WO2019168106A1 - 薄片試料作製装置および薄片試料作製方法 - Google Patents

薄片試料作製装置および薄片試料作製方法 Download PDF

Info

Publication number
WO2019168106A1
WO2019168106A1 PCT/JP2019/007852 JP2019007852W WO2019168106A1 WO 2019168106 A1 WO2019168106 A1 WO 2019168106A1 JP 2019007852 W JP2019007852 W JP 2019007852W WO 2019168106 A1 WO2019168106 A1 WO 2019168106A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
thin
particle beam
irradiation
region
Prior art date
Application number
PCT/JP2019/007852
Other languages
English (en)
French (fr)
Inventor
郁子 中谷
Original Assignee
株式会社日立ハイテクサイエンス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクサイエンス filed Critical 株式会社日立ハイテクサイエンス
Priority to KR1020207006867A priority Critical patent/KR102681961B1/ko
Priority to CN201980004416.1A priority patent/CN111065907B/zh
Priority to US16/646,911 priority patent/US11199480B2/en
Publication of WO2019168106A1 publication Critical patent/WO2019168106A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/32Polishing; Etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching for microworking, e. g. etching of gratings or trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/317Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
    • H01J37/3174Particle-beam lithography, e.g. electron beam lithography
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • G01N1/2806Means for preparing replicas of specimens, e.g. for microscopal analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20207Tilt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20278Motorised movement
    • H01J2237/20285Motorised movement computer-controlled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30455Correction during exposure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Definitions

  • the present invention relates to an apparatus and a method for producing a thinned sample by etching using a particle beam.
  • a method for producing a thin sample having a shape suitable for various processes such as observation, analysis, and measurement using a transmission electron microscope is known (see, for example, Patent Document 1).
  • this sample preparation method an ion beam is irradiated to the end of the sample from a direction orthogonal to the thickness direction of the plate-shaped sample, and etching is performed so as to cut out from the end of the sample toward the center. .
  • a thin film portion whose thickness is reduced by one step from the end portion to the central portion of the sample is formed, and the thin film portion is supported by a portion other than the thin film portion thicker than the thin film portion, thereby preventing a decrease in support strength.
  • the etching process is performed from the end of the sample toward the center with respect to the observation region at the center of the sample.
  • a thin film portion is also formed in the region from the center toward the center.
  • the size of the thin film portion other than the observation region increases as the observation region becomes larger.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thin piece sample preparation apparatus and a thin piece sample preparation method capable of suppressing a decrease in strength of a thin piece sample.
  • a thin piece sample preparation apparatus is a thin piece sample preparation apparatus for preparing a thin piece sample by etching a sample by sputtering, the particle beam irradiation optical system for irradiating a particle beam, A sample stage for holding the sample, a driving mechanism for driving the sample stage, and a processing region of the sample are defined in an image obtained by irradiating the sample with the particle beam, and the processing region is irradiated with the particle beam.
  • a computer that controls the particle beam irradiation optical system and the driving mechanism so as to etch the sample
  • the computer includes a thinning region that is the processing region of the sample and a thinning region of the thinning region.
  • the peripheral edge surrounding the entire circumference is set and etching is performed by irradiating the particle beam from the direction intersecting the irradiated surface of the sample.
  • the thickness of the thinned region is formed thinner than the thickness of the peripheral portion by Engineering.
  • the computer receives an input regarding an angle formed by the irradiated surface and an irradiation axis of the particle beam and the thinned region, and according to the input
  • the thinning area is set in the sample, the drive mechanism is controlled in accordance with the input, the angle formed by the irradiated surface and the irradiation axis is set to a predetermined angle, and the predetermined angle is maintained.
  • the particle beam irradiation optical system and the drive mechanism may be controlled such that the thinning region is scanned by the particle beam to perform etching.
  • the computer receives an input regarding a relative rotation angle of the irradiation axis around a normal line of the irradiated surface, and the predetermined sample is determined according to the input.
  • the particle beam irradiation optical system is configured to relatively rotate the irradiation axis within a range of a predetermined rotation angle around the normal line including the center of the thinned region among the normal lines of the irradiated surface.
  • the system and the drive mechanism may be controlled.
  • a setting step of setting a thinned region and a peripheral portion surrounding the entire periphery of the thinned region in the sample intersects with an irradiated surface of the sample.
  • the setting step may set the outer shape of the thinned region in a circular shape when viewed from the normal direction of the irradiated surface.
  • the processing step maintains the angle between the irradiated surface and the irradiation axis of the particle beam constant, while maintaining the normal of the irradiated surface.
  • the irradiation axis may be relatively rotated around a normal line including the center of the thinned region.
  • the peripheral portion surrounding the entire circumference of the thinned region of the sample is provided, for example, at least a part of the peripheral edge of the thinned region is more than the thinned region.
  • the supporting strength of the thinned region can be increased.
  • the etching process can proceed in parallel with the irradiated surface at a desired depth from the irradiated surface in the thickness direction of the sample.
  • FIG. 1 is a configuration diagram of a charged particle beam apparatus which is an example of a thin piece sample preparation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the irradiated surface of the sample piece in the thin piece sample preparation method according to the embodiment of the present invention as seen from the normal direction (thickness direction).
  • FIG. 3 is a cross-sectional view of the thinned region of the sample piece during execution of the processing step of the thin sample preparation method according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing an example of the relative position between the focused ion beam and the sample piece during the processing step of the thin piece sample preparation method according to the embodiment of the present invention. It is the top view seen from the direction (thickness direction).
  • FIG. 1 is a configuration diagram of a charged particle beam apparatus which is an example of a thin piece sample preparation apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the irradiated surface of the sample piece in the
  • FIG. 5A is an enlarged cross-sectional view of a sample piece according to a comparative example of the embodiment of the present invention
  • FIG. 5B is a diagram illustrating the processing step of the thin sample preparation method according to the embodiment of the present invention. It is a cross-sectional enlarged view of the thinned area of the sample piece in FIG.
  • FIG. 6 is a configuration diagram of a charged particle beam apparatus which is an example of a thin sample manufacturing apparatus according to a modification of the embodiment of the present invention.
  • FIG. 1 is a configuration diagram of a thin sample manufacturing apparatus according to an embodiment of the present invention.
  • a thin sample preparation apparatus 1 is, for example, a charged particle beam apparatus 10.
  • the charged particle beam apparatus 10 includes a sample chamber 11 that can be maintained in a vacuum state, a stage 12 that can fix a sample S and a sample piece holder P inside the sample chamber 11, and a stage 12. And a stage driving mechanism 13 for driving the motor.
  • the charged particle beam apparatus 10 includes a focused ion beam irradiation optical system 14 that irradiates an irradiation target within a predetermined irradiation region (that is, a scanning range) inside the sample chamber 11 with a focused ion beam (FIB).
  • FIB focused ion beam
  • the charged particle beam apparatus 10 includes an electron beam irradiation optical system 15 that irradiates an irradiation target within a predetermined irradiation region inside the sample chamber 11 with an electron beam (EB).
  • the charged particle beam apparatus 10 includes a detector 16 that detects secondary charged particles (secondary electrons, secondary ions) R generated from an irradiation target by irradiation with a focused ion beam or an electron beam.
  • the charged particle beam apparatus 10 includes a gas supply unit 17 that supplies a gas G to the surface to be irradiated.
  • the gas supply unit 17 includes a nozzle having an outer diameter of about 200 ⁇ m.
  • the charged particle beam apparatus 10 takes out a minute sample piece Q from a sample S fixed on a stage 12, holds a sample piece Q and transfers it to a sample piece holder P, and drives the needle 18 to drive the sample piece.
  • the charged particle beam apparatus 10 includes a display device 21 that displays image data based on the secondary charged particles R detected by the detector 16, a computer 22, and an input device 23.
  • the charged particle beam apparatus 10 irradiates the surface of the irradiation target while scanning the focused ion beam, thereby performing various processing (excavation, trimming processing, etc.) by imaging of the irradiated portion and sputtering, A deposition film can be formed.
  • the charged particle beam apparatus 10 can perform processing for forming a sample piece Q (for example, a thin piece sample, a needle-like sample, etc.) for transmission observation using a transmission electron microscope or an analysis sample piece using an electron beam from the sample S.
  • the charged particle beam apparatus 10 can perform processing to convert the sample piece Q transferred to the sample piece holder P into a thin piece sample having a desired thickness (for example, 5 to 100 nm) suitable for transmission observation with a transmission electron microscope.
  • the charged particle beam apparatus 10 can perform observation of the surface of the irradiation target by irradiating the surface of the irradiation target such as the sample piece Q and the needle 18 while scanning the focused ion beam or the electron beam.
  • the absorption current detector 20 includes a preamplifier, amplifies the inflow current of the needle 18, and sends the amplified current to the computer 22.
  • a needle-shaped absorption current image can be displayed on the display device 21 by a signal synchronized with the needle inflow current detected by the absorption current detector 20 and the scanning of the charged particle beam, and the needle shape and the tip position can be specified.
  • the sample chamber 11 can be evacuated to a desired vacuum state by an evacuation device (not shown) and can maintain a desired vacuum state.
  • the stage 12 holds the sample S.
  • the stage 12 includes a holder fixing base 12a that holds the sample piece holder P.
  • the holder fixing base 12a may have a structure in which a plurality of sample piece holders P can be mounted.
  • the stage driving mechanism 13 is housed inside the sample chamber 11 while being connected to the stage 12, and displaces the stage 12 with respect to a predetermined axis in accordance with a control signal output from the computer 22.
  • the stage drive mechanism 13 is a 5-axis drive mechanism.
  • the 5-axis drive mechanism includes a moving mechanism 13a that moves the stage 12 in parallel along at least the X-axis and Y-axis parallel to the horizontal plane and orthogonal to each other, and the vertical Z-axis orthogonal to the X-axis and Y-axis. I have.
  • the five-axis drive mechanism includes a tilt mechanism 13b that tilts the stage 12 around the X axis or the Y axis, and a rotation mechanism 13c that rotates the stage 12 around the Z axis.
  • the focused ion beam irradiation optical system 14 causes a beam emitting unit (not shown) inside the sample chamber 11 to face the stage 12 at a position above the stage 12 in the irradiation region in the vertical direction, and the optical axis in the vertical direction.
  • the sample chamber 11 is fixed in parallel. Thereby, it is possible to irradiate the irradiation target such as the sample S, the sample piece Q, and the needle 18 existing in the irradiation region placed on the stage 12 with the focused ion beam from the upper side to the lower side in the vertical direction.
  • the charged particle beam apparatus 10 may include another ion beam irradiation optical system instead of the focused ion beam irradiation optical system 14 as described above.
  • the ion beam irradiation optical system is not limited to an optical system that forms a focused beam as described above.
  • the ion beam irradiation optical system may be, for example, a projection ion beam irradiation optical system in which a stencil mask having a fixed opening is installed in the optical system to form a shaped beam having an opening shape of the stencil mask.
  • a projection-type ion beam irradiation optical system a shaped beam having a shape corresponding to the processing region around the sample piece Q can be accurately formed, and the processing time is shortened.
  • the focused ion beam irradiation optical system 14 includes an ion source 14a that generates ions, and an ion optical system 14b that focuses and deflects ions extracted from the ion source 14a.
  • the ion source 14 a and the ion optical system 14 b are controlled according to a control signal output from the computer 22, and the irradiation position and irradiation conditions of the focused ion beam are controlled by the computer 22.
  • the ion source 14a is, for example, a liquid metal ion source using liquid gallium or the like, a plasma ion source, a gas field ion source, or the like.
  • the ion optical system 14b includes, for example, a first electrostatic lens such as a condenser lens, an electrostatic deflector, and a second electrostatic lens such as an objective lens.
  • a first electrostatic lens such as a condenser lens
  • an electrostatic deflector such as an objective lens
  • a second electrostatic lens such as an objective lens.
  • the electron beam irradiation optical system 15 has a beam emitting portion (not shown) inside the sample chamber 11 placed on the stage 12 in an inclined direction inclined by a predetermined angle (for example, 60 °) with respect to the vertical direction of the stage 12 in the irradiation region.
  • the optical axis is parallel to the tilt direction and the sample chamber 11 is fixed.
  • the electron beam irradiation optical system 15 includes an electron source 15a that generates electrons, and an electron optical system 15b that focuses and deflects electrons emitted from the electron source 15a.
  • the electron source 15 a and the electron optical system 15 b are controlled according to a control signal output from the computer 22, and the irradiation position and irradiation conditions of the electron beam are controlled by the computer 22.
  • the electron optical system 15b includes, for example, an electromagnetic lens and a deflector.
  • the electron beam irradiation optical system 15 and the focused ion beam irradiation optical system 14 are interchanged so that the electron beam irradiation optical system 15 is inclined in the vertical direction and the focused ion beam irradiation optical system 14 is inclined at a predetermined angle in the vertical direction. You may arrange in.
  • the detector 16 detects the intensity of secondary charged particles (secondary electrons and secondary ions) R emitted from the irradiation target when the irradiation target such as the sample S and the needle 18 is irradiated with the focused ion beam or the electron beam (that is, the target S). , The amount of secondary charged particles) is detected, and information on the detected amount of secondary charged particles R is output.
  • the detector 16 is arranged at a position where the amount of the secondary charged particles R can be detected inside the sample chamber 11, for example, a position obliquely above the irradiation target such as the sample S in the irradiation region. It is fixed to.
  • the gas supply unit 17 is fixed to the sample chamber 11, has a gas injection unit 17 a (for example, a nozzle) inside the sample chamber 11, and is arranged with the gas injection unit 17 a facing the stage 12.
  • the gas supply unit 17 deposits an etching gas for selectively accelerating the etching of the sample S by the focused ion beam according to the material of the sample S, and a deposit such as a metal or an insulator on the surface of the sample S.
  • a deposition gas or the like for forming a film can be supplied to the sample S.
  • etching gas such as xenon fluoride for the silicon-based sample S and water for the organic-based sample S
  • the etching is selectively promoted by material selection.
  • a deposition gas containing platinum, carbon, tungsten, or the like to the sample S together with the irradiation of the focused ion beam, a solid component decomposed from the deposition gas is applied to the surface of the sample S. It can be deposited.
  • deposition gases include phenanthrene, naphthalene, and pyrene as carbon containing gases, trimethyl, ethylcyclopentadienyl, platinum, etc. as platinum containing gases, and tungsten hexacarbonyl as a gas containing tungsten. .
  • etching or deposition can also be performed by irradiating an electron beam.
  • the needle drive mechanism 19 is housed inside the sample chamber 11 with the needle 18 connected thereto, and displaces the needle 18 in accordance with a control signal output from the computer 22.
  • the needle drive mechanism 19 is provided integrally with the stage 12. For example, when the stage 12 is rotated around the tilt axis (that is, the X axis or the Y axis) by the tilt mechanism 13 b, the needle drive mechanism 19 moves integrally with the stage 12.
  • the needle drive mechanism 19 includes a moving mechanism (not shown) that moves the needle 18 in parallel along each of the three-dimensional coordinate axes, and a rotation mechanism (not shown) that rotates the needle 18 around the central axis of the needle 18. I have.
  • the three-dimensional coordinate axis is independent of the orthogonal three-axis coordinate system of the sample stage, and is an orthogonal three-axis coordinate system including a two-dimensional coordinate axis parallel to the surface of the stage 12, and the surface of the stage 12 is inclined.
  • the coordinate system tilts and rotates.
  • the computer 22 controls at least the stage drive mechanism 13, the focused ion beam irradiation optical system 14, the electron beam irradiation optical system 15, the gas supply unit 17, and the needle drive mechanism 19.
  • the computer 22 is disposed outside the sample chamber 11 and is connected to a display device 21 and an input device 23 such as a mouse and a keyboard for outputting a signal corresponding to an input operation by an operator.
  • the computer 22 controls the operation of the charged particle beam apparatus 10 in an integrated manner by a signal output from the input device 23 or a signal generated by a preset automatic operation control process.
  • the computer 22 converts the detection amount of the secondary charged particles R detected by the detector 16 while scanning the irradiation position of the charged particle beam into a luminance signal corresponding to the irradiation position, and Image data indicating the shape of the irradiation target is generated by the two-dimensional position distribution of the detection amount.
  • the computer 22 detects the absorption current flowing through the needle 18 while scanning the irradiation position of the charged particle beam, thereby changing the shape of the needle 18 based on the two-dimensional position distribution (absorption current image) of the absorption current.
  • the absorption current image data shown is generated.
  • the computer 22 causes the display device 21 to display a screen for executing operations such as enlargement, reduction, movement, and rotation of each image data together with each generated image data.
  • the computer 22 causes the display device 21 to display a screen for performing various settings such as mode selection and processing settings in automatic sequence control.
  • a charged particle beam apparatus 10 has the above-described configuration. Next, a method for producing a thin piece sample T for transmission observation using a transmission electron microscope using the charged particle beam apparatus 10 will be described.
  • an operation of preparing the thin sample T from the sample piece Q formed by processing the sample S by the focused ion beam FIB is largely divided into an initial setting process and a processing process. Separately, it demonstrates sequentially.
  • the sample piece Q to be processed is taken out of the sample S by the needle 18 and transferred to the sample piece holder P. Along with this transfer, the position and shape of the sample piece Q are grasped, and the stage 12 is driven by the stage drive mechanism 13 so that the sample piece Q enters the observation visual field region by the charged particle beam.
  • the position and shape of the sample piece Q are based on a known relative positional relationship between the reference mark provided on the sample S and the sample piece Q, and template matching based on a template obtained directly from the image data of the sample piece Q. To be grasped based on.
  • the computer 22 receives an operator input regarding the processing conditions of the sample piece Q, and performs initial setting of the processing conditions in accordance with the input of the operator (step S01).
  • the processing conditions include the position and shape of the thinned region 31 in the sample piece Q, the tilt angle ⁇ a and the rotation angle ⁇ b of the irradiation axis U of the focused ion beam FIB with respect to the sample piece Q, and the like.
  • FIG. 2 is a plan view of the irradiated surface 34 of the sample piece Q in the thin sample preparation method according to the embodiment of the present invention as viewed from the normal direction (thickness direction D).
  • the outer shape of the sample piece Q is formed in a rectangular plate shape.
  • the length of the sample piece Q in the first width direction W1 and the length of the second width direction W2 orthogonal to the thickness direction D and the first width direction W1 are, for example, about several tens of ⁇ m.
  • the position and shape of the thinned region 31 are specified by a processing frame 32 input by an operator on image data acquired by irradiation with a charged particle beam, for example.
  • the processing frame 32 is regulated so as to be set at a portion surrounded by the peripheral edge portion 33 of the sample piece Q. That is, the sample piece Q is divided into the thinned region 31 and the peripheral portion 33 surrounding the entire circumference of the thinned region 31 by the processing frame 32.
  • the outer shape of the processing frame 32 showing the thinned region 31 is a circular shape having a diameter of about a dozen ⁇ m when viewed from the thickness direction D of the sample piece Q, that is, the normal direction of the irradiated surface 34 of the sample piece Q.
  • the outer shape of the peripheral edge portion 33 is set to be annular.
  • the tilt angle ⁇ a (see FIG. 3) is an angle (crossing angle) formed by the surface 35 including the irradiated surface 34 of the sample piece Q and the irradiation axis U of the focused ion beam FIB.
  • the tilt angle ⁇ a realizes thinning parallel to the irradiated surface 34 of the sample piece Q in a processing step to be executed later, and suppresses generation of a processing stripe pattern generated in the irradiation direction of the focused ion beam FIB by the curtain effect.
  • This is a predetermined acute angle and is set to several degrees to 20 degrees.
  • the curtain effect is due to the formation of irregularities on the processed surface due to a change in the etching rate caused by local differences in the shape or structure of the processing object when etching the processing object by irradiation with the focused ion beam FIB. It is a phenomenon.
  • the contour of the unevenness formed on the processed surface is formed in, for example, a streak shape extending along the irradiation direction of the focused ion beam FIB.
  • the unevenness formed on the machined surface by the curtain effect causes a fringe pattern in the observed image of the machined surface, and is indistinguishable from the structure or inherent pattern of the object to be machined. There is a risk of interpretation.
  • the rotation angle ⁇ b (see FIG.
  • the rotation angle ⁇ b is a range of a predetermined rotation angle at which a processing stripe pattern generated by the curtain effect in a processing step to be executed later is removed by etching of the focused ion beam FIB, and the irradiation axis U of the focused ion beam FIB is set.
  • the reference is set to about ⁇ 45 °.
  • the computer 22 drives the stage 12 by the stage driving mechanism 13 so that the posture of the sample piece Q with respect to the irradiation axis U of the focused ion beam FIB becomes a predetermined posture according to the input of the operator.
  • the computer 22 tilts the irradiation axis U relative to the surface 35 from a state in which the surface 35 of the sample piece Q and the irradiation axis U of the focused ion beam FIB are parallel to each other.
  • the stage 12 is driven so that an angle (tilt angle ⁇ a) formed by the irradiated surface 34 and the irradiation axis U of the focused ion beam FIB becomes a predetermined angle.
  • the computer 22 secures the posture of the sample piece Q suitable for the processing step to be executed later, and reduces the influence of the curtain effect that occurs when the sample piece Q is processed.
  • FIG. 3 is a cross-sectional view of the thinned region 31 of the sample piece Q during execution of the processing step of the thin piece sample manufacturing method according to the embodiment of the present invention.
  • the computer 22 executes a machining process (step S02).
  • the computer 22 maintains the angle (tilt angle ⁇ a) between the irradiated surface 34 and the irradiation axis U of the focused ion beam FIB in the processing frame 32 of the sample piece Q while maintaining the predetermined angle.
  • the focused ion beam irradiation optical system 14 and the stage drive mechanism 13 are controlled so as to scan the thinned area inside with the focused ion beam FIB.
  • the upstream portion 31 a in the incident direction of the focused ion beam FIB has a first parallel to the irradiation axis U of the focused ion beam FIB from the irradiated surface 34 of the sample piece Q to a predetermined depth in the thickness direction.
  • One cross section 41 is formed.
  • a second section 42 parallel to the irradiated surface 34 is formed at a predetermined depth in the thickness direction of the sample piece Q in the downstream portion 31 b in the incident direction of the focused ion beam FIB.
  • the computer 22 forms the thickness of the thinned region 31 in the processing frame 32 thinner than the thickness of the peripheral edge portion 33 surrounding the thinned region 31.
  • the peripheral portion 33 has a thickness of about 1 to 2 ⁇ m
  • the thinned region 31 has a thickness of about several tens of nm.
  • FIG. 4 is a diagram showing an example of the relative position between the focused ion beam FIB and the sample piece Q during execution of the processing step of the thin piece sample preparation method according to the embodiment of the present invention. It is the top view which looked at 34 from the normal line direction (thickness direction D).
  • the computer 22 is irradiated with the angle (tilt angle ⁇ a) formed by the surface 35 including the irradiated surface 34 of the sample piece Q and the irradiation axis U of the focused ion beam FIB at a predetermined angle in the processing step.
  • the stage drive mechanism 13 is controlled so that the irradiation axis U is relatively rotated within a range of a predetermined rotation angle around the normal N including the center C of the thinned region 31 among the normals of the surface 34. Then, the computer 22 keeps the angle between the irradiated surface 34 and the irradiation axis U at a predetermined angle for each predetermined rotation angle of the irradiation axis U around the normal line N of the irradiated surface 34, while maintaining the angle within the processing frame 32.
  • the focused ion beam irradiation optical system 14 and the stage drive mechanism 13 are controlled so that the thinned region 31 of the laser beam is scanned by the focused ion beam FIB.
  • the computer 22 removes the processing stripe pattern generated by the curtain effect in a state where the rotation angle of the irradiation axis U is an appropriate constant angle by etching the focused ion beam FIB in an incident direction different from the appropriate constant angle. . Furthermore, the computer 22 applies at least a part of the upstream portion 31a of the thinned region 31 formed with the rotation angle of the irradiation axis U to an appropriate constant angle, with a focused ion beam having an incident direction different from the appropriate fixed angle. By etching with FIB, a processed cross section parallel to the irradiated surface 34 can be formed in at least a part of the upstream portion 31a, like the second cross section 42 of the downstream portion 31b. As described above, the computer 22 produces the thin piece sample T from the sample piece Q, and ends the operation of the series of thin piece sample producing methods.
  • the peripheral portion 33 surrounding the entire circumference of the thinned region 31 of the sample piece Q is provided.
  • the support strength of the thinned region 31 can be increased.
  • the thinned region 31 can be set at the center of the sample piece Q regardless of the outer shape of each of the sample piece Q and the peripheral edge portion 33, for example, the end of the sample piece Q is processed by the curtain effect. Even in the case where there is a portion where a striped pattern is likely to occur, the processing of the thinned region 31 is appropriately performed without specially restricting the relative incident direction of the focused ion beam FIB with respect to the sample piece Q. And can be done easily.
  • the irradiated surface at a desired depth from the irradiated surface 34 in the thickness direction D of the sample piece Q.
  • the etching process can be performed in parallel with H.34. For example, even in the case where the beam intensity distribution of the focused ion beam FIB has an appropriate distribution shape such as a Gaussian distribution with the irradiation axis U being maximized, additional etching processing is not required, and in the thinned region 31.
  • FIG. 5A is an enlarged cross-sectional view of a sample piece Q according to a comparative example of the embodiment of the present invention.
  • the focused ion beam FIB is irradiated parallel to the surface 35 including the irradiated surface 34 as in the comparative example shown in FIG. 5A, the beam intensity distribution at the downstream end in the incident direction of the focused ion beam FIB.
  • FIG. 5B is an enlarged cross-sectional view of the thinned region 31 of the sample piece Q during execution of the processing step of the sample piece manufacturing method according to the embodiment of the present invention.
  • an appropriate one according to the shape of the beam intensity distribution of the focused ion beam FIB from the direction intersecting the irradiated surface 34 of the sample piece Q.
  • the second cross section 42 parallel to the irradiated surface 34 is also formed at the downstream end in the incident direction of the focused ion beam FIB without requiring additional etching. Can be formed.
  • the computer 22 keeps the tilt angle ⁇ a at a predetermined angle, and moves the irradiation axis U around the normal N including the center C of the thinned region 31 among the normals of the irradiated surface 34 within a range of a predetermined rotation angle. Since the rotation is relatively performed, the processing stripe pattern generated by the curtain effect when the rotation angle of the irradiation axis U is an appropriate constant angle is removed by etching the focused ion beam FIB in an incident direction different from the appropriate constant angle. can do.
  • the outer shape of the thinned region 31 when viewed from the normal direction of the irradiated surface 34 is set to a circular shape, for example, a corner portion when the outer shape of the thinned region 31 is set to a rectangular shape, etc.
  • the shape of the processing frame 32 that defines the thinned region 31 is set to be circular, so that the processing frame 32 is changed even when the irradiation axis U is relatively rotated around the normal line N.
  • the thinned region 31 can be irradiated with the focused ion beam FIB without necessity.
  • FIG. 6 is a configuration diagram of a charged particle beam apparatus 10 that is an example of a thin piece sample preparation apparatus 1 according to a modification of the embodiment of the present invention.
  • the charged particle beam apparatus 10 includes a double tilt stage 25 disposed on the stage 12.
  • the double tilt stage 25 is a biaxial drive mechanism, and fixes the sample piece Q to be processed in the above-described processing steps.
  • the stage 12 is driven by a stage drive mechanism 13 that is a 5-axis drive mechanism.
  • the tilt axis T1 of the stage drive mechanism 13 is parallel to a direction orthogonal to each of the focused ion beam (FIB) of the focused ion beam irradiation optical system 14 and the electron beam (EB) of the electron beam irradiation optical system 15. Is set.
  • the stage drive mechanism 13 can direct the section of the sample piece Q observed with the electron beam (EB) to the focused ion beam (FIB) by inclining the stage 12 about the axis of the tilt axis T1.
  • the double tilt stage 25 disposed on the stage 12 includes two tilt axes that are orthogonal to each other.
  • the tilt axis T2 of the double tilt stage 25 is set parallel to the direction orthogonal to the tilt axis T1 of the stage drive mechanism 13 and the irradiation axis U of the focused ion beam (FIB).
  • the double tilt stage 25 tilts the sample piece Q around the axis of the tilt axis T2 in a state where the irradiated surface 34 of the sample piece Q faces the irradiation axis of the electron beam (EB).
  • the incident angle of the focused ion beam (FIB) with respect to the surface 34 is adjusted. Thereby, an observation image of the processing surface by the electron beam (EB) can be acquired during the etching processing by the focused ion beam (FIB).
  • the thin sample preparation apparatus 1 is the charged particle beam apparatus 10, but is not limited thereto.
  • the thin sample preparation apparatus 1 may be a particle beam apparatus that irradiates a beam of uncharged particles instead of charged particles. In this case, it is possible to prevent the irradiation position of the particle beam from being shifted due to a leakage electric field in the sample chamber 11 or the like.
  • the thin piece sample preparation apparatus 1 may be a focused ion beam apparatus different from the charged particle beam apparatus 10 that forms the sample piece Q from the sample S.
  • the computer 22 may automatically execute at least a part of the operation for preparing the thin sample.
  • the computer 22 may execute an automatic operation in the case where a thin sample preparation operation is repeatedly performed on a plurality of sample pieces Q.
  • the position and shape of the thinned region 31 in the sample piece Q are input by the operator in the initial setting step, but the present invention is not limited to this.
  • the computer 22 may automatically set the position and shape of the thinned region 31 in the sample piece Q.
  • the computer 22 extracts the edge of the sample piece Q in the image data obtained by irradiation with the charged particle beam, and places the processing frame 32 having a predefined shape and size at a predetermined position based on the extracted edge. It may be set automatically.
  • the thin sample preparation operation is performed on the sample piece Q previously held in the sample piece holder P.
  • the present invention is not limited to this.
  • the thin piece sample preparation operation may be performed on the sample piece Q formed on the sample S.
  • the processing frame 32 may be set and the position and orientation of the sample piece Q may be controlled using the position coordinates of the reference mark formed on the sample S in advance.
  • the outer shape of the processing frame 32 is set to be circular when viewed from the thickness direction D of the sample piece Q, that is, the normal direction of the irradiated surface 34 of the sample piece Q.
  • the shape is not limited to this, and may be set to other shapes such as an elliptical shape or a rectangular shape.
  • a new machining frame 32 may be reset according to the rotation angle of the irradiation axis U around the normal line N of the irradiated surface 34.
  • a deposition film may be formed on the irradiated surface 34 of the sample piece Q prior to execution of the processing step.
  • the irradiation surface 34 is irradiated with an electron beam or a focused ion beam while supplying the deposition gas G to the irradiation surface 34 of the sample piece Q by the gas supply unit 17, thereby covering the irradiation surface 34.
  • a deposition film is formed.
  • SYMBOLS 1 Thin piece sample preparation apparatus, 10 ... Charged particle beam apparatus, 11 ... Sample chamber, 12 ... Stage (sample stage), 13 ... Stage drive mechanism (drive mechanism), 14 ... Focused ion beam irradiation optical system (particle beam irradiation optics) System), 15 ... electron beam irradiation optical system, 16 ... detector, 17 ... gas supply unit, 18 ... needle, 19 ... needle drive mechanism, 20 ... absorption current detector, 21 ... display device, 22 ... computer, 23 ... Input device 31 ... Thinned area 31a ... Upstream part, 31b ... Downstream part, 32 ... Processing frame, 33 ... Peripheral part, 34 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma & Fusion (AREA)
  • Engineering & Computer Science (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

薄片試料作製装置(1)は、集束イオンビーム照射光学系(14)と、ステージ(12)と、ステージ駆動機構(13)と、コンピュータ(22)と、を備える。集束イオンビーム照射光学系(14)は、集束イオンビーム(FIB)を照射する。ステージ(12)は、試料片(Q)を保持する。ステージ駆動機構(13)は、ステージ(12)を駆動する。コンピュータ(22)は、試料片(Q)において加工領域である薄片化領域と薄片化領域の全周を取り囲む周縁部とを設定する。コンピュータ(22)は、試料片(Q)の被照射面に交差する方向から集束イオンビーム(FIB)を照射して、エッチング加工によって薄片化領域の厚さを周縁部の厚さよりも薄く形成する。

Description

薄片試料作製装置および薄片試料作製方法
 この発明は、粒子ビームを用いるエッチング加工により薄片化試料を作製する装置および方法に関する。
 従来、例えば半導体デバイスの欠陥解析などにおいて、透過電子顕微鏡による観察、分析、および計測などの各種工程に適した形状の薄片試料を作製する方法が知られている(例えば、特許文献1参照)。この試料作製方法においては、板状の試料の厚さ方向に直交する方向から試料の端部にイオンビームを照射して、試料の端部から中央部に向かって切り欠くようにエッチング加工を行う。これにより、試料の端部から中央部に亘って厚さが一段薄くなる薄膜部を形成し、薄膜部よりも厚い薄膜部以外の部位によって薄膜部を支持することで支持強度の低下を防いでいる。
日本国特開2013-164346号公報
 ところで、上記従来技術に係る試料作製方法によれば、試料の中央部の観察領域に対して、試料の端部から中央部に向かってエッチング加工を行うので、観察領域以外の部位、つまり端部から中央部に向かう領域においても薄膜部が形成されている。この観察領域以外の薄膜部の大きさは、観察領域が大きくなることに伴って増大する。観察領域以外の薄膜部が大きくなると、観察領域の薄膜部の強度が低下するという問題が生じる。
 本発明は上記事情に鑑みてなされたもので、薄片試料の強度が低下することを抑制することが可能な薄片試料作製装置および薄片試料作製方法を提供することを目的としている。
 上記課題を解決して係る目的を達成するために、本発明は以下の態様を採用した。
(1)本発明の一態様に係る薄片試料作製装置は、試料をスパッタリングによりエッチング加工して薄片試料を作製する薄片試料作製装置であって、粒子ビームを照射する粒子ビーム照射光学系と、前記試料を保持する試料ステージと、前記試料ステージを駆動する駆動機構と、前記粒子ビームを前記試料に照射して得られる画像において前記試料の加工領域を画定し、前記加工領域に前記粒子ビームを照射して前記試料をエッチング加工するように前記粒子ビーム照射光学系および前記駆動機構を制御するコンピュータと、を備え、前記コンピュータは、前記試料において前記加工領域である薄片化領域と前記薄片化領域の全周を取り囲む周縁部とを設定し、前記試料の被照射面に交差する方向から前記粒子ビームを照射して、エッチング加工によって前記薄片化領域の厚さを前記周縁部の厚さよりも薄く形成する。
(2)上記(1)に記載の薄片試料作製装置では、前記コンピュータは、前記被照射面と前記粒子ビームの照射軸とのなす角および前記薄片化領域に関する入力を受け付け、前記入力に応じて前記試料に前記薄片化領域を設定し、前記入力に応じて前記駆動機構を制御して、前記被照射面と前記照射軸とのなす角を所定角度に設定し、前記所定角度を維持しながら前記粒子ビームによって前記薄片化領域を走査してエッチング加工を行うように前記粒子ビーム照射光学系および前記駆動機構を制御してもよい。
(3)上記(2)に記載の薄片試料作製装置では、前記コンピュータは、前記被照射面の法線周りにおける前記照射軸の相対的な回転角に関する入力を受け付け、前記入力に応じて前記所定角度を維持しながら、前記被照射面の法線のうち前記薄片化領域の中心を含む法線周りに前記照射軸を所定回転角度の範囲で相対的に回転させるように、前記粒子ビーム照射光学系および前記駆動機構を制御してもよい。
(4)本発明の一態様に係る薄片試料作製方法は、試料において薄片化領域と前記薄片化領域の全周を取り囲む周縁部とを設定する設定工程と、前記試料の被照射面に交差する方向から粒子ビームを照射して、スパッタリングによるエッチング加工によって前記薄片化領域の厚さを前記周縁部の厚さよりも薄く形成する加工工程と、を含む。
(5)上記(4)に記載の薄片試料作製方法では、前記設定工程は、前記被照射面の法線方向から見た場合の前記薄片化領域の外形を円形状に設定してもよい。
(6)上記(5)に記載の薄片試料作製方法では、前記加工工程は、前記被照射面と前記粒子ビームの照射軸とのなす角を一定に維持しながら、前記被照射面の法線のうち前記薄片化領域の中心を含む法線周りに前記照射軸を相対的に回転させてもよい。
 本発明の薄片試料作製装置および薄片試料作製方法によれば、試料の薄片化領域の全周を取り囲む周縁部が設けられるので、例えば薄片化領域の周縁の少なくとも一部が、薄片化領域よりも厚く形成された部位によって支持されない場合に比べて、薄片化領域の支持強度を増大させることができる。また、試料の被照射面に交差する方向から粒子ビームを照射することによって、試料の厚さ方向における被照射面から所望の深さで被照射面に平行にエッチング加工を進行させることができる。
図1は、本発明の実施形態に係る薄片試料作製装置の一例である荷電粒子ビーム装置の構成図である。 図2は、本発明の実施形態に係る薄片試料作製方法における試料片の被照射面を法線方向(厚さ方向)から見た平面図である。 図3は、本発明の実施形態に係る薄片試料作製方法の加工工程の実行時における試料片の薄片化領域の断面図である。 図4は、本発明の実施形態に係る薄片試料作製方法の加工工程の実行時における集束イオンビームと試料片との相対位置の一例を示す図であって、試料片の被照射面を法線方向(厚さ方向)から見た平面図である。 図5(a)は、本発明の実施形態の比較例に係る試料片の断面拡大図であり、図5(b)は、本発明の実施形態に係る薄片試料作製方法の加工工程の実行時における試料片の薄片化領域の断面拡大図である。 図6は、本発明の実施形態の変形例に係る薄片試料作製装置の一例である荷電粒子ビーム装置の構成図である。
 以下、本発明の実施形態に係る薄片試料作製装置および薄片試料作製方法について添付図面を参照しながら説明する。
 図1は、本発明の実施形態に係る薄片試料作製装置の構成図である。
 本発明の実施形態に係る薄片試料作製装置1は、例えば、荷電粒子ビーム装置10である。荷電粒子ビーム装置10は、図1に示すように、内部を真空状態に維持可能な試料室11と、試料室11の内部において試料Sおよび試料片ホルダPを固定可能なステージ12と、ステージ12を駆動するステージ駆動機構13と、を備えている。荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域(つまり走査範囲)内の照射対象に集束イオンビーム(FIB)を照射する集束イオンビーム照射光学系14を備えている。荷電粒子ビーム装置10は、試料室11の内部における所定の照射領域内の照射対象に電子ビーム(EB)を照射する電子ビーム照射光学系15を備えている。荷電粒子ビーム装置10は、集束イオンビームまたは電子ビームの照射によって照射対象から発生する二次荷電粒子(二次電子、二次イオン)Rを検出する検出器16を備えている。荷電粒子ビーム装置10は、照射対象の表面にガスGを供給するガス供給部17を備えている。ガス供給部17は具体的には外径200μm程度のノズルなどを有する。荷電粒子ビーム装置10は、ステージ12に固定された試料Sから微小な試料片Qを取り出し、試料片Qを保持して試料片ホルダPに移設するニードル18と、ニードル18を駆動して試料片Qを搬送するニードル駆動機構19と、ニードル18に流入する荷電粒子ビームの流入電流(吸収電流とも言う)を検出し、流入電流信号をコンピュータに送り画像化する吸収電流検出器20と、を備えている。荷電粒子ビーム装置10は、検出器16によって検出された二次荷電粒子Rに基づく画像データなどを表示する表示装置21と、コンピュータ22と、入力デバイス23と、を備えている。
 この実施形態に係る荷電粒子ビーム装置10は、照射対象の表面に集束イオンビームを走査しながら照射することによって、被照射部の画像化やスパッタリングによる各種の加工(掘削、トリミング加工など)と、デポジション膜の形成などが実行可能である。荷電粒子ビーム装置10は、試料Sから透過電子顕微鏡による透過観察用の試料片Q(例えば、薄片試料、針状試料など)や電子ビーム利用の分析試料片を形成する加工を実行可能である。荷電粒子ビーム装置10は、試料片ホルダPに移設された試料片Qを、透過電子顕微鏡による透過観察に適した所望の厚さ(例えば、5~100nmなど)の薄片試料とする加工が実行可能である。荷電粒子ビーム装置10は、試料片Qおよびニードル18などの照射対象の表面に集束イオンビームまたは電子ビームを走査しながら照射することによって、照射対象の表面の観察を実行可能である。
 吸収電流検出器20は、プリアンプを備え、ニードル18の流入電流を増幅し、コンピュータ22に送る。吸収電流検出器20により検出されるニードル流入電流と荷電粒子ビームの走査と同期した信号により、表示装置21にニードル形状の吸収電流画像を表示でき、ニードル形状や先端位置特定が行える。
 試料室11は、排気装置(図示略)によって内部を所望の真空状態になるまで排気可能であるとともに、所望の真空状態を維持可能に構成されている。
 ステージ12は、試料Sを保持する。ステージ12は、試料片ホルダPを保持するホルダ固定台12aを備えている。このホルダ固定台12aは複数の試料片ホルダPを搭載できる構造であってもよい。
 ステージ駆動機構13は、ステージ12に接続された状態で試料室11の内部に収容されており、コンピュータ22から出力される制御信号に応じてステージ12を所定軸に対して変位させる。例えば、ステージ駆動機構13は、5軸の駆動機構である。5軸の駆動機構は、少なくとも水平面に平行かつ互いに直交するX軸およびY軸と、X軸およびY軸に直交する鉛直方向のZ軸とに沿って平行にステージ12を移動させる移動機構13aを備えている。5軸の駆動機構は、ステージ12をX軸またはY軸周りに傾斜させる傾斜機構13bと、ステージ12をZ軸周りに回転させる回転機構13cと、を備えている。
 集束イオンビーム照射光学系14は、試料室11の内部においてビーム出射部(図示略)を、照射領域内のステージ12の鉛直方向上方の位置でステージ12に臨ませるとともに、光軸を鉛直方向に平行にして、試料室11に固定されている。これによって、ステージ12に載置された試料S、試料片Q、および照射領域内に存在するニードル18などの照射対象に鉛直方向上方から下方に向かい集束イオンビームを照射可能である。また、荷電粒子ビーム装置10は、上記のような集束イオンビーム照射光学系14の代わりに他のイオンビーム照射光学系を備えてもよい。イオンビーム照射光学系は、上記のような集束ビームを形成する光学系に限定されない。イオンビーム照射光学系は、例えば、光学系内に定型の開口を有するステンシルマスクを設置して、ステンシルマスクの開口形状の成形ビームを形成するプロジェクション型のイオンビーム照射光学系であってもよい。このようなプロジェクション型のイオンビーム照射光学系によれば、試料片Qの周辺の加工領域に相当する形状の成形ビームを精度良く形成でき、加工時間が短縮される。
 集束イオンビーム照射光学系14は、イオンを発生させるイオン源14aと、イオン源14aから引き出されたイオンを集束および偏向させるイオン光学系14bと、を備えている。イオン源14aおよびイオン光学系14bは、コンピュータ22から出力される制御信号に応じて制御され、集束イオンビームの照射位置および照射条件などがコンピュータ22によって制御される。イオン源14aは、例えば、液体ガリウムなどを用いた液体金属イオン源やプラズマ型イオン源、ガス電界電離型イオン源などである。イオン光学系14bは、例えば、コンデンサレンズなどの第1静電レンズと、静電偏向器と、対物レンズなどの第2静電レンズと、などを備えている。イオン源14aとして、プラズマ型イオン源を用いた場合、大電流ビームによる高速な加工が実現でき、大きな試料Sの摘出に好適である。
 電子ビーム照射光学系15は、試料室11の内部においてビーム出射部(図示略)を、照射領域内のステージ12の鉛直方向に対して所定角度(例えば60°)傾斜した傾斜方向でステージ12に臨ませるとともに、光軸を傾斜方向に平行にして、試料室11に固定されている。これによって、ステージ12に固定された試料S、試料片Q、および照射領域内に存在するニードル18などの照射対象に傾斜方向の上方から下方に向かい電子ビームを照射可能である。
 電子ビーム照射光学系15は、電子を発生させる電子源15aと、電子源15aから射出された電子を集束および偏向させる電子光学系15bと、を備えている。電子源15aおよび電子光学系15bは、コンピュータ22から出力される制御信号に応じて制御され、電子ビームの照射位置および照射条件などがコンピュータ22によって制御される。電子光学系15bは、例えば、電磁レンズや偏向器などを備えている。
 なお、電子ビーム照射光学系15と集束イオンビーム照射光学系14の配置を入れ替えて、電子ビーム照射光学系15を鉛直方向に、集束イオンビーム照射光学系14を鉛直方向に所定角度傾斜した傾斜方向に配置してもよい。
 検出器16は、試料Sおよびニードル18などの照射対象に集束イオンビームや電子ビームが照射された時に照射対象から放射される二次荷電粒子(二次電子および二次イオン)Rの強度(つまり、二次荷電粒子の量)を検出し、二次荷電粒子Rの検出量の情報を出力する。検出器16は、試料室11の内部において二次荷電粒子Rの量を検出可能な位置、例えば照射領域内の試料Sなどの照射対象に対して斜め上方の位置などに配置され、試料室11に固定されている。
 ガス供給部17は試料室11に固定されており、試料室11の内部においてガス噴射部17a(例えば、ノズルなど)を有し、ガス噴射部17aをステージ12に臨ませて配置されている。ガス供給部17は、集束イオンビームによる試料Sのエッチングを試料Sの材質に応じて選択的に促進するためのエッチング用ガスと、試料Sの表面に金属または絶縁体などの堆積物によるデポジション膜を形成するためのデポジション用ガスなどを試料Sに供給可能である。例えば、シリコン系の試料Sに対するフッ化キセノンと、有機系の試料Sに対する水と、などのエッチング用ガスを、集束イオンビームの照射と共に試料Sに供給することによって、エッチングを材料選択的に促進させる。また、例えば、プラチナ、カーボン、またはタングステンなどを含有したデポジション用ガスを、集束イオンビームの照射と共に試料Sに供給することによって、デポジション用ガスから分解された固体成分を試料Sの表面に堆積(デポジション)させることができる。デポジション用ガスの具体例として、カーボンを含むガスとしてフェナントレンやナフタレンやピレンなど、プラチナを含むガスとしてトリメチル・エチルシクロペンタジエニル・プラチナなど、また、タングステンを含むガスとしてタングステンヘキサカルボニルなどがある。また、供給ガスによっては、電子ビームを照射することでも、エッチングまたはデポジションを行うことができる。
 ニードル駆動機構19は、ニードル18が接続された状態で試料室11の内部に収容されており、コンピュータ22から出力される制御信号に応じてニードル18を変位させる。ニードル駆動機構19は、ステージ12と一体に設けられており、例えばステージ12が傾斜機構13bによって傾斜軸(つまり、X軸またはY軸)周りに回転すると、ステージ12と一体に移動する。ニードル駆動機構19は、3次元座標軸の各々に沿って平行にニードル18を移動させる移動機構(図示略)と、ニードル18の中心軸周りにニードル18を回転させる回転機構(図示略)と、を備えている。なお、この3次元座標軸は、試料ステージの直交3軸座標系とは独立しており、ステージ12の表面に平行な2次元座標軸を含む直交3軸座標系で、ステージ12の表面が傾斜状態、回転状態にある場合、この座標系は傾斜し、回転する。
 コンピュータ22は、少なくともステージ駆動機構13と、集束イオンビーム照射光学系14と、電子ビーム照射光学系15と、ガス供給部17と、ニードル駆動機構19を制御する。
 コンピュータ22は、試料室11の外部に配置され、表示装置21と、操作者の入力操作に応じた信号を出力するマウスおよびキーボードなどの入力デバイス23とが接続されている。
 コンピュータ22は、入力デバイス23から出力される信号または予め設定された自動運転制御処理によって生成される信号などによって、荷電粒子ビーム装置10の動作を統合的に制御する。
 コンピュータ22は、荷電粒子ビームの照射位置を走査しながら検出器16によって検出される二次荷電粒子Rの検出量を、照射位置に対応付けた輝度信号に変換して、二次荷電粒子Rの検出量の2次元位置分布によって照射対象の形状を示す画像データを生成する。吸収電流画像モードでは、コンピュータ22は、荷電粒子ビームの照射位置を走査しながらニードル18に流れる吸収電流を検出することによって、吸収電流の2次元位置分布(吸収電流画像)によってニードル18の形状を示す吸収電流画像データを生成する。コンピュータ22は、生成した各画像データとともに、各画像データの拡大、縮小、移動、および回転などの操作を実行するための画面を、表示装置21に表示させる。コンピュータ22は、自動的なシーケンス制御におけるモード選択および加工設定などの各種の設定を行うための画面を、表示装置21に表示させる。
 本発明の実施形態による荷電粒子ビーム装置10は上記構成を備えており、次に、この荷電粒子ビーム装置10を用いて透過電子顕微鏡による透過観察用の薄片試料Tを作製する方法について説明する。
 以下、コンピュータ22が実行する薄片試料作製の動作として、例えば、集束イオンビームFIBによる試料Sの加工によって形成された試料片Qから薄片試料Tを作製する動作について、初期設定工程および加工工程に大別して、順次説明する。
 なお、以下に示す薄片試料作製の動作に先立って、加工対象である試料片Qは、ニードル18によって試料Sから取り出されて、試料片ホルダPに移設されている。この移設に伴い、試料片Qの位置および形状は把握され、試料片Qが荷電粒子ビームによる観察視野領域内に入るように、ステージ駆動機構13によってステージ12が駆動されている。例えば、試料片Qの位置および形状は、試料Sに設けられるレファレンスマークと試料片Qとの既知の相対位置関係、および試料片Qの画像データから直接に取得したテンプレートを基にしたテンプレートマッチングなどに基づいて把握される。
<初期設定工程>
 先ず、コンピュータ22は、試料片Qの加工条件に関する操作者の入力を受け付け、操作者の入力に応じて加工条件の初期設定を行う(ステップS01)。例えば、加工条件は、試料片Qにおける薄片化領域31の位置および形状、並びに集束イオンビームFIBの照射軸Uの試料片Qに対するチルト角θaおよび回転角θbなどである。
 図2は、本発明の実施形態に係る薄片試料作製方法における試料片Qの被照射面34を法線方向(厚さ方向D)から見た平面図である。例えば、試料片Qの外形は、矩形板状に形成されている。試料片Qの第1幅方向W1における長さ、並びに厚さ方向Dおよび第1幅方向W1に直交する第2幅方向W2の長さは、例えば、数十μm程度に形成されている。
 薄片化領域31の位置および形状は、例えば、荷電粒子ビームの照射によって取得される画像データ上において、操作者により入力される加工枠32によって指定される。加工枠32は、試料片Qの周縁部33によって取り囲まれる部位に設定されるように規制される。つまり、試料片Qは、加工枠32によって薄片化領域31と薄片化領域31の全周を取り囲む周縁部33とに区分される。例えば、薄片化領域31を示す加工枠32の外形は、試料片Qの厚さ方向Dつまり試料片Qの被照射面34の法線方向から見て、十数μm程度の直径を有する円形状となるように設定され、周縁部33の外形は、環状に設定される。
 チルト角θa(図3参照)は、試料片Qの被照射面34を含む表面35と集束イオンビームFIBの照射軸Uとのなす角(交差角)である。例えば、チルト角θaは、後に実行する加工工程において試料片Qの被照射面34に平行な薄片化を実現するとともに、カーテン効果により集束イオンビームFIBの照射方向に生じる加工縞模様の発生を抑制する鋭角の所定角度であって、数度~20°程度に設定される。
 なお、カーテン効果は、集束イオンビームFIBの照射によって加工対象物をエッチング加工する際において、加工対象物の形状又は構造の局所的な差異に起因するエッチングレートの変化によって、加工面に凹凸が形成される現象である。加工面に形成される凹凸の外形は、例えば、集束イオンビームFIBの照射方向に沿って伸びる筋状に形成される。カーテン効果によって加工面に形成される凹凸は、加工面の観察像において加工縞模様を生じさせ、加工対象物が本来に有する構造物又は欠陥に起因する模様との見分けがつかないため、誤った解釈を与えてしまうおそれがある。
 回転角θb(図4参照)は、試料片Qの被照射面34の法線のうち薄片化領域31の中心Cを含む法線N周りにおける集束イオンビームFIBの照射軸Uの相対的な回転角である。例えば、回転角θbは、後に実行する加工工程においてカーテン効果により生じた加工縞模様を、集束イオンビームFIBのエッチングにより除去する所定回転角度の範囲であって、集束イオンビームFIBの照射軸Uを基準とする±45°程度に設定される。
 コンピュータ22は、集束イオンビームFIBの照射軸Uに対する試料片Qの姿勢が、操作者の入力に応じた所定姿勢になるように、ステージ駆動機構13によってステージ12を駆動する。コンピュータ22は、試料片Qの表面35と集束イオンビームFIBの照射軸Uとが平行になる状態から相対的に表面35に対して照射軸Uを傾けて、加工枠32内における試料片Qの被照射面34と集束イオンビームFIBの照射軸Uとのなす角(チルト角θa)が所定角度になるようにステージ12を駆動する。
 これによりコンピュータ22は、後に実行する加工工程に適した試料片Qの姿勢を確保するとともに、試料片Qの加工時に生じるカーテン効果の影響を低減する。
<加工工程>
 図3は、本発明の実施形態に係る薄片試料作製方法の加工工程の実行時における試料片Qの薄片化領域31の断面図である。
 次に、コンピュータ22は、加工工程を実行する(ステップS02)。加工工程において、コンピュータ22は、試料片Qの加工枠32内における被照射面34と集束イオンビームFIBの照射軸Uとのなす角(チルト角θa)を所定角度に維持しながら、加工枠32内の薄片化領域を集束イオンビームFIBによって走査するように、集束イオンビーム照射光学系14およびステージ駆動機構13を制御する。
 これにより薄片化領域31において、集束イオンビームFIBの入射方向の上流部31aには、試料片Qの被照射面34から厚さ方向の所定深さまで集束イオンビームFIBの照射軸Uに平行な第1断面41が形成される。薄片化領域31において、集束イオンビームFIBの入射方向の下流部31bには、試料片Qの厚さ方向の所定深さにおいて被照射面34に平行な第2断面42が形成される。
 これによりコンピュータ22は、加工枠32内の薄片化領域31の厚さを、薄片化領域31を取り囲む周縁部33の厚さよりも薄く形成する。例えば、周縁部33の厚さは、1~2μm程度であり、薄片化領域31の厚さは、数十nm程度である。
 図4は、本発明の実施形態に係る薄片試料作製方法の加工工程の実行時における集束イオンビームFIBと試料片Qとの相対位置の一例を示す図であって、試料片Qの被照射面34を法線方向(厚さ方向D)から見た平面図である。
 例えば、コンピュータ22は、加工工程において、試料片Qの被照射面34を含む表面35と集束イオンビームFIBの照射軸Uとのなす角(チルト角θa)を所定角度に維持しながら、被照射面34の法線のうち薄片化領域31の中心Cを含む法線N周りに照射軸Uを所定回転角度の範囲で相対的に回転させるように、ステージ駆動機構13を制御する。そして、コンピュータ22は、被照射面34の法線N周りにおける照射軸Uの所定回転角度毎に、被照射面34と照射軸Uとのなす角を所定角度に維持しながら、加工枠32内の薄片化領域31を集束イオンビームFIBによって走査するように、集束イオンビーム照射光学系14およびステージ駆動機構13を制御する。
 これによりコンピュータ22は、照射軸Uの回転角度が適宜の一定角度の状態でカーテン効果により生じた加工縞模様を、適宜の一定角度とは異なる入射方向の集束イオンビームFIBのエッチング加工により除去する。さらに、コンピュータ22は、照射軸Uの回転角度が適宜の一定角度の状態で形成された薄片化領域31の上流部31aの少なくとも一部を、適宜の一定角度とは異なる入射方向の集束イオンビームFIBによってエッチング加工することにより、下流部31bの第2断面42と同様に被照射面34に平行な加工断面を、上流部31aの少なくとも一部に形成することができる。
 以上により、コンピュータ22は、試料片Qから薄片試料Tを作製し、一連の薄片試料作製方法の動作を終了する。
 上述したように、本発明の実施形態による薄片試料作製装置1および薄片試料作製方法によれば、試料片Qの薄片化領域31の全周を取り囲む周縁部33が設けられるので、例えば薄片化領域31の周縁の少なくとも一部が、薄片化領域31よりも厚く形成された部位によって支持されない場合に比べて、薄片化領域31の支持強度を増大させることができる。これにより、薄片化領域31を増大させても、エッチング加工時における所望の強度を確保することができ、薄片化領域31の湾曲などの不具合が生じることを防ぎ、適正な加工を行うことができる。
 また、薄片化領域31を、試料片Q及び周縁部33の各々の外形に関わらずに、試料片Qの中央部に設定することができるので、例えば試料片Qの端部にカーテン効果による加工縞模様が発生しやすい形状の部位が存在する場合などであっても、試料片Qに対する集束イオンビームFIBの相対的な入射方向を特別に規制すること無しに、薄片化領域31の加工を適正かつ容易に行うことができる。
 また、加工工程において試料片Qの被照射面34に交差する方向から集束イオンビームFIBを照射することによって、試料片Qの厚さ方向Dにおける被照射面34から所望の深さで被照射面34に平行にエッチング加工を進行させることができる。例えば、集束イオンビームFIBのビーム強度分布が照射軸Uを極大とするガウス分布などの適宜の分布形状を有する場合であっても、追加的なエッチング加工を必要とせずに、薄片化領域31における集束イオンビームFIBの入射方向の下流端に至るまで被照射面34に平行な第2断面42を形成することができる。
 図5(a)は、本発明の実施形態の比較例に係る試料片Qの断面拡大図である。例えば図5(a)に示す比較例のように、被照射面34を含む表面35に平行に集束イオンビームFIBを照射する場合においては、集束イオンビームFIBの入射方向における下流端においてビーム強度分布に応じた形状の加工断面50が形成され、被照射面34に平行な加工断面51を得るために集束イオンビームFIBの入射方向が変更された追加的なエッチング加工(チルト補正)が必要になる場合がある。
 図5(b)は、本発明の実施形態に係る試料片作製方法の加工工程の実行時における試料片Qの薄片化領域31の断面拡大図である。これに対して、例えば図5(b)に示す本発明の実施形態のように、試料片Qの被照射面34に交差する方向から、集束イオンビームFIBのビーム強度分布の形状に応じた適切なチルト角θaで集束イオンビームFIBを照射することによって、追加的なエッチング加工を必要とせずに、集束イオンビームFIBの入射方向の下流端においても被照射面34に平行な第2断面42を形成することができる。
 さらに、コンピュータ22は、チルト角θaを所定角度に維持しながら、被照射面34の法線のうち薄片化領域31の中心Cを含む法線N周りに照射軸Uを所定回転角度の範囲で相対的に回転させるので、照射軸Uの回転角度が適宜の一定角度の状態でカーテン効果により生じた加工縞模様を、適宜の一定角度とは異なる入射方向の集束イオンビームFIBのエッチング加工により除去することができる。
 また、被照射面34の法線方向から見た場合の薄片化領域31の外形を円形状に設定することにより、例えば薄片化領域31の外形が矩形状に設定される場合の角部などのように荷重が集中する部位が設けられることを防ぎ、エッチング加工時に薄片化領域31の湾曲などの不具合が生じることを防止することができる。さらに、薄片化領域31を規定する加工枠32の形状が円形状に設定されることにより、法線N周りに照射軸Uを相対的に回転させる場合であっても、加工枠32を変更する必要無しに、薄片化領域31に集束イオンビームFIBを照射することができる。
 以下、上述した実施形態の変形例について説明する。
 上述した実施形態において、荷電粒子ビーム装置10は、さらに、2軸の駆動機構を備えてもよい。図6は、本発明の実施形態の変形例に係る薄片試料作製装置1の一例である荷電粒子ビーム装置10の構成図である。 荷電粒子ビーム装置10は、ステージ12上に配置されるダブルチルトステージ25を備えている。ダブルチルトステージ25は、2軸の駆動機構であって、上述した加工工程において加工対象である試料片Qを固定する。
 ステージ12は、5軸の駆動機構であるステージ駆動機構13によって駆動される。例えば、ステージ駆動機構13の傾斜軸T1は、集束イオンビーム照射光学系14の集束イオンビーム(FIB)および電子ビーム照射光学系15の電子ビーム(EB)の各々に対して直交する方向と平行に設定されている。ステージ駆動機構13は、傾斜軸T1の軸周りにステージ12を傾斜させることにより、電子ビーム(EB)で観察した試料片Qの断面を、集束イオンビーム(FIB)に向けることができる。
 ステージ12上に配置されるダブルチルトステージ25は、相互に直交する2つの傾斜軸を備えている。例えば、ダブルチルトステージ25の傾斜軸T2は、ステージ駆動機構13の傾斜軸T1および集束イオンビーム(FIB)の照射軸Uの各々に対して直交する方向と平行に設定されている。ダブルチルトステージ25は、加工工程において、試料片Qの被照射面34を電子ビーム(EB)の照射軸に向けた状態で傾斜軸T2の軸周りに試料片Qを傾斜させることによって、被照射面34に対する集束イオンビーム(FIB)の入射角度を調整する。これにより、集束イオンビーム(FIB)によるエッチング加工中に電子ビーム(EB)による加工面の観察像を取得することができる。
 なお、上述した実施形態において、薄片試料作製装置1は荷電粒子ビーム装置10であるとしたが、これに限定されない。
 例えば、薄片試料作製装置1は、荷電粒子の代わりに、帯電していない粒子のビームを照射する粒子ビーム装置であってもよい。この場合、試料室11内の漏れ電界などによって粒子ビームの照射位置がずれてしまうことを防ぐことができる。
 例えば、薄片試料作製装置1は、試料Sから試料片Qを作製する荷電粒子ビーム装置10とは別の集束イオンビーム装置であってもよい。
 なお、上述した実施形態において、コンピュータ22は、薄片試料作製の動作の少なくとも一部を自動的に実行してもよい。例えば、コンピュータ22は、複数の試料片Qに対して連続的に繰り返して薄片試料作製の動作を実行する場合などにおいて、自動的な動作を実行してもよい。
 例えば、上述した実施形態において、初期設定工程では、試料片Qにおける薄片化領域31の位置および形状は、操作者により入力されるとしたが、これに限定されない。例えば、コンピュータ22は、試料片Qにおける薄片化領域31の位置および形状を自動的に設定してもよい。この場合、コンピュータ22は、荷電粒子ビームの照射により得られる画像データにおいて試料片Qのエッジを抽出し、予め規定されている形状および大きさの加工枠32を、抽出したエッジに基づく所定位置に自動的に設定してもよい。
 なお、上述した実施形態においては、予め試料片ホルダPに保持されている試料片Qに対して薄片試料作製の動作を実行するとしたが、これに限定されない。
 例えば、試料片Qがニードル18によって試料Sから取り出される前において、試料Sに形成されている試料片Qに対して薄片試料作製の動作を実行してもよい。この場合、予め試料Sに形成されているレファレンスマークの位置座標を用いて加工枠32の設定、並びに試料片Qの位置および姿勢制御を行ってもよい。
 なお、上述した実施形態において、加工枠32の外形は、試料片Qの厚さ方向Dつまり試料片Qの被照射面34の法線方向から見て円形状となるように設定されるとしたが、これに限定されず、楕円形状または矩形状などの他の形状に設定されてもよい。この場合、加工工程の実行時には、被照射面34の法線N周りにおける照射軸Uの回転角度に応じて、新たな加工枠32を設定し直してもよい。
 なお、上述した実施形態においては、加工工程の実行に先立って試料片Qの被照射面34にデポジション膜を形成してもよい。この場合、ガス供給部17によって試料片Qの被照射面34にデポジション用のガスGを供給しながら被照射面34に電子ビームまたは集束イオンビームを照射することによって、被照射面34を被覆するデポジション膜を形成する。これにより、例えば、加工工程の実行に先立つ試料片Qの作成時などにおいて、試料片Qに含まれる材質のスパッタリング速度の違いによって被照射面34に凹凸が生じた場合であっても、デポジション膜によって被照射面34を平滑化し、後に実行する加工工程においてカーテン効果の影響を低減することができる。
 なお、上記の実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 なお、本出願は、2018年2月28日出願の日本特許出願(特願2018-034520)に基づくものであり、その内容は本出願の中に参照として援用される。
1…薄片試料作製装置、10…荷電粒子ビーム装置、11…試料室、12…ステージ(試料ステージ)、13…ステージ駆動機構(駆動機構)、14…集束イオンビーム照射光学系(粒子ビーム照射光学系)、15…電子ビーム照射光学系、16…検出器、17…ガス供給部、18…ニードル、19…ニードル駆動機構、20…吸収電流検出器、21…表示装置、22…コンピュータ、23…入力デバイス、31…薄片化領域、31a…上流部、31b…下流部、32…加工枠、33…周縁部、34…被照射面、C…中心、N…法線、P…試料片ホルダ、Q…試料片(試料)、R…二次荷電粒子、S…試料、U…照射軸、S01…初期設定工程、S02…加工工程

Claims (6)

  1.  試料をスパッタリングによりエッチング加工して薄片試料を作製する薄片試料作製装置であって、
     粒子ビームを照射する粒子ビーム照射光学系と、
     前記試料を保持する試料ステージと、
     前記試料ステージを駆動する駆動機構と、
     前記粒子ビームを前記試料に照射して得られる画像において前記試料の加工領域を画定し、前記加工領域に前記粒子ビームを照射して前記試料をエッチング加工するように前記粒子ビーム照射光学系および前記駆動機構を制御するコンピュータと、
    を備え、
     前記コンピュータは、
     前記試料において前記加工領域である薄片化領域と前記薄片化領域の全周を取り囲む周縁部とを設定し、
     前記試料の被照射面に交差する方向から前記粒子ビームを照射して、エッチング加工によって前記薄片化領域の厚さを前記周縁部の厚さよりも薄く形成する、
     薄片試料作製装置。
  2.  前記コンピュータは、
     前記被照射面と前記粒子ビームの照射軸とのなす角および前記薄片化領域に関する入力を受け付け、
     前記入力に応じて前記試料に前記薄片化領域を設定し、
     前記入力に応じて前記駆動機構を制御して、前記被照射面と前記照射軸とのなす角を所定角度に設定し、
     前記所定角度を維持しながら前記粒子ビームによって前記薄片化領域を走査してエッチング加工を行うように前記粒子ビーム照射光学系および前記駆動機構を制御する、
     請求項1に記載の薄片試料作製装置。
  3.  前記コンピュータは、
     前記被照射面の法線周りにおける前記照射軸の相対的な回転角に関する入力を受け付け、
     前記入力に応じて前記所定角度を維持しながら、前記被照射面の法線のうち前記薄片化領域の中心を含む法線周りに前記照射軸を所定回転角度の範囲で相対的に回転させるように、前記粒子ビーム照射光学系および前記駆動機構を制御する、
     請求項2に記載の薄片試料作製装置。
  4.  試料において薄片化領域と前記薄片化領域の全周を取り囲む周縁部とを設定する設定工程と、
     前記試料の被照射面に交差する方向から粒子ビームを照射して、スパッタリングによるエッチング加工によって前記薄片化領域の厚さを前記周縁部の厚さよりも薄く形成する加工工程と、
    を含む、
     薄片試料作製方法。
  5.  前記設定工程は、前記被照射面の法線方向から見た場合の前記薄片化領域の外形を円形状に設定する、
     請求項4に記載の薄片試料作製方法。
  6.  前記加工工程は、前記被照射面と前記粒子ビームの照射軸とのなす角を一定に維持しながら、前記被照射面の法線のうち前記薄片化領域の中心を含む法線周りに前記照射軸を相対的に回転させる、
     請求項5に記載の薄片試料作製方法。
     
PCT/JP2019/007852 2018-02-28 2019-02-28 薄片試料作製装置および薄片試料作製方法 WO2019168106A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207006867A KR102681961B1 (ko) 2018-02-28 2019-02-28 박편 시료 제작 장치 및 박편 시료 제작 방법
CN201980004416.1A CN111065907B (zh) 2018-02-28 2019-02-28 试样制造装置以及试样片的制造方法
US16/646,911 US11199480B2 (en) 2018-02-28 2019-02-28 Thin-sample-piece fabricating device and thin-sample-piece fabricating method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-034520 2018-02-28
JP2018034520A JP7141682B2 (ja) 2018-02-28 2018-02-28 試料製造装置および試料片の製造方法

Publications (1)

Publication Number Publication Date
WO2019168106A1 true WO2019168106A1 (ja) 2019-09-06

Family

ID=67806312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007852 WO2019168106A1 (ja) 2018-02-28 2019-02-28 薄片試料作製装置および薄片試料作製方法

Country Status (6)

Country Link
US (1) US11199480B2 (ja)
JP (1) JP7141682B2 (ja)
KR (1) KR102681961B1 (ja)
CN (1) CN111065907B (ja)
TW (1) TWI813629B (ja)
WO (1) WO2019168106A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI755883B (zh) * 2020-10-06 2022-02-21 力晶積成電子製造股份有限公司 試片製備方法及試片製備系統
WO2024171388A1 (ja) * 2023-02-16 2024-08-22 株式会社日立ハイテクサイエンス 荷電粒子ビーム装置、及び荷電粒子ビーム装置の制御方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336285A (ja) * 1989-07-01 1991-02-15 Hitachi Nakaseiki Ltd イオンミリング方法及び装置
JP2009036574A (ja) * 2007-07-31 2009-02-19 Hitachi High-Technologies Corp 走査電子顕微鏡用の試料の作製方法
WO2011093316A1 (ja) * 2010-01-28 2011-08-04 株式会社日立ハイテクノロジーズ イオンミリング装置,試料加工方法,加工装置、および試料駆動機構
JP2013217898A (ja) * 2012-03-16 2013-10-24 Hitachi High-Tech Science Corp 試料作製装置及び試料作製方法
JP2014063726A (ja) * 2012-08-30 2014-04-10 Hitachi High-Tech Science Corp 複合荷電粒子ビーム装置及び薄片試料加工方法
US20150255248A1 (en) * 2014-03-09 2015-09-10 Ib Labs, Inc. Methods, Apparatuses, Systems and Software for Treatment of a Specimen by Ion-Milling

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5323405B2 (ja) * 2008-06-20 2013-10-23 株式会社日立ハイテクサイエンス Tem試料作製方法、及びtem試料
JP5378830B2 (ja) * 2009-02-20 2013-12-25 株式会社日立ハイテクサイエンス 集束イオンビーム装置、及びそれを用いた試料の加工方法
JP5952020B2 (ja) 2012-02-10 2016-07-13 株式会社日立ハイテクサイエンス Tem試料作製方法
JP5872922B2 (ja) * 2012-02-21 2016-03-01 株式会社日立ハイテクサイエンス 試料作製方法及び装置
KR102358551B1 (ko) * 2014-08-29 2022-02-04 가부시키가이샤 히다치 하이테크 사이언스 자동 시료편 제작 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0336285A (ja) * 1989-07-01 1991-02-15 Hitachi Nakaseiki Ltd イオンミリング方法及び装置
JP2009036574A (ja) * 2007-07-31 2009-02-19 Hitachi High-Technologies Corp 走査電子顕微鏡用の試料の作製方法
WO2011093316A1 (ja) * 2010-01-28 2011-08-04 株式会社日立ハイテクノロジーズ イオンミリング装置,試料加工方法,加工装置、および試料駆動機構
JP2013217898A (ja) * 2012-03-16 2013-10-24 Hitachi High-Tech Science Corp 試料作製装置及び試料作製方法
JP2014063726A (ja) * 2012-08-30 2014-04-10 Hitachi High-Tech Science Corp 複合荷電粒子ビーム装置及び薄片試料加工方法
US20150255248A1 (en) * 2014-03-09 2015-09-10 Ib Labs, Inc. Methods, Apparatuses, Systems and Software for Treatment of a Specimen by Ion-Milling

Also Published As

Publication number Publication date
CN111065907B (zh) 2023-11-28
US20200300736A1 (en) 2020-09-24
TWI813629B (zh) 2023-09-01
JP7141682B2 (ja) 2022-09-26
KR102681961B1 (ko) 2024-07-05
US11199480B2 (en) 2021-12-14
JP2019148550A (ja) 2019-09-05
TW201937560A (zh) 2019-09-16
CN111065907A (zh) 2020-04-24
KR20200124209A (ko) 2020-11-02

Similar Documents

Publication Publication Date Title
CN107084869B (zh) 用于横截面视图薄层的背侧打薄的高吞吐量tem制备工艺和硬件
JP6974820B2 (ja) 荷電粒子ビーム装置、試料加工方法
US20040065826A1 (en) System for imaging a cross-section of a substrate
JP5323405B2 (ja) Tem試料作製方法、及びtem試料
JP2015159108A (ja) 荷電粒子ビーム装置および試料観察方法
WO2019168106A1 (ja) 薄片試料作製装置および薄片試料作製方法
KR102318216B1 (ko) 집속 이온 빔 장치
TWI813760B (zh) 試料加工觀察方法
JP2011222426A (ja) 複合荷電粒子ビーム装置
JP3132938B2 (ja) 断面加工観察用荷電ビーム装置および加工方法
US11094503B2 (en) Method of preparing thin film sample piece and charged particle beam apparatus
WO2012077554A1 (ja) 荷電粒子線装置及び荷電粒子線照射方法
JP4845452B2 (ja) 試料観察方法、及び荷電粒子線装置
JP7214262B2 (ja) 荷電粒子ビーム装置、試料加工方法
WO2024171388A1 (ja) 荷電粒子ビーム装置、及び荷電粒子ビーム装置の制御方法
WO2023084773A1 (ja) 荷電粒子ビーム装置、及び荷電粒子ビーム装置の制御方法
JP2015184066A (ja) 断面加工方法
WO2023084772A1 (ja) 荷電粒子ビーム装置、及び荷電粒子ビーム装置の制御方法
JP6487294B2 (ja) 複合荷電粒子ビーム装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761436

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19761436

Country of ref document: EP

Kind code of ref document: A1