WO2018054090A1 - 光检测系统及光检测装置 - Google Patents

光检测系统及光检测装置 Download PDF

Info

Publication number
WO2018054090A1
WO2018054090A1 PCT/CN2017/086865 CN2017086865W WO2018054090A1 WO 2018054090 A1 WO2018054090 A1 WO 2018054090A1 CN 2017086865 W CN2017086865 W CN 2017086865W WO 2018054090 A1 WO2018054090 A1 WO 2018054090A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lcd panel
unit
aperture
polarized light
Prior art date
Application number
PCT/CN2017/086865
Other languages
English (en)
French (fr)
Inventor
郭祖强
金建培
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018054090A1 publication Critical patent/WO2018054090A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a light detecting system and a light detecting device.
  • the projection technology has advanced by leaps and bounds.
  • the light source has experienced technological innovations from traditional xenon lamps and UHP lamps to laser light sources.
  • the corresponding detection system has not been updated.
  • the efficiency calibration of the light source still uses an earlier detection system, that is, the light source.
  • the data detected by the existing photodetection system brings a lot of uncertainties to the design and analysis of the subsequent optomechanical efficiency, because the data provided by the manufacturer is not based on the optimized design angle and size test, and has a large deviation. Thus, the brightness of the light transmitted by, for example, the LCD light valve detected is also inaccurate.
  • the main object of the present invention is to provide a light detecting system, which aims to solve the technical problem that the brightness of the light detected by the existing light detecting system is inaccurate and the efficiency of the light machine is inaccurate.
  • the present invention provides a light detecting system including a light source, a first aperture, a light homogenizing unit, a polarization conversion unit, an LCD panel, and a detecting unit which are sequentially disposed along an optical path;
  • a light homogenizing unit that performs a uniform light treatment on a light beam transmitted through the first aperture
  • a polarized light conversion unit that outputs a light beam transmitted through the light homogenizing unit as an S-state polarized light or a P-state polarized light;
  • the LCD panel receives the S-state polarized light or the P-state polarized light output by the polarization conversion unit;
  • the detecting unit detects the brightness of the light transmitted from the LCD panel, thereby calculating the optomechanical efficiency.
  • the polarization conversion unit includes a fence, a PBS, and a 1/2 which are sequentially disposed along the optical path. Wave plate; among them,
  • a fence that filters a portion of the light beam output from the leveling unit
  • PBS transmitting P-state polarized light, reflecting S-state polarized light
  • the 1/2 wave plate converts the P-state polarized light transmitted from the PBS into the S-state polarized light.
  • the light detecting system further includes a first concentrating lens, the first condensing lens is disposed on an optical path between the polarization conversion unit and the LCD panel, and collects S-state polarized light output by the polarization conversion unit. Injection into the LCD panel.
  • the light detecting system further includes a second aperture, the second aperture is disposed on an optical path between the first concentrating lens and the LCD panel, and adjusts S-state polarized light incident on the LCD panel. Angle and strength.
  • the light detecting system further includes a second collecting lens disposed on the optical path between the first collecting lens and the second aperture, focusing the S-state polarized light, and entering the optical field. Said LCD board.
  • the light-sharing unit includes a first fly-eye lens array facing the light source and a second fly-eye lens array facing away from the light source, and the focal length of the light beam passing through the first fly-eye lens array is focused on the second fly-eye lens array
  • A is the diameter of the beam
  • W is the width of the LCD panel
  • f' B is the focal length of the lens group composed of the second fly-eye lens array and the first collecting lens, or is the second fly-eye lens array, the first collecting lens The focal length of the lens group composed of the second condensing lens.
  • is the maximum deflection angle at which the beam can enter the polarization conversion unit; the value of F/# is 1.6-2.4.
  • the light source is a laser, an LED or a light bulb.
  • the detecting unit is further configured to calculate the optomechanical efficiency according to the detected brightness of the light transmitted by the LCD panel.
  • Another object of the present invention is to provide a light detecting device comprising the light detecting system as described above.
  • the light detecting system of the present invention comprises a light source, a first aperture, a light homogenizing unit, a polarization conversion unit, an LCD panel, and a detecting unit which are sequentially disposed along the optical path, and the light source generates a light beam, which passes through the first aperture The unwanted light is blocked, and the useful light passes through the leveling unit and then enters the polarization conversion unit to output the required S-state polarized light or P-state polarized light, which is then transmitted through the LCD panel and enters the detecting unit, which can be transmitted to the LCD according to the transmission.
  • the amount of light in the plate calculates the actual brightness of the light source, which in turn more accurately matches the efficiency of the light machine.
  • the light detecting system of the invention solves the technical problem that the brightness of the light transmitted by the LCD detected by the existing light detecting system is inaccurate and the efficiency of the light machine is inaccurate, reduces the light inspection process, and greatly improves the detection efficiency.
  • FIG. 1 is a schematic structural view of an embodiment of a photodetecting system according to the present invention.
  • FIG. 2 is a schematic structural view of the polarization conversion unit of FIG. 1;
  • FIG. 3 is an optical path diagram of an embodiment of a photodetection system of the present invention.
  • FIG. 4 is another schematic structural view of a polarization conversion unit of the present invention.
  • FIG. 5 is a schematic structural view of an embodiment of a photodetecting device according to the present invention.
  • Label name Label name 10 light source 50 LCD panel 20 First light 60 Detection unit 30 Leveling unit 70 First collecting lens 40 Polarization conversion unit 80 Second aperture 41 fence 90 Second concentrating lens 42 PBS 100 Light source detecting device 43 1/2 wave plate
  • first, second, and the like in the present invention are used for the purpose of description only, and are not to be construed as indicating or implying their relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” or “second” may include at least one of the features, either explicitly or implicitly.
  • the technical solutions between the various embodiments may be combined with each other, but must be based on the realization of those skilled in the art, and when the combination of the technical solutions is contradictory or impossible to implement, it should be considered that the combination of the technical solutions does not exist. It is also within the scope of protection required by the present invention.
  • the present invention provides an embodiment of a light detecting system, including a light source 10, a first aperture 20, a light-sharing unit 30, a polarization conversion unit 40, an LCD panel 50, and a detection unit 60 disposed in sequence along the optical path; among them,
  • a light source 10 that generates a light beam
  • a first aperture 20 adjusting an angle and a strength of the light beam
  • the light homogenizing unit 30 performs a light homogenizing process on the light beam transmitted through the first aperture 20;
  • the polarization conversion unit 40 outputs the light beam transmitted through the leveling unit 30 as S-state polarized light or P-state polarized light;
  • the LCD panel 50 receives the S-state polarized light or the P-state polarized light output by the polarization conversion unit 40;
  • the detecting unit 60 detects the brightness of the light transmitted from the LCD panel 50, thereby calculating the optomechanism efficiency.
  • the light detecting system of the embodiment includes a light source 10, a first aperture 20, a light homogenizing unit 30, a polarization conversion unit 40, an LCD panel 50, and a detecting unit 60, which are sequentially disposed along the optical path, and the optical path simulation light
  • the optical path structure of the machine after the light beam generated by the light source 10 is incident on the first aperture 20, the amount of light before the leveling unit 30 is simulated as the amount of light entering the lighter, and the amount of light transmitted through the LCD panel 50 is simulated as the amount of light of the lighter.
  • the light source 10 is used to generate a light beam.
  • the light source 10 is provided by a laser in a projector, and the fluorescent wheel is excited by a laser to generate fluorescence of three colors of red, green and blue.
  • the light source can also be selected.
  • the projector type can be 3LCD or single LCD.
  • the first aperture 20 is used to adjust the angle and intensity of the light beam.
  • the first light is detected as accurately as possible. ⁇ 20 according to the size of the entire surface of the leveling unit 30, the size of the light beam is controlled by a special light-passing aperture, the unwanted stray light is filtered out, and the useful light is incident on the leveling unit 30 for uniformation processing.
  • the light unit 30 is generally a double-row fly-eye lens array, and a light-diffusing rod can also be used.
  • the angularly dispersed light beam is twice refracted to form a uniform parallel light beam into the polarization conversion unit 40 through the double-row fly-eye lens array.
  • the polarization conversion unit 40 It is mainly used for transmitting the S-state polarized light carried by the light beam itself, and converting the P-state polarized light of the homogenizing unit 30 to the S-state polarized light, so as to facilitate the utilization of the LCD panel 50 or the P-state polarization of the projected beam.
  • the light, and the S-state polarized light after the homogenizing unit 30 is uniformly converted into the P-state polarized light.
  • the LCD panel 50 is a receiving carrier for S-state polarized light or P-state polarized light, and is also an important part of testing the imaging range and brightness of the LCD panel 50, in terms of brightness of light transmitted through the LCD panel 50.
  • the brightness of the LCD panel 50 can be adjusted to simulate the brightness transmitted by different types of LCD panels.
  • Different LCD panels require different light-sharing units 30 corresponding thereto, and when the light detecting system operates, the LCD The board is in a non-operating state, that is, the direction and polarization state of the light source are not changed, so that the S-state polarized light or the P-state polarized light incident on the LCD panel 50 directly enters the detecting unit 60, so that the detecting unit 60 directly detects the slave LCD.
  • the brightness of the light transmitted by the panel 50 ensures that the measured values obtained are accurate.
  • the detecting unit 60 is an integrating sphere, and in other embodiments, a brightness detector may also be employed.
  • the efficiency of the optical machine the amount of light from the light machine / the amount of light from the light machine
  • the light quantity of the light machine directly affects the accuracy of the light machine efficiency.
  • the measured value of the amount of light transmitted by the LCD panel is smaller than the actual value, resulting in a lower optical efficiency value.
  • the photodetecting system of the present invention detects the incident light incident on the LCD panel and transmitted. The brightness is more accurate, and the obtained optomechanical efficiency is also more objective and accurate.
  • a method of detecting the amount of light of the light projector referring to FIG.
  • the detecting unit 60 may be directly disposed behind the first aperture 20, Therefore, by adjusting the first aperture 20 to cooperate with the detecting unit 60 to detect the amount of light emitted by the light source 10, thereby obtaining the light quantity detection value of the light entering machine, thereby obtaining accurate optomechanical efficiency, it should be noted that the amount of light entering the light machine is also It can be obtained by other means. Since the photodetection system of the present invention can ensure accurate brightness detection values of light transmitted by the LCD panel, accurate optomechanical efficiency can be ensured.
  • the light detecting system of the embodiment includes a light source 10, a first aperture 20, a light homogenizing unit 30, a polarization conversion unit 40, an LCD panel 50, and a detecting unit 60, which are sequentially disposed along the optical path, and the light source 10 generates a light beam.
  • the aperture 20 blocks the unnecessary light, and the useful light is homogenized by the leveling unit 30 and then enters the polarization conversion unit 40 to output the required S-state polarized light or P-state polarized light, which is transmitted through the LCD panel 50 and enters the detecting unit. 60, can accurately detect the amount of light transmitted by the LCD, thereby more accurately matching the efficiency of the optical machine.
  • the light detecting system of the invention solves the technical problem that the brightness of the light transmitted by the LCD detected by the existing light detecting system is inaccurate and the efficiency of the light machine is inaccurate, reduces the light inspection process, and greatly improves the detection efficiency.
  • the polarization conversion unit 40 includes a fence 41, a PBS 42, and a 1/2 wave plate 43 which are sequentially disposed along the optical path;
  • PBS42 transmitting P-state polarized light, reflecting S-state polarized light
  • the 1/2 wave plate 43 converts the P-state polarized light transmitted from the PBS 42 into the S-state polarized light.
  • the polarization conversion unit 40 includes a fence 41, a PBS 42, and a 1/2 wave plate 43 which are sequentially disposed along the optical path.
  • the barrier 41 is generally integrally formed with the PBS 42 for outputting the filter portion from the light homogenizing unit 30.
  • the beam, the laser-excited fluorescent wheel emits polarized light including the P state and the S state, and is incident on the ⁇ angle range.
  • reaches a certain angle, it will be incident on the fence 41 at the output, thereby blocking its projection on the PBS 42, and at ⁇ .
  • the portion of the fluorescence incident in the angular range is incident on the PBS 42 through the gap of the barrier 41.
  • the PBS 42 is a polarization beam splitting prism capable of transmitting the polarized light of the P state and reflecting the S-state polarized light, so that the P-state polarized light transmitted from the PBS 42 is directly
  • the 1/2 wave plate 43 is incident on the same optical path as the PBS 42, and the S-state polarized light reflected by the PBS 42 is reflected by the PBS array, and is emitted from the gap of the 1/2 wave plate 43 to be incident on the LCD 50, and the 1/2 wave plate 43 Also known as a half-wave plate, it is a birefringent crystal with a certain thickness. It is usually made of mica flakes and is mainly used for the P-state transmitted from PBS42.
  • the polarized light is changed to circularly polarized light, and is converted into an S-state polarized light that is more easily received by the LCD panel 50.
  • the polarization conversion unit 40 includes a fence 41, a PBS 42, and a 1/2 wave plate 43 which are sequentially disposed along the optical path, and the laser excitation fluorescent wheel emits polarized light including the P state and the S state at an angle of ⁇ .
  • the incident in the range is incident on the PBS 42 through the gap of the fence 41.
  • the PBS 42 transmits the P-state polarized light and reflects the S-state polarized light.
  • the reflected S-state polarized light is again reflected by the PBS 42 and then incident on the 1/2-wave plate 43.
  • the refraction of the two-wave plate 43 is converted into P-state polarized light, which is incident on the LCD panel 50 together with the P-state polarized light transmitted through the PBS 42 and transmitted from the gap between the 1/2-wave plates 43.
  • the light detecting system further includes a first concentrating lens 70 disposed on an optical path between the polarization converting unit 40 and the LCD panel 50 , and collecting the polarization conversion unit 40 .
  • the output S-state polarized light is incident on the LCD panel 50.
  • the light detecting system of the present embodiment is further provided with a first collecting lens 70 on the optical path between the polarization conversion unit 40 and the LCD panel 50, and the first collecting lens 70 is mainly used for the S output from the polarization converting unit 40.
  • the polarized light is collected and polymerized so that the S-state polarized light output from the polarization conversion unit 40 is incident on the LCD panel 50 as much as possible, thereby ensuring a relatively accurate amount of emitted light, further improving the data accuracy of the photodetection system. .
  • the light detecting system further includes a second aperture 80 disposed on an optical path between the first collecting lens 70 and the LCD panel 50, and adjusting the injection into the The angle and intensity of the S-state polarized light of the LCD panel 50.
  • a second aperture 80 is further disposed on the optical path between the first collecting lens 70 and the LCD panel 50, and the second aperture 80 can automatically adjust the size of the LCD panel according to the size of the LCD panel.
  • the light-transmitting aperture further adjusts the angle and intensity of the S-state polarized light incident on the LCD panel 50.
  • the light detecting system of the embodiment can simulate different types of optical machines according to different LCD panels 50, thereby detecting different The amount of light is emitted, and the second aperture 80 can automatically adjust the amount of light incident on the LCD panel 50 according to the size of the LCD panel 50, thereby more accurately matching the efficiency of the optical machine.
  • the light detecting system further includes a second collecting lens 90 disposed between the first collecting lens 70 and the second aperture 80.
  • the S-state polarized light is focused and incident on the LCD panel 50.
  • the photodetection system of the present embodiment may be between the first concentrating lens 70 and the second aperture 80 according to the focal length f' B of the lens group composed of the second fly-eye lens array and the first concentrating lens 70.
  • a second collecting lens 90 is disposed on the optical path to further focus the polarized light in the S state, and the large spot emitted from the leveling unit 30 and the polarization converting unit 40 is collected into a small spot required, and further passed through a second aperture that can be automatically adjusted.
  • the incident on the LCD panel 50 reduces the loss of light amount of the light beam and improves the data accuracy of the light detecting system.
  • the light-sharing unit 30 includes a first fly-eye lens array facing the light source 10 and a second fly-eye lens array facing away from the light source 10, and the light beam passing through the first fly-eye lens array. Focusing on the focal length of the second fly-eye lens array is f' A , then Where A is the diameter of the beam, W is the width of the LCD panel, and f' B is the focal length of the lens group composed of the second fly-eye lens array and the first collecting lens 70.
  • the light homogenizing unit 30 includes a first fly-eye lens array facing the light source 10 and a second fly-eye lens array facing away from the light source 10.
  • the light source 10 passes through a first aperture that automatically adjusts the light-transmitting aperture.
  • the remaining light beam is incident on the first fly-eye lens array, is refracted by the first fly-eye lens array, and then incident on the second fly-eye lens array, if passing through the first fly-eye lens array
  • the focal length of the beam focused on the second fly-eye lens array is f' A , then Wherein, A is the diameter of the beam, W is the width or length of the LCD panel, and f' B is the focal length of the lens group composed of the second fly-eye lens array and the first collecting lens 70. According to the above formula, if the diameter of the beam is too large Then, a part of the beam will not be incident on the first fly-eye lens array.
  • is the maximum deflection angle at which the beam can enter the polarization conversion unit 40; the value of F/# is 1.6-2.4.
  • the F number is determined by the focal length f' B of the lens group composed of the second fly-eye lens array and the first condenser lens 70, and the maximum deflection angle ⁇ at which the light beam can enter the polarization conversion unit, that is, due to then F/# is a term in the field, that is, the F number, the number of apertures, or the reciprocal of the relative aperture.
  • f is the focal length of the first collecting lens 70
  • d is the diameter of the first collecting lens 70, and there is a certain selective correspondence between W and F/# in the art, that is, according to the size of the LCD panel 50, It is possible to determine the range of values of F/#.
  • the value of F/# is 1.6-2.4. Therefore, when it is determined that the optimal F number is selected, the maximum deflection of the beam into the polarization conversion unit can be determined.
  • the angle ⁇ can also be determined that if the angle of the light emitted from the second fly-eye lens array is larger than the value of ⁇ , it is blocked by the fence 41 in the polarization conversion unit 40.
  • FIG. 5 is a schematic structural view of an embodiment of a light source detecting device according to the present invention.
  • the light source detecting device 100 includes the light detecting system as described above.
  • the light detecting system of the light source detecting device 100 of the present embodiment includes a light source 10, a first aperture 20, a light homogenizing unit 30, a polarization conversion unit 40, an LCD panel 50, a detecting unit 60, and a first collecting light which are sequentially disposed along the optical path.
  • the lens 70, the second aperture 80, and the second concentrating lens 90, the light source 10 generates a light beam, and the unnecessary light is blocked by the first aperture 20, and the useful light is multiplexed by the leveling unit 30 to enter the polarization conversion.
  • the unit 40 outputs the required S-state polarized light or P-state polarized light, further blocks the useless stray light through the second aperture 80, transmits the light through the LCD panel 50, and enters the detecting unit 60, so that the light transmitted by the LCD panel can be accurately detected.
  • the amount of light in turn, can more accurately match the efficiency of the optomechanous based on the detected value of the transmitted light to the LCD panel.
  • the light detecting system of the invention solves the technical problem that the light brightness of the light transmitted by the LCD detected by the existing light detecting system is inaccurate and the efficiency of the light machine is inaccurate, reduces the light inspection process, and greatly improves the detection efficiency.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光检测系统及光检测装置(100),其中,光检测系统包括沿光路依次设置的光源(10)、第一光阑(20)、匀光单元(30)、偏光转换单元(40)、LCD板(50)、及检测单元(60),光源(10)产生光束,经第一光阑(20)将不需要的光挡掉,有用的光经匀光单元(30)匀光后进入偏光转换单元(40),输出需要的S态或P态偏振光,进一步通过第二光阑(80)挡掉无用的杂散光,再经LCD板(50)透射,进入检测单元(60),可以准确检测LCD板(50)透射的光的光量,进而可以根据对LCD板(50)透射光的检测值更准确地匹配光机的效率。光检测系统解决了现有的光检测系统检测的光亮度不准确、光机效率不准确的技术问题,缩减了光检查工艺,提高了检测效率。

Description

光检测系统及光检测装置 技术领域
本发明涉及光学技术领域,尤其涉及一种光检测系统及光检测装置。
背景技术
目前,投影技术突飞猛进,光源经历了从传统的氙灯、UHP灯,到激光光源的技术创新,但相应的检测系统却一直没有更新,光源的效率标定还是使用较早的检测系统,即,使光源通过一个圆形小孔,通过检测通过小孔的光的亮度,将其默认为例如LCD的光阀所透射的光的光的亮度,并据此作为应用了上述检测系统所采用的光源和光阀的投影设备的出厂的亮度。现有光检测系统检测到的数据给后续光机效率的设计与分析带来了很多不确定因素,因为厂商提供的数据并非是按照优化后的设计角度和大小测试得出,具有较大的偏差,因而检测的例如LCD光阀所透射的光的亮度也不准确。
发明内容
本发明的主要目的在于提供一种光检测系统,旨在解决现有的光检测系统检测的光的亮度不准确、光机效率不准确的技术问题。
为实现上述目的,本发明提出一种光检测系统,包括沿光路依次设置的光源、第一光阑、匀光单元、偏光转换单元、LCD板、及检测单元;其中,
光源,产生光束;
第一光阑,调节所述光束的角度和强弱;
匀光单元,对透过第一光阑的光束进行匀光处理;
偏光转换单元,将透过匀光单元的光束输出为S态偏振光或P态偏振光;
LCD板,接收偏光转换单元输出的S态偏振光或P态偏振光;
检测单元,检测从LCD板透射的光的亮度,进而计算光机效率。
进一步地,所述偏光转换单元包括沿光路依次设置的栅栏、PBS、及1/2 波片;其中,
栅栏,过滤部分从匀光单元输出的光束;
PBS,透射P态偏振光,反射S态偏振光;
1/2波片,将从PBS透射的P态偏振光转换为S态偏振光。
进一步地,该光检测系统还包括第一聚光透镜,所述第一聚光透镜设置于所述偏光转换单元与LCD板之间的光路,收集所述偏光转换单元输出的S态偏振光,射入所述LCD板。
进一步地,该光检测系统还包括第二光阑,所述第二光阑设置于所述第一聚光透镜与LCD板之间的光路,调节射入所述LCD板的S态偏振光的角度和强弱。
进一步地,该光检测系统还包括第二聚光透镜,所述第二聚光透镜设置于所述第一聚光透镜与第二光阑之间的光路,聚焦S态偏振光,射入所述LCD板。
进一步地,所述匀光单元包括一面向光源的第一复眼透镜阵列和一背对光源的第二复眼透镜阵列,经过所述第一复眼透镜阵列的光束聚焦于第二复眼透镜阵列上的焦距为f'A,则
Figure PCTCN2017086865-appb-000001
其中,A为光束的直径,W为LCD板的宽度,f'B为第二复眼透镜阵列和第一聚光透镜组成的透镜组的焦距,或者为第二复眼透镜阵列、第一聚光透镜和第二聚光透镜组成的透镜组的焦距。
进一步地,
Figure PCTCN2017086865-appb-000002
其中,φ为光束能够进入偏光转换单元的最大偏转角度;F/#的取值为1.6-2.4。
进一步地,所述光源为激光、LED或灯泡。
进一步地,所述检测单元还用于根据检测到的LCD板透射的光的亮度计算光机效率。
本发明的另一目的在于提出一种光检测装置,该光检测装置包括如上所述的光检测系统。
本发明的光检测系统,包括沿光路依次设置的光源、第一光阑、匀光单元、偏光转换单元、LCD板、及检测单元,光源产生光束,经过第一光阑将 不需要的光挡掉,有用的光经过匀光单元匀光后进入偏光转换单元,输出需要的S态偏振光或P态偏振光,再经LCD板透射,进入检测单元,可以根据透射至LCD板的光量计算光源的实际亮度,进而更准确地匹配光机的效率。本发明的光检测系统,解决了现有的光检测系统检测的LCD透射的光的亮度不准确、光机效率不准确的技术问题,缩减了光检查工艺,大大提高了检测效率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本发明光检测系统一实施例的结构示意图;
图2为图1的偏光转换单元的结构示意图;
图3为本发明光检测系统一实施例的光路图;
图4为本发明的偏光转换单元的另一结构示意图;
图5为本发明光检测装置一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
10 光源 50 LCD板
20 第一光阑 60 检测单元
30 匀光单元 70 第一聚光透镜
40 偏光转换单元 80 第二光阑
41 栅栏 90 第二聚光透镜
42 PBS 100 光源检测装置
43 1/2波片    
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步 说明。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明,本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,在本发明中涉及“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
参照图1,本发明提出一种光检测系统的实施例,包括沿光路依次设置的光源10、第一光阑20、匀光单元30、偏光转换单元40、LCD板50、及检测单元60;其中,
光源10,产生光束;
第一光阑20,调节所述光束的角度和强弱;
匀光单元30,对透过第一光阑20的光束进行匀光处理;
偏光转换单元40,将透过匀光单元30的光束输出为S态偏振光或P态偏振光;
LCD板50,接收偏光转换单元40输出的S态偏振光或P态偏振光;
检测单元60,检测从LCD板50透射的光的亮度,进而计算光机效率。
本实施例的光检测系统,包括沿光路依次设置的光源10、第一光阑20、匀光单元30、偏光转换单元40、LCD板50、及检测单元60,该光路模拟光 机的光路结构,光源10产生的光束入射到第一光阑20之后、匀光单元30之前的光量模拟为入光机的光量,透射出LCD板50的光量模拟为出光机的光量。光源10用于产生光束,在本实施例中光源10由投影机中的激光提供,利用激光激发荧光轮以产生红、绿、蓝三种颜色的荧光,在其他实施例中,光源也可以选择由投影机中的LED或灯泡提供,另外,投影机类型可以是3LCD或单LCD。第一光阑20用于调节所述光束的角度和强弱,由于每次检测的光束的亮度和角度不同,为了尽可能准确地测试入射至LCD板并被透射的光的亮度,第一光阑20依据匀光单元30的整个面的大小,通过特设的通光孔径来控制光束的大小,过滤掉不需要的杂散光,将有用的光射入匀光单元30进行匀光处理,匀光单元30一般为双排复眼透镜阵列,也可以使用匀光棒,通过双排的复眼透镜阵列将角度分散的光束通过两次折射形成均匀的平行光束射入偏光转换单元40,偏光转换单元40主要用于透射光束本身携带的S态偏振光,以及将匀光单元30匀光处理后的P态偏振光转换为S态偏振光,以更利于LCD板50利用,或者投射光束的P态偏振光,以及将匀光单元30匀光处理后的S态偏振光转换为P态偏振光。
在图1提供的实施例中,LCD板50为S态偏振光或P态偏振光的接收载体,也是测试LCD板50成像范围和亮度的重要部分,在对透过LCD板50的光的亮度进行检测时,可以通过调整LCD板50的大小,来模拟不同型号的LCD板所透射的亮度,不同的LCD板需要不同的匀光单元30与之对应,而且在该光检测系统工作时,LCD板处于非工作状态,即不改变在测光源的方向及偏振态,以便入射至LCD板50的S态偏振光或P态偏振光直接射入检测单元60,从而使检测单元60直接检测从LCD板50透射的光的亮度,保证获得的测量值准确,在图1提供的实施例中,该检测单元60为积分球,在其他实施例中也可以采用亮度侦测器。另外,由于光机效率=出光机的光量/进光机的光量,出光机的光量直接影响光机效率的准确性。现有技术中,对于LCD板所透射的光的光量的测量值小于实际值,造成了光机效率值较实际偏低,本发明的光检测系统,检测的入射至LCD板并透射的光的亮度较为准确,因而得到的光机效率也比较客观、准确。另外,作为对进光机的光量的一种检测方式,参照图1,可以将检测单元60直接布置在第一光阑20之后, 从而通过调节第一光阑20以配合检测单元60检测光源10所发光的光量,从而得到进光机的光量检测值,进而获得准确的光机效率,需要说明的是,进光机的光量也可以采用其他方式而获得,由于本发明的光检测系统能保证得到准确的LCD板透射的光的亮度检测值,因此,可以保证得到准确的光机效率。
本实施例的光检测系统,包括沿光路依次设置的光源10、第一光阑20、匀光单元30、偏光转换单元40、LCD板50、及检测单元60,光源10产生光束,经过第一光阑20将不需要的光挡掉,有用的光经过匀光单元30匀光后进入偏光转换单元40,输出需要的S态偏振光或P态偏振光,通过LCD板50透射,进入检测单元60,可以准确检测LCD透射的光的光量,进而更准确地匹配光机的效率。本发明的光检测系统,解决了现有的光检测系统检测的LCD透射的光的亮度不准确、光机效率不准确的技术问题,缩减了光检查工艺,大大提高了检测效率。
进一步地,参照图2和图3,偏光转换单元40包括沿光路依次设置的栅栏41、PBS42、及1/2波片43;其中,
栅栏41,过滤部分从匀光单元30输出的光束;
PBS42,透射P态偏振光,反射S态偏振光;
1/2波片43,将从PBS42透射的P态偏振光转换为S态偏振光。
本实施例的光检测系统,偏光转换单元40包括沿光路依次设置的栅栏41、PBS42、及1/2波片43;栅栏41一般与PBS42一体成型,用于过滤部分从匀光单元30输出的光束,激光激发荧光轮射出包括P态和S态的偏振光在φ角度范围内入射,当φ达到一定角度就会在输出时射在栅栏41上,从而阻却其投射在PBS42上,而在φ角度范围内入射的那部分荧光则经过栅栏41的间隙入射至PBS42,PBS42是一种偏振分光棱镜,能够透射P态的偏振光并反射S态偏振光,因而从PBS42透射的P态偏振光直接入射至与PBS42处于同一光路的1/2波片43,而经PBS42反射的S态偏振光经PBS阵列反射后从1/2波片43的间隙射出,入射至LCD50,1/2波片43,又称为半波片,是具有一定厚度的双折射晶体,一般用云母片来制作,主要用于将从PBS42透射的P态 偏振光改变为圆偏光,并转换为LCD板50更容易接收利用的S态偏振光。
参照图4,在本实施例中,偏光转换单元40包括沿光路依次设置的栅栏41、PBS42、及1/2波片43,激光激发荧光轮射出包括P态和S态的偏振光在φ角度范围内入射,经过栅栏41的间隙入射至PBS42,PBS42透射P态偏振光,反射S态偏振光,被反射的S态偏振光再次经PBS42反射后入射至1/2波片43,经过1/2波片43的折射转换为P态偏振光,与透射PBS42并从1/2波片43之间的间隙透射的P态偏振光一起入射至LCD板50。
进一步地,参照图1,该光检测系统还包括第一聚光透镜70,所述第一聚光透镜70设置于偏光转换单元40与LCD板50之间的光路,收集所述偏光转换单元40输出的S态偏振光,射入所述LCD板50。
本实施例的光检测系统,在偏光转换单元40和LCD板50之间的光路上还设置有第一聚光透镜70,第一聚光透镜70主要用于将从偏光转换单元40输出的S态偏振光收集聚合,以使得从偏光转换单元40输出的S态偏振光尽可能多地入射至LCD板50上,从而保证获得较为准确的出射光量,进一步提高了该光检测系统的数据准确性。
进一步地,参照图1,该光检测系统还包括第二光阑80,所述第二光阑80设置于所述第一聚光透镜70与LCD板50之间的光路,调节射入所述LCD板50的S态偏振光的角度和强弱。
本实施例的光检测系统,在所述第一聚光透镜70与LCD板50之间的光路上还设置有第二光阑80,第二光阑80可以根据LCD板的大小而自动调节其透光孔径,进而调节入射至所述LCD板50的S态偏振光的角度和强弱,本实施例的光检测系统,可以根据不同的LCD板50模拟不同型号的光机,进而检测不同的出射光量,而且第二光阑80可以根据LCD板50的大小自动调节入射至LCD板50的光量,进而更准确地匹配光机的效率。
进一步地,参照图1和图3,该光检测系统还包括第二聚光透镜90,所述第二聚光透镜90设置于所述第一聚光透镜70与第二光阑80之间的光路, 聚焦S态偏振光,射入所述LCD板50。
本实施例的光检测系统,根据第二复眼透镜阵列和第一聚光透镜70组成的透镜组的焦距f'B的大小,可以在第一聚光透镜70与第二光阑80之间的光路上设置第二聚光透镜90,进一步聚焦S态的偏振光,将从匀光单元30和偏光转换单元40出射的大光斑收集成需要的小光斑,进一步通过可自动调节的第二光阑80入射至所述LCD板50,减少了光束的光量损失,提高了该光检测系统的数据准确性。
进一步地,参照图1和图3,所述匀光单元30包括一面向光源10的第一复眼透镜阵列和一背对光源10的第二复眼透镜阵列,经过所述第一复眼透镜阵列的光束聚焦于第二复眼透镜阵列上的焦距为f'A,则
Figure PCTCN2017086865-appb-000003
其中,A为光束的直径,W为LCD板的宽度,f'B为第二复眼透镜阵列和第一聚光透镜70组成的透镜组的焦距。
本实施例的光检测系统,匀光单元30包括一面向光源10的第一复眼透镜阵列和一背对光源10的第二复眼透镜阵列,光源10经过可自动调节透光孔径的第一光阑20,将光源10产生的大角度的光拦截,剩余的光束入射至第一复眼透镜阵列,经第一复眼透镜阵列折射后入射至第二复眼透镜阵列,若经过所述第一复眼透镜阵列的光束聚焦于第二复眼透镜阵列上的焦距为f’A,则
Figure PCTCN2017086865-appb-000004
其中,A为光束的直径,W为LCD板的宽度或者长度,f'B为第二复眼透镜阵列和第一聚光透镜70组成的透镜组的焦距,由上述公式可知如果光束的直径过大,则会有一部分光束不会入射到第一复眼透镜阵列。
进一步地,参照图3,
Figure PCTCN2017086865-appb-000005
其中,φ为光束能够进入偏光转换单元40的最大偏转角度;F/#的取值为1.6-2.4。
本实施例的光检测系统,F数由第二复眼透镜阵列和第一聚光透镜70组成的透镜组的焦距f'B,以及光束能够进入偏光转换单元的最大偏转角度φ决定,即
Figure PCTCN2017086865-appb-000006
由于
Figure PCTCN2017086865-appb-000007
Figure PCTCN2017086865-appb-000008
F/#为本领域的专业名词,即F 数、光圈数或相对孔径的倒数,
Figure PCTCN2017086865-appb-000009
f为第一聚光透镜70的焦距,d为第一聚光透镜70的直径,而且在本领域内,W与F/#之间存在一定的选择对应关系,即根据LCD板50的尺寸,可以确定F/#的取值范围,一般地,F/#的取值为1.6-2.4,因此,在确定选出最优的F数时,即可确定出光束能够进入偏光转换单元的最大偏转角度φ,也能够确定如果从第二复眼透镜阵列射出的光的角度大于φ值,则会被偏光转换单元40内的栅栏41挡掉。
参照图5,图5为本发明光源检测装置一实施例的结构示意图,在该实施例中,该光源检测装置100包括如上所述的光检测系统。
本实施例的光源检测装置100的光检测系统,包括沿光路依次设置的光源10、第一光阑20、匀光单元30、偏光转换单元40、LCD板50、检测单元60、第一聚光透镜70、第二光阑80、及第二聚光透镜90,光源10产生光束,经过第一光阑20将不需要的光挡掉,有用的光经过匀光单元30匀光后进入偏光转换单元40,输出需要的S态偏振光或P态偏振光,进一步通过第二光阑80挡掉无用的杂散光,再经LCD板50透射,进入检测单元60,可以准确检测LCD板透射的光的光量,进而可以根据对LCD板透射光的检测值更准确地匹配光机的效率。本发明的光检测系统,解决了现有的光检测系统检测的LCD透射的光的光亮度不准确、光机效率不准确的技术问题,缩减了光检查工艺,大大提高了检测效率。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (10)

  1. 一种光检测系统,其特征在于,包括沿光路依次设置的光源、第一光阑、匀光单元、偏光转换单元、LCD板、及检测单元;其中,
    光源,产生光束;
    第一光阑,调节所述光束的角度和强弱;
    匀光单元,对透过第一光阑的光束进行匀光处理;
    偏光转换单元,将透过匀光单元的光束输出为S态偏振光或P态偏振光;
    LCD板,接收偏光转换单元输出的S态偏振光或P态偏振光;
    检测单元,检测出LCD板透射的光的亮度。
  2. 根据权利要求1所述的光检测系统,其特征在于,所述偏光转换单元包括沿光路依次设置的栅栏、PBS、及1/2波片;其中,
    栅栏,过滤部分从匀光单元输出的光束;
    PBS,透射P态偏振光,反射S态偏振光;
    1/2波片,将从PBS透射的P态偏振光转换为S态偏振光。
  3. 根据权利要求1所述的光检测系统,其特征在于,该光检测系统还包括第一聚光透镜,所述第一聚光透镜设置于所述偏光转换单元与LCD板之间的光路,收集所述偏光转换单元输出的S态偏振光,射入所述LCD板。
  4. 根据权利要求3所述的光检测系统,其特征在于,该光检测系统还包括第二光阑,所述第二光阑设置于所述第一聚光透镜与LCD板之间的光路,调节射入所述LCD板的S态偏振光的角度和强弱。
  5. 根据权利要求4所述的光检测系统,其特征在于,该光检测系统还包括第二聚光透镜,所述第二聚光透镜设置于所述第一聚光透镜与第二光阑之间的光路,聚焦S态偏振光,射入所述LCD板。
  6. 根据权利要求5所述的光检测系统,其特征在于,所述匀光单元包括一面向光源的第一复眼透镜阵列和一背对光源的第二复眼透镜阵列,经过所述第一复眼透镜阵列的光束聚焦于第二复眼透镜阵列上的焦距为f'A,则
    Figure PCTCN2017086865-appb-100001
    其中,A为光束的直径,W为LCD板的宽度,f'B为第二复眼透镜阵列和第一聚光透镜组成的透镜组的焦距,或者为第二复眼透镜阵列、第一聚光透镜和第二聚光透镜组成的透镜组的焦距。
  7. 根据权利要求6所述的光检测系统,其特征在于,
    Figure PCTCN2017086865-appb-100002
    其中,φ为光束能够进入偏光转换单元的最大偏转角度;F/#的取值为1.6-2.4。
  8. 根据权利要求1所述的光检测系统,其特征在于,所述光源为激光、LED或灯泡。
  9. 根据权利要求1所述的光检测系统,其特征在于,所述检测单元还用于根据检测到的LCD板透射的光的亮度计算光机效率。
  10. 一种光检测装置,其特征在于,该光检测装置包括如权利要求1-9任一项所述的光检测系统。
PCT/CN2017/086865 2016-09-20 2017-06-01 光检测系统及光检测装置 WO2018054090A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610835577.3 2016-09-20
CN201610835577.3A CN107843412A (zh) 2016-09-20 2016-09-20 光检测系统及光检测装置

Publications (1)

Publication Number Publication Date
WO2018054090A1 true WO2018054090A1 (zh) 2018-03-29

Family

ID=61656941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/086865 WO2018054090A1 (zh) 2016-09-20 2017-06-01 光检测系统及光检测装置

Country Status (2)

Country Link
CN (1) CN107843412A (zh)
WO (1) WO2018054090A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110879135A (zh) * 2019-11-29 2020-03-13 昆山国显光电有限公司 光学测试装置及光学测试方法
CN113835288A (zh) * 2019-07-15 2021-12-24 青岛海信激光显示股份有限公司 激光投影系统及光源装置
CN113917769A (zh) * 2021-06-23 2022-01-11 深圳市安华光电技术有限公司 投影光机以及投影设备

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110955104B (zh) * 2018-09-26 2023-03-24 深圳光峰科技股份有限公司 光源系统及投影系统
CN109143795B (zh) * 2018-09-30 2020-10-27 联想(北京)有限公司 一种光刻镜片的制作方法和镜头
CN113405775A (zh) * 2020-03-16 2021-09-17 瑞鼎科技股份有限公司 光学机台检验方法
CN112731751A (zh) * 2020-12-31 2021-04-30 广景视睿科技(深圳)有限公司 一种投影设备
CN113188776B (zh) * 2021-04-27 2022-11-11 哈尔滨工业大学 一种复眼成像重合度检测系统及检测方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122685A (zh) * 2006-08-13 2008-02-13 樊思民 提高立体投影机光能利用率的方法
JP2011017953A (ja) * 2009-07-10 2011-01-27 Sharp Corp 液晶表示パネルの輝度検査装置および輝度検査方法
CN203798540U (zh) * 2014-04-21 2014-08-27 陕西科技大学 一种研究液晶显示器光电特性的实验装置
CN104049442A (zh) * 2014-06-24 2014-09-17 芜湖市安曼特微显示科技有限公司 具有亮度自动检修功能的投影机
CN105067128A (zh) * 2015-08-17 2015-11-18 苏州优谱德精密仪器科技有限公司 一种检测光路激发光装置
CN206095585U (zh) * 2016-09-20 2017-04-12 深圳市光峰光电技术有限公司 光检测系统及光检测装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102937778B (zh) * 2012-11-20 2015-04-22 北京理工大学 一种确定光刻照明系统中各元件之间匹配关系的方法
CN103852897A (zh) * 2014-03-20 2014-06-11 浙江晶景光电有限公司 基于偏振光复用的微型光学引擎系统
CN204328671U (zh) * 2014-12-09 2015-05-13 北京卓立汉光仪器有限公司 亮度连续可调的均匀光源系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101122685A (zh) * 2006-08-13 2008-02-13 樊思民 提高立体投影机光能利用率的方法
JP2011017953A (ja) * 2009-07-10 2011-01-27 Sharp Corp 液晶表示パネルの輝度検査装置および輝度検査方法
CN203798540U (zh) * 2014-04-21 2014-08-27 陕西科技大学 一种研究液晶显示器光电特性的实验装置
CN104049442A (zh) * 2014-06-24 2014-09-17 芜湖市安曼特微显示科技有限公司 具有亮度自动检修功能的投影机
CN105067128A (zh) * 2015-08-17 2015-11-18 苏州优谱德精密仪器科技有限公司 一种检测光路激发光装置
CN206095585U (zh) * 2016-09-20 2017-04-12 深圳市光峰光电技术有限公司 光检测系统及光检测装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113835288A (zh) * 2019-07-15 2021-12-24 青岛海信激光显示股份有限公司 激光投影系统及光源装置
CN113835288B (zh) * 2019-07-15 2022-07-29 青岛海信激光显示股份有限公司 激光投影系统及光源装置
CN110879135A (zh) * 2019-11-29 2020-03-13 昆山国显光电有限公司 光学测试装置及光学测试方法
CN110879135B (zh) * 2019-11-29 2021-08-10 昆山国显光电有限公司 光学测试装置及光学测试方法
CN113917769A (zh) * 2021-06-23 2022-01-11 深圳市安华光电技术有限公司 投影光机以及投影设备
CN113917769B (zh) * 2021-06-23 2023-06-20 深圳市安华光电技术股份有限公司 投影光机以及投影设备

Also Published As

Publication number Publication date
CN107843412A (zh) 2018-03-27

Similar Documents

Publication Publication Date Title
WO2018054090A1 (zh) 光检测系统及光检测装置
TW200846638A (en) A high-speed optical sensing device abling to sense luminous intensity and chromaticity and an optical measuring system with the high-speed optical sensing device
JP6206560B2 (ja) システム
JP2011158502A (ja) 投写型映像表示装置
US20130258324A1 (en) Surface defect detecting apparatus and method of controlling the same
CN109407335A (zh) 一种用于透镜组调整的调整装置和调整方法
CN209147932U (zh) 一种激光成像测距系统
CN203259248U (zh) 一种便携式彩色亮度计
CN209198785U (zh) 一种用于透镜组调整的调整装置
US7216991B2 (en) Lighting unit and projector including the same
CN112798605A (zh) 一种表面缺陷检测装置及方法
JP2008139277A (ja) 凹面リフレクタの検査装置及び検査方法、並びに光源装置の製造方法
CN105651733B (zh) 材料散射特性测量装置及方法
CN208458975U (zh) 光学模组检测装置
KR101447857B1 (ko) 렌즈 모듈 이물 검사 시스템
CN108168469A (zh) 一种光轴平行性检测系统及方法
TW201502468A (zh) 形狀測量裝置
CN106325000B (zh) 一种位置测量系统
JP3628306B2 (ja) 光源ユニット輝度検出装置、アライメント装置、光源ユニット輝度の検出方法および光源ユニットの製造方法
JP2005127970A (ja) 広拡散光源光測定装置の光学系および広拡散光源光測定装置ならびにその光測定方法
CN109387353B (zh) 微透镜阵列检测系统及微透镜阵列的检测方法
US20230392924A1 (en) Condenser unit for providing directed lighting of an object to be measured positioned in a measured object position, imaging device and method for recording a silhouette contour of at least one object to be measured in a measuring field using an imaging device and use of an attenuation element
CN104049442B (zh) 具有亮度自动检修功能的投影机
CN109405749A (zh) 一种激光成像测距方法及系统
JP2014102382A (ja) 照明光学系および画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17852164

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17852164

Country of ref document: EP

Kind code of ref document: A1