位(400)上进行检测。该检测装置及方法根据荧光光斑扩散率与荧光陶瓷气孔率相关,通过检测荧光光斑大小及激光光斑大小的比值可表征其光斑扩散率,将尺寸大小一致的荧光陶瓷样品与标准荧光陶瓷样品进行比对测试,可检测其气孔率是否符合标准。该装置结构紧凑,测试方法简单快速,准确率高。

Description

多孔荧光陶瓷气孔率检测装置及其检测方法 技术领域
本发明涉及一种多孔荧光陶瓷气孔率检测装置及其检测方法,属于检测装置制造技术领域。
背景技术
荧光陶瓷以其优异的机械性能及高热导率,广泛应用于高功率激光投影光源中。由于投影光源系统对光学扩展量要求较高,当激光光斑激发荧光陶瓷转换为第二波长的光时,需要荧光光斑扩散现象较小。多孔荧光陶瓷中的气孔对光线主要起散射作用,荧光光斑扩散大小与陶瓷中散射中心的含量密切相关,荧光光斑大小将影响光源系统中的光效利用率,主要是因为当光斑扩散较大时,收集透镜的收集效率较低,所以检测多孔荧光陶瓷中气孔率是否符合出货标准是保证光效利用率的首要前提。
目前,检测多孔荧光陶瓷中气孔率的主要方法为阿基米德排水法,该方法存在的主要问题在于:测试步骤繁琐,且由于无法对闭气孔进行测试,导致测试的准确率偏低。
发明内容
本发明所要解决的技术问题在于针对现有技术的不足,提供一种多孔荧光陶瓷气孔率检测装置及其检测方法,根据荧光光斑扩散率与荧光陶瓷中散射中心即气孔率的含量之间的有关,通过检测荧光光斑大小及激光光斑大小的比值可表征其光斑扩散率,将尺寸大小一致的制备的荧光陶瓷样品与标准荧光陶瓷样品进行比对测试,可检测其气孔率是否符合标准,装置结构紧凑,测试方法简单快速,准确率高。
本发明所要解决的技术问题是通过如下技术方案实现的:
一种多孔荧光陶瓷气孔率检测装置,包括测试平台,在所述测试 平台上沿同一中心线顺序设置激光光源、扩束组件、中继透镜、收集透镜组和CCD组件,所述中继透镜和收集透镜组之间设置检测位,待测荧光陶瓷和标准荧光陶瓷分别放置在所述检测位上进行检测。
根据需要,所述扩束组件可以采用多种部件,具体来说,所述扩束组件包括:正负透镜组或扩散片。
更具体地,所述扩束组件和中继透镜之间还设有匀光组件;所述匀光组件包括:方棒或复眼透镜。
所述CCD组件包括CCD芯片。
另外,成像尺寸小于所述CCD芯片有效区的尺寸;所述成像尺寸是指从所述收集透镜组出射的光斑的尺寸,所述光斑的尺寸<所述CCD芯片有效区的尺寸。
为了减小误差,所述中继透镜和检测位之间设有遮光组件,遮蔽至少部分入射光线;和/或,所述检测位和收集透镜组之间设有遮光组件,遮蔽至少部分出射光线。
本发明还提供一种如上所述的多孔荧光陶瓷气孔率检测装置的检测方法,包括如下步骤:
步骤100:将标准的多孔荧光陶瓷放置在所述检测位上,测试标准荧光陶瓷的荧光光斑的大小并记录;
步骤200:将待测的多孔荧光陶瓷放置在所述检测位上,测试标准荧光陶瓷的荧光光斑的大小并记录;
步骤300:将标准荧光陶瓷的荧光光斑的大小和待测荧光陶瓷的荧光光斑的大小进行比对,满足条件时,待测荧光陶瓷中气孔率合格。
具体来说,所述步骤300中的条件为:待测陶瓷的荧光光斑与标准陶瓷的荧光光斑大小的比值在1±0.05范围内;或者,标准荧光陶瓷的光斑和待测荧光陶瓷的光斑相减的差值在±0.05单位面积范围内。
进一步地,所述标准的多孔荧光陶瓷的气孔率为3%。
为了确保检测结果准确,所述标准荧光陶瓷和待测荧光陶瓷的大小一致。
综上所述,本发明提供一种多孔荧光陶瓷气孔率检测装置及其检测方法,根据荧光光斑扩散率与荧光陶瓷中散射中心即气孔率的含量 之间的有关,通过检测荧光光斑大小及激光光斑大小的比值可表征其光斑扩散率,将尺寸大小一致的制备的荧光陶瓷样品与标准荧光陶瓷样品进行比对测试,可检测其气孔率是否符合标准,装置结构紧凑,测试方法简单快速,准确率高。
下面结合附图和具体实施例,对本发明的技术方案进行详细地说明。
附图说明
图1为本发明检测装置实施例一的结构示意图;
图2为本发明实施例一中激光光斑形状示意图;
图3为本发明实施例一中标准荧光陶瓷的光斑形状示意图;
图4为本发明检测装置实施例二的结构示意图;
图5为本发明实施例二中激光光斑形状示意图;
图6为本发明实施例二中标准荧光陶瓷的光斑形状示意图。
具体实施方式
本发明提供一种多孔荧光陶瓷气孔率检测装置,包括测试平台,在所述测试平台上沿同一中心线顺序设置激光光源、扩束组件、中继透镜、收集透镜组和CCD组件,所述中继透镜和收集透镜组之间设置检测位,待测荧光陶瓷和标准荧光陶瓷分别放置在所述检测位上进行检测。
根据需要,所述扩束组件可以采用多种部件,具体来说,所述扩束组件包括:正负透镜组或扩散片。更具体地,所述扩束组件和中继透镜之间还设有匀光组件;所述匀光组件包括:方棒或复眼透镜。
所述CCD组件包括CCD芯片,此时可以通过调整收集透镜组,使成像尺寸小于CCD芯片有效区的尺寸。进一步地,所述CCD组件除了包括CCD芯片之外,还可以包括镜头,需要说明的是,镜头是可选组件。本发明的工作原理在于,激光光源发出的入射光照射在待测样品上,待测样品受激,发射受激光,受激光是朗伯光,发射角较大,收集透镜组使发散的光束以较小的角度出射,因此,成像尺寸需要在CCD 芯片有效范围内,上述的“成像尺寸”是从收集透镜出射的光斑的尺寸,最终要保证这个光斑的尺寸落在CCD芯片有效区内。
为了减小误差,所述中继透镜和检测位之间设有遮光组件,遮蔽至少部分入射光线;和/或,所述检测位和收集透镜组之间设有遮光组件,遮蔽至少部分出射光线。
以下结合附图和具体实施例,对本发明的技术方案进行详细说明。
实施例一
图1为本发明检测装置实施例一的结构示意图。如图1所示,本实施例中的多孔荧光陶瓷气孔率检测装置包括测试平台(图中未示出),在所述测试平台上沿同一中心线顺序设置有激光光源100、正负透镜组200、中继透镜300、收集透镜组500和CCD组件600,所述中继透镜300和收集透镜组500之间设置检测位400,在检测过程中,待测荧光陶瓷和标准荧光陶瓷分别放置在所述检测位400上进行检测。进一步地,所述CCD组件600包括CCD芯片和镜头;成像尺寸必须小于CCD芯片有效区的尺寸,成像尺寸可以通过调节CCD组件中的镜头的焦距及放大率来改变,保证成像尺寸在CCD芯片有效范围内。
需要说明的是,正负透镜组200属于一种扩束组件,就是用于对激光进行扩束,除了采用正负透镜组之外,还可以采用其他部件来实现相同的功能,比如:扩散片。中继透镜300的作用是将激光光束聚焦,使其汇聚于荧光陶瓷的表面,形成预定尺寸的激发光斑;例如与荧光陶瓷尺寸相匹配的1:1比例的光斑。而收集透镜组500则是用于收集待测荧光陶瓷受激后产生的受激光,该受激光为郎伯光,发射角较大,因此收集透镜组500可以使发散的光束以较小的角度出射,小角度的光束容易被CCD组件600中的成像镜头所收集,在其表面成像清晰、明亮的光斑,减弱CCD本身噪声信号带来的干扰。
在本实施例中的多孔荧光陶瓷气孔率检测装置中,光线的走向是这样的:激光光源100发出的激光光束经过正负透镜组200后形成具有一定角度的光束,经中继透镜300后照射在放置在检测位400的待测荧光陶瓷上,激发荧光陶瓷发射第二波长的光,荧光陶瓷发射的光经过收集透镜组500收集成像在CCD组件600上。
图2为本发明实施例一中激光光斑形状示意图;图3为本发明实施例一中标准荧光陶瓷的光斑形状示意图。多孔荧光陶瓷气孔率检测装置中照射在荧光陶瓷上的激光光斑为高斯光斑S,激光光斑的形状如图2所示。
以方形的多孔荧光陶瓷为例,利用多孔荧光陶瓷气孔率检测装置检测多孔荧光陶瓷气孔率的测试步骤如下:
首先,将标准的多孔荧光陶瓷放置在检测位400上,标准的多孔荧光陶瓷为生产的合格样品,该样品的大小通常为5mm×5mm×0.2mm,气孔率约为3%左右。测试标准荧光陶瓷的荧光光斑的大小,记为S1,荧光光斑如图3所示。
其次,将待测的多孔荧光陶瓷置于检测位400上,测试待测荧光陶瓷的荧光光斑的大小,记为S2。
为了确保检测结果准确,待测荧光陶瓷的尺寸和标准荧光陶瓷的尺寸大小及厚度均需保持一致。
最后,将待测陶瓷的荧光光斑与标准陶瓷的荧光光斑大小进行比对,当S1:S2的比值在1±0.05范围内时,可确认待测荧光陶瓷的气孔率合格。
需要说明的是,在实际运用中,荧光陶瓷可以采用多种形状,除了上述实施例中的矩形、正方形等方形形状,也可以采用比如圆形、环形等形状。所述中继透镜300和检测位400之间设置遮光组件,遮蔽至少部分入射光线;在所述检测位400和收集透镜组500之间也设置遮光组件,遮蔽至少部分出射光线,以减少误差。当遮蔽出射光线时,入射到标准或待测多孔荧光陶瓷的入射光线的尺寸不作要求,可以大于多孔荧光陶瓷的尺寸,此时有遮光组件存在,可以阻挡部分入射光线照在CCD组件上,避免误差的增大。比如:当陶瓷是圆形的时候,从中继透镜300出射的激发光难以形成圆形的光斑,此时可以在检测位400和中继透镜300之间设置一具有圆孔的遮光组件,即:具有圆孔的遮光板,则入射到圆孔之外的光线将被阻挡,避免该部分光线照射到CCD组件600产生误差。优选该圆孔尺寸与荧光陶瓷一致,通过圆孔的光线可以恰好全部打在荧光陶瓷表面。同样地,当陶瓷是 环形的时候,对应的遮光组件可以是具有环形孔的遮光板,此时,遮光组件放在检测位和收集透镜组之间。可以理解的是,当使用遮光组件时,入射到标准或待测多孔荧光陶瓷的入射光线的尺寸不作要求,可以大于多孔荧光陶瓷的尺寸,由于有遮光组件存在,可以阻挡部分入射光线照在CCD组件上,避免误差的增大。
综上,为了减小误差,可以通过遮光组件的设置位置来分别遮蔽入射光线和出射光线,或者同时对入射光线和出射光线进行遮蔽。
实施例二
图4为本发明检测装置实施例二的结构示意图。本实施例与实施例一的不同之处在于,在本实施例中,除了扩束组件201之外,在所述扩束组件201和中继透镜300之间还设有匀光组件,在本实施例中,所述匀光组件为方棒202。具体来说,如图4所示,在本实施例中,多孔荧光陶瓷气孔率检测装置包括测试平台,在所述测试平台上沿同一中心线顺序设置有激光光源100、扩束组件201、方棒202、中继透镜300、收集透镜组500和CCD组件600,所述中继透镜300和收集透镜组500之间设置检测位400。
方棒202的作用是对透过扩束组件201的光束的几何形状和尺寸进行整形,将光斑的强度分布整形成充满指定几何形状的均匀强度分布。除了采用本实施例中的方棒202之外,还可以采用其他部件实现同样的作用,比如:复眼透镜。方棒和复眼透镜是光学领域中比较常用的光学元件,也属于现有技术,只要可以确保将透过扩束组件的光束全部收集即可,其具体设置方式在此不再赘述。
图5为本发明实施例二中激光光斑形状示意图;图6为本发明实施例二中标准荧光陶瓷的光斑形状示意图。相比如实施例一,在本实施例中,多孔荧光陶瓷气孔率检测装置中照射至荧光陶瓷上的激光为均匀光斑,激光光斑如图5所示,光斑边界清晰,计算取值误差较小,测试结果更为准确。结合图2可知,图5所示的入射光是均匀的方形光斑,这是在方棒202的匀光、整形作用下形成的,如果没有加方棒,则入射光斑就如图2所示,是圆形的具有高斯分布的光斑。
本实施例中的其他内容和实施例一基本相同,详细内容请参见上述实施例一中的描述,在此不再赘述。
实施例三
在本实施例中,多孔荧光陶瓷气孔率检测装置可以采用实施例一或实施例二中的任意一种,检测装置中的光路与实施例一或实施例二一致。本实施例与实施例一、实施例二的不同之处在于,仅改变了其中的计算方法,即:将测试得到标准荧光陶瓷的光斑S1和待测荧光陶瓷的光斑S2相减,两者的差值S1-S2在±0.05单位面积范围内时,可确认待测荧光陶瓷的气孔率合格。需要说明的是,在实际应用中,由于选用的陶瓷大小不同,形成的光斑大小也会有所不同,无论标准荧光陶瓷和待测荧光陶瓷的光斑大小本身是多少,在本实施例中,两者的光斑面积差值在±0.05单位面积范围内,即可认待测荧光陶瓷的气孔率合格。
本实施例中的其他内容和实施例一或实施例二基本相同,详细内容请参见上述实施例一或实施例二中的描述,在此不再赘述。
综上所述,本发明提供一种多孔荧光陶瓷气孔率检测装置及其检测方法,根据荧光光斑扩散率与荧光陶瓷中散射中心即气孔率的含量之间的有关,通过检测荧光光斑大小及激光光斑大小的比值可表征其光斑扩散率,将尺寸大小一致的制备的荧光陶瓷样品与标准荧光陶瓷样品进行比对测试,可检测其气孔率是否符合标准,装置结构紧凑,测试方法简单快速,准确率高;以确保提供符合标准的荧光陶瓷,进而保证光源系统中光学利用率。

Claims (10)

  1. 一种多孔荧光陶瓷气孔率检测装置,包括测试平台,其特征在于,在所述测试平台上沿同一中心线顺序设置激光光源(100)、扩束组件、中继透镜(300)、收集透镜组(500)和CCD组件(600),所述中继透镜(300)和收集透镜组(500)之间设置检测位(400),待测荧光陶瓷和标准荧光陶瓷分别放置在所述检测位上进行检测。
  2. 如权利要求1所述的多孔荧光陶瓷气孔率检测装置,其特征在于,所述扩束组件包括:正负透镜组(200)或扩散片。
  3. 如权利要求1所述的多孔荧光陶瓷气孔率检测装置,其特征在于,所述扩束组件和中继透镜(300)之间还设有匀光组件;
    所述匀光组件包括:方棒(202)或复眼透镜。
  4. 如权利要求1-3任一项所述的多孔荧光陶瓷气孔率检测装置,其特征在于,所述CCD组件(600)包括CCD芯片。
  5. 如权利要求4所述的多孔荧光陶瓷气孔率检测装置,其特征在于,成像尺寸小于所述CCD芯片有效区的尺寸;
    所述成像尺寸是指从所述收集透镜组(500)出射的光斑的尺寸,所述光斑的尺寸<所述CCD芯片有效区的尺寸。
  6. 如权利要求1所述的多孔荧光陶瓷气孔率检测装置,其特征在于,所述中继透镜(300)和检测位(400)之间设有遮光组件,遮蔽至少部分入射光线;
    和/或,所述检测位(400)和收集透镜组(500)之间设有遮光组件,遮蔽至少部分出射光线。
  7. 一种如权利要求1-6任一项所述的多孔荧光陶瓷气孔率检测装置的检测方法,其特征在于,包括如下步骤:
    步骤100:将标准的多孔荧光陶瓷放置在所述检测位上,测试标准荧光陶瓷的荧光光斑的大小并记录;
    步骤200:将待测的多孔荧光陶瓷放置在所述检测位上,测试标准荧光陶瓷的荧光光斑的大小并记录;
    步骤300:将标准荧光陶瓷的荧光光斑的大小和待测荧光陶瓷的荧光光斑的大小进行比对,满足条件时,待测荧光陶瓷中气孔率合格。
  8. 如权利要求7所述的检测方法,其特征在于,所述步骤300中的条件为:待测陶瓷的荧光光斑与标准陶瓷的荧光光斑大小的比值在1±0.05范围内;
    或者,标准荧光陶瓷的光斑和待测荧光陶瓷的光斑相减的差值在±0.05单位面积范围内。
  9. 如权利要求7所述的检测方法,其特征在于,所述标准的多孔荧光陶瓷的气孔率为3%。
  10. 如权利要求9所述的检测方法,其特征在于,所述标准荧光陶瓷和待测荧光陶瓷的大小一致。
PCT/CN2018/095489 2018-03-05 2018-07-12 多孔荧光陶瓷气孔率检测装置及其检测方法 WO2019169817A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810177665.8A CN110231265B (zh) 2018-03-05 2018-03-05 多孔荧光陶瓷气孔率检测装置及其检测方法
CN201810177665.8 2018-03-05

Publications (1)

Publication Number Publication Date
WO2019169817A1 true WO2019169817A1 (zh) 2019-09-12

Family

ID=67846878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/095489 WO2019169817A1 (zh) 2018-03-05 2018-07-12 多孔荧光陶瓷气孔率检测装置及其检测方法

Country Status (2)

Country Link
CN (1) CN110231265B (zh)
WO (1) WO2019169817A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216575A (ja) * 2008-03-11 2009-09-24 Shimadzu Corp 粒度分布測定装置及びそれを用いた体積濃度算出方法
CN101893542A (zh) * 2010-08-23 2010-11-24 中山大学 一种多孔介质材料孔隙度量测的实验室测试设备
CN103439337A (zh) * 2013-08-29 2013-12-11 华南理工大学 压电陶瓷蜂鸣片外观缺陷自动检测装置及方法
CN104568886A (zh) * 2015-01-08 2015-04-29 中国科学院遗传与发育生物学研究所 一种基于全内反射的暗场照明方法
CN205209972U (zh) * 2015-12-14 2016-05-04 重庆远创光电科技有限公司 陶瓷件视觉检测系统
CN105699267A (zh) * 2014-11-24 2016-06-22 新乡天翼过滤技术检测有限公司 一种滤材孔隙度检测仪
CN205749280U (zh) * 2016-05-11 2016-11-30 扬州维姆科技有限公司 一种基于标准样品的折射率测量装置
CN207067644U (zh) * 2017-07-21 2018-03-02 深圳市光峰光电技术有限公司 匀光装置、光源系统及投影设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201194000Y (zh) * 2008-04-18 2009-02-11 比亚迪股份有限公司 一种孔隙方向一致产品的孔隙率检测系统
JP5528717B2 (ja) * 2009-01-07 2014-06-25 住友化学株式会社 チタン酸アルミニウム系焼成体の製造方法および多孔質セラミックス成形体
CN102359928A (zh) * 2011-06-22 2012-02-22 安徽艾可蓝节能环保科技有限公司 一种高能平行光源检测陶瓷载体通孔率的装置
US20150323452A1 (en) * 2014-05-08 2015-11-12 Advantest Corporation Dynamic measurement of material properties using terahertz radiation with real-time thickness measurement for process control
CN104193346B (zh) * 2014-08-21 2017-11-17 厦门百嘉祥微晶材料科技股份有限公司 一种半透明的荧光粉/玻璃复合发光陶瓷片及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009216575A (ja) * 2008-03-11 2009-09-24 Shimadzu Corp 粒度分布測定装置及びそれを用いた体積濃度算出方法
CN101893542A (zh) * 2010-08-23 2010-11-24 中山大学 一种多孔介质材料孔隙度量测的实验室测试设备
CN103439337A (zh) * 2013-08-29 2013-12-11 华南理工大学 压电陶瓷蜂鸣片外观缺陷自动检测装置及方法
CN105699267A (zh) * 2014-11-24 2016-06-22 新乡天翼过滤技术检测有限公司 一种滤材孔隙度检测仪
CN104568886A (zh) * 2015-01-08 2015-04-29 中国科学院遗传与发育生物学研究所 一种基于全内反射的暗场照明方法
CN205209972U (zh) * 2015-12-14 2016-05-04 重庆远创光电科技有限公司 陶瓷件视觉检测系统
CN205749280U (zh) * 2016-05-11 2016-11-30 扬州维姆科技有限公司 一种基于标准样品的折射率测量装置
CN207067644U (zh) * 2017-07-21 2018-03-02 深圳市光峰光电技术有限公司 匀光装置、光源系统及投影设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HE TIANMIN ET AL.: "Preparation and Characterization of YSZ Porous Ceramic Tubes with a High Porosity by wet Method", ACTA SCIENTIARUM NATURALIUM UNIVERSITATIS JILINENSIS, no. 1, 31 January 2001 (2001-01-31) *

Also Published As

Publication number Publication date
CN110231265B (zh) 2022-02-11
CN110231265A (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
JP2008502929A (ja) 反射または透過赤外光による微細構造の検査装置または検査方法
JP4500157B2 (ja) 形状計測装置用光学系
WO2018054090A1 (zh) 光检测系统及光检测装置
MX2010002871A (es) Metodo de inspeccion de estructura de panal.
JP2005106815A (ja) X線マイクロアナライザーの光学的心合せ
JP3227106B2 (ja) 内径測定方法および内径測定装置
TW201807400A (zh) 使用奇點光束之暗場晶圓奈米缺陷檢驗系統
CN105738374A (zh) 一种光学元件吸收缺陷损伤特性的测试系统及方法
CN106770373A (zh) 一种表面缺陷检测方法
JP2006184177A (ja) 赤外検査装置及び赤外検査方法
CN110095416B (zh) 一种金属熔池激光吸收率分布在线测量系统和方法
WO2019169817A1 (zh) 多孔荧光陶瓷气孔率检测装置及其检测方法
JP2004531734A (ja) 透明マスク基板の検査システムおよび方法
KR101447857B1 (ko) 렌즈 모듈 이물 검사 시스템
JP2008026049A (ja) フランジ焦点距離測定装置
CN105372816A (zh) 光纤耦合式半导体激光器的匀光方法
CN108204890B (zh) 照明系统光场均匀性的测试方法及其检测装置
JPH1062355A (ja) 半導体ウェーハの検査方法および検査装置
WO2019237242A1 (zh) 一种检测系统及信号增强装置
JP2796906B2 (ja) 異物検査装置
JPH06221917A (ja) レーザー光束のビームパターンの測定方法
JP2004014207A5 (zh)
JP2004163239A (ja) 表面評価装置
JPH01143904A (ja) 薄膜検査装置
Nostrand et al. Correlation of laser-induced damage to phase objects in bulk fused silica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18909126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18909126

Country of ref document: EP

Kind code of ref document: A1