JP2004531734A - 透明マスク基板の検査システムおよび方法 - Google Patents

透明マスク基板の検査システムおよび方法 Download PDF

Info

Publication number
JP2004531734A
JP2004531734A JP2003507531A JP2003507531A JP2004531734A JP 2004531734 A JP2004531734 A JP 2004531734A JP 2003507531 A JP2003507531 A JP 2003507531A JP 2003507531 A JP2003507531 A JP 2003507531A JP 2004531734 A JP2004531734 A JP 2004531734A
Authority
JP
Japan
Prior art keywords
radiation
substrate
radiation beam
reflected
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2003507531A
Other languages
English (en)
Inventor
ベアケット,ノア
イー. ストッコウスキー,スタンレー
ビーラーク,スティーブ
Original Assignee
ケーエルエー−テンカー テクノロジィース コーポレイション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ケーエルエー−テンカー テクノロジィース コーポレイション filed Critical ケーエルエー−テンカー テクノロジィース コーポレイション
Publication of JP2004531734A publication Critical patent/JP2004531734A/ja
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/958Inspecting transparent materials or objects, e.g. windscreens

Abstract

透明基板の第1の表面上の異常(104)を検出する方法は、まず反射性第2の表面(304)を透明基板(300)に設けることから始まる。本方法は、これに続いて、放射の少なくとも一部(110)が基板(300)を透過して反射性第2の表面(304)に当たるように基板の第1の表面に放射ビーム(100)を照射する工程を含む。この放射は、基板の第1の表面を通って反射放射ビーム(306)として反射し戻される。本方法は、これに続いて、反射放射ビームから放射(200)を検出する工程を含む。本方法は、放射ビーム(100)と基板(300)の第1の表面との間で相対的な移動をさせる工程もさらに含むことができる。本方法は、反射放射ビームが第1の表面を通り抜けて散乱していることを検出された放射が示す場合に、異常の存在を記録する工程をさらに含むことができる。

Description

【技術分野】
【0001】
本発明は、主にウェハまたはフォトマスク表面の検出の分野に関し、より具体的には透明ガラス基板を検査するための照射集光光学に関する。
【背景技術】
【0002】
半導体ウェハの製造中にパターン欠陥や粒子汚染などの異常をモニタすることは、歩留まりを向上させるために重要な要素となる。ウェハ表面上では、さまざまなタイプ、特に粒子による欠陥および汚染が生じる。異常が生じたプロセス工程を探す際、およびウェハを廃棄する必要があるのかについて決定する際、ウェハ表面上の異常の有無、位置、およびタイプを特定することが役に立つ。
【0003】
当初は、ウェハ表面を目視検査して粒子をマニュアルでモニタしていた。このような粒子は、たいてい粉塵または微細シリコン粒子であり、ウェハパターン欠陥の多くの原因となっていた。しかし、明らかに、マニュアル式検査は時間がかかり、オペレータがエラーをしたり、特定の欠陥を見つけられなかったりするので信頼性に欠けていた。
【0004】
ウェハ表面の検査に要する時間を減らすために、自動検査システムが数多く導入された。このような自動検査システムのほぼ大多数は、光の散乱に基づいて粒子およびその他の欠陥を検出する。このようなシステムは、照射光学器および集光−検出光学器の二つの主構成要素を含む。照射光学器は、一般に、レーザまたは白色光などの放射源を用いてウェハ表面を走査することからなる。ウェハの表面上にある粒子は入射光を散乱させる。集光光学器は受け取る散乱放射の増加量を検出する。この増加は通常、照射光学器によって照射された粒子に対応している。散乱放射の増加が検出される毎に、このデータを既知のビーム位置に合わせて調整する。次に、評価、計数、およびモニタ上での表示が可能な電気信号にデータを変換する。
【0005】
散乱放射を利用してウェハを検査する既知のシステムは、ガラスマスク基板のような透明な物質を検査するために使用する場合も、深刻な限界に直面する。大きな限界の一つに、透明基板上の異常によって生じる散乱放射が不透明基板上の異常から生じるものより実質上少ないことが挙げられる。この低散乱放射出力に寄与する要因は少なくとも二つある。第1は、基板表面での大気側入射放射と大気側反射放射との間に生じる有害な干渉が存在することである。第2は、集光−検出光学器に達する前方散乱放射が実質上減少してしまうことである。
【0006】
前方散乱放射とは、放射の発生源からの方向と概して同じ方向へ散乱する散乱放射のことである。例えば、基板に当たった入射放射は、基板へ移動する前方散乱放射を生成することができる。異常物に当たった入射放射は、異常物を通って移動し、基板表面に当たる前方散乱放射を生成することができる。さらに、基板表面から反射して(反射放射)下から異常物に当たった放射は、基板から遠ざかって集光−検出光学器へ移動する傾向のある前方散乱放射を生成することができる。この最後の形の前方散乱放射は、集光−検出光学器へ直接移動する傾向がみられるので、一般にこの散乱放射がウェハ検査工程の間に集められる散乱放射のかなり大きい部分を占める。このため、本明細書中で使用される用語「前方散乱放射」は、下から異常物に当たる反射放射によって生成される前方散乱放射を主に指す。
【0007】
放射源が透明基板表面に向けて照射されると、わずかな入射放射が反射放射として表面から反射される。これは入射放射の多くの部分が透明基板を透過するためである。実際、入射放射の約0%から10%しか表面から反射されない。このような透明基板からの反射放射が(シリコンウェハと比較して)実質的に減少すると、これに相応して集光−検出光学器に向かう異常物からの前方散乱放射も実質的に減少する結果になる。
【0008】
これらの問題に加えて、入射光が基板を透過し、次に基板を所定の位置に保持するために用いられるチャックに当たると、光は散乱するので、透明基板におけるバックグランドノイズが増加するという問題もある。このため、また上記の要因すべてが関わって、既知のシステムによる透明基板検査の際の信号対雑音比を著しく低下させ、粒子の検出は質が悪くなってしまう。このため、透明基板上に存在する異常を発見したときに、信号対雑音比が高くより強い散乱放射信号を生成することができる検査システムが必要とされている。
【発明の開示】
【課題を解決するための手段】
【0009】
ガラスマスク基板のような透明物質の検査に関わる不都合および問題は本発明の使用によって改善された。
【0010】
本発明の実施の形態によれば、透明基板の第1の表面上の異常を検出する方法は、まず反射性第2の表面を透明基板に設けることから始まる。本方法は、これに続いて、放射の少なくとも一部が基板を透過して反射性第2の表面に当たるように基板の第1の表面に放射ビームを照射する工程を含む。この放射は、基板の第1の表面を通って反射放射ビームとして反射し戻される。本方法は、これに続いて、反射放射ビームから放射を検出する工程を含む。本方法は、放射ビームと基板の第1の表面との間で相対的な移動をさせる工程もさらに含むことができる。本方法は、反射放射ビームが第1の表面を通り抜けて散乱していることを検出された放射が示す場合に、異常の存在を記録する工程をさらに含むことができる。
【0011】
別の実施の形態によれば、上記の方法は、反射放射ビームが第1の表面を通り抜ける位置に相当する基板の第1の表面上の位置に第2の放射ビームを放射し、第2の放射ビームからの放射を検出する工程をさらに含むことができる。
【0012】
別の実施の形態によれば、透明基板の第1の表面上の異常を検出する方法は、放射ビームの少なくとも一部が基板を透過して第1の表面を通り抜けるように基板の第2の表面に放射ビームを照射する工程と、放射ビームが第1の表面を通り抜けるときに放射を検出する工程とを含む。
【0013】
本発明の別の実施の形態によれば、透明基板の第1の表面上の異常を検出するシステムは、放射発生が可能な放射源、放射を集めて放射ビームにすることができる対物レンズ、および放射を検出するために搭載される検出器を備える。対物レンズは、放射ビームの少なくとも一部が基板を透過して基板の反射性第2の表面に当たり、これによって放射ビームが反射され基板の第1の表面の第2の位置を通って戻るように、基板の第1の表面上の第1の位置に放射ビームを照射するように搭載される。
【0014】
別の実施の形態によると、上記のシステムは、基板によって持ち込まれる何れの収差も修正することが可能な補正プレート、放射を集めて検出器に放射を集光することが可能なコレクタ、および/または基板の第1の表面上の第2の位置へ放射ビームを再照射することが可能な光学素子のうち、任意のものまたはすべてを備えることができる。
【0015】
本発明の技術上の重要な効果として、基板の反射性第2の表面から放射ビームを反射させて、大気側からではなく基板側から放射ビームが異常物に当たることが挙げられる。基板側からの放射を使用すると、放射の損失が減り、反射放射成分の集光をしないことによって散乱放射と反射放射との間の干渉が減り、バックグランドノイズが減り、システムによって生成される前方散乱放射の量が大幅に増加するので、システムの感度が増す。本発明の別の効果は、現在のウェハ検査システムおよびウェハ実装システムを大幅に設計変更することなく、本明細書中に開示の方法の実施ができるという点である。
【0016】
本発明の技術上の他の重要な効果は、当業者であれば、以下に示す図面、明細書、および請求項からすぐにわかるものである。
【0017】
次に、本発明のさらに詳細な説明、およびその他の特徴および効果について、添付図面を参照しながら以下に記載する。
【発明を実施するための最良の形態】
【0018】
本発明の好ましい実施の形態およびこれらの効果は、図1〜図8の図面を参照すれば一番よく理解することができる。各図面で同じ部材および対応する部材には、同じ数字を使用する。
【0019】
図1および図2は、ウェハ検査システムを使用して、基板表面上の粒子を検出する方法を示す。本記載をする上で、「粒子」の意味は、結晶起因粒子(COP:結晶欠陥)のほか、その他のタイプの異常を含むものとする。結晶起因粒子とは、半導体ウェハでの表面破壊の欠陥のことであって、初期の検査システムでは欠陥と本当の粒子とを識別することができなかったため、以前から「粒子」として分類されている。図1は、入射放射ビーム100を透明またはガラスの基板102に照射して、その表面を検査したところ、粒子に当たらなかった場合の例を示す。入射放射ビーム100は、光の形をとることができ、特にレーザ光線とすることができる。粒子検出のために使用される一般的なタイプのレーザ光線として、約488nmおよび514nmの放射を出すことができるアルゴンイオンレーザ、および約266nm、355nm、または1064nmの放射を出すことができる固体YAGレーザが挙げられる。入射放射ビーム100は、一般に、粒子を探すために基板表面を横断するように走査する。
【0020】
入射放射ビーム100は、入射角θで第1の表面106に当たる。本発明の実施の形態では、角度θが約70度に等しい。この角度は、カリフォルニア州サンノゼにあるケーエルエー−テンカー コーポレイションのSurfscan(登録商標)SP1TBIウェハ検査ツール (Wafer Inspection Tool)のような既知の半導体ウェハ検査システムによって用いられている入射角と同じである。
【0021】
図1には、基板102の第1の表面106上にあって入射放射ビーム100から遠く離れて存在する粒子104が含まれている。基板102の第1の表面106を本明細書中では上部表面106と呼ぶこともある。典型的には、基板表面、特に半導体ウェハ表面上に見られる粒子には、微小シリコン粒子(例えば、Si,SiO2,またはSi34)のような微小粒子、または粉塵粒子が含まれる。図1では、粒子104がポリスチレンラテックス球(PSL)とすることもできる。これは粒子蒸着システムおよびウェハ走査装置のようなツールの較正をするために一般に使用される人造粒子の一種である。
【0022】
入射放射ビーム100が上部表面106に当たると、入射放射ビーム100の成分の一部が反射放射ビーム108として上部表面106から反射され、別の成分が屈折放射ビーム110として基板102へ伝わる。反射放射ビーム108は、垂線から測定される入射角θ’を有し、この入射角は入射放射ビーム100の入射角θと等しい。基板102が透明なので、入射放射ビーム100のエネルギーの多くは基板102へ伝わる。このため、一般に、反射放射ビーム108は、入射放射ビーム100からのエネルギーの小量分だけしか含まず、典型的には0%から10%の間のエネルギーしか含まない。
【0023】
屈折放射ビーム110は、基板102にはいると屈折する。次に、屈折放射ビーム110は、基板102中を移動し、基板102の第2の表面112を出る。このとき、垂線から測定されるθ”の入射角で、もう一度屈折する。この角度θ”は、入射放射ビーム100の角度θおよび反射放射ビーム108のθ’と等しい。反射放射ビーム108とは異なり、屈折放射ビーム110は、一般に、入射放射ビーム100からのエネルギーのほとんど(90%から100%の間)を運ぶ。基板102の第2の表面112を本明細書中では底面112と呼ぶこともある。
【0024】
入射放射ビーム100からの残存エネルギーのほとんどが、さまざまな形で消耗される。例えば、散乱放射になったり、基板102へ吸収されたり、熱エネルギーとなって消えてしまったりする。散乱放射は、入射放射ビーム100が上部表面106に当たる位置、屈折放射ビーム110が底面112に当たる位置など、数箇所で発生可能である。
【0025】
図2は、粒子104が検出される場合の例を示す。この図では、入射放射ビーム100から反射放射ビーム108にかけての部分が、粒子104によって散乱されている。次に、生じた散乱放射200が、ウェハ検査システム(図8に示す)の集光−検出光学器によって集められる。システムによって集められる散乱放射200の部分の多くは、反射放射ビーム108から生じたものである。これは、反射放射ビーム108が下から粒子104に当たり、その結果生じる前方散乱放射200が、システムの集光−検出光学器へ直接到達しやすいためである。
【0026】
コレクタ812および検出器814(両方とも図8に示す)からなるシステムの集光−検出光学器を使用して、散乱放射200を集め検出する。放射ビーム100および108が見つけた粒子104に応じて集められる散乱放射200のレベルの増加を記録するのが検出器814である。入射ビーム100が上部表面106に当たり、屈折ビーム110が底面112に当たることによって、散乱放射が生じるので、通常、検出器814は、連続的に低い閾値レベルの散乱放射を受け取る。このように、通常、粒子が発見されると、集められる散乱放射のレベルが増加する。
【0027】
透明基板102の検査で図2の場合に生じる散乱放射200の量は、不透明なシリコンウェハの検査で生じる量と比較すると小さい。これも、透明な表面の検査時に、検出される散乱放射の大部分を生成する反射放射ビーム108が、入射放射ビーム100のエネルギーの0%から10%までしか含まないためである。さらに、入射放射ビーム100と反射放射ビーム108と間の破壊的な干渉によって、反射放射ビーム108のエネルギーレベルがさらに減少してしまう。このため、比較的小量の前方散乱放射しか生成できない。散乱放射200のレベルがこのように減少すると、システム感度の低下につながり、不都合である。
【0028】
図3および図4は、本発明の実施の形態による基板表面上の粒子を検出する典型的な方法を示す。大気側放射に対し、この図では基板側放射を使用して粒子検出を実施する。具体的には、この実施の形態では、粒子を検出するために使用する放射ビームが、図1のように大気中のみを移動して粒子に当たるのではなく、基板102中を移動してから当たる。このことを、図3および図4の実施の形態では、検査される第1の表面302、および反射性をもたせた第2の表面304を有する改良基板300を使用して達成する。第1の表面302を本明細書中では上部表面302と呼ぶことがある。また、第2の表面304を本明細書中では底面304と呼ぶことがある。反射性底面304を使用すると、屈折放射ビーム110を反射放射ビーム306として上部表面302に向かって上方に反射し戻すことができる。ここで上部表面302上の粒子104を検出するために用いるビームは反射放射ビーム306である。
【0029】
改良基板300は、底面304に反射性をもたせるという点でのみ基板102とは異なる。一実施の形態では、基板102、および反射性層を有するコーティング底面112を用いることによって、例えば、静電チャックを可能にするために極紫外線(EUV)リソグラフィで使用されるようなアルミメッキプロセスを使用することによって、このような改良を実現することができる。反射性底面304を使用するので、上部表面302の上側にある放射源の位置をそのまま維持することができる。このため、上側から斜めに照射される放射を利用する既存のウェハ検査システムであれば、本質的な変更をシステムに施す必要なく、本発明の方法を実施することができる。主な変更は、反射放射ビーム306が対象位置の上に集光するように、入射放射ビーム100の光学軸を移すことである。
【0030】
基板側放射を使用すると、粒子104を起点として生じる散乱放射の量の大幅な増加に導く効果がいくつか得られる。効果の一つとして、反射放射ビーム108の場合と同様、集光−検出光学器に向かう前方散乱放射200を生成するような角度で、基板側放射が下から粒子104に当たることが挙げられる。しかし、反射放射ビーム108と異なり、基板側放射は、入射放射ビーム100からのエネルギーの大部分を保持しているので、事実上さらに多くの前方散乱放射を生成する。
【0031】
基板側放射の別の効果は、基板側放射が基板の上部表面を通り抜けるときに、基板から大気側へ放射が抜ける箇所で有益な干渉が生じるということである。この有益な干渉は、基板を離れる放射を強くする傾向があり、ある入射角では40〜60%放射を強くすることもある。この放射強度の増加によって、さらに多くの散乱放射の生成が促される。
【0032】
図3は、上部表面302を検査するために入射放射ビーム100を基板300に照射したところ、粒子104に当たらなかった場合を例示する。入射放射ビーム100が第1の位置308で上部表面302に当たり、そこから入射放射ビーム100の成分が屈折放射ビーム110として基板300へ屈折する。一実施の形態では、既存システムの使用時に利用することができるように、入射放射ビーム100は約70度の入射角を有する。次に、屈折放射ビーム110は基板300内を移動し、反射性底面304に当たり、そこから反射放射ビーム306として反射し戻される。次に、反射放射ビーム306は、基板300内を移動し、第2の位置310で上部表面302を通り抜け、もう一度屈折する。
【0033】
注目すべきことは、入射放射ビーム100が上部表面302に当たると、反射放射ビーム108および散乱放射(不図示)も生じ、底面304に当たった屈折放射ビーム110からも散乱放射(不図示)が生じることである。検出器(図8に示す)によってこのような成分が検出されると、得られる結果に干渉する虞があるが、後に図8を参照して説明するように、この検出を最小限に抑えたり、除去したりすることができる。このため、わかりやすくするために、このような成分に関して本明細書中では議論せず、図3の例示もしない。
【0034】
図4は、上部表面302を検査するために入射放射ビーム100を基板300に照射して、反射放射ビーム306が粒子104に当たる場合を例示する。図3のように、入射放射ビーム100が上部表面302の第1の位置308に照射され、成分が屈折放射ビーム110として基板300にはいる。次に、屈折放射ビーム110は、基板300内を移動し、反射放射ビーム306として反射性底面304で反射される。次に、反射放射ビーム306は、基板300内を移動し、上部表面302を通り抜け、それから粒子104に当たる。反射放射ビーム306が上部表面302を通り抜けるときに有益な干渉が生じうるので、これによって、反射放射ビーム306の強度が増幅される。次に、図4に示すように、粒子104を起点として散乱放射200が生じ、コレクタ812および検出器814(図8に示す)がこの散乱放射200を集め、検出することができる。
【0035】
図5Aおよび図5Bは、本発明の別の実施の形態によって設計されるシステムおよび方法を例示し、ここでは、第1の放射ビームが基板表面の基板側検査を実施することができ、第2の放射ビームが基板表面の大気側検査を実施することができる。図5Aは、粒子検査を本発明に従って実施するこの別の実施の形態の第一工程であって、特に反射放射ビーム306を使用して粒子104を検出する工程を例示する。図5Aは、上部表面302の第1の位置308に入射放射ビーム100を照射する放射源500を含む。次に、図3および図4で説明したように、入射放射ビームの成分100が屈折放射ビーム110として基板300にはいり、屈折放射ビーム110は、反射放射ビーム306として反射性底面304によって反射され、反射放射ビーム306は上部表面302を通り抜け、そこから粒子104に当たる。
【0036】
図5Bは、この別の実施の形態の第2工程を例示し、ここでは、対物レンズまたはプリズム(図5Bに示す)によって提供することができる光学素子502が入射放射ビーム100の光路に導入されている。光学素子502があるので、入射放射ビーム100の光路が変わり、その結果、第2の位置310で上部表面302に当たる。このため、第2の位置310では、図5Aの反射放射ビーム306による基板側検査、および図5Bの入射放射ビーム100による大気側検査を受けることになる。大気側および基板側検査技術の両方を使用して第2の位置310からの検査を通じ、大気側および基板側検査の間に受ける散乱放射200の差を分析することによって、どのタイプの欠陥粒子104であるのかを識別することができる。
【0037】
図6は、本発明の別の実施の形態による反射性底面を使用しない基板表面の基板側検査を実施する方法を示す。ここでは、屈折放射ビーム110を反射させるための反射性底面304を設けるのではなく、入射放射ビーム100を下から照射し、底面112から直接基板にぶつける。この実施の形態では、反射性底面をもう必要としないので、図1および図2の基板102を利用する。入射放射ビーム100の成分が屈折放射ビーム110として基板102にはいり、屈折放射ビーム110が基板102中を移動して、上部表面106を通り抜け、そこから粒子104に当たる。次に、上記のように、散乱放射200が、上部表面106の上側に設けられているコレクタ812(図8に示す)によって集められる。このように、ここでは反射性底面を使用せず基板側検査をする。
【0038】
図7は、放射ビームの異なる入射角に対する基板側照射と大気側照射との差を例示するチャートである。図7に示すように、入射角が30度以下および60度以上のとき、大気側放射を使用する場合より基板側放射を使用する場合のほうが、検出される散乱放射が極めて多くなる。さらに重要なことには、非常によく知られているウェハ検査システムでは70度の入射角を使用するが、この入射角で、基板側放射を使用すると、検出される散乱放射は実質的にさらに多くなる。
【0039】
図8は、本発明の実施の形態によるサンプル検査システム800の概略図である。サンプル検査システム800は、一つ以上の波長で入射放射ビーム100を照射するように作動する放射源802を含む。上述したように、放射源802として使用することができるデバイスの一つは固体レーザである。固体レーザは、他の型のレーザよりも安定していて、信頼性があり、小型であるという傾向にあるので、サンプル検査システムで固体レーザを使用することは好ましい。
【0040】
特に、YAG固体レーザを放射源802として使用することができる。YAGレーザは一般的な動作として、一つの周波数で放射を生成し、次に、ネオジムまたはエルビウムでドープされたイットリウムアルミニウムガーネット結晶中にこの放射を通すことによって、その周波数を所望の周波数へ移す。このプロセスは、高調波レーザ光の発生と呼ばれる。この結晶は、放射の周波数を2倍、3倍、または4倍にすることができる。したがって、放射が1064ナノメートル(nm)で始まる場合、高調波レーザ光の発生は、532nmの放射、355nmの放射、または266nmの放射の放射を生成することができる。別のレーザ源として、ガス、プラズマ、または他のタイプの結晶などの材料を、高調波レーザ光の発生プロセスのYAG結晶の代わりに使用することができる。本発明の他の実施の形態では、アルゴンイオンレーザを含む代替レーザ源によって放射源802を提供することができる。
【0041】
サンプル検査システム800は、入射放射ビーム100を集光してピンホールフィルタ806に通すことができるレンズ804を含むことができる。放射ビームが粒子および他の物質に当たることによって放射ビームの強度分布がランダムにばらつくが、このレンズピンホールアセンブリは、このようなばらつきからなる空間ノイズを入射放射ビーム100から取り除くために使用される空間フィルタである。このような粒子は、放射ビームの空間的コヒーレンスを低下させる傾向がある。
【0042】
入射放射ビーム100がレンズ804および空間フィルタであるフィルタ806を通った後、レンズ808によって斜照明チャネル810へ集光される。次に、入射放射ビーム100は、斜角でガラス基板300の上部表面302に当たる。一実施の形態によれば、この角度は基板表面に対する垂線から測ると約70度である。入射放射ビーム100が表面302に当たると、屈折放射ビーム110が基板300にはいり、反射性底面304で反射される。これによって反射放射ビーム306が生成され、このビームは次に、上部表面302上の粒子を検出するために使用される。
【0043】
別の実施の形態では、システム800は、レンズ808と上部表面302との間に搭載される補正プレート(図示せず)を含むことができる。補正プレートを使用すると、透明基板300によって持ち込まれうる重大な3次収差が補正され、これによって、粒子検出用の小さな照射スポットが上部表面302に生じる。
【0044】
反射放射ビーム306が上部表面302を通り抜けるときにこのビームによって生成される散乱放射200の一部が、集光システム812によって集められる。このシステムは、本実施の形態では楕円体の鏡によって提供される。また、散乱放射は集光システム812によって検出器814上に集められる。一実施の形態では、光電子増倍管によって検出器814を提供することができる。集光システム812および検出器814は、上述したケーエルエー−テンカー コーポレイションのSurfscan(登録商標)SP1TBIツールのように既知のシステムで使用されるものと同一のものにすることができる。
【0045】
本発明の一実施の形態によれば、望ましくない散乱放射成分のすべてが検出器814にはいらないようにするために、またシステム800の感度低下を防ぐために、集光システム812に視野絞りを含ませることができる。この成分には、入射放射ビーム100が上部表面302の第1の位置308に当たったときに生じる散乱放射、および/または屈折放射ビーム110が基板300の反射性底面304に当たったときに生じる散乱放射が含まれる。
【0046】
図8に示されるように、モータ818によって回転するチャック816上にガラス基板300を搭載する。搭載チャック816は、好ましくはエッジ支持チャックであり、既知のシステムで現在使用されているものと同様のものである。次に、これらのエレメントをトランスデューサ820によって直線的に移動させる。両方の動作は、入射放射ビーム100および反射放射ビーム306が表面全体を対象として表面302を渦巻状に走査することができるように、コントローラ822によって制御される。
【0047】
本発明の別の実施の形態では、集光システム812として楕円体の鏡を使用する代わりに、他の湾曲した鏡または対物レンズを使用することができる。例えば、放物面の鏡などがあるが、これに限定されるものではない。放物面の鏡は、表面302からの散乱放射を平行にして平行ビームにするものである。この平行ビームは、次にレンズによって検出器814へ集めることができる。楕円体または放物面状以外の形を有する湾曲した鏡面を使用してもよい。
【0048】
このように、本発明のシステムおよび方法を、透明なガラス基板を検査する場合について記載してきた。これまでの先進技術では、透明基板を検査する際、システムは厳しい制限を受け、集められたデータは貧弱であったが、これとは異なり、本発明のシステムおよび方法は基板側検査技術を利用するもので、この技術はこれらの制限を克服することができ、データの向上およびより大きな信号対雑音比を提供することができる。特に、基板側放射は、透明基板上の異常物を起点とし、より大きな前方散乱放射を生成する。さらに、反射放射ビームが上部表面を通り抜けるときに、このビームから入射放射ビームが相殺されるので、二つのビーム間に有害な干渉が生じない。それどころか、反射放射ビームが基板から大気へ移る際に有益な干渉が生じる。さらに、本発明のシステムおよび方法は、欠陥の識別に役立つ基板側および大気側検査の両方を提供することができる。本発明の方法は、小規模の必要な変更を加えるだけで、既存システム上で実施することもできる。
【0049】
本発明の様々な実施の形態を例示して記載してきたが、本明細書に示す発明概念から外れることなく種々の変更ができることは、当業者には明らかなことである。したがって、本発明は、添付の請求項およびそれらの均等物に基づく以外は制限を受けるものではない。
【図面の簡単な説明】
【0050】
【図1】放射ビームが基板表面に照射され、放射ビームが粒子によって散乱されると粒子が検出される基板表面を検査する方法を示す。
【図2】放射ビームが基板表面に照射され、放射ビームが粒子によって散乱されると粒子が検出される基板表面を検査する方法を示す。
【図3】基板の反射性底面からの反射光によって生成される基板側放射を使用する本発明の実施の形態による基板表面を検査する方法を示す。
【図4】基板の反射性底面からの反射光によって生成される基板側放射を使用する本発明の実施の形態による基板表面を検査する方法を示す。
【図5A】第1の放射ビームによって基板表面の基板側検査をすることができ、第2の放射ビームによって基板表面の大気側検査をすることができる本発明の別の実施の形態によるシステムおよび方法を例示する。
【図5B】第1の放射ビームによって基板表面の基板側検査をすることができ、第2の放射ビームによって基板表面の大気側検査をすることができる本発明の別の実施の形態によるシステムおよび方法を例示する。
【図6】本発明の別の実施の形態による反射性底面を使用しない基板表面の基板側検査をする方法を示す。
【図7】放射ビームの入射角が異なるときの基板側照射と大気側照射との間の差を例示するグラフである。
【図8】本発明の実施の形態によって構築される基板検査システムを例示する。

Claims (47)

  1. 透明基板の第1の表面上の異常を検出する方法であって、
    前記透明基板に反射性第2の表面を設ける工程と、
    放射ビームの少なくとも一部が前記基板を透過して前記反射性第2の表面に当たるように、前記基板の第1の表面に前記放射ビームを照射し、これによって、反射放射ビームとして前記放射ビームを反射し戻し前記基板の第1の表面を通過させる工程と、
    前記反射放射ビームから放射を検出する工程と、
    を含むことを特徴とする透明基板の第1の表面上の異常を検出する方法。
  2. 前記放射ビームと前記基板の第1の表面との間で相対的な移動をさせる工程をさらに含むことを特徴とする請求項1記載の方法。
  3. 前記反射放射ビームが前記第1の表面を通り抜けて散乱したことを前記検出された放射が示す場合に、粒子の存在を記録する工程をさらに含むことを特徴とする請求項1記載の方法。
  4. 前記反射放射ビームが前記第1の表面を通り抜ける位置に相当する前記基板の第1の表面上の位置に第2の放射ビームを照射する工程と、
    前記第2の放射ビームが前記基板と交差した後、該ビームから放射を検出する工程と、
    をさらに含むことを特徴とする請求項1記載の方法。
  5. 前記放射ビームは、光ビームを含むことを特徴とする請求項1記載の方法。
  6. 前記放射ビームは、レーザ光線を含むことを特徴とする請求項1記載の方法。
  7. 前記放射ビームは、偏光されていることを特徴とする請求項1記載の方法。
  8. 前記放射ビームは、前記第1の表面に斜めに入射することを特徴とする請求項1記載の方法。
  9. 前記放射ビームは、垂線から測ると約70度の角度で前記第1の表面に入射することを特徴とする請求項1記載の方法。
  10. 前記放射を検出する工程は、散乱放射を検出し、前記第1の表面からの反射放射を回避する工程を含むことを特徴とする請求項1記載の方法。
  11. 前記検出された放射が前記反射放射ビームによって生成される散乱放射量の増加を示す場合に、粒子の存在を記録する工程をさらに含むことを特徴とする請求項2記載の方法。
  12. 前記第2の放射ビームと前記基板の第1の表面との間で相対的な移動をさせる工程をさらに含むことを特徴とする請求項4記載の方法。
  13. 前記第2の放射ビームが前記基板の第1の表面と交差して散乱したことを前記検出された放射が示す場合に、粒子の存在を記録する工程をさらに含むことを特徴とする請求項4記載の方法。
  14. 前記反射放射ビームから検出された放射を第2の放射ビームから検出された放射と比較して、どのタイプの粒子が検出されたかを判断する工程をさらに含むことを特徴とする請求項4記載の方法。
  15. 前記放射ビームは第1の波長であり、前記第2の放射ビームは第2の波長であることを特徴とする請求項4記載の方法。
  16. 前記第2の放射ビームは、レーザ光線を含むことを特徴とする請求項4記載の方法。
  17. 前記第2の放射ビームは、前記第1の表面に斜めに入射することを特徴とする請求項4記載の方法。
  18. 前記検出された放射が前記第2の放射ビームによって生成される散乱放射量の増加を示す場合に、粒子の存在を記録する工程をさらに含むことを特徴とする請求項12記載の方法。
  19. 透明基板の第1の表面上の粒子を検出する方法であって、
    放射ビームの少なくとも一部が基板を透過して前記第1の表面を通り抜けるように、前記基板の第2の表面に前記放射ビームを照射する工程と、
    前記放射ビームが前記第1の表面を通り抜けるときに、該ビームから放射を検出する工程と、
    を含むことを特徴とする透明基板の第1の表面上の粒子を検出する方法。
  20. 複数の位置で粒子を検出するように前記放射ビームと前記基板の第2の表面との間で相対的な移動をさせる工程をさらに含むことを特徴とする請求項19記載の方法。
  21. 前記放射ビームが前記第1の表面を通り抜けて散乱したことを前記検出された放射が示す場合に、粒子の存在を記録する工程をさらに含むことを特徴とする請求項19記載の方法。
  22. 前記放射ビームは、光ビームを含むことを特徴とする請求項19記載の方法。
  23. 前記放射ビームは、レーザ光線を含むことを特徴とする請求項19記載の方法。
  24. 前記放射ビームは、偏光されていることを特徴とする請求項19記載の方法。
  25. 前記放射ビームは、前記第2の表面に斜めに入射することを特徴とする請求項19記載の方法。
  26. 前記検出された放射が前記放射ビームによって生成される散乱放射量の増加を示す場合に、粒子の存在を記録する工程をさらに含むことを特徴とする請求項20記載の方法。
  27. 透明基板の第1の表面上の粒子を検出する方法であって、
    透明基板に反射性第2の表面を設ける工程と、
    放射ビームの少なくとも一部が前記基板を透過して前記反射性第2の表面に当たるように、前記基板の第1の表面に前記放射ビームを照射し、これによって、反射放射ビームとして前記放射ビームを反射し戻し前記基板の第1の表面を通過させる工程と、
    前記反射放射ビームから放射を検出する工程と、
    前記放射ビームと前記基板の第1の表面との間で相対的な移動をさせる工程と、
    検出された散乱放射の量に増加がある場合は常に粒子の存在を記録する工程と、
    を含むことを特徴とする透明基板の第1の表面上の粒子を検出する方法。
  28. 前記反射放射ビームが前記第1の表面を通り抜ける位置に相当する前記基板の第1の表面上の位置に第2の放射ビームを照射する工程と、
    前記第2の放射ビームから放射を検出する工程と、
    前記第2の放射ビームから検出された放射の量に増加がある場合は常に粒子の存在を記録する工程と、
    をさらに含むことを特徴とする請求項27記載の方法。
  29. 前記放射ビームは第1の波長であり、前記第2の放射ビームは第2の波長であることを特徴とする請求項28記載の方法。
  30. 透明基板の第1の表面上の粒子を検出する方法であって、
    透明基板に反射性第2の表面を設ける工程と、
    放射ビームの少なくとも一部が前記基板を透過して前記反射性第2の表面に当たるように、前記基板の第1の表面に前記放射ビームを照射し、これによって、反射放射ビームとして前記放射ビームを反射し戻し前記基板の第1の表面を通過させる工程と、
    前記基板の第1の表面によって反射される放射を検出せずに、前記反射放射ビームからの放射を検出する工程と、
    を含むことを特徴とする透明基板の第1の表面上の粒子を検出する方法。
  31. 透明基板の第1の表面上の粒子を検出する方法であって、
    前記透明基板に反射性第2の表面を設ける工程と、
    放射ビームの少なくとも一部が前記基板を透過して前記反射性第2の表面に当たるように、前記基板の第1の表面に前記放射ビームを照射し、これによって、反射放射ビームとして前記放射ビームを反射し戻し前記基板の第1の表面を通過させる工程と、
    前記反射放射ビームからの反射放射を検出せずに、反射放射ビームからの散乱放射を検出する工程と、
    を含むことを特徴とする透明基板の第1の表面上の粒子を検出する方法。
  32. 透明基板の第1の表面上の粒子を検出するシステムであって、
    放射の発生が可能な放射源と、
    前記放射を集めて放射ビームにすることができる対物レンズであって、前記放射ビームの少なくとも一部が前記基板を透過して前記基板の反射性第2の表面に当たるように、前記基板の第1の表面上の第1の位置に前記放射ビームを照射し、これによって前記放射ビームを反射し戻し前記基板の第1の表面の第2の位置を通過させるように搭載される前記対物レンズと、
    前記第2の表面から反射される放射を検出するように設けられる検出器デバイスと、
    を備えることを特徴とする透明基板の第1の表面上の粒子を検出するシステム。
  33. 前記基板によって持ち込まれる収差を補正することが可能な補正プレートをさらに備えることを特徴とする請求項32記載のシステム。
  34. 放射を集めて、前記検出器上に前記放射を集光することが可能なコレクタをさらに備えることを特徴とする請求項32記載のシステム。
  35. 前記基板の第1の表面上の前記第2の位置へ前記放射ビームを再照射することが可能な光学素子をさらに備えることを特徴とする請求項32記載のシステム。
  36. 前記検出器デバイスは、前記基板の第1の表面上の前記第1の位置に前記放射ビームが当たることによって生成される散乱光が前記検出器に実質上達しないように搭載される視野絞りをさらに備えることを特徴とする請求項32記載のシステム。
  37. 前記検出器デバイスは、前記基板の反射性第2の表面に前記放射ビームが当たることによって生成される散乱光が前記検出器に実質上達しないように搭載される視野絞りをさらに備えることを特徴とする請求項32記載のシステム。
  38. 前記基板の第1の表面上の前記第1の位置および前記基板の反射性第2の表面の双方に前記放射ビームが当たることによって生成される散乱光が前記検出器に実質上達しないように搭載される視野絞りをさらに備えることを特徴とする請求項32記載のシステム。
  39. 前記放射源および前記対物レンズは、レーザ源によって提供されることを特徴とする請求項32記載のシステム。
  40. 前記検出器は、散乱放射を集めて、反射放射を回避するように搭載されることを特徴とする請求項32記載のシステム。
  41. 前記補正プレートは、斜めの透明プレートを備えることを特徴とする請求項33記載のシステム。
  42. 前記光学素子は、プリズムを備えることを特徴とする請求項35記載のシステム。
  43. 透明基板の第1の表面上の粒子を検出するシステムであって、
    放射の発生が可能な放射源と、
    前記放射を集めて放射ビームにすることができる対物レンズであって、前記放射ビームの少なくとも一部が前記基板を透過して前記第1の表面を通り抜けるように、前記基板の第2の表面上に前記放射ビームを照射するように搭載される前記対物レンズと、
    前記第1の表面からの放射を検出するように設けられる検出器デバイスと、
    を備えることを特徴とする透明基板の第1の表面上の粒子を検出するシステム。
  44. 前記基板によって持ち込まれる収差を補正することが可能な補正プレートをさらに備えることを特徴とする請求項43記載のシステム。
  45. 放射を集めて、前記検出器上に前記放射を集光することが可能なコレクタをさらに備えることを特徴とする請求項43記載のシステム。
  46. 前記放射源は、レーザ源によって提供されることを特徴とする請求項43記載のシステム。
  47. 前記補正プレートは、斜めの透明プレートを備えることを特徴とする請求項44記載のシステム。
JP2003507531A 2001-06-25 2002-06-25 透明マスク基板の検査システムおよび方法 Withdrawn JP2004531734A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/888,724 US6577389B2 (en) 2001-06-25 2001-06-25 System and methods for inspection of transparent mask substrates
PCT/US2002/020204 WO2003001185A1 (en) 2001-06-25 2002-06-25 Systems and methods for inspection of transparent mask substrates

Publications (1)

Publication Number Publication Date
JP2004531734A true JP2004531734A (ja) 2004-10-14

Family

ID=25393755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003507531A Withdrawn JP2004531734A (ja) 2001-06-25 2002-06-25 透明マスク基板の検査システムおよび方法

Country Status (3)

Country Link
US (1) US6577389B2 (ja)
JP (1) JP2004531734A (ja)
WO (1) WO2003001185A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6577389B2 (en) * 2001-06-25 2003-06-10 Kla-Tencor Technologies Corporation System and methods for inspection of transparent mask substrates
US6963395B2 (en) * 2001-07-09 2005-11-08 The Regents Of The University Of California Method and apparatus for inspecting an EUV mask blank
DE10261323B3 (de) * 2002-12-27 2004-10-07 Infineon Technologies Ag Vorrichtung und Verfahren zur Bestimmung struktureller und/oder geometrischer Eigenschaften eines Maskenblanks
US7433033B2 (en) * 2006-05-05 2008-10-07 Asml Netherlands B.V. Inspection method and apparatus using same
US7716003B1 (en) 2007-07-16 2010-05-11 Kla-Tencor Technologies Corporation Model-based measurement of semiconductor device features with feed forward use of data for dimensionality reduction
US7826072B1 (en) 2007-08-16 2010-11-02 Kla-Tencor Technologies Corporation Method for optimizing the configuration of a scatterometry measurement system
JP5551617B2 (ja) 2008-02-15 2014-07-16 マイクロドース セラピューテクス,インコーポレイテッド ヌクレオシド・テトラフォスフェート・アナローグ類の製造方法
US9448343B2 (en) 2013-03-15 2016-09-20 Kla-Tencor Corporation Segmented mirror apparatus for imaging and method of using the same
TW201516396A (zh) * 2013-10-30 2015-05-01 Applied Materials Inc 具有粒子掃描的基板處理系統及其操作方法
WO2016148855A1 (en) * 2015-03-19 2016-09-22 Applied Materials, Inc. Method and apparatus for reducing radiation induced change in semiconductor structures

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2671241B2 (ja) * 1990-12-27 1997-10-29 日立電子エンジニアリング株式会社 ガラス板の異物検出装置
JPH10221268A (ja) * 1997-02-05 1998-08-21 Advantest Corp ウェーハの表面状態検出方法および装置
US6577389B2 (en) * 2001-06-25 2003-06-10 Kla-Tencor Technologies Corporation System and methods for inspection of transparent mask substrates

Also Published As

Publication number Publication date
WO2003001185A1 (en) 2003-01-03
US20020196433A1 (en) 2002-12-26
US6577389B2 (en) 2003-06-10

Similar Documents

Publication Publication Date Title
JP4001862B2 (ja) 多重角度および多重波長照射を用いるウェハ検査システムのためのシステムおよび方法
JP6636104B2 (ja) 検出感度改善のための検査ビームの成形
US8305568B2 (en) Surface inspection method and surface inspection apparatus
US20080002194A1 (en) Optical inspection method and optical inspection apparatus
US7952701B2 (en) Surface inspection method and inspecting device using the same
TW201807400A (zh) 使用奇點光束之暗場晶圓奈米缺陷檢驗系統
JP2004531734A (ja) 透明マスク基板の検査システムおよび方法
JP4641143B2 (ja) 表面検査装置
JPH1164234A (ja) 異物検出方法、および異物検出装置
JP2003017536A (ja) パターン検査方法及び検査装置
KR20170030706A (ko) 기판 검사 장치
JP2002340811A (ja) 表面評価装置
JP4413618B2 (ja) ウエハ及びレチクルを検査するための光電子顕微鏡
JP3432273B2 (ja) 異物検査装置及び異物検査方法
TW202234021A (zh) 檢測裝置及感測光束之方法
JP2005175042A (ja) 異物検査装置および異物検査方法
JP2000208577A (ja) 半導体評価方法及び欠陥位置特定装置
JP2796906B2 (ja) 異物検査装置
JPH05273131A (ja) ルミネッセンス測定方法
WO2019169817A1 (zh) 多孔荧光陶瓷气孔率检测装置及其检测方法
JPH01143904A (ja) 薄膜検査装置
JPH05172731A (ja) 粒子検出方法
TW202026084A (zh) 雷射加工方法、半導體裝置製造方法及檢查裝置
JPH05249655A (ja) 半導体装置製造用フォトマスクの異物検査方法
KR20080006327A (ko) 웨이퍼 표면 검사 방법 및 이를 수행하기 위한 장치

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050906