WO2019237242A1 - 一种检测系统及信号增强装置 - Google Patents

一种检测系统及信号增强装置 Download PDF

Info

Publication number
WO2019237242A1
WO2019237242A1 PCT/CN2018/090765 CN2018090765W WO2019237242A1 WO 2019237242 A1 WO2019237242 A1 WO 2019237242A1 CN 2018090765 W CN2018090765 W CN 2018090765W WO 2019237242 A1 WO2019237242 A1 WO 2019237242A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
cavity structure
focus
stage
detection system
Prior art date
Application number
PCT/CN2018/090765
Other languages
English (en)
French (fr)
Inventor
牟涛涛
骆磊
Original Assignee
深圳达闼科技控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳达闼科技控股有限公司 filed Critical 深圳达闼科技控股有限公司
Priority to PCT/CN2018/090765 priority Critical patent/WO2019237242A1/zh
Priority to CN201880001167.6A priority patent/CN108885168B/zh
Publication of WO2019237242A1 publication Critical patent/WO2019237242A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands

Definitions

  • the present application relates to the field of optical detection technology, and in particular, to a detection system and a signal enhancement device.
  • Spectrometer is an important instrument for optical detection. It is a universal device for measuring the composition and structure of substances by measuring and analyzing the spectrum. It has the advantages of fast measurement speed, high accuracy, and non-destructive measurement.
  • Existing spectrometers emit a laser signal to the surface of the object to be detected.
  • the object generates a substance spectrum due to the irradiation of the laser.
  • the spectrometer determines the type of substance based on the substance spectrum.
  • the inventor discovered during the research of the prior art that the existing spectral measurement is usually by emitting laser light to irradiate the detected substance, and one end of the optical fiber directly receives or uses a confocal probe for spectral signal reception, which may cause optical signals in the environment. Will directly enter the spectrometer, affecting the detection of the acquired substance spectrum.
  • the technical problem to be solved in some embodiments of the present application is to provide a detection system and a signal enhancement device, which are used to solve the problem that the ambient light interferes with the substance spectrum detection in the optical detection.
  • An embodiment of the present application provides a detection system including a detection device and a signal enhancement device, the detection device includes a stage and a detection probe, and the signal enhancement device includes a hollow cavity structure provided with an opaque opening;
  • the stage is disposed inside the cavity of the cavity structure, and the detection probe is disposed at the opening of the cavity structure; wherein, the stage is disposed at the detection focus position of the detection probe;
  • the detection device is used for sending out a detection laser signal, the detection laser signal is projected through the detection probe to the object to be detected on the stage, and is used for acquiring the substance spectrum emitted by the object to be detected.
  • An embodiment of the present application further provides a signal enhancement device, including: a hollow cavity structure provided with an opening;
  • a stage is provided inside the cavity of the signal enhancement device, and a detection probe is provided at the opening of the cavity structure.
  • the stage is disposed inside the cavity of the signal enhancement device, and the detection probe is disposed at the opening of the cavity structure, which can ensure that the optical signal in the environment will not interfere with the substances generated by the detected object. Spectrum, so the light signal in the environment does not exist in the collected material spectrum, making it possible to obtain a more accurate material spectrum; moreover, the stage is set at the focus position of the detection probe, and the object to be detected is placed during the detection of the material spectrum It can be placed on the stage, and it is not necessary to adjust the focus for each inspection, which simplifies the test steps and improves the test efficiency.
  • FIG. 1 is a schematic structural diagram of a detection system in a first embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another detection system in the first embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a detection system in a second embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a signal enhancement device in a third embodiment of the present application.
  • the first embodiment of the present application relates to a detection system, the structure of which is shown in FIG. 1 and includes a detection device 10 and a signal enhancement device 20.
  • the detection device 10 includes a stage 11 and a detection probe 12, and the signal enhancement device 20 includes a hollow cavity structure provided with an opaque hollow at the opening; the stage 11 is disposed inside the cavity of the cavity structure, and the detection probe 12 It is arranged at the opening of the cavity structure.
  • the stage 11 is set at the detection focus position of the detection probe 12; the detection device 10 is used to send out a detection laser signal, and the detection laser signal is projected to the stage 11 through the detection probe 12.
  • the detection focus position is the focus position of the laser light emitted from the detection probe.
  • the detection device 10 further includes a laser generator, a light path structure, and a spectrum collector.
  • the spectrum collector may be integrated at the position of the detection probe, or may be separately provided from the detection probe.
  • the laser generator is used to emit a laser signal.
  • the laser signal is projected to the object on the stage through the detection probe, and the spectrum collector acquires an optical signal from the object.
  • the optical signal generates a material spectrum through the optical path structure.
  • the detection device may be a Raman spectrometer or a laser-induced breakdown spectrometer, and the specific type of the detection device is not limited.
  • the stage 11 is arranged inside a hollow cavity structure, which can ensure that the light in the environment will not affect the spectrum of the substance generated by the detected object.
  • the cavity structure is made of non-transparent material. Because the detection device 10 can only obtain the material spectrum on the side of the detection probe when acquiring the material spectrum emitted by the detected object, in order to improve the collection efficiency of the optical signal in the material spectrum obtained by the detection device, it is on the inner surface of the cavity structure.
  • the reflective material is attached so that the spectrum of the material on the other side is collected by the detection device after being reflected by the cavity structure.
  • the cavity structure is made of a material with excellent light transmittance, such as glass, acrylic material, etc.
  • a reflective material can be provided on the outer surface or the inner surface of the cavity structure, which can also play a role The effect of reflecting light.
  • the reflective material is not limited to be disposed on the inner surface or the outer surface, and may be specifically set according to the material characteristics of the cavity structure in practice.
  • the reflective material is a highly reflective film with a preset wavelength range.
  • the reflective material may be a highly reflective film for the laser signal wavelength range.
  • the reflective material is not limited to a highly reflective film.
  • the reflective film may not be provided. Therefore, the method for reflecting light inside the cavity structure is not limited.
  • highly reflective films there is no limitation here.
  • the inner wall of the cavity structure is designed into an appropriate curved surface by optical design software, so that the light can have a focusing effect when the light is reflected inside the cavity structure, for example, the cavity
  • the structure can be designed as a cylindrical, spherical, elliptical cylindrical, or oval sphere (also known as an ellipsoid) structure, and the stage is set at the focal point of light reflection of the cavity structure.
  • the stage is located at the detection focus position of the detection probe and also at the light reflection focus point of the cavity structure, which can ensure that the detected object is located at the optimal detection position during the substance detection process, and does not need to be replaced every time. Focusing in material time simplifies user operation and improves user experience.
  • the cavity structure may be a regular curved surface structure, similar to a sphere, etc., or it may be an irregular curved surface structure.
  • the position of the reflective focal point can still be determined.
  • the reflective focal point is The point in the cavity structure where the light is most concentrated after being reflected by the inner wall of the cavity structure.
  • the focal point of light reflection of the cavity structure is the center point of the cylindrical or spherical cavity structure; the stage is located in the cavity structure And the detection focus position is also located at the center point of the cavity structure.
  • the light reflection spot is located at the center of the sphere
  • the detection probe is located at a certain position on the surface of the sphere, and the light emitted from the detection probe is projected to the stage at the center of the sphere That is, the object to be detected is irradiated. Therefore, even if light is irradiated on the surface of the sphere, it can be reflected on the surface of the cavity structure and irradiated to the object, thereby improving the utilization rate of the detection laser.
  • the light reflection focus point is not unique.
  • the signal enhancement device 20 is an oval columnar cavity structure, that is, the cross section is an elliptical cylinder, and the light reflection focus point is It is the first focus or the second focus of the cross section in the elliptical cylindrical cavity structure; or, if the signal enhancement device is an elliptical spherical cavity structure, as shown in FIG. 2, the focal point of the light reflection is the elliptical spherical shape. First focus or second focus.
  • the stage is set at the first focus or the second of the cavity structure. Focus, or; if the cavity structure is provided with two openings, the first stage is provided at the first focus of the cavity structure, the first detection probe is provided at the first opening, and the detection focus position of the first detection probe is The first focus coincides; the second stage is disposed at the second focus of the cavity structure, the second detection probe is disposed at the second opening, and the detection focus position of the second detection probe coincides with the second focus; During the process, the test object is placed on the first stage or the second stage.
  • the detection probe and the spectral collector can be separately set, and the detection probe and the spectral collector are respectively disposed on the two ellipsoidal spheres.
  • the detection probe is set separately from the spectrum collector, the detection probe and the spectrum collector need to be set on the line where the first focus and the second focus are located, and the detection probe is set near the first focus.
  • the spectrum collector is disposed near the opening of the cavity structure near the second focus, or the detection probe is placed at the opening of the cavity structure near the second focus, and the spectrum collector is placed near the first focus Focal cavity structure opening.
  • the laser signal that passes through one focal point will also pass through another focal point due to reflection. Therefore, when light is projected on the object to be detected, part of the light passes through the object and is reflected to the probe that collects the spectrum of the substance. The other part of the scattered light is reflected and irradiated to the object again after being reflected.
  • the loss of the light signal of the cavity structure is only the loss of each reflection and the light leakage loss of the cavity. Therefore, the light signal collection rate is high.
  • the stage is disposed inside the cavity of the signal enhancement device, and the detection probe is disposed at the opening of the cavity structure, which can ensure that the optical signal in the environment will not interfere with the substances generated by the detected object.
  • Spectrum so there is no light signal in the environment in the collected material spectrum, making it possible to obtain a more accurate material spectrum; moreover, the stage is set at the detection focus position, and the object to be detected is placed on the carrier when the substance spectrum is detected.
  • the object table can be used, and it is not necessary to adjust the focus for each detection, which simplifies the test steps and improves the test efficiency.
  • the second embodiment of the present application relates to a detection system.
  • the second embodiment is substantially the same as the first embodiment, and the main difference is that the spectrum analysis device in the detection system is described in the second embodiment of the present application. As shown in Figure 3.
  • the detection system further includes a spectrum analysis device 30, which is connected to the detection device 10.
  • the detection device 10 is further configured to forward the acquired substance spectrum to a spectrum analysis device;
  • the spectrum analysis device 30 is configured to perform detection based on the acquired substance spectrum to determine a substance represented by the substance spectrum.
  • the detection system detects a solid, liquid, or gas.
  • the spectroscopic analysis device may be an atomic spectroscopic analysis device or a molecular spectroscopic analysis device, which is mainly used to analyze the composition of the detected object based on the substance spectrum, thereby determining the most likely substance type of the detected object.
  • the type and specific determination process of the spectrum analysis device There is no limitation on the type and specific determination process of the spectrum analysis device.
  • the spectrum analysis device acquires the substance spectrum.
  • the improvement of the signal enhancement device makes the light signal collection rate higher, which makes the analysis result made by the spectrum analysis device based on the substance spectrum more reliable.
  • the third embodiment of the present application relates to a signal enhancement device 20, whose structure is shown in FIG. 4, and includes a hollow cavity structure provided with an opening, and a stage and a cavity are provided inside the cavity structure of the signal enhancement device.
  • a detection probe is provided at the opening of the body structure.
  • a reflective material is attached to the inner surface of the cavity structure.
  • the signal enhancement device in this embodiment is the same as the signal enhancement device in the first embodiment, the related technical features and technical details mentioned in the first embodiment are still valid in this embodiment, and in the first implementation The technical effects that can be achieved in the example can also be achieved in this embodiment. In order to reduce repetition, details are not repeated here. Accordingly, the related technical details mentioned in this embodiment can also be applied in the first embodiment.
  • the stage is set at the focal point of light reflection of the cavity structure, and the detection probe is set at the opening of the cavity structure.
  • the aperture of the opening must be able to accommodate the entrance of the stage.
  • the stage is pushed into the signal enhancement device through the opening of the cavity structure to ensure the normal operation of the test.
  • other methods can also be used to place the test object on the stage, such as a flexible reversible storage port on the surface of the cavity structure, for example, a snap button on the surface of the cavity structure to divide The appropriate area is the object opening.

Landscapes

  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本申请涉及光学检测技术领域,尤其涉及一种检测系统及信号增强装置。该检测系统包括:检测装置和信号增强装置,所述检测装置包括载物台和检测探头,所述信号增强装置为设置有开口处的中空腔体结构;载物台设置于所述信号增强装置的腔体内部,所述检测探头设置于所述腔体结构的开口处;其中,所述载物台设置于所述检测探头的检测焦点位置;检测装置用于发出检测激光信号,所述检测激光信号透过所述检测探头投射到所述载物台的被检测物,以及用于获取所述被检测物发出的物质光谱。该检测系统用以解决环境光对物质光谱检测造成干扰的问题。

Description

一种检测系统及信号增强装置 技术领域
本申请涉及光学检测技术领域,尤其涉及一种检测系统及信号增强装置。
背景技术
光谱仪是光学检测的重要仪器,是通过对光谱的测量分析来完成对物质的成分及结构等测量的通用设备,具有测量速度快、精度高、无损测量等优点。
现有光谱仪是通过发射激光信号投射到被检测物的表面,被检测物由于激光的照射产生物质光谱,光谱仪根据物质光谱确定物质的种类。
技术问题
发明人在研究现有技术的过程中发现,现有的光谱测量通常是通过发射激光照射被检测物质,光纤一端直接接收或利用共聚焦探头进行光谱信号接收,这样会导致环境中的光信号可能会直接进入光谱仪,影响对获取的物质光谱的检测。
技术解决方案
本申请部分实施例所要解决的技术问题在于提供一种检测系统及信号增强装置,用以解决光学检测中环境光对物质光谱检测造成干扰的问题。
本申请的一个实施例提供了一种检测系统,包括:检测装置和信号增强装置,检测装置包括载物台和检测探头,信号增强装置包括设置有开口处不透明的中空腔体结构;
载物台设置于腔体结构的腔体内部,检测探头设置于腔体结构的开口处;其中,载物台设置于检测探头的检测焦点位置;
检测装置用于发出检测激光信号,检测激光信号透过检测探头投射到载物台的被检测物,以及用于获取被检测物发出的物质光谱。
本申请的一个实施例还提供了一种信号增强装置,包括:设置有开口处的中空腔体结构;
信号增强装置的腔体内部设置有载物台,腔体结构的开口处设置有检测探头。
有益效果
相对于现有技术而言,将载物台设置于信号增强装置的腔体内部,检测探头设置于该腔体结构的开口处,能够保证环境中的光信号不会干扰被检测物产生的物质光谱,因而收集到的物质光谱中也不存在环境中的光信号,使得能够获得更准确的物质光谱;而且,载物台设置于检测探头的焦点位置,在检测物质光谱时将被检测物放置于载物台即可,不必每次检测都进行调焦,简化了测试步骤,提高了测试效率。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请第一实施例中检测系统的结构示意图;
图2是本申请第一实施例中另一检测系统的结构示意图;
图3是本申请第二实施例中检测系统的结构示意图;
图4是本申请第三实施例中信号增强装置的结构示意图。
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请部分实施例进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。然而,本领域的普通技术人员可以理解,在本申请的各实施例中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于以下各实施例的种种变化和修改,也可以实现本申请所要求保护的技术方案。
本申请的第一实施例涉及一种检测系统,其结构如图1所示,包括:检测装置10和信号增强装置20。
具体的,检测装置10包括载物台11和检测探头12,信号增强装置20包括设置有开口处不透明的中空的腔体结构;载物台11设置于腔体结构的腔体内部,检测探头12设置于腔体结构的开口处;其中,载物台11设置于检测探头12的检测焦点位置;检测装置10用于发出检测激光信号,检测激光信号透过检测探头12投射到载物台11的被检测物,以及用于获取被检测物发出的物质光谱。检测焦点位置即从检测探头射出的激光的焦点位置。
需要说明的是,检测装置10还包括激光发生器、光路结构和光谱收集器等,具体结构设计中,光谱收集器可以集成于检测探头的位置,也可以与检测探头分开设置。具体的说,激光发生器用于发出激光信号,激光信号经检测探头投射到载物台的被检测物,光谱收集器获取被检测物发出的光信号,该光信号经光路结构生成物质光谱。具体实现中,该检测装置可以是拉曼光谱仪或激光诱导击穿光谱仪等,对于检测装置的具体类型不做限制。
具体的,载物台11设置于中空的腔体结构内部,能够保证环境中的光线不会影响被检测物产生的物质光谱,该腔体结构为非透明的材质制作。由于检测装置10在获取被检测物发出的物质光谱时,仅能够获取到检测探头所在一侧的物质光谱,为了提高检测装置获取的物质光谱中光信号的收集效率,在腔体结构的内表面附着反光材料,使得另一侧的物质光谱经该腔体结构反射后被检测装置收集。
需要说明的是,若该腔体结构是由透光性极好的材料制作的,如,玻璃,亚克力材料等,则可在腔体结构的外表面或内表面设置反光材料,也能够起到使光线反射的作用。本实施例中,不限制将反光材料设置于内表面或外表面,实际中可根据腔体结构的材料特性具体设置。
值得一提的是,该反光材料为预设波长范围的高反射膜,例如,检测装置使用激光信号检测物质光谱,则反光材料可以为针对该激光信号波长范围的高反光膜。实际中反光材料不限于高反光膜,如,在该腔体结构的腔体内壁设置有反光性极佳的金属材料,则可不设置反光膜,因此,用于腔体结构内部反光的方式不局限于高反射膜,此处不做限制。
为了进一步提高检测装置10的光信号收集率,该腔体结构的内壁通过光学设计软件设计为适当的曲面,使得光线在该腔体结构内部发生反射时能够产生聚焦的效果,如,该腔体结构可设计为圆柱状、球状、椭圆形柱状、椭圆形球体(也称为椭球体)等结构,且将载物台设置于腔体结构的光线反射聚焦点。
值得一提的是,载物台位于检测探头的检测焦点位置,并且也位于腔体结构的光线反射聚焦点,能够保证在物质检测过程中被检测物位于最佳的检测位置,不必每次更换物质时调焦,简化了用户的操作,提升用户体验。
需要说明的是,该腔体结构可能为规则的曲面结构,类似于球状等,也可能是不规则的曲面结构,对于不规则的曲面结构仍可确定其反光聚焦点的位置,反光聚焦点就是该腔体结构中光线被腔体结构的内壁反射后光线聚集最多的点。
一个具体实现中,若信号增强装置20为圆柱状或球状的腔体结构,该腔体结构的光线反射聚焦点为圆柱状或球状的腔体结构的中心点;载物台位于该腔体结构的中心点,且检测焦点位置也位于该腔体结构的中心点。
需要说明的是,以球状的腔体结构为例,光线反射聚光点位于球心的位置,检测探头位于球体表面的某一位置,从检测探头发出的光线投射到位于球心的载物台,即照射到被检测物,因此,即使有光线照射到球体内表面的位置,也能够经腔体结构的表面反射后照射到被检测物,提高了检测激光的利用率。
另一个的具体实现中,对于特殊结构的曲面,光线反射聚焦点并不是唯一的,如,信号增强装置20为椭圆形柱状的腔体结构,即截面是椭圆形的柱体,光线反射聚焦点为椭圆形柱状的腔体结构中截面的第一焦点或第二焦点;或者,若信号增强装置为椭圆形球状的腔体结构,如图2所示,光线反射聚焦点为椭圆形球状的第一焦点或第二焦点。
对于上述的有两个光线反射聚焦点的腔体结构,载物台的设置方式不止一种,若腔体结构设置有一个开口处,载物台设置于腔体结构的第一焦点或第二焦点,或者;若腔体结构设置有两个开口处,第一载物台设置于腔体结构的第一焦点,第一检测探头设置于第一开口处,第一检测探头的检测焦点位置与第一焦点重合;第二载物台设置于腔体结构的第二焦点,第二检测探头设置于第二开口处,第二检测探头的检测焦点位置与第二焦点重合;其中,在实际检测的过程中将被检测物放置于第一载物台或第二载物台。
需要说明的是,对于有两个焦点的椭圆形球体,若有两个开口处,还可将检测探头和光谱收集器分开设置,检测探头与光谱收集器分别设置于该椭圆形球体的两个开口处,值得注意的是,若检测探头与光谱收集器分开设置,则需将检测探头和光谱收集器设置于第一焦点和第二焦点所在的直线,将检测探头设置于靠近第一焦点的腔体结构的开口处,光谱收集器设置于靠近第二焦点的腔体结构开口处,或者,将检测探头设置于靠近第二焦点的腔体结构的开口处,光谱收集器设置于靠近第一焦点的腔体结构开口处。根据光学反射的原理,经过一个焦点的激光信号,由于反射也会经过另一个焦点,由此,当有光线投射到被检测物,则一部分光线经过被检测物后反射到收集物质光谱的探头,另一部分散射的光线经过反射后再次照射到被检测物,该腔体结构光信号损失只有每次反射的损失和腔体的漏光损失,因此,光信号收集率较高。
相对于现有技术而言,将载物台设置于信号增强装置的腔体内部,检测探头设置于该腔体结构的开口处,能够保证环境中的光信号不会干扰被检测物产生的物质光谱,因而收集到的物质光谱中也不存在环境中的光信号,使得能够获得更准确的物质光谱;而且,载物台设置于检测焦点位置,在检测物质光谱时将被检测物放置于载物台即可,不必每次检测都进行调焦,简化了测试步骤,提高了测试效率。
本申请的第二实施例涉及一种检测系统,第二实施例与第一实施例大致相同,主要区别之处在于,在本申请的第二实施例中说明了检测系统中的光谱分析装置。如图3所示。
具体的,该检测系统还包括,光谱分析装置30,该光谱分析装置与检测装置10连接。检测装置10还用于将获取到的物质光谱转发到光谱分析装置;光谱分析装置30用于根据获取到的物质光谱进行检测,确定物质光谱表示的物质。
具体的,该检测系统中的被检测为固体、液体或气体。
值得一提的是,光谱分析装置可以是原子光谱分析装置,也可以是分子光谱分析装置,主要用于根据物质光谱分析被检测物的组成成分,从而确定出被检测物最可能的物质种类。此处对于光谱分析装置的类型和具体确定过程不做限制。
本实施例中,光谱分析装置获取物质光谱,由于信号增强装置的改进使光信号的收集率较高,使得光谱分析装置根据物质光谱做出的分析结果更可信。
本申请的第三实施例涉及一种信号增强装置20,其结构如图4所示,包括:设置有开口处的中空腔体结构,信号增强装置的腔体结构内部设置有载物台,腔体结构的开口处设置有检测探头。
具体的,该腔体结构的内表面附着有反光材料。
由于本实施例中的信号增强装置与第一实施例中的信号增强装置相同,因此,第一实施例中提到的相关技术特征和技术细节,在本实施例中依然有效,在第一实施例中所能达到的技术效果在本实施例中也同样可以实现,为了减少重复,这里不再赘述。相应地,本实施例中提到的相关技术细节也可应用在第一实施例中。
值得一提的是,载物台设置于腔体结构的光线反射聚焦点,检测探头设置于该腔体结构的开口处,为了保证正常的检测,该开口处口径需满足能够容纳载物台进入到腔体结构内部,也就是说,在将被检测物放置于载物台之后,再通过腔体结构的开口处将载物台推到信号增强装置内,保证检测的正常进行。当然,还可以采用其它方式将被检测物放置于载物台,例如在腔体结构的表面设置一个可灵活翻转的置物口,例如,在该腔体结构的表面设置一卡合扣,分割出适当的面积为置物口,需要放置被检测物时,将该置物口打开,直接将被检测物放置于载物台,并将置物口卡合好,保证该腔体结构密闭不透光。
本领域的普通技术人员可以理解,上述各实施例是实现本申请的具体实施例,而在实际应用中,可以在形式上和细节上对其作各种改变,而不偏离本申请的精神和范围。

Claims (12)

  1. 一种检测系统,其中,包括:检测装置和信号增强装置,所述检测装置包括载物台和检测探头,所述信号增强装置包括设置有开口处不透明的中空的腔体结构;
    所述载物台设置于所述腔体结构的腔体内部,所述检测探头设置于所述腔体结构的开口处;其中,所述载物台设置于所述检测探头的检测焦点位置;
    所述检测装置用于发出检测激光信号,所述检测激光信号透过所述检测探头投射到所述载物台的被检测物,以及用于获取所述被检测物发出的物质光谱。
  2. 根据权利要求1所述的检测系统,其中,所述信号增强装置的腔体内表面附着反光材料。
  3. 根据权利要求1或2所述的检测系统,其中,所述载物台设置于所述腔体结构的光线反射聚焦点。
  4. 根据权利要求3所述的检测系统,其中,若所述信号增强装置为圆柱状或球状的腔体结构,所述光线反射聚焦点为所述圆柱状或球状的腔体结构的中心点。
  5. 根据权利要求3所述的检测系统,其中,若所述信号增强装置为椭圆形柱状的腔体结构,所述光线反射聚焦点为所述椭圆形柱状的腔体结构中椭圆形的第一焦点或第二焦点。
  6. 根据权利要求3所述的检测系统,其中,若所述信号增强装置为椭圆形球状的腔体结构,所述光线反射聚焦点为所述椭圆形球状的第一焦点或第二焦点。
  7. 根据权利要求5或6所述的检测系统,其中,
    若所述腔体结构设置有两个开口处,第一载物台设置于所述腔体结构的所述第一焦点,第一检测探头设置于第一开口处,所述第一检测探头的检测焦点位置与所述第一焦点重合;第二载物台设置于所述腔体结构的所述第二焦点,第二检测探头设置于第二开口处,所述第二检测探头的检测焦点位置与所述第二焦点重合。
  8. 根据权利要求2或3所述的检测系统,其中,所述反光材料为预设波长范围的高反射膜。
  9. 根据权利要求1至6任一项所述的检测系统,其中,所述检测系统还包括光谱分析装置;
    所述检测装置还用于将获取到的所述物质光谱转发到所述光谱分析装置;
    所述光谱分析装置用于根据获取到的物质光谱进行检测,确定所述物质光谱表示的物质。
  10. 根据权利要求1至6任一项所述的检测系统,其中,所述被检测物为固体、液体或气体。
  11. 一种信号增强装置,其中,包括:设置有开口处的中空腔体结构;
    所述腔体结构的腔体内部设置有载物台,所述腔体结构的开口处设置有检测探头。
  12. 根据权利要求11所述的信号增强装置,其中,所述腔体结构的腔体内表面附着反光材料。
PCT/CN2018/090765 2018-06-12 2018-06-12 一种检测系统及信号增强装置 WO2019237242A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/090765 WO2019237242A1 (zh) 2018-06-12 2018-06-12 一种检测系统及信号增强装置
CN201880001167.6A CN108885168B (zh) 2018-06-12 2018-06-12 一种检测系统及信号增强装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/090765 WO2019237242A1 (zh) 2018-06-12 2018-06-12 一种检测系统及信号增强装置

Publications (1)

Publication Number Publication Date
WO2019237242A1 true WO2019237242A1 (zh) 2019-12-19

Family

ID=64325020

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090765 WO2019237242A1 (zh) 2018-06-12 2018-06-12 一种检测系统及信号增强装置

Country Status (2)

Country Link
CN (1) CN108885168B (zh)
WO (1) WO2019237242A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111780489A (zh) * 2020-07-22 2020-10-16 山东理工职业学院 一种智能恒温保鲜控制装置及控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090257064A1 (en) * 2007-02-01 2009-10-15 Bah Holdings Llc Optical Absorption Spectrometer and Method for Measuring Concentration of a Substance
CN101832941A (zh) * 2010-03-19 2010-09-15 天津大学 一种基于多光谱图像的水果品质评价装置
CN103115902A (zh) * 2013-01-08 2013-05-22 北京锐光仪器有限公司 一种全封闭冷原子荧光法测汞装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004010757A1 (de) * 2004-03-05 2005-09-22 Robert Bosch Gmbh Gassensor
CN101221134A (zh) * 2007-01-10 2008-07-16 宁波工程学院 计算机视觉技术检测微小轴承表面缺陷的方法及其装置
DE102008015133B4 (de) * 2008-03-20 2010-04-08 Peter Dr. Arnold Vorrichtung zum Erfassen der Prozessstrahlung bei der Lasermaterialbearbeitung
CN201233362Y (zh) * 2008-06-04 2009-05-06 江西农业大学 一种用于检测水果品质的多光谱成像装置
JP2011069676A (ja) * 2009-09-25 2011-04-07 Hitachi High-Technologies Corp 検査装置及び検査方法
CN102253016B (zh) * 2011-04-12 2013-03-13 北京师范大学 油气包裹体的芳烃组份显微荧光鉴别方法
CN102519850B (zh) * 2011-11-07 2013-04-24 南通大学 能实时检测微粒粒度及形状特征的光学传感器
CN102519936A (zh) * 2011-12-23 2012-06-27 公安部第一研究所 一种基于拉曼光谱分析技术的违禁品检测装置
CN102621077B (zh) * 2012-03-30 2015-03-25 江南大学 基于高光谱反射图像采集系统的玉米种子纯度无损检测方法
CN104359804B (zh) * 2013-07-22 2017-10-17 南通大学 简洁、方便地检测微粒大小及形状的光学系统
CN104793458B (zh) * 2014-01-20 2019-03-08 宁波舜宇光电信息有限公司 一种基于近红外环境下的多摄像头模组调焦方法及其系统
CN104359850B (zh) * 2014-11-19 2018-01-09 太原理工大学 一种基于三椭球体吸收腔室结构的红外气体传感器
CN105510297A (zh) * 2015-12-29 2016-04-20 北京华泰诺安探测技术有限公司 拉曼荧光光谱测试系统及其光信号收集器
KR101782784B1 (ko) * 2016-02-26 2017-09-28 스페클립스 주식회사 레이저 유도 방전 스펙트로스코피 장치 및 고감도 핸드피스
CN205786328U (zh) * 2016-05-17 2016-12-07 江苏康正生物科技有限公司 一种拉曼光谱检测系统
KR101873648B1 (ko) * 2016-09-23 2018-07-04 한국과학기술원 마이크로스케일에서의 표면 법선 벡터 및 표면 반사 함수 동시 측정 방법 및 시스템

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090257064A1 (en) * 2007-02-01 2009-10-15 Bah Holdings Llc Optical Absorption Spectrometer and Method for Measuring Concentration of a Substance
CN101832941A (zh) * 2010-03-19 2010-09-15 天津大学 一种基于多光谱图像的水果品质评价装置
CN103115902A (zh) * 2013-01-08 2013-05-22 北京锐光仪器有限公司 一种全封闭冷原子荧光法测汞装置

Also Published As

Publication number Publication date
CN108885168A (zh) 2018-11-23
CN108885168B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
CN105388140B (zh) 现场隐形指纹显示及其内含物质测量仪
CN108426886B (zh) 一种循环肿瘤细胞的检测识别方法和系统
JP2008076159A (ja) 内部欠陥検査方法及び内部欠陥検査装置
JP2015172570A (ja) 測定装置、および測定方法
JP5592108B2 (ja) 干渉共焦点顕微鏡および光源撮像方法
WO2019237242A1 (zh) 一种检测系统及信号增强装置
CN106198951B (zh) 一种生物传感标定方法、标定系统及疾病检测系统
CN106802232A (zh) 一种基于全反射的显微物镜数值孔径测量方法及系统
JPH01291130A (ja) フォトグラフィックデータ測定装置用測定ヘッド
JP5300249B2 (ja) 液体分析装置
JP2002257706A (ja) 光散乱測定プローブ
KR102077071B1 (ko) 농산물 및 축산물 검사 모듈 및 검사 장치
JPH01214719A (ja) 光音響波の集音装置
JPH0277636A (ja) 粒子測定装置
JP2021051074A (ja) 分光分析装置
JP2010197229A (ja) 蛍光x線分析装置
US7407286B2 (en) Device and method for performing measurements of the chemical composition of the anterior eye
JPH03239950A (ja) レーザブレイクダウン分析装置
JPH10307010A (ja) 管内検査方法及び管内検査装置
JPH11142241A (ja) 分光透過率測定装置
JP2006242623A (ja) フローサイトメータ及び蛍光集光方法
JPH0736051U (ja) ガス分析計
CN108700730A (zh) 显微分析装置
JP2015175708A (ja) ラマン分光分析装置及びラマン分光分析方法
JPH01143904A (ja) 薄膜検査装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18922235

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18922235

Country of ref document: EP

Kind code of ref document: A1