WO2019168107A1 - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
WO2019168107A1
WO2019168107A1 PCT/JP2019/007854 JP2019007854W WO2019168107A1 WO 2019168107 A1 WO2019168107 A1 WO 2019168107A1 JP 2019007854 W JP2019007854 W JP 2019007854W WO 2019168107 A1 WO2019168107 A1 WO 2019168107A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
polyolefin resin
resin composition
resin
modified
Prior art date
Application number
PCT/JP2019/007854
Other languages
English (en)
French (fr)
Inventor
勝 神埜
阿部 仁美
早川 潤一
実 矢田
高本 直輔
Original Assignee
日本製紙株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製紙株式会社 filed Critical 日本製紙株式会社
Priority to JP2020503616A priority Critical patent/JP7219751B2/ja
Priority to US16/971,899 priority patent/US20210102054A1/en
Priority to CN201980016289.7A priority patent/CN111770962A/zh
Publication of WO2019168107A1 publication Critical patent/WO2019168107A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/002Priming paints
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1808C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/02Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having two or three carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F285/00Macromolecular compounds obtained by polymerising monomers on to preformed graft polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • C08L23/147Copolymers of propene with monomers containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/02Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers not modified by chemical after-treatment
    • C09D123/10Homopolymers or copolymers of propene
    • C09D123/14Copolymers of propene
    • C09D123/147Copolymers of propene with monomers containing other atoms than carbon or hydrogen atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D123/00Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers
    • C09D123/26Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment
    • C09D123/28Coating compositions based on homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Coating compositions based on derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/06Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters

Definitions

  • the present invention relates to a resin composition.
  • Polyolefin substrates such as polypropylene have excellent performance and are inexpensive. For this reason, polyolefin base materials are widely used for plastic molded parts, various films for food packaging materials, and the like. When a polyolefin base material is used, the surface of the polyolefin base material is often printed or painted for the purpose of surface protection or aesthetic improvement.
  • the polyolefin substrate is a nonpolar substrate, has low surface free energy, and has crystallinity. Therefore, the polyolefin base material has a problem that ink and paint are difficult to adhere. In view of such a problem, a technique for improving adhesion to a polyolefin base material by adding a chlorinated polyolefin resin to ink or paint during printing or painting is widely used.
  • a plastic molded product such as a polyolefin base material is often used as a member attached to an automobile outer plate part or a member of home appliances.
  • a primer containing a chlorinated polyolefin resin or the like is applied to a plastic molded product before the top coating for the purpose of improving the adhesion between the top coating film and the molded product.
  • the coating method described in Patent Document 1 coats a primer not only on a plastic molded product but also on an automobile outer plate that is a metal. Therefore, when a coating film having a certain thickness is formed on the automobile outer plate portion, the top coating layer is reduced by the amount corresponding to the primer layer.
  • the primer layer is inferior in resistance to chipping of the coating film by flipping stones (chipping resistance), so that there is a problem that the chipping resistance of the entire coated portion is lowered.
  • electrodeposition coating can be cited as a paint that is frequently used for automobile outer plate parts. Since the electrodeposition coating process utilizes the difference in polarity between the object to be coated and the paint, the paint used for electrodeposition coating needs to have a relatively high polarity. For this reason, the electrodeposited surface is highly polar and it is desired to increase the amount of the polar functional group of the primer resin. However, generally, when the amount of the polar functional group is increased, there is a problem that the solution properties are deteriorated and the practical use becomes difficult.
  • An object of the present invention is to provide a resin composition that is a raw material of a primer that can form a coating film that is excellent in solution stability, adhesion to a nonpolar substrate, and excellent in chipping resistance.
  • the present inventors have derived from a (meth) acrylate ester having a functional group at least at the terminal and a number average molecular weight of 1,000 to 20,000 in the modified polyolefin resin. It has been found that the above-mentioned problems can be solved by mixing a polymer containing the structural unit of the present invention, and the present invention has been completed. That is, the present inventors provide the following [1] to [8].
  • [1] A resin composition containing the following component A and the following component B.
  • Component A Modified polyolefin resin.
  • Component B a structural unit derived from a (meth) acrylic acid ester represented by the following general formula (1) having a functional group at least at the terminal and having a number average molecular weight of 1,000 to 20,000 (i) ).
  • (1): CH 2 C (R 1 ) COOR 2 (In the general formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18.)
  • [2] The resin composition according to [1], wherein the component A is a modified polyolefin resin modified with the following component C.
  • Component C (meth) acrylic acid ester
  • the structural unit (i) is derived from a (meth) acrylic acid ester having 4 to 12 carbon atoms in the compound represented by the general formula (1)
  • [4] The resin composition according to any one of [1] to [3], wherein the component C is a (meth) acrylic acid ester having 4 to 12 carbon atoms.
  • [5] The resin composition according to any one of [1] to [4], wherein the component A is a chlorinated polyolefin resin.
  • a resin composition that is a raw material of a primer that can form a coating film that is excellent in solution stability, adhesion to a nonpolar substrate, and excellent in chipping resistance.
  • (meth) acrylic acid is a generic term for acrylic acid and methacrylic acid
  • (meth) acrylic modification is a generic term for acrylic modification and methacrylic modification.
  • the resin composition of the present invention comprises component A: a modified polyolefin resin, component B: a functional group at least at the terminal, and a number average molecular weight of 1,000 to 20,000, represented by general formula (1)
  • the polymer containing the structural unit (i) derived from the (meth) acrylic acid ester represented is contained.
  • the resin composition of the present invention may be a resin composition in which component B is mixed with component A. After mixing component B with component A, it is further modified with a modifier (for example, with chlorine and / or acid). A modified resin composition may be used.
  • the resin composition of the present invention contains component A, it provides a resin composition that is a raw material of a primer that can form a coating film that is excellent in adhesion to a nonpolar substrate and also excellent in chipping resistance. Can do. Moreover, since the resin composition of this invention contains the component B, it is excellent in solution stability.
  • the resin composition of the present invention preferably uses a chlorinated resin.
  • chlorinated resin includes a resin in which component A is chlorinated, a resin in which component B is chlorinated, and a resin in which component A and component B are chlorinated.
  • the resin composition of the present invention is more preferably a resin in which the component (A) is chlorinated.
  • Component A is a modified polyolefin resin. Since the resin composition of the present invention contains a modified polyolefin resin, a resin composition serving as a raw material for a primer that can form a coating film that has excellent adhesion to a nonpolar substrate and excellent chipping resistance. Can be provided.
  • the polyolefin resin may be an olefin polymer.
  • the polyolefin resin is preferably a polyolefin resin using a Ziegler-Natta catalyst or a metallocene catalyst as a polymerization catalyst, and a polypropylene resin, or propylene and ⁇ , using a Ziegler-Natta catalyst or a metallocene catalyst as a polymerization catalyst.
  • polystyrene resin obtained by copolymerizing olefins (eg, ethylene, butene, 3-methyl-1-butene, 3-methyl-1-heptene) is more preferable, and a propylene-based random copolymer using a metallocene catalyst as a polymerization catalyst.
  • olefins eg, ethylene, butene, 3-methyl-1-butene, 3-methyl-1-heptene
  • a propylene-based random copolymer using a metallocene catalyst as a polymerization catalyst.
  • Polymers are more preferred, and polypropylene, ethylene-propylene copolymers, propylene-butene copolymers, or ethylene-propylene-butene copolymers using a metallocene catalyst as the polymerization catalyst are even more preferred.
  • the resulting polyolefin resin has a narrow molecular weight distribution, excellent random copolymerizability, a narrow composition distribution, and a wide range of comonomer that can be copolymerized.
  • the propylene-based random copolymer refers to a polyolefin resin obtained by random copolymerization of polypropylene, propylene, and ⁇ -olefin, such as polypropylene, ethylene-propylene copolymer, propylene-butene copolymer, Examples thereof include an ethylene-propylene-diene copolymer and an ethylene-propylene-butene copolymer.
  • the (co) polymer constituting the polyolefin resin may be a single type or a combination of a plurality of (co) polymers.
  • a known metallocene catalyst can be used.
  • the catalyst obtained by combining the following component (1) and component (2), and also a component (3) as needed is mentioned.
  • the metallocene catalyst is preferably a catalyst obtained by combining the following component (1) and component (2) and, if necessary, component (3).
  • Component (1) a metallocene complex that is a transition metal compound of Groups 4 to 6 in the periodic table having at least one conjugated five-membered ring ligand.
  • Component (2) Ion exchange layered silicate.
  • Component (3) an organoaluminum compound.
  • the structure of the polyolefin resin may be any of an isotactic structure, an atactic structure, a syndiotactic structure and the like that can be taken by a normal polymer compound.
  • a polyolefin resin having an isotactic structure that can be used when a metallocene catalyst is used is preferable.
  • the propylene constituent unit content is preferably 60% by weight or more, more preferably 70% by weight or more, and further preferably 80% by weight or more.
  • adhesion adhesion to the propylene substrate can be improved.
  • the propylene constituent unit content of the polyolefin resin may be a raw material usage ratio or a value calculated by NMR analysis. However, these values usually match.
  • Modification Component A is a modified polyolefin resin.
  • modification include known modifications such as chlorination; epoxidation; hydroxylation; anhydrous carboxylic oxidation; carboxylic oxidation; (meth) acryl modification.
  • the modified polyolefin resin can be prepared by modifying the polyolefin resin using a known method.
  • the modified polyolefin resin is preferably a modified polyolefin resin modified with Component C: (meth) acrylic acid ester, more preferably a modified polyolefin resin modified with (meth) acrylic acid ester having 4 to 12 carbon atoms.
  • (meth) acrylic acid esters include 2-ethylhexyl (meth) acrylate, methyl (meth) acrylate, cyclohexyl (meth) acrylate, butyl (meth) acrylate, and 2-hydroxyethyl (meth) acrylate. Is mentioned.
  • denaturation operation using the (meth) acrylic acid ester of polyolefin resin is mentioned later.
  • the weight ratio of resin to component C is preferably 10/90 to 90/10, more preferably 30/70 to 80/20, and even more preferably 50/50 to 70/30. It is.
  • the weight ratio of the resin to the component C can be calculated by the amount of the component C used relative to the resin.
  • the “resin” used herein refers to a resin used for a modification reaction with Component C, such as a polyolefin resin itself or an acid-modified chlorinated polyolefin resin.
  • the modified polyolefin resin may be an acid-modified product obtained by modifying a polyolefin resin with a carboxylic acid.
  • the carboxylic acid is not particularly limited.
  • ⁇ , ⁇ -unsaturated carboxylic acid and derivatives of ⁇ , ⁇ -unsaturated carboxylic acid eg, maleic acid, maleic anhydride, fumaric acid, citraconic acid, citraconic anhydride
  • the carboxylic acid is preferably an ⁇ , ⁇ -unsaturated carboxylic acid anhydride or (meth) acrylic acid, more preferably maleic anhydride or (meth) acrylic acid.
  • the acid content is preferably 1.0 to 20% by weight, more preferably 2.0 to 15% by weight, still more preferably 2.5 to 10% by weight. It is.
  • the acid content can be measured by a known method. For example, it can be determined by an alkali titration method.
  • the modified polyolefin resin may be a chlorinated polyolefin resin obtained by chlorinating a polyolefin resin.
  • the chlorine content is preferably 10% by weight or more, and more preferably 15% by weight or more.
  • the resulting modified polyolefin resin has excellent dispersibility in various solvents including alcohols such as ethanol and isopropyl alcohol.
  • the upper limit of the chlorine content is preferably 40% by weight or less.
  • the resulting modified polyolefin resin has excellent adhesion to a polyolefin substrate. If the chlorine content is within this range, the polarity of the modified polyolefin resin increases, and it is presumed that the modified polyolefin resin tends to exhibit a linear structure due to steric repulsion between chlorine atoms. Therefore, it is estimated that the resin composition will be excellent in dispersibility in various organic solvents and adhesion to the substrate.
  • the chlorine content can be measured based on JIS-K7229 (1995).
  • the modified polyolefin resin may be a modified polyolefin resin obtained by modifying a polyolefin resin with a plurality of types of modifying materials.
  • a modified polyolefin resin for example, a modified polyolefin resin subjected to at least two modification treatments of the above (meth) acryl modification, carboxyl oxidation, and chlorination can be given.
  • the modified polyolefin resin is a modified polyolefin resin modified with a plurality of types of modified materials, the plurality of modifications may be performed at once or separately.
  • a case will be described in which after modification with an acid, chlorination treatment is performed, and (meth) acryl modification is further performed.
  • the polyolefin resin is modified with acid.
  • a method of modifying the polyolefin resin with an acid a known method can be used.
  • a method of adding an acid and a radical reaction initiator for melting and modifying a polyolefin resin can be mentioned.
  • the reaction apparatus is not particularly limited, and for example, the modification reaction may be performed using an extruder.
  • the acid-modified polyolefin resin is chlorinated.
  • a chlorination method a known method can be used. For example, after dissolving the acid-modified polyolefin resin in a chlorine-based solvent such as chloroform, a method of introducing chlorine gas and introducing chlorine can be used. More specifically, the chlorination is carried out by dispersing or dissolving the acid-modified polyolefin resin in a medium such as water, carbon tetrachloride, or chloroform, and in the presence of a catalyst or under irradiation with ultraviolet light, under pressure or atmospheric pressure, 50 to This can be done by blowing chlorine gas in a temperature range of 140 ° C.
  • the chlorinated solvent can usually be distilled off under reduced pressure, or may be replaced with another organic solvent.
  • acid-modified and chlorinated acid-modified chlorinated polyolefin resin is (meth) acryl-modified.
  • the (meth) acryl modification can be prepared, for example, by copolymerizing component C with an acid-modified chlorinated polyolefin resin.
  • Component C may be added sequentially to the acid-modified chlorinated polyolefin resin or may be added at once. Further, monomers other than Component C may be added to the acid-modified chlorinated polyolefin resin.
  • the copolymerization can be performed by a known method such as a melting method or a solution method.
  • the melting method is advantageous in that the operation is simple and the reaction time is short.
  • the solution method there can be obtained a modified polyolefin resin which has few side reactions and is uniformly graft-polymerized.
  • the acid-modified chlorinated polyolefin resin is heated and melted (heated and melted) in the presence of a radical reaction initiator to react with the component C.
  • Component C may be in the form of a monomer before polymerization or in the form of a polymer after polymerization.
  • the temperature for heating and melting may be not lower than the melting point of the acid-modified chlorinated polyolefin resin, and is preferably not lower than the melting point of the acid-modified chlorinated polyolefin resin and not higher than 300 ° C.
  • equipment such as a Banbury mixer, a kneader, and an extruder can be used.
  • the acid-modified chlorinated polyolefin resin is dissolved in an organic solvent, and then reacted with the component C by heating and stirring in the presence of a radical reaction initiator.
  • Component C may be in the form of a monomer before polymerization or in the form of a polymer after polymerization.
  • an aromatic hydrocarbon solvent such as toluene or xylene is preferably used.
  • the temperature during the reaction is preferably 100 to 180 ° C.
  • Examples of the radical reaction initiator used in the melting method and the solution method include organic peroxide compounds and azonitriles.
  • Examples of the organic peroxide compounds include di-tert-butyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide, benzoyl peroxide, dilauryl peroxide, 2,5-dimethyl-2,5- Di (tert-butylperoxy) hexane, cumene hydroperoxide, tert-butyl hydroperoxide, 1,1-bis (tert-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (tert -Butylperoxy) -cyclohexane, cyclohexanone peroxide, tert-butylperoxybenzoate, tert-butylperoxyisobutyrate, tert-butylperoxy-3,5,5-trimethylhexanoate,
  • the acid-modified chlorinated polyolefin resin may be modified in a form containing an optional stabilizer.
  • optional stabilizers for example, epoxy compounds; metal soaps such as calcium stearate and lead stearate, which are used as stabilizers for polyvinyl chloride resins; organometallic compounds such as dibutyltin dilaurate and dibutylmalate Hydrotalcite compounds.
  • the epoxy compound is not particularly limited, but is preferably an epoxy compound that is compatible with a resin that has been modified such as chlorination.
  • an epoxy compound having an epoxy equivalent of about 100 to 500 and having one or more epoxy groups per molecule can be mentioned.
  • an epoxy compound for example, an epoxidized vegetable oil (epoxidized soybean oil, epoxidized linseed oil, etc.) obtained by epoxidizing a vegetable oil having a natural unsaturated group with a peracid such as peracetic acid; oleic acid , Epoxidized fatty acid esters obtained by epoxidizing unsaturated fatty acids such as tall oil fatty acid and soybean oil fatty acid; epoxidized alicyclic compounds such as epoxidized tetrahydrophthalate; bisphenol A or polyhydric alcohol and epichlorohydrin Obtained ethers such as bisphenol A glycidyl ether, ethylene glycol glycidyl ether, propylene glycol glycidyl ether, glycerol polyglycidyl ether, sorbitol polyglycidyl
  • the weight ratio of the stabilizer to the acid-modified chlorinated polyolefin resin is preferably 1 to 20% by weight (in terms of solid content).
  • the lower limit of the weight average molecular weight (Mw) of component A is preferably 20,000 or more.
  • the weight average molecular weight is 20,000 or more, the cohesive force of the modified polyolefin resin is sufficient, and the resin composition has excellent adhesion to the substrate.
  • the upper limit becomes like this.
  • it is 200,000 or less.
  • the weight average molecular weight is 200,000 or less, the compatibility with other resins different from the component A contained in the coating material is good, and the resin composition has excellent adhesion to the substrate.
  • One embodiment of the weight average molecular weight of component A is preferably 20,000 to 200,000.
  • the weight average molecular weight can be obtained from a standard polystyrene calibration curve by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the weight average molecular weight of component A usually coincides with the weight average molecular weight measured for the chlorinated polyolefin resin before the modification operation.
  • Component B is a structural unit derived from a (meth) acrylic acid ester represented by the general formula (1) having a functional group at least at the terminal and having a number average molecular weight of 1,000 to 20,000 (i) ). Since the resin composition of this invention contains the component B, it is excellent in solution stability.
  • (1): CH 2 C (R 1 ) COOR 2 (In general formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents a group represented by —C n H 2n + 1 , and n represents an integer of 1 to 18.)
  • the structural unit derived from a certain monomer means a structural unit obtained when a certain monomer is used for the polymerization reaction.
  • the (meth) acrylic acid ester represented by the general formula (1) has 4 to 12 carbon atoms, a coating film having better chipping resistance can be formed when a primer made of a resin composition is used. Therefore, it is preferable.
  • Component B contains the structural unit (i) derived from the (meth) acrylic acid ester represented by the general formula (1).
  • Component B is a structural unit (ii) derived from (meth) acrylic acid ester having 4 to 12 carbon atoms in the compound represented by general formula (1) (hereinafter also referred to as structural unit (ii))
  • the content of the structural unit (ii) in Component B is preferably 40% by weight or more, and more preferably 60% by weight or more.
  • the primer which consists of a resin composition comes to hold
  • the content of the structural unit (ii) is a (meth) acrylic acid ester represented by the general formula (1) with respect to the total monomer weight used in preparing the polymer, and carbon It usually corresponds to the weight percentage of monomers having 4 to 12 atoms.
  • the structural unit (i) may be a single structural unit or two or more structural units.
  • Component B may include a structural unit other than the structural unit (i) (hereinafter also referred to as “other structural unit”).
  • Other structural units include, for example, structural units derived from ⁇ , ⁇ -unsaturated carboxylic acids (eg, structural units derived from (meth) acrylic acid), ⁇ , ⁇ -unsaturated units other than structural unit (i). Examples include a structural unit derived from a saturated carboxylic acid ester (eg, (meth) acrylic acid hydroxyalkyl ester) and a structural unit derived from an aromatic compound having an unsaturated bond (eg, divinylbenzene).
  • Examples of the functional group possessed by the polymer include a carboxy group, a hydroxyl group, an alkoxysilyl group, an amide group, and a thiol group.
  • the polymer may have only one kind of these functional groups or may have two or more kinds. By having these functional groups, the affinity with the electrodeposition coating surface is increased, and the adhesion force when the resin composition is used is improved.
  • a known method can be used as a method for introducing a functional group into at least the terminal of the polymer.
  • a method of polymerizing (meth) acrylate using a thiol having at least one functional group in the molecule and an appropriate radical initiator, or a reversible addition-cleavage chain using a reagent having a functional group The method of performing transfer (RAFT) polymerization is mentioned.
  • RAFT transfer
  • a method for introducing a carboxy group as a functional group will be described.
  • a thiol having at least one carboxy group in the molecule and a suitable radical initiator are used, a thiol-ene reaction proceeds between the thiol having a carboxy group and a (meth) acrylate ester, A carboxy group derived from thiols is introduced at the end of the (meth) acrylic acid ester polymer.
  • thiols having at least one functional group in the molecule include ⁇ -mercaptopropionic acid (thiolactic acid), ⁇ -mercaptopropionic acid, 2,3-dimercaptopropionic acid, thioglycolic acid, and o-mercaptobenzoic acid.
  • thiosalicylic acid m-mercaptobenzoic acid, p-mercaptobenzoic acid, thiomalic acid, thiol carbonic acid, o-thiocoumaric acid, ⁇ -mercaptobutanoic acid (mercaptobutyric acid), ⁇ -mercaptobutanoic acid, ⁇ -mercaptobutanoic acid Carboxyl group-containing thiols such as thiol histidine and 11-mercaptoundecanoic acid; mercaptomethanol, 1-mercaptoethanol, 1-mercaptopropanol, 1-mercapto-2,3-propanediol, 1-mercapto-2-butanol, 1 -Mercapto-2,3- Butanediol, 1-mercapto-3,4-butanediol, 1-mercapto-3,4,4'-butanetriol, 2-mercapto-3-butanol, 2-mercapto-3,4-butaned
  • Examples of the radical reaction initiator used together with thiols having at least one functional group in the molecule include organic peroxide compounds and azonitriles.
  • Examples of the organic peroxide compounds include di-tert-butyl peroxide, dicumyl peroxide, tert-butyl cumyl peroxide, benzoyl peroxide, dilauryl peroxide, 2,5-dimethyl-2,5- Di (tert-butylperoxy) hexane, cumene hydroperoxide, tert-butyl hydroperoxide, 1,1-bis (tert-butylperoxy) -3,5,5-trimethylcyclohexane, 1,1-bis (tert -Butylperoxy) -cyclohexane, cyclohexanone peroxide, tert-butylperoxybenzoate, tert-butylperoxyisobutyrate, tert-butylperoxy-3,5,5-
  • Component B is preferably a polymer having functional groups introduced at both ends.
  • a method for introducing a functional group into both ends of the polymer a known method can be used. For example, a (meth) acrylic acid ester using an initiator having a functional group and a (meth) acrylic acid ester having an unsaturated carbon-carbon double bond (hereinafter also referred to as “functional group-containing (meth) acrylic acid ester”). And a method of performing reversible addition-fragmentation chain transfer (RAFT) polymerization using a reagent having a functional group.
  • RAFT reversible addition-fragmentation chain transfer
  • the number average molecular weight (Mn) of Component B is 1,000 to 20,000, preferably 1,500 to 15,000, more preferably 2,000 to 10,000.
  • Mn number average molecular weight
  • the size of the component B molecule is small. Therefore, the amount of entropy change when mixed with Component A is increased, and the compatibility is improved. If the molecular weight of component B is greater than 20,000, the above effects may not be obtained. On the other hand, if the molecular weight of component B is less than 1,000, the adhesion to the substrate may be reduced.
  • the weight ratio of component A to component B in the resin composition is preferably 90/10 to 10/90, more preferably 90/10 to 20/80, and still more preferably 90 / 10 to 50/50.
  • the resin composition of the present invention may contain other optional components in addition to Component A and Component B.
  • a stabilizer for suppressing detachment of chlorine can be mentioned.
  • Stabilizers include, for example, epoxy compounds; metal soaps such as calcium stearate and lead stearate used as stabilizers for polyvinyl chloride resins; organometallic compounds such as dibutyltin dilaurate and dibutylmalate; hydro Examples include talcite compounds.
  • the stabilizer is preferably an epoxy compound.
  • the epoxy compound include an epoxy compound exemplified as an optional stabilizer that may be included in the modification of the polyolefin resin or the chlorinated polyolefin resin. Among these, an epoxy compound that is compatible with the chlorinated modified polyolefin resin is preferable. Only 1 type may be used for a stabilizer and it may use 2 or more types together.
  • the resin composition may be in the form of a dispersion resin composition containing a dispersion medium together with component A and component B.
  • the “dispersion medium” includes a solvent capable of dissolving the modified polyolefin resin
  • the “dispersion resin composition” may be a solution of the resin composition.
  • dispersion medium examples include aromatic hydrocarbons such as toluene and xylene; alicyclic hydrocarbons such as cyclohexane and methylcyclohexane; aliphatic hydrocarbons such as hexane, heptane, and octane; acetone, methyl ethyl ketone, and methyl isobutyl ketone.
  • Ketones such as methyl acetate, ethyl acetate, n-propyl acetate, isopropyl acetate, and n-butyl acetate; alcohols such as methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, and isobutyl alcohol: ethylene glycol, Examples include glycols such as ethyl cellosolve and butyl cellosolve; and water.
  • the dispersion medium may be a single type or a combination of two or more types.
  • the resin composition of the present invention can be used as a metal and / or resin adhesive, primer, paint binder, ink binder, and the like. Especially, since the resin composition of this invention can provide the primer which has favorable adhesiveness and can form the coating film which is excellent in chipping resistance, it is useful as a binder for automobile paints and a primer for automobile paints.
  • the present invention will be described in detail with reference to examples.
  • the following examples are for explaining the present invention preferably and are not intended to limit the present invention.
  • the measuring methods such as a physical-property value, are the measuring methods described above.
  • parts are based on weight unless otherwise specified.
  • Chip resistance test The painted plate was cooled in a low temperature room cooled to -20 ° C. A painted plate cooled to an angle of 90 ° from the horizontal is fixed vertically to the test plate mounting part of the stepping stone tester (Suga Test Instruments Co., Ltd., model JA-400), and 100g of No. 7 crushed stone with air pressure of 5kgf / cm 2 was sprayed for 5 seconds to scratch the test plate. Thereafter, the painted plate was washed with water and dried, and a cellophane adhesive tape was adhered to the coated surface. The film was peeled off by holding one end of the tape, the coating film lifted by chipping was removed, and the degree of peeling scratches was evaluated according to the following criteria.
  • the evaluation of peeling scratches was performed within a frame of 70 mm length x 70 mm width of the impacted part.
  • the peeled area ratio per evaluation area is 0.0% or more and less than 0.7%.
  • the peeled area ratio per evaluation area is 0.7% or more and less than 1.2%.
  • the peeled area ratio per evaluation area is 1.2% or more and less than 3.5%.
  • D Inferior.
  • the peeled area ratio per evaluation area is 3.5% or more.
  • an epoxy compound (Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.) is added as a stabilizer, and supplied to a vented extruder equipped with a solvent removal suction part on the screw shaft part. Solvent was then solidified to obtain an acid-modified chlorinated polyolefin resin as an acid-modified chlorinated polypropylene resin.
  • the obtained acid-modified chlorinated polyolefin resin had a weight average molecular weight of 110,000, a maleic anhydride content of 4% by weight, and a chlorine content of 17% by weight.
  • the reaction was carried out to obtain a modified polyolefin resin (A-1).
  • the weight average molecular weight of the modified polyolefin resin (A-1) modified with a low molecular weight compound can be said to be substantially the same as the weight average molecular weight of the acid-modified chlorinated polyolefin resin.
  • an epoxy compound (Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.) is added as a stabilizer, and supplied to a vented extruder equipped with a solvent removal suction part on the screw shaft part. Solvent was then solidified to obtain an acid-modified chlorinated polyolefin resin as an acid-modified chlorinated polypropylene resin.
  • the obtained acid-modified chlorinated polyolefin resin had a weight average molecular weight of 200,000, a maleic anhydride content of 10% by weight, and a chlorine content of 40% by weight.
  • the reaction was carried out to obtain a modified polyolefin resin (A-2).
  • the weight average molecular weight of the modified polyolefin resin (A-2) modified with a low molecular weight compound can be said to be substantially the same as the weight average molecular weight of the acid-modified chlorinated polyolefin resin.
  • an epoxy compound (Eposizer W-100EL, manufactured by Dainippon Ink & Chemicals, Inc.) is added as a stabilizer, and supplied to a vented extruder equipped with a solvent removal suction part on the screw shaft part. Solvent was then solidified to obtain an acid-modified chlorinated polyolefin resin as an acid-modified chlorinated polypropylene resin.
  • the obtained acid-modified chlorinated polyolefin resin had a weight average molecular weight of 110,000, a maleic anhydride content of 4% by weight, and a chlorine content of 17% by weight.
  • Table 1 lists the (modified) polyolefin resins produced in Production Examples 1 to 4.
  • Example 1 Resin composition
  • the prepared dispersion resin composition was evaluated for the stability of the resin dispersion and the stability of the paint, and a test piece was prepared, and an adhesion test, a gasohol resistance test, and a chipping test were performed. The evaluation results are also shown in Table 3.
  • Examples 2 to 3 and Comparative Examples 1 to 3 Resin compositions
  • a dispersed resin composition was prepared in the same manner as in Example 1 except that the components listed in Table 3 were used.
  • the prepared dispersion resin composition was evaluated for the stability of the resin dispersion and the stability of the paint, and a test piece was prepared, and an adhesion test, a gasohol resistance test, and a chipping test were performed. The evaluation results are also shown in Table 3.
  • Example 4 Resin composition
  • 20 parts of the polymer (B-1) produced in Production Example 5 to 80 parts of the modified polyolefin resin (A-3) produced in Production Example 3, 100 parts of the resin composition was glass-lined.
  • the reaction kettle was charged. After adding chloroform and fully dissolving the resin at a temperature of 110 ° C. under a pressure of 2 kgf / cm 2 , 2 parts of azobisisobutyronitrile as a radical generator was added, and the pressure in the kettle was adjusted to 2 kgf / cm 2 . Chlorination was performed by blowing chlorine gas while controlling.
  • the prepared dispersion resin composition was evaluated for the stability of the resin dispersion and the paint stability, and a test piece was prepared and subjected to an adhesion test, a gasohol resistance test, and a chipping test.
  • the evaluation results are also shown in Table 3.
  • Example 5 Resin composition
  • a dispersed resin composition was prepared in the same manner as in Example 1 except that the components listed in Table 3 were used.
  • the prepared dispersion resin composition was evaluated for the stability of the resin dispersion and the stability of the paint, and a test piece was prepared, and an adhesion test, a gasohol resistance test, and a chipping test were performed. The evaluation results are also shown in Table 3.
  • test piece was prepared as follows.
  • the dispersions obtained in Examples and Comparative Examples were adjusted to a solid content concentration of 30% by weight, coated on a polypropylene substrate, and dried at 80 ° C. for 5 minutes. Thereafter, a two-component urethane paint was applied and dried at 80 ° C. for 30 minutes to prepare a test piece (painted plate).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Paints Or Removers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

溶液安定性及び非極性基材への付着性に優れ、かつ耐チッピング性にも優れる塗膜を形成し得る、プライマーの原料となる樹脂組成物を提供することを課題とし、成分A:変性ポリオレフィン樹脂、及び成分B:少なくとも末端に官能基を有し、かつ、数平均分子量が1,000~20,000である、下記一般式(1)で表される(メタ)アクリル酸エステル由来の構成単位(i)を含む重合体、を含有する樹脂組成物である。 (1):CH=C(R)COOR (一般式(1)中、Rは、水素原子又はメチル基を表し、Rは、-C2n+1で表される基を表し、nは、1~18の整数を表す。)

Description

樹脂組成物
 本発明は、樹脂組成物に関する。
 ポリプロピレン等のポリオレフィン基材は、優れた性能を持ち安価である。そのため、ポリオレフィン基材は、プラスチック成型部品や、食品包装材の各種フィルム等に広く用いられている。ポリオレフィン基材を用いる場合、表面保護や美観の改善を目的として、ポリオレフィン基材の表面に印刷や塗装を施すことが多い。
 ポリオレフィン基材は、非極性基材であり、表面自由エネルギーが低く、更には結晶性を有する。そのため、ポリオレフィン基材は、インキや塗料が付着しにくいという問題がある。斯かる問題に鑑み、印刷や塗装等の際に、塩素化ポリオレフィン樹脂をインキや塗料に添加して、ポリオレフィン基材への付着性を向上させる手法が広く用いられている。
 自動車外板部に付属する部材、家電製品等の部材としても、ポリオレフィン基材等のプラスチック成型品が多く使用されている。通常、上塗り塗膜と成型品との付着性を向上させる目的で、塩素化ポリオレフィン樹脂等を含有するプライマーを、上塗り塗装前にプラスチック成形品に塗装している。
 近年、自動車外板部の塗装において、プラスチック成型品を自動車外板部と一体化させた後、塗装を行う方法が提案されている(例えば、特許文献1参照)。かかる塗装方法は、塗装ラインを一元化できるため、使用する塗料量の低減、ひいてはコストの低減が期待される。
特開2012-213692号公報
 特許文献1に記載の塗装方法は、プラスチック成型品のみならず金属である自動車外板部にもプライマーを塗装する。そのため、自動車外板部に一定の厚さの塗膜を形成する場合に、プライマー層の分だけ上塗り層が減少する。また、プライマー層は、跳ね石による塗膜剥がれへの耐性(耐チッピング性)が劣るので、塗装部分全体の耐チッピング性が低下するという問題がある。
 また、自動車外板部に多用される塗装として、電着塗装が挙げられる。電着塗装処理は、被塗物と塗料間の極性差を利用するので、電着塗装に用いる塗料は、極性が比較的高い必要がある。そのため、電着塗装面は、高極性となり、プライマー樹脂の極性の官能基量を多くすることが望まれる。しかしながら、一般に、極性の官能基量を多くすると、溶液性状が悪化し、実用化が難しくなるという問題点がある。
 本発明の課題は、溶液安定性及び非極性基材への付着性に優れ、かつ耐チッピング性にも優れる塗膜を形成し得る、プライマーの原料となる樹脂組成物を提供することである。
 本発明者らは、上記課題について鋭意検討した結果、変性ポリオレフィン樹脂に、少なくとも末端に官能基を有し、かつ、数平均分子量が1,000~20,000である(メタ)アクリル酸エステル由来の構成単位を含む重合体を混合することにより、上記の課題を解決できることを見出し、本発明を完成するに至った。
 即ち、本発明者らは、下記の〔1〕~〔8〕を提供する。
〔1〕下記成分A及び下記成分Bを含有する樹脂組成物。
 成分A:変性ポリオレフィン樹脂。
 成分B:少なくとも末端に官能基を有し、かつ、数平均分子量が1,000~20,000である、下記一般式(1)で表される(メタ)アクリル酸エステル由来の構成単位(i)を含む重合体。
(1):CH=C(R)COOR
 (前記一般式(1)中、Rは、水素原子又はメチル基を表し、Rは、-C2n+1で表される基を表し、nは、1~18の整数を表す。)
〔2〕前記成分Aが、下記成分Cにより変性された変性ポリオレフィン樹脂である、上記〔1〕に記載の樹脂組成物。
 成分C:(メタ)アクリル酸エステル
〔3〕前記構成単位(i)が、前記一般式(1)で表される化合物中の炭素原子数が4~12である(メタ)アクリル酸エステル由来の構成単位(i-i)を40%以上含む、上記〔1〕又は〔2〕に記載の樹脂組成物。
〔4〕前記成分Cが、炭素原子数が4~12の(メタ)アクリル酸エステルである、上記〔1〕~〔3〕のいずれかに記載の樹脂組成物。
〔5〕前記成分Aが、塩素化ポリオレフィン樹脂である、上記〔1〕~〔4〕のいずれかに記載の樹脂組成物。
〔6〕前記成分Aの重量平均分子量が、20,000~200,000である、上記〔1〕~〔5〕のいずれかに記載の樹脂組成物。
〔7〕前記末端の官能基が、カルボキシ基である上記〔1〕~〔6〕のいずれかに記載の樹脂組成物。
〔8〕上記〔1〕~〔7〕のいずれかに記載の樹脂組成物からなるプライマー。
 本発明によれば、溶液安定性及び非極性基材への付着性に優れ、かつ耐チッピング性にも優れる塗膜を形成し得る、プライマーの原料となる樹脂組成物を提供することができる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。
 なお、本明細書中、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の総称をいい、「(メタ)アクリル変性」とは、アクリル変性とメタクリル変性の総称をいう。
[1.樹脂組成物]
 本発明の樹脂組成物は、成分A:変性ポリオレフィン樹脂と、成分B:少なくとも末端に官能基を有し、かつ、数平均分子量が1,000~20,000である、一般式(1)で表される(メタ)アクリル酸エステル由来の構成単位(i)を含む重合体を含有する。本発明の樹脂組成物は、成分Aに成分Bを混合した樹脂組成物であってもよく、成分Aに成分Bを混合した後、さらに、変性剤により(例えば、塩素及び/又は酸により)変性した樹脂組成物であってもよい。
(1):CH=C(R)COOR
 (一般式(1)中、Rは、水素原子又はメチル基を表し、Rは、-C2n+1で表される基を表し、nは、1~18の整数を表す。)
 本発明の樹脂組成物は、成分Aを含有するので、非極性基材への付着性に優れ、かつ耐チッピング性にも優れる塗膜を形成し得る、プライマーの原料となる樹脂組成物を提供し得る。また、本発明の樹脂組成物は、成分Bを含有するので、溶液安定性に優れる。
 本発明の樹脂組成物は、塩素化した樹脂を用いることが好ましい。ここでいう「塩素化した樹脂」には、成分Aが塩素化した樹脂、成分Bが塩素化した樹脂、成分A及び成分Bが塩素した樹脂が包含される。本発明の樹脂組成物は、成分(A)が塩素化した樹脂を用いることがより好ましい。
[1-1.成分A]
 成分Aは、変性ポリオレフィン樹脂である。本発明の樹脂組成物は、変性ポリオレフィン樹脂を含有するので、非極性基材への付着性に優れ、かつ耐チッピング性にも優れる塗膜を形成し得る、プライマーの原料となる樹脂組成物を提供し得る。
[ポリオレフィン樹脂]
 ポリオレフィン樹脂は、オレフィンの重合体であればよい。ポリオレフィン樹脂は、オレフィンの重合体の中でも、重合触媒としてチーグラー・ナッタ触媒又はメタロセン触媒を用いたポリオレフィン樹脂が好ましく、重合触媒としてチーグラー・ナッタ触媒又はメタロセン触媒を用いた、ポリプロピレン樹脂、又はプロピレンとα-オレフィン(例、エチレン、ブテン、3-メチル-1-ブテン、3-メチル-1-ヘプテン)を共重合して得られるポリオレフィン樹脂がより好ましく、重合触媒としてメタロセン触媒を用いたプロピレン系ランダム共重合体がさらに好ましく、重合触媒としてメタロセン触媒を用いた、ポリプロピレン、エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、又はエチレン-プロピレン-ブテン共重合体がさらにより好ましい。なお、メタロセン触媒を用いると、得られるポリオレフィン樹脂は、分子量分布が狭く、ランダム共重合性に優れ、組成分布が狭く、共重合しうるコモノマーの範囲が広いという特徴を有する。
 ここで、プロピレン系ランダム共重合体とは、ポリプロピレンやプロピレン及びα-オレフィンをランダム共重合して得られるポリオレフィン樹脂をいい、例えば、ポリプロピレン、エチレン-プロピレン共重合体、プロピレン-ブテン共重合体、エチレン-プロピレン-ジエン共重合体、エチレン-プロピレン-ブテン共重合体が挙げられる。
 なお、ポリオレフィン樹脂を構成する(共)重合体は、1種単独であってもよく、複数の(共)重合体の組み合わせであってもよい。
 メタロセン触媒は、公知のものを使用し得る。例えば、下記成分(1)及び成分(2)、更に必要に応じて成分(3)を組み合わせて得られる触媒が挙げられる。中でも、メタロセン触媒は、下記成分(1)及び成分(2)、更に必要に応じて成分(3)を組み合わせて得られる触媒が好ましい。
成分(1):共役五員環配位子を少なくとも1つ有する周期律表4~6族の遷移金属化合物であるメタロセン錯体。
成分(2):イオン交換性層状ケイ酸塩。
成分(3):有機アルミニウム化合物。
 ポリオレフィン樹脂の構造は、通常の高分子化合物が取り得るアイソタクチック構造、アタクチック構造、シンジオタクチック構造等のいずれであってもよい。これらの構造の中でも、ポリオレフィン基材への付着性、特に低温乾燥での付着性を考慮すると、メタロセン触媒を用いた場合にとり得る、アイソタクチック構造のポリオレフィン樹脂が好ましい。
 ポリオレフィン樹脂の成分組成として、プロピレン構成単位含有率は、60重量%以上が好ましく、70重量%以上がより好ましく、80重量%以上がさらに好ましい。プロピレン成分が60重量%以上であると、プロピレン基材に対する付着性(接着性)がより良好となり得る。
 なお、ポリオレフィン樹脂のプロピレン構成単位含有率は、原料の使用割合であってもよく、NMR解析で算出した値であってもよい。但し、これらの値は、通常、一致する。
[変性]
 成分Aは、ポリオレフィン樹脂の変性物である。変性の種類は、例えば、塩素化;エポキシ化;ヒドロキシ化;無水カルボン酸化;カルボン酸化;(メタ)アクリル変性等の公知の変性が挙げられる。変性ポリオレフィン樹脂は、ポリオレフィン樹脂を公知の方法を用いて変性することにより調製し得る。
((メタ)アクリル変性)
 変性ポリオレフィン樹脂は、成分C:(メタ)アクリル酸エステルにより変性された変性ポリオレフィン樹脂が好ましく、炭素原子数が4~12の(メタ)アクリル酸エステルにより変性された変性ポリオレフィン樹脂がより好ましい。(メタ)アクリル酸エステルとしては、例えば、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸メチル、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-ヒドロキシエチルが挙げられる。
 なお、ポリオレフィン樹脂の(メタ)アクリル酸エステルを用いた変性操作については、後述する。
 成分Cに対する樹脂の重量比率(樹脂/成分C)は、好ましくは10/90~90/10であり、より好ましくは30/70~80/20であり、さらに好ましくは50/50~70/30である。
 なお、成分Cに対する樹脂の重量比率は、樹脂に対する成分Cの使用量で算出し得る。また、ここでいう「樹脂」とは、ポリオレフィン樹脂そのものや、酸変性塩素化ポリオレフィン樹脂等、成分Cとの変性反応に用いる樹脂をいう。
((無水)カルボン酸化)
 変性ポリオレフィン樹脂は、ポリオレフィン樹脂をカルボン酸により変性した酸変性物であってもよい。カルボン酸としては、特に限定されないが、例えば、α,β-不飽和カルボン酸及びα,β-不飽和カルボン酸の誘導体(例、マレイン酸、無水マレイン酸、フマル酸、シトラコン酸、無水シトラコン酸、メサコン酸、イタコン酸、無水イタコン酸、アコニット酸、無水アコニット酸、無水ハイミック酸、(メタ)アクリル酸)が挙げられる。中でも、カルボン酸は、α,β-不飽和カルボン酸の酸無水物又は(メタ)アクリル酸が好ましく、無水マレイン酸又は(メタ)アクリル酸がより好ましい。
 ポリオレフィン樹脂を酸で変性する場合、酸の含有率は、好ましくは1.0~20重量%であり、より好ましくは2.0~15重量%であり、さらに好ましくは2.5~10重量%である。
 なお、酸の含有率は、公知の方法で測定することができる。例えば、アルカリ滴定法によって求めることができる。
(塩素化)
 変性ポリオレフィン樹脂は、ポリオレフィン樹脂を塩素化した塩素化ポリオレフィン樹脂であってもよい。
 ポリオレフィン樹脂を塩素化する場合、その塩素含有率は、10重量%以上が好ましく、15重量%以上がより好ましい。塩素含有率が10重量%以上であると、得られる変性ポリオレフィン樹脂が、エタノール、イソプロピルアルコール等のアルコール類をはじめとした各種溶剤類への分散性に優れるものとなる。塩素含有率の上限は、40重量%以下が好ましい。塩素含有率が40重量%以下であると、得られる変性ポリオレフィン樹脂が、ポリオレフィン基材への付着性に優れるものとなる。
 塩素含有率が本範囲にあると、変性ポリオレフィン樹脂の極性が増し、また変性ポリオレフィン樹脂が、塩素原子同士の立体反発のため直鎖構造を示し易くなると推測される。そのため、樹脂組成物が、各種有機溶剤への分散性及び基材への付着性に優れるものになると推測される。
 なお、塩素含有率は、JIS-K7229(1995)に基づいて測定することができる。
 変性ポリオレフィン樹脂は、ポリオレフィン樹脂を複数種の変性材料により変性した変性ポリオレフィン樹脂であってもよい。このような変性ポリオレフィン樹脂として、例えば、上記の(メタ)アクリル変性とカルボン酸化と塩素化の少なくとも2変性処理した変性ポリオレフィン樹脂が挙げられる。
 なお、変性ポリオレフィン樹脂が、複数種の変性材料により変性した変性ポリオレフィン樹脂である場合、複数の変性は、一度に行ってもよく、別途行ってもよい。以下、一例として、酸で変性した後、塩素化処理し、さらに(メタ)アクリル変性を行う場合を説明する。
 まず、ポリオレフィン樹脂を酸で変性する。ポリオレフィン樹脂を酸により変性する方法は、公知の方法を使用し得る。例えば、ポリオレフィン樹脂を溶融し、変性するための酸及びラジカル反応開始剤を添加する方法が挙げられる。反応装置には特に限定がなく、例えば、押出機を用いて変性反応を行ってもよい。
 次に、酸変性したポリオレフィン樹脂を塩素化する。塩素化の方法としては、公知の方法を用いることができる。例えば、酸変性したポリオレフィン樹脂をクロロホルム等の塩素系溶媒に溶解した後、塩素ガスを吹き込み、塩素を導入する方法等が挙げられる。より詳細には、塩素化は、酸変性したポリオレフィン樹脂を水、四塩化炭素、又はクロロホルム等の媒体に分散又は溶解し、触媒の存在下又は紫外線の照射下、加圧又は常圧下で50~140℃の温度範囲で塩素ガスを吹き込むことにより行い得る。
 塩素化の際に塩素系溶媒を使用した場合、塩素系溶媒は、通常、減圧留去され得、あるいは別の有機溶剤で置換されてもよい。
 最後に酸変性及び塩素化した酸変性塩素化ポリオレフィン樹脂を(メタ)アクリル変性する。(メタ)アクリル変性は、例えば、酸変性塩素化ポリオレフィン樹脂に、成分Cを共重合することで調製し得る。成分Cは、酸変性塩素化ポリオレフィン樹脂に、逐次添加してもよく、一度に添加してもよい。また、成分C以外の単量体を、酸変性塩素化ポリオレフィン樹脂に添加してもよい。
 共重合は、溶融法、溶液法等の公知の方法で行い得る。溶融法による場合、操作が簡単である上、反応時間が短時間で済むという利点がある。溶液法による場合、副反応が少なく、均一にグラフト重合された変性ポリオレフィン樹脂を得ることができる。
 溶融法による場合には、ラジカル反応開始剤の存在下で、酸変性塩素化ポリオレフィン樹脂を加熱融解(加熱溶融)して成分Cと反応させる。成分Cは、重合前のモノマーの形態であっても、重合後の重合体の形態であってもよい。加熱融解の温度は、酸変性塩素化ポリオレフィン樹脂の融点以上であればよく、酸変性塩素化ポリオレフィン樹脂の融点以上300℃以下であることが好ましい。加熱融解の際には、バンバリーミキサー、ニーダー、押し出し機等の機器を使用し得る。
 溶液法による場合には、酸変性塩素化ポリオレフィン樹脂を有機溶剤に溶解した後、ラジカル反応開始剤の存在下、成分Cと加熱撹拌して反応させる。成分Cは、重合前のモノマーの形態であっても、重合後の重合体の形態であってもよい。
 有機溶剤としては、トルエン、キシレン等の芳香族炭化水素溶剤を用いることが好ましい。反応の際の温度は、100~180℃であることが好ましい。
 溶融法及び溶液法に用いるラジカル反応開始剤としては、例えば、有機過酸化物系化合物やアゾニトリル類が挙げられる。
 有機過酸化物系化合物としては、例えば、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキサン、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエートが挙げられる。ラジカル反応開始剤は、ラジカル重合を行う温度に応じて適切な半減期温度を有するものを選択すればよい。
[安定剤]
 酸変性塩素化ポリオレフィン樹脂を(メタ)アクリル変性する場合、酸変性塩素化ポリオレフィン樹脂に任意の安定剤を含む形態で変性してもよい。
 任意の安定剤としては、例えば、エポキシ化合物;ポリ塩化ビニル樹脂の安定剤として使用されている、ステアリン酸カルシウム、ステアリン酸鉛等の金属石鹸類;ジブチル錫ジラウレート、ジブチルマレート等の有機金属化合物類;ハイドロタルサイト類化合物が挙げられる。
 エポキシ化合物は、特に限定されないが、塩素化等の変性を行った樹脂と相溶することができるエポキシ化合物が好ましい。例えば、エポキシ当量が100から500程度で、1分子あたり1個以上のエポキシ基を有する化合物が挙げられる。そのようなエポキシ化合物としては、例えば、天然の不飽和基を有する植物油を、過酢酸等の過酸でエポキシ化して得られるエポキシ化植物油(エポキシ化大豆油、エポキシ化アマニ油等);オレイン酸、トール油脂肪酸、大豆油脂肪酸等の、不飽和脂肪酸をエポキシ化したエポキシ化脂肪酸エステル類;エポキシ化テトラヒドロフタレート等のエポキシ化脂環式化合物;ビスフェノールA又は多価アルコールとエピクロルヒドリンとを縮合して得られる、例えば、ビスフェノールAグリシジルエーテル、エチレングリコールグリシジルエーテル、プロピレングリコールグリシジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル等のエーテル類;ブチルグリシジルエーテル、2-エチルヘキシルグリシジルエーテル、デシルグリシジルエーテル、ステアリルグリシジルエーテル、アリルグリシジルエーテル、フェニルグリシジルエーテル、sec-ブチルフェニルグリシジルエーテル、tert-ブチルフェニルグリシジルエーテル、フェノールポリエチレンオキサイドグリシジルエーテル等に代表される、モノエポキシ化合物類が挙げられる。
 安定剤は、1種単独でもよいし、2種以上の組み合わせであってもよい。
 酸変性塩素化ポリオレフィン樹脂に任意の安定剤を含む形態で変性する場合、酸変性塩素化ポリオレフィン樹脂に対する安定剤の重量比率は、1~20重量%(固形分換算)であることが好ましい。
[物性]
 成分Aの重量平均分子量(Mw)の下限は、好ましくは20,000以上である。重量平均分子量が20,000以上であると、変性ポリオレフィン樹脂の凝集力が十分であり、樹脂組成物が基材への付着性に優れるものとなる。また、その上限は、好ましくは200,000以下である。重量平均分子量が200,000以下であると、塗料中に含まれる成分Aとは異なる他樹脂との相溶性が良好であり、樹脂組成物が基材への付着性に優れるものとなる。成分Aの重量平均分子量の一実施形態として、好ましくは20,000~200,000である。
 なお、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法により、標準ポリスチレン検量線から求め得る。
 ここで、成分Aの重量平均分子量は、変性操作を施す前の、塩素化ポリオレフィン樹脂について測定された重量平均分子量と通常一致する。
[1-2.成分B]
 成分Bは、少なくとも末端に官能基を有し、かつ、数平均分子量が1,000~20,000である、一般式(1)で表される(メタ)アクリル酸エステル由来の構成単位(i)からなる重合体である。本発明の樹脂組成物は、成分Bを含有するので、溶液安定性に優れる。
(1):CH=C(R)COOR
 (一般式(1)中、Rは、水素原子又はメチル基を表し、Rは、-C2n+1で表される基を表し、nは、1~18の整数を表す。)
 ここで、ある単量体由来の構成単位とは、ある単量体を重合反応に使用した場合に得られる構成単位をいう。
 一般式(1)で表される(メタ)アクリル酸エステルの炭素原子数が4~12であると、樹脂組成物からなるプライマーを用いた場合、耐チッピング性がより優れる塗膜を形成し得るため好ましい。
[成分Bの構成単位]
 成分Bは、一般式(1)で表される(メタ)アクリル酸エステル由来の構成単位(i)を含む。成分Bが一般式(1)で表される化合物中の炭素原子数が4~12である(メタ)アクリル酸エステル由来の構成単位(i-i)(以下、構成単位(i-i)ともいう)を含む場合、成分Bにおける構成単位(i-i)の含有率は、40重量%以上が好ましく、60重量%以上がより好ましい。これにより、樹脂組成物を他の成分と組み合わせて、例えば、塗料組成物とする場合に、他の成分との相溶性が良好となり得る。また、樹脂組成物からなるプライマーが適度な柔軟性を保持するようになり、耐チッピング性を向上し得る塗膜を形成し得る。さらに、変性ポリオレフィン樹脂及び成分Bを混合した際の相溶性が向上し、溶液安定性の向上につながる。
 構成単位(i-i)の含有率は、重合体を調製する際に使用する全単量体重量に対する、一般式(1)で表される(メタ)アクリル酸エステルであって、かつ、炭素原子数が4~12である単量体の重量百分率に通常一致する。
 構成単位(i)は、1種単独の構成単位であってもよく、2種以上の構成単位であってもよい。
 成分Bは、構成単位(i)以外の構成単位(以下、「他の構成単位」ともいう)を含んでもよい。他の構成単位としては、例えば、α,β-不飽和カルボン酸に由来する構成単位(例、(メタ)アクリル酸に由来する構成単位)、構成単位(i)以外の、α,β-不飽和カルボン酸エステルに由来する構成単位(例、(メタ)アクリル酸ヒドロキシアルキルエステル)、不飽和結合を有する芳香族化合物(例、ジビニルベンゼン)に由来する構成単位が挙げられる。
[官能基]
 重合体が有する官能基の種類としては、例えば、カルボキシ基、水酸基、アルコキシシリル基、アミド基、チオール基が挙げられる。重合体は、これらの官能基を1種のみ有してもよく、2種以上を有してもよい。これらの官能基を有することで、電着塗装面との親和性が高まり、樹脂組成物を用いた場合の付着力が向上する。
 重合体の少なくとも末端に官能基を導入する方法は、公知の方法を用い得る。例えば、分子内に少なくとも1つの官能基を有するチオール類及び適当なラジカル反応開始剤を用いて(メタ)アクリル酸エステルの重合を行う方法や、官能基を有する試薬を用いた可逆的付加開裂連鎖移動(RAFT)重合を行う方法が挙げられる。分子内に少なくとも1つの官能基を有するチオール類及び適当なラジカル反応開始剤を用いて(メタ)アクリル酸エステルの重合を行う場合、官能基を有する試薬を用いた可逆的付加開裂連鎖移動(RAFT)重合と比較して低コストで行えるという利点がある。
 一例として、官能基としてカルボキシ基を導入する方法を説明する。分子内に少なくとも1つのカルボキシ基を有するチオール類及び適当なラジカル反応開始剤を用いると、カルボキシ基を有するチオール類と、(メタ)アクリル酸エステルとの間でチオール・エン反応が進行し、(メタ)アクリル酸エステル重合体の末端にチオール類由来のカルボキシ基が導入される。
 分子内に少なくとも1つの官能基を有するチオール類としては、例えば、α-メルカプトプロピオン酸(チオ乳酸)、β-メルカプトプロピオン酸、2,3-ジメルカプトプロピオン酸、チオグリコール酸、o-メルカプト安息香酸(チオサリチル酸)、m-メルカプト安息香酸、p-メルカプト安息香酸、チオリンゴ酸、チオール炭酸、o-チオクマル酸、α-メルカプトブタン酸(メルカプト酪酸)、β-メルカプトブタン酸、γ-メルカプトブタン酸、チオールヒスチジン、11-メルカプトウンデカン酸等のカルボキシル基含有チオール類;メルカプトメタノール、1-メルカプトエタノール、1-メルカプトプロパノール、1-メルカプト-2,3-プロパンジオール,1-メルカプト-2-ブタノール、1-メルカプト-2,3-ブタンジオール、1-メルカプト-3,4-ブタンジオール,1-メルカプト-3,4,4’-ブタントリオール、2-メルカプト-3-ブタノール、2-メルカプト-3,4-ブタンジオール、2-メルカプト-3,4,4’-ブタントリオール等の水酸基含有チオール類;3-メルカプトプロピル-トリメトキシシラン、3-メルカプトプロピル-トリエトキシシラン、3-メルカプトプロピル-モノメチルジメトキシシラン、3-メルカプトプロピル-モノフェニルジメトキシシラン、3-メルカプトプロピル-ジメチルモノメトキシシラン、3-メルカプトプロピル-モノメチルジエトキシシラン、4-メルカプトブチル-トリメトキシシラン、3-メルカプトブチル-トリメトキシシラン等のアルコキシシリル基含有チオール類が挙げられる。
 分子内に少なくとも1つの官能基を有するチオール類とともに用いるラジカル反応開始剤としては、例えば、有機過酸化物系化合物やアゾニトリル類が挙げられる。
 有機過酸化物系化合物としては、例えば、ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、tert-ブチルクミルパーオキサイド、ベンゾイルパーオキサイド、ジラウリルパーオキサイド、2,5-ジメチル-2,5-ジ(tert-ブチルペルオキシ)ヘキサン、クメンハイドロパーオキサイド、tert-ブチルハイドロパーオキサイド、1,1-ビス(tert-ブチルパーオキシ)-3,5,5-トリメチルシクロヘキサン、1,1-ビス(tert-ブチルパーオキシ)-シクロヘキサン、シクロヘキサノンパーオキサイド、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシイソブチレート、tert-ブチルパーオキシ-3,5,5-トリメチルヘキサノエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、tert-ブチルパーオキシイソプロピルカーボネート、クミルパーオキシオクトエートが挙げられる。ラジカル反応開始剤は、ラジカル重合を行う温度に応じて適切な半減期温度を有するものを選択すればよい。
 成分Bは、両末端に官能基が導入された重合体が好ましい。重合体の両末端に官能基を導入する方法は、公知の方法を用い得る。例えば、官能基を有する開始剤及び不飽和炭素-炭素二重結合を持つ(メタ)アクリル酸エステル(以下、「官能基保有(メタ)アクリル酸エステルともいう)を用いて(メタ)アクリル酸エステルの重合を行う方法、官能基を有する試薬を用いた可逆的付加開裂連鎖移動(RAFT)重合を行う方法が挙げられる。
[数平均分子量]
 成分Bの数平均分子量(Mn)は、1,000~20,000であり、好ましくは1,500~15,000であり、より好ましくは2,000~10,000である。
 成分Bの数平均分子量が小さいということは、成分Bの分子の大きさが小さくなるということである。そのため、成分Aと混合した時のエントロピー変化量が大きくなり、相溶性が改善される。成分Bの分子量が20,000より大きいと、上記の効果が得られにくい場合がある。また、成分Bの分子量が1,000を下回ると、基材への付着力が低下する場合がある。
 樹脂組成物における成分Bに対する成分Aの重量比率(成分A/成分B)は、好ましくは90/10~10/90であり、より好ましくは90/10~20/80であり、さらに好ましくは90/10~50/50である。
[1-3.任意成分]
 本発明の樹脂組成物は、成分A及び成分Bに加えて、他の任意成分を含んでもよい。任意成分としては、例えば、塩素の離脱を抑制するための安定化剤が挙げられる。
 安定化剤は、例えば、エポキシ化合物;ポリ塩化ビニル樹脂の安定剤として使用されている、ステアリン酸カルシウム、ステアリン酸鉛等の金属石鹸類;ジブチル錫ジラウレート、ジブチルマレート等の有機金属化合物類;ハイドロタルサイト類化合物が挙げられる。安定化剤は、エポキシ化合物が好ましい。エポキシ化合物は、例えば、ポリオレフィン樹脂又は塩素化ポリオレフィン樹脂の変性の際に含み得る任意の安定剤として例示されたエポキシ化合物が挙げられる。中でも、塩素化された変性ポリオレフィン樹脂と相溶するエポキシ化合物が好ましい。安定化剤は、1種のみを用いてもよく、2種以上を併用してもよい。
[1-4.形態]
 樹脂組成物は、成分A及び成分Bとともに、分散媒を含む、分散樹脂組成物の形態であってもよい。なお、本明細書において、「分散媒」には、変性ポリオレフィン樹脂を溶解し得る溶媒が含まれ、「分散樹脂組成物」は、樹脂組成物の溶液であってもよい。
 分散媒としては、例えば、トルエン、キシレン等の芳香族炭化水素;シクロヘキサン、メチルシクロヘキサン等の脂環式炭化水素;ヘキサン、ヘプタン、オクタン等の脂肪族炭化水素;アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン;酢酸メチル、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル等のエステル;メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、イソブチルアルコール等のアルコール:エチレングリコール、エチルセロソルブ、ブチルセロソルブ等のグリコール;水が挙げられる。
 分散媒は、1種単独であっても、2種以上の組み合わせであってもよい。
[1-5.樹脂組成物の用途]
 本発明の樹脂組成物は、金属及び/又は樹脂用の接着剤、プライマー、塗料用バインダー、インキ用バインダー等として用い得る。中でも、本発明の樹脂組成物は、付着性が良好であり、耐チッピング性に優れる塗膜を形成し得る、プライマーを提供し得るので、自動車塗料用バインダー、自動車塗装用プライマーとして有用である。
 以下、本発明を実施例により詳細に説明する。以下の実施例は、本発明を好適に説明するためのものであって、本発明を限定するものではない。なお、物性値等の測定方法は、別途記載がない限り、上記に記載した測定方法である。また、「部」は、特に断りがない限り、重量換算である。
[重量平均分子量(Mw)及び数平均分子量(Mn)]:
 製造例で製造したポリオレフィン樹脂について、GPCにより、下記条件に従い測定した。
 装置:HLC-8320GPC(東ソー社製)
 カラム:TSK-gel G-6000 H×L,G-5000 H×L,G-4000 H×L,G-3000 H×L,G-2000 H×L(東ソー社製)
 溶離液:THF
 流速:1mL/min
 温度:ポンプオーブン、カラムオーブン40℃
 注入量:100μL
 標準物質:ポリスチレン EasiCal PS-1(Agilent Technology社製)
[無水マレイン酸の含有率(%)]:
 アルカリ滴定法を用いて、JIS K 0070(1992)に準じた方法で測定を行った。
[(メタ)アクリル酸エステルに対する酸変性塩素化ポリオレフィン樹脂の重量比率]:
 各成分の使用量より算出した。
[塩素含有率(重量%)]:
 JIS-K7229(1995)に準じた方法で測定を行った。
[樹脂分散液の安定性]:
 実施例及び比較例で得られた変性ポリオレフィン樹脂を含む樹脂組成物のトルエン分散液について、製造直後、及び製造から1週間経過した後の性状を目視にて下記基準により評価した。A~Cであれば、使用可能である。
A:製造直後及び1週間経過後のいずれも、分散液の分離がみられず、良好な溶液性状である。
B:製造直後及び1週間経過後のいずれも、分散液の濁度は高いが、分散液の分離がみられない。
C:製造直後の分散液に分離はみられないが、1週間経過後の分散液には分離が見られる。
D:製造直後及び1週間経過後のいずれも、分散液の分離が見られる。
[塗料安定性]:
 実施例及び比較例で得られた変性ポリオレフィン樹脂を含む樹脂組成物のトルエン分散液に、さらにトルエンを配合して固形分20重量%のトルエン分散液とした。ウレタン樹脂(日立化成工業製 固形分30重量%)90部中に、調製したトルエン分散液(固形分20重量%)15部を加え、振とう機にて10分間撹拌し、室温で1日静置した後の溶液性状を観察した。塗料安定性(配合樹脂の相溶性)を溶液の分離状態から目視にて下記基準により評価した。A~Cであれば、使用可能である。
A:溶液の増粘、分離がみられず、良好な溶液性状である。
B:溶液がやや増粘するものの、分離等がみられない。
C:成分の分離はないものの、溶液中に微粒子が確認される。
D:成分の分離が目視で確認できる。
[付着性試験]:
 塗装板の塗膜に1mm間隔で素地に達する線状の刻みを縦横に入れて、100個の区画(碁盤目)を作り、その上にセロハン粘着テープを密着させて180°方向に引き剥がした。セロハン粘着テープを密着させて引き剥がす操作を同一の100個の区画につき10回行い、付着性(接着性)を以下に示す基準で評価した。剥離した塗膜の区画が50個以下であれば、実用上問題はない。
A:塗膜の剥離がない。
B:剥離した塗膜の区画が1個以上10個以下である。
C:剥離した塗膜の区画が10個より多く50個以下である。
D:剥離した塗膜の区画が50個より多い。
[耐ガソホール性試験]:
 塗装板を、レギュラーガソリン/エタノール=9/1(v/v)に120分浸漬し、塗膜の状態を観察し、耐ガソホール性を以下に示す基準で評価した。塗膜表面に剥離が生じていなければ、実用上問題はない。
A:塗膜表面に変化がない。
B:塗膜表面にわずかに変化がみられるが剥離はみられない。
C:塗膜表面に変化がみられるが剥離は生じていない。
D:塗膜表面に剥離が生じている。
[耐チッピング試験]:
 -20℃に冷却した低温室内で塗装板を冷却した。飛石試験機(スガ試験機社製、JA-400型)の試験板装着部に水平から角度90°になるよう冷却した塗装板を垂直に固定し、5kgf/cmの空気圧で7号砕石100gを5秒間で吹き付け、試験板に傷を付けた。その後、塗装板を水洗、乾燥し、塗面にセロハン粘着テープを密着した。テープの一端を持って引き剥がし、チッピングにより浮き上がった塗膜を除去して、はがれ傷の程度を下記の基準で評価した。はがれ傷の評価は、被衝撃部の縦70mm×横70mmの枠内で行った。
A:最も良好。評価面積当たりの剥離面積率0.0%以上0.7%未満。
B:良好。評価面積当たりの剥離面積率0.7%以上1.2%未満。
C:許容範囲。評価面積当たりの剥離面積率1.2%以上3.5%未満。
D:最も劣る。評価面積当たりの剥離面積率3.5%以上。
[製造例1;変性ポリオレフィン樹脂(A-1)の製造]:
 メタロセン触媒を重合触媒として製造した、ポリオレフィン樹脂としてのプロピレン系ランダム共重合体(プロピレン構成単位含有率:96重量%、エチレン構成単位含有率:4重量%)100部、及びα,β-不飽和カルボン酸環状無水物としての無水マレイン酸10部、ラジカル発生剤としてのジ-t-ブチルパーオキサイド2部を、均一に混合し、二軸押出機(L/D=60、直径=15mm、第1バレル~第14バレル)に供給した。
 滞留時間が10分、回転数200rpm、バレル温度が100℃(第1、2バレル)、200℃(第3~8バレル)、90℃(第9、10バレル)、110℃(第11~14バレル)の条件で反応を行った。その後、減圧処理を行って未反応の無水マレイン酸を除去し、無水マレイン酸で変性した酸変性ポリプロピレン樹脂を得た。
 該酸変性ポリプロピレン樹脂100部を、グラスライニングされた反応釜に投入した。クロロホルムを加え、2kgf/cmの圧力下、温度110℃で樹脂を十分に溶解した後、ラジカル発生剤としてのアゾビスイソブチロニトリル2部を加え、上記釜内圧力を2kgf/cmに制御しながら塩素ガスを吹き込み、塩素化を行った。
 反応終了後、安定剤としてエポキシ化合物(エポサイザーW-100EL、大日本インキ化学工業社製)を6部添加し、スクリューシャフト部に脱溶剤用吸引部を備えたベント付き押出機に供給し、脱溶剤し、固形化し、酸変性塩素化ポリプロピレン樹脂としての、酸変性塩素化ポリオレフィン樹脂を得た。得られた酸変性塩素化ポリオレフィン樹脂は、重量平均分子量が110,000であり、無水マレイン酸の含有率が4重量%であり、塩素含有率が17重量%であった。
 酸変性塩素化ポリオレフィン樹脂100部を、トルエン108部に溶解し、エポキシ化合物(エポサイザーW-131、DIC社製)5部を加えた。これに、窒素雰囲気中、85℃で、パーオキシエステル系過酸化物(パーブチルO、日本油脂社製)5.5部を加えた。その後、表1に記載の成分Cで表される重合性(メタ)アクリル酸エステルとしての単量体(2-エチルヘキシルメタクリレート54部、メタクリル酸メチル6部)を添加し、85℃にて6時間反応を行って変性ポリオレフィン樹脂(A-1)を得た。なお、低分子量の化合物により変性した変性ポリオレフィン樹脂(A-1)の重量平均分子量は、酸変性塩素化ポリオレフィン樹脂の重量平均分子量と略同一といえる。
[製造例2;変性ポリオレフィン樹脂(A-2)の製造]:
 メタロセン触媒を重合触媒として製造した、ポリオレフィン樹脂としてのプロピレン系ランダム共重合体(プロピレン構成単位含有率:80重量%、エチレン構成単位含有率:20重量%)100部、及びα,β-不飽和ポリカルボン酸環状無水物としての無水マレイン酸20部、ラジカル発生剤としてのジ-t-ブチルパーオキサイド6部を、均一に混合し、二軸押出機(L/D=60、直径=15mm、第1バレル~第14バレル)に供給した。
 滞留時間が10分、回転数200rpm、バレル温度が100℃(第1、2バレル)、200℃(第3~8バレル)、90℃(第9、10バレル)、110℃(第11~14バレル)の条件で反応を行った。その後、減圧処理を行って未反応の無水マレイン酸を除去し、無水マレイン酸で変性した酸変性ポリプロピレン樹脂を得た。
 該酸変性ポリプロピレン樹脂100部を、グラスライニングされた反応釜に投入した。クロロホルムを加え、2kgf/cmの圧力下、温度110℃で樹脂を十分に溶解した後、ラジカル発生剤としてのアゾビスイソブチロニトリル4部を加え、上記釜内圧力を3kgf/cmに制御しながら塩素ガスを吹き込み、塩素化を行った。
 反応終了後、安定剤としてエポキシ化合物(エポサイザーW-100EL、大日本インキ化学工業社製)を6部添加し、スクリューシャフト部に脱溶剤用吸引部を備えたベント付き押出機に供給し、脱溶剤し、固形化し、酸変性塩素化ポリプロピレン樹脂としての、酸変性塩素化ポリオレフィン樹脂を得た。得られた酸変性塩素化ポリオレフィン樹脂は、重量平均分子量が200,000であり、無水マレイン酸の含有率が10重量%であり、塩素含有率が40重量%であった。
 酸変性塩素化ポリオレフィン樹脂100部を、トルエン108部に溶解し、エポキシ化合物(エポサイザーW-131、DIC社製)5部を加えた。これに、窒素雰囲気中、85℃で、パーオキシエステル系過酸化物(パーブチルO、日本油脂社製)5.5部を加えた。その後、表1に記載の成分Cで表される重合性(メタ)アクリル酸エステルとしての単量体(2-エチルヘキシルアクリレート54部およびメタクリル酸シクロヘキシル6部)を添加し、85℃にて6時間反応を行って変性ポリオレフィン樹脂(A-2)を得た。なお、低分子量の化合物により変性した変性ポリオレフィン樹脂(A-2)の重量平均分子量は、酸変性塩素化ポリオレフィン樹脂の重量平均分子量と略同一といえる。
[製造例3;変性ポリオレフィン樹脂(A-3)の製造]:
 メタロセン触媒を重合触媒として製造した、ポリオレフィン樹脂としてのプロピレン系ランダム共重合体(プロピレン構成単位含有率:75重量%、エチレン構成単位含有率:15重量%、ブテン構成単位含有率:10重量%)100部、及びα,β-不飽和ポリカルボン酸環状無水物としての無水マレイン酸4部、ラジカル発生剤としてのジ-t-ブチルパーオキサイド8部を、均一に混合し、二軸押出機(L/D=60、直径=15mm、第1バレル~第14バレル)に供給した。
 滞留時間が10分、回転数200rpm、バレル温度が100℃(第1、2バレル)、200℃(第3~8バレル)、90℃(第9、10バレル)、110℃(第11~14バレル)の条件で反応を行った。その後、減圧処理を行って未反応の無水マレイン酸を除去し、無水マレイン酸で変性した変性ポリオレフィン樹脂(A-3)を得た。得られた変性ポリオレフィン樹脂は、重量平均分子量が20,000であり、無水マレイン酸の含有率が2.5重量%であった。
[製造例4;変性ポリオレフィン樹脂(A-4)の製造]:
 メタロセン触媒を重合触媒として製造した、ポリオレフィン樹脂としてのプロピレン系ランダム共重合体(プロピレン構成単位含有率:96重量%、エチレン構成単位含有率:4重量%)100部、及びα,β-不飽和カルボン酸環状無水物としての無水マレイン酸10部、ラジカル発生剤としてのジ-t-ブチルパーオキサイド2部を、均一に混合し、二軸押出機(L/D=60、直径=15mm、第1バレル~第14バレル)に供給した。
 滞留時間が10分、回転数200rpm、バレル温度が100℃(第1、2バレル)、200℃(第3~8バレル)、90℃(第9、10バレル)、110℃(第11~14バレル)の条件で反応を行った。その後、減圧処理を行って未反応の無水マレイン酸を除去し、無水マレイン酸で変性した酸変性ポリプロピレン樹脂を得た。
 該酸変性ポリプロピレン樹脂100部を、グラスライニングされた反応釜に投入した。クロロホルムを加え、2kgf/cmの圧力下、温度110℃で樹脂を十分に溶解した後、ラジカル発生剤としてのアゾビスイソブチロニトリル2部を加え、上記釜内圧力を2kgf/cmに制御しながら塩素ガスを吹き込み、塩素化を行った。
 反応終了後、安定剤としてエポキシ化合物(エポサイザーW-100EL、大日本インキ化学工業社製)を6部添加し、スクリューシャフト部に脱溶剤用吸引部を備えたベント付き押出機に供給し、脱溶剤し、固形化し、酸変性塩素化ポリプロピレン樹脂としての、酸変性塩素化ポリオレフィン樹脂を得た。得られた酸変性塩素化ポリオレフィン樹脂は、重量平均分子量が110,000であり、無水マレイン酸の含有率が4重量%であり、塩素含有率が17重量%であった。
 酸変性塩素化ポリオレフィン樹脂100部を、トルエン108部に溶解し、エポキシ化合物(エポサイザーW-131、DIC社製)5部を加えた。これに、窒素雰囲気中、85℃で、パーオキシエステル系過酸化物(パーブチルO、日本油脂社製)5.5部を加えた。その後、表1に記載の成分Cで表される重合性(メタ)アクリル酸エステルとしての単量体(メタクリル酸シクロヘキシル58部、アクリル酸2-ヒドロキシエチル2部)を添加し、85℃にて6時間反応を行って変性ポリオレフィン樹脂(A-4)を得た。なお、低分子量の化合物により変性した変性ポリオレフィン樹脂(A-4)の重量平均分子量は、酸変性塩素化ポリオレフィン樹脂の重量平均分子量と略同一といえる。
 製造例1~4で製造した(変性)ポリオレフィン樹脂の一覧を下記表1に記す。
Figure JPOXMLDOC01-appb-T000001
 表1の略称を以下に記す。なお、表1中、成分Cの欄の略号の下の数字は、成分Cの総量に対する割合である。
MAH:無水マレイン酸
EHMA:メタクリル酸2-エチルシクロヘキシル
EHA:アクリル酸2-エチルシクロヘキシル
MMA:メタクリル酸メチル
CHMA:メタクリル酸シクロヘキシル
HEA:アクリル酸2-ヒドロキシエチル
[製造例5;重合体(B-1)の製造]:
 メタクリル酸2-エチルヘキシル95部、ジビニルベンゼン5部に対して、チオ乳酸1部を加え、窒素雰囲気下、95℃にて12時間反応させた。反応物をエバポレータに写し、減圧下、80℃に加熱して残存モノマー及び残存チオール化合物を除去し、(メタ)アクリル酸及びジビニルベンゼンの共重合体である重合体(B-1)を得た。得られた重合体(B-1)の数平均分子量は、3,000であった。
[製造例6~11;重合体(B-2)~(B-7)の製造]:
 表2に記載の原料と重合開始剤を用いたこと以外は、製造例5と同様にして、重合体(B-2)~(B-7)を得た。各重合体の数平均分子量を表2に併せて記す。
 製造例5~11で製造した重合体の一覧を下記表2に記す。
Figure JPOXMLDOC01-appb-T000002
 表2の略称を以下に記す。
DVBn:ジビニルベンゼン
EHMA:メタクリル酸2-エチルシクロヘキシル
EHA:アクリル酸2-エチルシクロヘキシル
MAA:メタクリル酸
HEMA:メタクリル酸2-ヒドロキシエチル
MMA:メタクリル酸メチル
n-BMA:メタクリル酸ノルマルブチル
[実施例1:樹脂組成物]
 製造例1で製造した変性ポリオレフィン樹脂(A-1)80部に、製造例5で製造した重合体(B-1)を20部添加し、固形分が20重量%、溶剤組成がトルエン/シクロヘキサン=70/30となるよう調整して、分散樹脂組成物を調製した。調製した分散樹脂組成物について、樹脂分散液の安定性と塗料安定性の評価をするとともに、試験片を作製し、付着性試験、耐ガソホール性試験、及び耐チッピング試験を行った。評価結果を併せて表3に記す。
[実施例2~3及び比較例1~3:樹脂組成物]
 表3に記載した成分を用いたこと以外は、実施例1と同様にして分散樹脂組成物を調製した。調製した分散樹脂組成物について、樹脂分散液の安定性と塗料安定性の評価をするとともに、試験片を作製し、付着性試験、耐ガソホール性試験、及び耐チッピング試験を行った。評価結果を併せて表3に記す。
[実施例4:樹脂組成物]
 製造例3で製造した変性ポリオレフィン樹脂(A―3)80部に、製造例5で製造した重合体(B-1)を20部添加した後、該樹脂組成物100部を、グラスライニングされた反応釜に投入した。クロロホルムを加え、2kgf/cmの圧力下、温度110℃で樹脂を十分に溶解した後、ラジカル発生剤としてのアゾビスイソブチロニトリル2部を加え、上記釜内圧力を2kgf/cmに制御しながら塩素ガスを吹き込み、塩素化を行った。
 反応終了後、安定剤としてエポキシ化合物(エポサイザーW-100EL、大日本インキ化学工業社製)を6部添加し、スクリューシャフト部に脱溶剤用吸引部を備えたベント付き押出機に供給し、脱溶剤し、固形化し、塩素化された分散樹脂組成物を得た。得られた分散樹脂組成物は、塩素含有率が18重量%であった。
 調製した分散樹脂組成物について、樹脂分散液の安定性と塗料安定性の評価をするとともに、試験片を作製し、付着性試験、耐ガソホール性試験、及び耐チッピング試験を行った。評価結果を併せて表3に記す。
[実施例5:樹脂組成物]
 表3に記載した成分を用いたこと以外は、実施例1と同様にして分散樹脂組成物を調製した。調製した分散樹脂組成物について、樹脂分散液の安定性と塗料安定性の評価をするとともに、試験片を作製し、付着性試験、耐ガソホール性試験、及び耐チッピング試験を行った。評価結果を併せて表3に記す。
Figure JPOXMLDOC01-appb-T000003
 なお、試験片の作製は次のように行った。実施例及び比較例で得られた分散液を固形分濃度30重量%に調整し、ポリプロピレン基材に塗装し、80℃で5分間乾燥した。その後、二液ウレタン塗料を塗装し、80℃で30分乾燥して、試験片(塗装板)を作製した。

Claims (8)

  1.  下記成分A及び下記成分Bを含有する樹脂組成物。
     成分A:変性ポリオレフィン樹脂。
     成分B:少なくとも末端に官能基を有し、かつ、数平均分子量が1,000~20,000である、下記一般式(1)で表される(メタ)アクリル酸エステル由来の構成単位(i)を含む重合体。
    (1):CH=C(R)COOR
     (前記一般式(1)中、Rは、水素原子又はメチル基を表し、Rは、-C2n+1で表される基を表し、nは、1~18の整数を表す。)
  2.  前記成分Aが、
     下記成分Cにより変性された変性ポリオレフィン樹脂である、請求項1に記載の樹脂組成物。
     成分C:(メタ)アクリル酸エステル
  3.  前記構成単位(i)が、
     前記一般式(1)で表される化合物中の炭素原子数が4~12である(メタ)アクリル酸エステル由来の構成単位(i-i)を40%以上含む、請求項1又は2に記載の樹脂組成物。
  4.  前記成分Cが、
     炭素原子数が4~12の(メタ)アクリル酸エステルである、請求項1~3のいずれか1項に記載の樹脂組成物。
  5.  前記成分Aが、
     塩素化ポリオレフィン樹脂である、請求項1~4のいずれか1項に記載の樹脂組成物。
  6.  前記成分Aの重量平均分子量が、20,000~200,000である、請求項1~5のいずれか1項に記載の樹脂組成物。
  7.  前記末端の官能基が、カルボキシ基である請求項1~6のいずれか1項に記載の樹脂組成物。
  8.  請求項1~7のいずれか1項に記載の樹脂組成物からなるプライマー。
PCT/JP2019/007854 2018-03-01 2019-02-28 樹脂組成物 WO2019168107A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020503616A JP7219751B2 (ja) 2018-03-01 2019-02-28 樹脂組成物
US16/971,899 US20210102054A1 (en) 2018-03-01 2019-02-28 Resin composition
CN201980016289.7A CN111770962A (zh) 2018-03-01 2019-02-28 树脂组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-036784 2018-03-01
JP2018036784 2018-03-01

Publications (1)

Publication Number Publication Date
WO2019168107A1 true WO2019168107A1 (ja) 2019-09-06

Family

ID=67806175

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007854 WO2019168107A1 (ja) 2018-03-01 2019-02-28 樹脂組成物

Country Status (4)

Country Link
US (1) US20210102054A1 (ja)
JP (1) JP7219751B2 (ja)
CN (1) CN111770962A (ja)
WO (1) WO2019168107A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744645A (en) * 1980-08-30 1982-03-13 Dainippon Ink & Chem Inc Halogen-containing resin composition
JPS60123565A (ja) * 1983-12-08 1985-07-02 Sanyo Kokusaku Pulp Co Ltd 塗料用組成物
JPH05239292A (ja) * 1992-02-26 1993-09-17 Sanyo Chem Ind Ltd 樹脂組成物、コーテイング剤および接着剤
JPH06336568A (ja) * 1993-05-28 1994-12-06 Nippon Oil & Fats Co Ltd 水性塗料組成物、塗装方法および塗膜
JPH07304913A (ja) * 1994-05-13 1995-11-21 Mitsui Petrochem Ind Ltd 水分散体組成物
JPH10298490A (ja) * 1997-04-30 1998-11-10 Toyota Motor Corp 水性プライマー塗料組成物
JP2001002977A (ja) * 1999-06-22 2001-01-09 Honda Motor Co Ltd 自動車内装材用水性塗料組成物
JP2005281519A (ja) * 2004-03-30 2005-10-13 Yokohama Rubber Co Ltd:The プライマー組成物
JP2007182527A (ja) * 2005-12-07 2007-07-19 Honda Motor Co Ltd 自動車内装材用水性メタリック塗料および塗装物品
JP2007291282A (ja) * 2006-04-27 2007-11-08 Kaneka Corp 改質ポリオレフィン系樹脂組成物およびその製造方法
JP2016538370A (ja) * 2013-11-08 2016-12-08 ダウ グローバル テクノロジーズ エルエルシー 下塗り剤不要塗料組成物、その製造方法、及びそれを含む物品

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005000925A1 (ja) * 2003-06-26 2005-01-06 Mitsubishi Rayon Co., Ltd. 変性ポリオレフィン樹脂および組成物
JP4782589B2 (ja) 2006-03-07 2011-09-28 日本ビー・ケミカル株式会社 導電性プライマー塗料およびこれを用いる塗膜形成方法
WO2007119760A1 (ja) * 2006-04-11 2007-10-25 Kansai Paint Co., Ltd. 水性プライマー組成物

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5744645A (en) * 1980-08-30 1982-03-13 Dainippon Ink & Chem Inc Halogen-containing resin composition
JPS60123565A (ja) * 1983-12-08 1985-07-02 Sanyo Kokusaku Pulp Co Ltd 塗料用組成物
JPH05239292A (ja) * 1992-02-26 1993-09-17 Sanyo Chem Ind Ltd 樹脂組成物、コーテイング剤および接着剤
JPH06336568A (ja) * 1993-05-28 1994-12-06 Nippon Oil & Fats Co Ltd 水性塗料組成物、塗装方法および塗膜
JPH07304913A (ja) * 1994-05-13 1995-11-21 Mitsui Petrochem Ind Ltd 水分散体組成物
JPH10298490A (ja) * 1997-04-30 1998-11-10 Toyota Motor Corp 水性プライマー塗料組成物
JP2001002977A (ja) * 1999-06-22 2001-01-09 Honda Motor Co Ltd 自動車内装材用水性塗料組成物
JP2005281519A (ja) * 2004-03-30 2005-10-13 Yokohama Rubber Co Ltd:The プライマー組成物
JP2007182527A (ja) * 2005-12-07 2007-07-19 Honda Motor Co Ltd 自動車内装材用水性メタリック塗料および塗装物品
JP2007291282A (ja) * 2006-04-27 2007-11-08 Kaneka Corp 改質ポリオレフィン系樹脂組成物およびその製造方法
JP2016538370A (ja) * 2013-11-08 2016-12-08 ダウ グローバル テクノロジーズ エルエルシー 下塗り剤不要塗料組成物、その製造方法、及びそれを含む物品

Also Published As

Publication number Publication date
CN111770962A (zh) 2020-10-13
JP7219751B2 (ja) 2023-02-08
US20210102054A1 (en) 2021-04-08
JPWO2019168107A1 (ja) 2021-02-25

Similar Documents

Publication Publication Date Title
JP7322207B2 (ja) 塩素化ポリオレフィン系樹脂組成物
JP2022179555A (ja) 樹脂組成物及びその用途
JP6976260B2 (ja) 変性ポリオレフィン系樹脂
TWI762549B (zh) 改質聚烯烴系樹脂
JP7265483B2 (ja) 変性ポリオレフィン樹脂組成物及びその製造方法
JP7193266B2 (ja) 変性ポリオレフィン樹脂、水性分散体、及びプライマー
JP7219751B2 (ja) 樹脂組成物
TW202216814A (zh) 分散體組合物
JP4473500B2 (ja) バインダー樹脂組成物及びその用途
JP2000007979A (ja) ポリオレフィン用塗料樹脂組成物及びその製造方法
JP3045498B2 (ja) バインダ―樹脂組成物及びその製造方法
WO2020213528A1 (ja) 変性ポリオレフィン樹脂組成物
JP2022117819A (ja) 酸変性塩素化ポリオレフィン樹脂の製造方法
JP2010059273A (ja) 水性分散液および塗膜の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19760965

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503616

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19760965

Country of ref document: EP

Kind code of ref document: A1