WO2019167976A1 - 活性エネルギー線硬化型インクジェットインキ組成物 - Google Patents

活性エネルギー線硬化型インクジェットインキ組成物 Download PDF

Info

Publication number
WO2019167976A1
WO2019167976A1 PCT/JP2019/007419 JP2019007419W WO2019167976A1 WO 2019167976 A1 WO2019167976 A1 WO 2019167976A1 JP 2019007419 W JP2019007419 W JP 2019007419W WO 2019167976 A1 WO2019167976 A1 WO 2019167976A1
Authority
WO
WIPO (PCT)
Prior art keywords
acrylate
polyester resin
inkjet ink
ink composition
curable inkjet
Prior art date
Application number
PCT/JP2019/007419
Other languages
English (en)
French (fr)
Inventor
英明 馬越
明穂 上西
岩佐 成人
櫻井 哲郎
Original Assignee
株式会社大阪ソーダ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大阪ソーダ filed Critical 株式会社大阪ソーダ
Priority to EP19761710.3A priority Critical patent/EP3760679A4/en
Priority to CN201980009200.4A priority patent/CN111630118A/zh
Priority to JP2020503542A priority patent/JP7264148B2/ja
Priority to US16/976,237 priority patent/US20200407579A1/en
Publication of WO2019167976A1 publication Critical patent/WO2019167976A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/101Inks specially adapted for printing processes involving curing by wave energy or particle radiation, e.g. with UV-curing following the printing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/199Acids or hydroxy compounds containing cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/52Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation
    • C08G63/54Polycarboxylic acids or polyhydroxy compounds in which at least one of the two components contains aliphatic unsaturation the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/553Acids or hydroxy compounds containing cycloaliphatic rings, e.g. Diels-Alder adducts
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/32Compounds containing nitrogen bound to oxygen
    • C08K5/33Oximes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/02Printing inks
    • C09D11/10Printing inks based on artificial resins
    • C09D11/102Printing inks based on artificial resins containing macromolecular compounds obtained by reactions other than those only involving unsaturated carbon-to-carbon bonds
    • C09D11/104Polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/38Inkjet printing inks characterised by non-macromolecular additives other than solvents, pigments or dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D167/00Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
    • C09D167/06Unsaturated polyesters having carbon-to-carbon unsaturation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • C09D4/06Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00

Definitions

  • the present invention relates to an active energy ray-curable inkjet ink composition and a printed material obtained by curing the composition.
  • Active energy rays or UV curable inkjet inks are roughly classified into radical curing systems and ion (anion / cation) curing systems depending on the curing system.
  • the radical curing system is advantageous in that there are various composition options and is widely used.
  • the composition of the active energy ray curable inkjet ink includes a UV curable monomer, a UV curable oligomer, a UV curable polymer, a polymerization initiator, a colorant, and various additives.
  • Ink jet inks may not contain polymer components due to viscosity limitations.
  • the polymer component is an inert polymer that is not UV-curable.
  • the base material to which the active energy ray-curable inkjet ink is applied includes paper, plastic, metal, and inorganic substances (glass, etc.).
  • plastics including soft and hard, but there are many cases where adhesion to plastic substrates such as polyethylene and polypropylene, especially those with low surface free energy, is often inadequate, causing problems with film peeling. There is.
  • a specific functional resin may be added as a method for solving the lack of adhesion to a low surface free energy base material.
  • Patent Document 1 attempts to solve the problem by adding a polymer.
  • the viscosity of the composition is relatively high (several to several hundred Pa ⁇ s). (20 mPa ⁇ s or less) cannot be supported.
  • Patent Document 2 reports that a low-viscosity ink-jet ink composition adheres to a polyethylene terephthalate (PET) substrate, but the substrate is limited to PET and enables wide adhesion to a low surface free energy substrate. There is no versatility.
  • PET polyethylene terephthalate
  • the inventor of the present application As a means for solving the above-mentioned problems, the inventor of the present application, as a result of earnest research, has maintained a low viscosity of the active energy ray-curable ink composition containing a polyester resin having a specific structure, Has been found to be excellent in adhesion.
  • the structural unit (a-2) including the structural unit (a-2) and derived from the polyhydric alcohol contains 20 mol% to 100 mol% of the structural unit derived from the hydrogenated bisphenol A, and the polyester resin (A )
  • an active energy ray-curable inkjet ink composition having a number average molecular weight (Mn) of 500 to 4,500 and an acid value of 5 to 300, while maintaining the low viscosity required for inkjet, Excellent adhesion to plastic substrates with low surface free energy (for example, substrates made of polypropylene, polyethylene terephthalate, etc.) And the present invention was completed.
  • the printed matter obtained by printing on a plastic substrate using the active energy ray-curable inkjet ink of the present invention exhibits high adhesion to the plastic substrate. Moreover, even if it mix
  • the active energy ray curable inkjet ink composition of the present invention contains a polyester resin (A).
  • the polyester resin (A) contains a structural unit (a-1) derived from a polybasic acid and a structural unit (a-2) derived from a polyhydric alcohol.
  • An acrylate monomer (B) and a polymerization initiator (C) are included.
  • a colorant or the like is further added. Colorless ink is not added when used for colorless ink (top coat use, varnish, etc.
  • Various additives can be added depending on the use as appropriate.
  • the polyester resin (A) of the present invention includes a structural unit (a-1) derived from a polybasic acid and a structural unit (a-2) derived from a polyhydric alcohol. Furthermore, the structural unit (a-2) derived from polyhydric alcohol contains 20 mol% or more and 100 mol% or less of the structural unit derived from hydrogenated bisphenol A. That is, in the polyester resin (A), in the structural unit (a-2) derived from all polyhydric alcohols, the structural unit derived from hydrogenated bisphenol A is 20 mol% or more and 100 mol% or less. Furthermore, the polyester resin (A) is characterized by having a number average molecular weight of 500 to 4,500 and an acid value of 5 to 300.
  • the polyester resin (A) contained in the active energy ray-curable inkjet ink composition of the present invention is a reaction product obtained by a reaction between a polybasic acid of dibasic acid or higher and a polyhydric alcohol of divalent or higher.
  • the polybasic acid may be an acid anhydride thereof, or may be used alone or in combination of two or more.
  • Structural units derived from polybasic acids include unsaturated polybasic acid and saturated polybasic acid.
  • the unsaturated polybasic acid is not particularly limited, and known ones can be used.
  • Examples of the unsaturated polybasic acid include maleic anhydride, fumaric acid, citraconic acid, itaconic acid and the like. These can be used alone or in combination.
  • the saturated polybasic acid is not particularly limited, and known ones can be used.
  • saturated polybasic acids include succinic acid, glutaric acid, maleic acid, maleic anhydride, chloromaleic acid, mesaconic acid, adipic acid, dodecanedioic acid, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, orthophthalic acid, isophthalic acid
  • Examples include structural units derived from acids, terephthalic acid, and the like.
  • structural units derived from hexahydrophthalic anhydride, tetrahydrophthalic anhydride, orthophthalic acid, isophthalic acid, and terephthalic acid are preferable, and structural units derived from hexahydrophthalic anhydride and tetrahydrophthalic anhydride are more preferable.
  • Structural unit derived from polyhydric alcohol (a-2) The structural unit (a-2) derived from polyhydric alcohol in the present invention comprises at least a structural unit derived from hydrogenated bisphenol A. Hydrogenated bisphenol A may be used alone or in combination with other polyhydric alcohols. Examples of polyhydric alcohols that can be used in combination include ethylene glycol, 1,2-propylene glycol, 1,3-propanediol, 2-methyl-1,3-propanediol, and 1,2-butane.
  • 1,3-butanediol, 1,4-butanediol, and dipropylene glycol are preferable.
  • the structural unit derived from hydrogenated bisphenol A in the structural units derived from all polyhydric alcohols is 20 mol% or more and 100 mol% (for example, 20 mol%). 100 mol% or more, 20 mol% or more and 95 mol% or less, 20 mol% or more and 80% mol% or less, and 20 mol% or more and 70 mol% or less may be mentioned. If it is the said range, the inkjet ink composition which is excellent in adhesiveness with a plastic base material, maintaining the low viscosity at the time of setting it as ink will be obtained.
  • the structural unit derived from hydrogenated bisphenol A contained in the structural unit (a-2) derived from polyhydric alcohol is preferably 20 mol% or more and 100 mol% or less, 50 mol% or more and 100 mol%.
  • 80 mol% or more and 100 mol% or less, 90 mol% or more and 100 mol% or less, 99 mol% or more and 100 mol% or less, and 100 mol% are preferable.
  • the number average molecular weight (Mn) of the polyester resin (A) is preferably 500 to 4,500, more preferably 800 to 3,000, and still more preferably 800 to 2,000.
  • the weight average molecular weight (Mw) of the polyester resin (A) is not particularly limited, but is preferably 500 to 5,000, more preferably 800 to 3,000. If the molecular weight is too small, the curability of the plastic substrate with the ink composition after the addition of the polyester resin (A) is lowered, and if the molecular weight is too large, the ink composition after the addition of the polyester resin (A) is increased in viscosity and inkjet. Can not be discharged.
  • polyester resin (A) may be 5 to 300, preferably 10 to 200, and more preferably 15 to 150.
  • the reaction for obtaining the polyester resin (A) can be synthesized by a known method using the above raw materials. Various conditions in this synthesis need to be set as appropriate according to the raw materials used and their amounts.
  • a catalyst can be used as necessary.
  • the catalyst include known catalysts such as manganese acetate, dibutyltin oxide, stannous oxalate, zinc acetate, and cobalt acetate. These can be used alone or in combination.
  • the reaction temperature is preferably in the range of 150 to 220 ° C. and more preferably in the range of 170 to 200 ° C. in order to obtain an optimum reaction rate and yield.
  • the order of addition of the raw materials when obtaining the polyester resin (A) of the present invention may be appropriately adjusted according to the polyester resin (A) having the target structure.
  • the reaction may be performed by adding two types of polybasic acid and polyhydric alcohol at once, and the ratio of the reaction composition of polybasic acid and one type of polyhydric alcohol may be After adjusting the molar ratio to 1: 2 or 2: 1 and carrying out the first-stage reaction, another polybasic acid or polyhydric alcohol that determines another type of terminal structure is appropriately added, and the second-stage reaction is performed.
  • a polyester resin having a different internal structural unit and terminal structure can be obtained.
  • the reaction atmosphere is preferably performed in an inert gas atmosphere such as nitrogen or argon.
  • the reaction pressure may be either atmospheric pressure or pressurized, but it is preferable to carry out the reaction at atmospheric pressure in view of the simplicity of work.
  • the reaction can be carried out by charging the raw material once or divided into a reaction apparatus equipped with a stirring blade and reacting at the predetermined temperature.
  • the content of the polyester resin (A) in the active energy ray-curable inkjet ink composition may be in the range of 1 to 20% by weight, and preferably in the range of 5 to 15% by weight. When the content is 1% or less, sufficient adhesion to the substrate cannot be obtained, and when the content is 20% or more, the viscosity increases and the ink cannot be ejected as inkjet ink.
  • the active energy ray-curable inkjet ink composition of the present invention contains a (meth) acrylate monomer (B) as necessary.
  • the (meth) acrylate monomer (B) is not particularly limited as long as it can be ejected as an inkjet ink, but needs to exhibit a low viscosity.
  • a guideline those showing about 5 to 20 mPa ⁇ s at 25 ° C. are good, and generally monofunctional or bifunctional (meth) acrylate monomers may be used. If the viscosity can be kept low, a small amount of polyfunctional (meth) acrylate (for example, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate) may be added as necessary. it can.
  • polyfunctional (meth) acrylate for example, trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol te
  • Examples of (meth) acrylate monomers (B) include isobornyl acrylate, 4-hydroxybutyl acrylate, lauryl acrylate, 2-methoxyethyl acrylate, phenoxyethyl acrylate, isooctyl acrylate, stearyl acrylate, cyclohexyl acrylate, 2-ethoxyethyl Acrylate, benzyl acrylate, 1H, 1H, 5H-octafluoropentyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, isobutyl acrylate, tert-butyl acrylate, tetrahydrofurfuryl acrylate, ethyl carbitol acrylate, 2,2, 2-trifluoroethyl acrylate, 2,2,3,3-tetrafluoropropyl acrylate, Toxitriethylene glycol acrylate, propylene oxide (PO) modified non
  • isobornyl acrylate, phenoxyethyl acrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol diacrylate, and dipropylene glycol diacrylate are preferable.
  • the (meth) acrylate monomer (B) it is also preferable to use a monofunctional (meth) acrylate having a homopolymer glass transition temperature of ⁇ 5 to ⁇ 20 ° C. from the viewpoint of improving cross-cut resistance. More specifically, in the polymerizable monomer component (A), the monofunctional (meth) acrylate having a homopolymer glass transition temperature of ⁇ 5 to ⁇ 20 ° C.
  • the monofunctional (meth) acrylate and Is preferably 50 to 94% by weight of a different (meth) acrylate monomer, and 15 to 45% by weight of a monofunctional (meth) acrylate having a homopolymer glass transition temperature of ⁇ 5 to ⁇ 20 ° C. More preferably, the (meth) acrylate monomer different from (meth) acrylate is 55 to 85% by weight.
  • Examples of monofunctional (meth) acrylates having a homopolymer glass transition temperature of ⁇ 5 to ⁇ 20 ° C. include 2-ethylhexyl methacrylate ( ⁇ 10 ° C.), 2-hydroxyl acrylate ( ⁇ 10 ° C.), 2-hydroxyethyl acrylate ( ⁇ 15 ° C.), 2-hydroxypropyl acrylate ( ⁇ 7 ° C.), phenoxyethyl acrylate ( ⁇ 20 ° C.), phenoxydiethylene glycol acrylate ( ⁇ 15 ° C.), phenoxy polyethylene glycol acrylate ( ⁇ 20 ° C.), methoxy polyethylene glycol methacrylate ( ⁇ 10 ° C.), tetrahydrofurfuryl acrylate ( ⁇ 15 ° C.), ethoxylated nonylphenol acrylate ( ⁇ 20 ° C.), alkoxylated phenol acrylate ( ⁇ 20 ° C.), etc., preferably phenoxydie Glycol acrylates, and
  • the monofunctional (meth) acrylate may be used alone or in combination of two types.
  • the ratio in the case of using 2 or more types in combination is not specifically limited, For example, when using 2 types in combination, the ratio of 1 type of monofunctional (meth) acrylate: 1 type of another monofunctional (meth) acrylate May be in the range of 5:95 to 95: 5, and preferably in the range of 20:80 to 80:20.
  • the content of the (meth) acrylate monomer (B) in the active energy ray-curable inkjet ink composition is 50 to 1500 parts by weight of the (meth) acrylate monomer (B) with respect to 100 parts by weight of the polyester resin (A). It may be in the range, more preferably in the range of 50 to 1300 parts by weight, particularly preferably in the range of 50 to 1200 parts by weight.
  • the active energy ray-curable inkjet ink composition of the present invention contains a polymerization initiator as necessary.
  • a polymerization initiator can be used without limitation. It is particularly preferable to contain a photopolymerization initiator.
  • the blending amount of the polymerization initiator in the active energy ray-curable ink-jet ink composition in the present invention is 0.1 to 20 weights based on 100 parts by weight of the total of the (meth) acrylic monomer (B) and the polyester resin (A). Is preferably in the range of 1 to 15 parts by weight, more preferably in the range of 5 to 10 parts by weight.
  • photopolymerization initiators include, but are not limited to, benzoins such as benzyl, benzoin methyl ether, benzoin ethyl ether, benzoin n-propyl ether, benzoin isopropyl ether, benzoin n-butyl ether, benzoin alkyl ethers, benzophenone, Benzophenones such as p-methylbenzophenone, Michler's ketone, methylbenzophenone, 4,4'-dichlorobenzophenone, 4,4'-bisdiethylaminobenzophenone, acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy- 2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxy-cyclohexyl-phenylketone, 2-methyl-1- [4- (methylthio) phenyl Acetophenones such as -2-morpholino-1-propanone
  • acetophenones, alkylphenones, acylphosphine oxides, oxyphenyls, and oxime ester benzoins are preferable, and acetophenones and alkylphenones are more preferable.
  • These photoinitiators may be used independently and may use 2 or more types together. Further, a photopolymerization initiator and a sensitizer can be used in combination.
  • sensitizer examples include anthracene, phenothiazene, perylene, thioxanthone, and benzophenone thioxanthone.
  • the active energy ray used for curing the active energy ray-curable inkjet ink composition of the present invention in addition to ultraviolet rays, polymerization in the composition such as electron beam, ⁇ ray, ⁇ ray, ⁇ ray, X ray, etc.
  • the organic component for example, (meth) acrylate monomer
  • the polymerization reaction can proceed without using a polymerization initiator.
  • ultraviolet irradiation mercury-free is strongly desired from the viewpoint of environmental protection, and replacement with a GaN-based semiconductor ultraviolet light-emitting device is very useful industrially and environmentally.
  • an ultraviolet light emitting diode (UV-LED) and an ultraviolet laser diode (UV-LD) are small, have a long lifetime, high efficiency, and low cost, and are preferable as an ultraviolet light source.
  • the active energy ray-curable inkjet ink composition of the present invention includes various additives, for example, stabilizers (for example, polymerization inhibitors such as hydroquinone, methoquinone, and methylhydroquinone), pigments (for example, cyanine blue, disazo yellow). , Carmin 6b, Laked C, Carbon Black, Titanium White) and the like, and various additives such as fillers and viscosity modifiers can be contained depending on the purpose.
  • stabilizers for example, polymerization inhibitors such as hydroquinone, methoquinone, and methylhydroquinone
  • pigments for example, cyanine blue, disazo yellow
  • the active energy ray-curable inkjet ink composition of the present invention can be prepared using the various components described above, and the preparation means and conditions are not particularly limited.
  • Pigment, dispersing agent, etc. are put into a dispersing machine such as a ball mill, kitty mill, disc mill, pin mill, dyno mill, etc. and dispersed to prepare a pigment dispersion, and then a (meth) acrylate monomer and polymerization start. It can be prepared by mixing an agent, a polymerization inhibitor, a surfactant and the like.
  • the viscosity of the active energy ray-curable ink-jet ink composition of the present invention may be appropriately adjusted according to the application and application means, and is not particularly limited.
  • a discharge means for discharging the composition from a nozzle is used.
  • the viscosity in the range of 20 ° C. to 65 ° C., preferably the viscosity at 25 ° C. is 1 mPa ⁇ s to 20 mPa ⁇ s, and preferably 5 mPa ⁇ s to 15 mPa ⁇ s.
  • the viscosity can be measured by using a MARSIII rheometer manufactured by Thermo Scientific and setting the number of revolutions at 10 rpm and the temperature of the constant temperature circulating water within a range of 20 ° C. to 65 ° C.
  • the use of the active energy ray-curable inkjet ink composition of the present invention is not particularly limited as long as it is a field in which active energy ray-curable materials are generally used, and can be appropriately selected according to the purpose. , Molding resins, paints, adhesives, insulating materials, release agents, coating materials, sealing materials, various resists, and various optical materials. Furthermore, the active energy ray-curable inkjet ink composition of the present invention is not only used as an ink to form two-dimensional characters and images, and design coatings on various substrates, but also three-dimensional stereoscopic images (three-dimensional modeling). It can also be used as a material for three-dimensional modeling for forming an object.
  • a three-dimensional modeling apparatus for modeling a three-dimensional model using the active energy ray-curable inkjet ink composition of the present invention
  • a known one can be used, and is not particularly limited. Examples include a storage unit, a supply unit, a discharge unit, an active energy ray irradiation unit, and the like.
  • the present invention also includes a cured product obtained by curing the active energy ray-curable inkjet ink composition and a molded product obtained by processing a structure in which the cured product is formed on a substrate.
  • the molded product is obtained by subjecting a cured product or structure formed in a sheet shape or a film shape to a molding process such as heat stretching or punching, for example, an automobile, an OA device, an electric -It is suitably used for applications that require the surface to be molded after decorating, such as meters for electronic devices and cameras, and panels for operation units.
  • the substrate is not particularly limited and can be appropriately selected depending on the purpose.
  • a plastic substrate for example, polypyropylene (PP), polyethylene (PE), polycarbonate (PC), polyvinyl chloride (PVC), polyethylene terephthalate (PET), etc.
  • PP polypyropylene
  • PE polyethylene
  • PC polycarbonate
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • Polyester resin Using the materials shown below, a polyester resin was synthesized in a polymerization example described later.
  • Tetrahydrophthalic anhydride hereinafter referred to as THPA, Ricacid TH manufactured by Shin Nippon Chemical Co., Ltd.
  • Hydrogenated bisphenol A hereinafter HBPA, manufactured by TCI
  • 1,3-butanediol hereafter BG, manufactured by Wako Pure Chemical Industries
  • Polyester Resin 1 154 g of THPA was charged into a 500 ml cylindrical round bottom flask and heated to 100 ° C. and melted. The temperature was raised to 150 ° C., 192 g of HBPA powder was charged in four portions while rotating at 100 rpm with nitrogen 200 ml / min. After visually confirming that the powder is dissolved, raise the heater temperature to 200 ° C., wait for water to distill while rotating at 150 rpm, and after confirming the liquid drop, sample every 30 minutes to obtain the number average molecular weight and acid value. 20 g of THPA was added and reacted, and the reaction was stopped when the target number average molecular weight and acid value were reached. Number average molecular weight 1280, acid value 140, 100 mol% of HBPA in polyhydric alcohol. 301 g of polyester resin 1 was obtained. The obtained polyester resin 1 was used in Examples 1 and 6 to 8.
  • Polymerization Example 2 Synthesis of Polyester Resin 2 92 g of THPA was charged into a 500 ml cylindrical round bottom flask and heated to 100 ° C. and melted. The temperature was raised to 150 ° C., and 120 g of HBPA powder was charged in four portions while rotating at 100 rpm with nitrogen 200 ml / min. After visually confirming that the powder is dissolved, raise the heater temperature to 200 ° C., wait for water to distill while rotating at 150 rpm, and after confirming the liquid drop, sample every 30 minutes to obtain the number average molecular weight and acid value. 100 g of HBPA was added and allowed to react while measuring, and the reaction was stopped when the target number average molecular weight and acid value were reached. The number average molecular weight was 800, the acid value was 23, and 100 mol% of HBPA in the polyhydric alcohol. 270 g of polyester resin 2 was obtained. The obtained polyester resin 2 was used in Example 2.
  • Polyester Resin 3 Synthesis of Polyester Resin 3 280 g of THPA was charged into a 500 ml cylindrical round bottom flask and heated to 100 ° C. and melted. BG80g was thrown in, heating up to 150 degreeC and rotating by nitrogen 200ml / min and 100rpm. After confirming dissolution, raise the heater temperature to 200 ° C, wait for water to distill while rotating at 150 rpm, and check the number of molecular weight and acid number by sampling every 30 minutes after confirming liquid drop. 70 g of HBPA was added and reacted, and the reaction was stopped when the target number average molecular weight and acid value were reached. The number average molecular weight was 1020, the acid value was 130, and the polyester resin had 25 mol% of HBPA in polyhydric alcohol. 260 g of 3 was obtained. The obtained polyester resin 3 was used in Example 3.
  • Polymerization Example 4 Synthesis of Polyester Resin 4 150 g of THPA was charged into a 500 ml cylindrical round bottom flask and heated to 100 ° C. and melted. BG70g was thrown in, heating up to 150 degreeC and rotating by nitrogen 200 ml / min and 100 rpm. After confirming dissolution, raise the heater temperature to 200 ° C, wait for water to distill while rotating at 150 rpm, and check the number of molecular weight and acid number by sampling every 30 minutes after confirming liquid drop.
  • polyester resin 4 was used in Example 4.
  • Polyester Resin 5 230 g of THPA was charged into a 500 ml cylindrical round bottom flask and heated to 100 ° C. and melted. The temperature was raised to 150 ° C., 135 g of BG was added while rotating at 100 rpm with nitrogen 200 ml / min. After confirming dissolution, raise the heater temperature to 200 ° C, wait for water to distill while rotating at 150 rpm, and check the number of molecular weight and acid number by sampling every 30 minutes after confirming liquid drop. 70 g of HBPA was added and reacted, and the reaction was stopped when the desired number average molecular weight and acid value were reached. The number average molecular weight was 1050, the acid value was 34, and the polyester resin had 16 mol% of HBPA in the polyhydric alcohol. 254 g of 5 was obtained. The obtained polyester resin 5 was used in Comparative Example 2.
  • Polyester resin 1 and polyester resin 2 obtained above were weighed and mixed by 50 g, and polyester resin 6 was prepared. The obtained polyester resin 6 was used in Example 5.
  • Elitel UE3350 comparative polyester resin manufactured by Unitika was used.
  • the physical property value of each synthesized polyester resin was measured by the following method.
  • the physical properties of the varnish composition were measured according to the following methods.
  • Viscosity The viscosity of the varnish composition at 25 ° C. was measured using a MARSIII rheometer manufactured by Thermo Scientific. The cone plate angle was 2 °, and the viscosity value was read at 10 rpm. The results are shown in Tables 2 and 4.
  • Comparative Example 1 used a commercially available polyester resin, and had a viscosity of 35 mPa ⁇ s @ 25 ° C., which was not suitable as an inkjet ink. This is considered to be because the molecular weight of the resin is too high.
  • Table 3 shows the compositions of the varnish compositions used in Examples 6 to 8 and Comparative Examples 3 and 4.
  • the numerical unit of the composition in the table is parts by weight.
  • Diethylene glycol monoethyl ether acrylate
  • Kyoeisha Chemical Light Acrylate EC-A homopolymer glass transition temperature -70 ° C Phenoxydiethylene glycol acrylate
  • Kyoeisha Chemical Light acrylate P2H-A glass transition temperature -15 ° C Tetrahydrofurfuryl acrylate
  • Kyoeisha Chemical THF-A homopolymer glass transition temperature -15 ° C
  • Table 4 shows the measurement results of the varnish composition.
  • Comparative Example 3 did not contain a specific polymerizable monomer component and resin component, had poor adhesion to the substrate, and did not exhibit cross-cut resistance. Although the comparative example 4 contained the specific polymerizable monomer component, the resin component was not contained, the substrate adhesion was poor, and the cross-cut resistance was low.
  • the active energy ray-curable inkjet ink composition of the present invention can be used as an inkjet ink in various inks, coating agents, paints and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Ink Jet Recording Methods And Recording Media Thereof (AREA)
  • Ink Jet (AREA)

Abstract

インクジェットインキとして吐出可能な程度に低粘度であり、且つ表面自由エネルギーの低いプラスチック基材へ十分な密着を示すことができる活性エネルギー線硬化型インクジェットインキ組成物の提供することを課題とする。 本発明は、ポリエステル樹脂(A)を含有する活性エネルギー線硬化型インクジェットインキ組成物であって、 前記ポリエステル樹脂(A)は、多塩基酸に由来する構成単位(a-1)と、多価アルコールに由来する構成単位(a-2)と含み、 多価アルコールに由来する構成単位(a-2)は、水素化ビスフェノールAに由来する構成単位を20モル%以上100モル%以下含有し、 ポリエステル樹脂(A)は、数平均分子量(Mn)が500~4,500、酸価が5~300である、活性エネルギー線硬化型インクジェットインキ組成物。

Description

活性エネルギー線硬化型インクジェットインキ組成物
 本発明は、活性エネルギー線硬化型インクジェットインキ組成物及び組成物を硬化して得られる印刷物に関する。
 活性エネルギー線またはUV硬化型インクジェットインキは、硬化システムの違いによりラジカル硬化系、イオン(アニオン・カチオン)硬化系に大別される。乾燥速度や塗膜物性の調整に際し、多様な組成の選択肢が存在する点においてラジカル硬化系が優位であり、広く利用されている。
 活性エネルギー線硬化型インクジェットインキの組成としては、UV硬化型モノマー、UV硬化型オリゴマー、UV硬化型ポリマー、重合開始剤、着色剤、各種添加剤である。インクジェットインキにおいては粘度の制限でポリマー成分を含まない場合がある。またポリマー成分がUV硬化型でないイナートポリマーの場合がある。
 活性エネルギー線硬化型インクジェットインキの塗布対象となる基材には、紙、プラスチック、金属、無機物(ガラス等)がある。このうちプラスチックは軟質、硬質をはじめ様々な種類が存在するが、特に表面自由エネルギーが低いポリエチレンやポリプロピレン等のプラスチック基材に対して密着不足となる場合が多く、塗膜剥離のトラブルを起こすことがある。
 低表面自由エネルギー基材への密着不足を解決する手法として特定の機能性樹脂を添加することがある。例えば特許文献1はポリマーを添加することにより解決を図ったものである。しかしながらこの樹脂を含む組成物は平板オフセット印刷インキを想定していることからも分かるように、組成物粘度が比較的高くなる(数~数百Pa・s)ためインクジェットインキのような低粘度インキ(20mPa・s以下)へ対応できるものではない。
 特許文献2は低粘度のインクジェットインキ組成物がポリエチレンテレフタレート(PET)基材に密着する報告であるが、基材がPETに限定されており広く低表面自由エネルギー基材への密着を可能とする万能性はない。
特許第5540862号公報 特許公開2017-19989号公報
 インクジェットインキとして吐出可能な程度に低粘度であり、且つ表面自由エネルギーの低いプラスチック基材へ十分な密着を示すことができる活性エネルギー線硬化型インクジェットインキ組成物を提供することを課題とする。
 本願発明者は、前記挙げた課題を解決する手段として、鋭意研究の結果、特定の構造を有するポリエステル樹脂を含有する活性エネルギー線硬化型インキ組成物が低粘度を維持しつつ、プラスチック基材との密着性に優れることを見出した。
 即ち、本発明は以下のように記載することができる。
 ポリエステル樹脂(A)を含有する活性エネルギー線硬化型インクジェットインキ組成物であって、前記ポリエステル樹脂(A)は、多塩基酸に由来する構成単位(a-1)と、多価アルコールに由来する構成単位(a-2)と含み、多価アルコールに由来する構成単位(a-2)は、水素化ビスフェノールAに由来する構成単位を20モル%以上100モル%以下含有し、ポリエステル樹脂(A)は、数平均分子量(Mn)が500~4,500、酸価が5~300である、活性エネルギー線硬化型インクジェットインキ組成物を用いることにより、インクジェットに求められる低粘度を維持しつつ、表面自由エネルギーの低いプラスチック基材(例えば、ポリプロピレン、ポリエチレンテレフタレート等からなる基材)へ十分な密着に優れる組成物が得られることを見出し、本発明を完成した。
 本発明の活性エネルギー線硬化型インクジェットインキを用いてプラスチック基材へ印刷して得られた印刷物は、プラスチック基材への高い密着性を示す。また、本発明のポリエステル樹脂を配合しても組成物の低粘度を維持することができるため、UVインクジェットインキに用いることができる。
 以下に活性エネルギー線硬化型インクジェットインキ組成物について詳細に説明する。
活性エネルギー線硬化型インクジェットインキ組成物
 本発明の活性エネルギー線硬化型インクジェットインキ組成物は、ポリエステル樹脂(A)を含有する。また、ポリエステル樹脂(A)は、多塩基酸に由来する構成単位(a-1)と、多価アルコールに由来する構成単位(a-2)とを含有し、必要に応じて、(メタ)アクリレートモノマー(B)、重合開始剤(C)を含むものである。本発明の活性エネルギー線硬化型インクジェットインキ組成物を着色インキに用いる場合は、さらに着色剤等を添加する。なお、無色インキ(トップコート用途、またはニス等に用いる場合は、着色剤を添加しない。適宜用途に応じて各種添加剤を添加することができる。
ポリエステル樹脂(A)
 本発明のポリエステル樹脂(A)は、多塩基酸に由来する構成単位(a-1)と、多価アルコールに由来する構成単位(a-2)を含む。さらに、多価アルコールに由来する構成単位(a-2)は、水素化ビスフェノールAに由来する構成単位を20モル%以上100モル%以下含有する。すなわち、ポリエステル樹脂(A)において、全多価アルコールに由来する構成単位(a-2)中、水素化ビスフェノールAに由来する構成単位を20モル%以上100モル%以下する。さらに、ポリエステル樹脂(A)は、数平均分子量が500~4,500であり、かつ、酸価が5~300であることを特徴とする。
 本発明の活性エネルギー線硬化型インクジェットインキ組成物に含有するポリエステル樹脂(A)は、二塩基酸以上の多塩基酸と二価以上の多価アルコールとの反応によって得られる反応生成物である。多塩基酸はその酸無水物でもよく、また単独もしくは2種以上を併用してもよい。
多塩基酸に由来する構成単位(a-1)
 多塩基酸に由来する構成単位(a-1)の例として、不飽和多塩基酸または飽和多塩基酸が挙げられる。
 不飽和多塩基酸としては、特に限定されず、公知のものを用いることができる。不飽和多塩基酸の例としては、無水マレイン酸、フマル酸、シトラコン酸、イタコン酸等を例示することができる。これらは、単独または複数を組み合わせて用いることができる。
 飽和多塩基酸としては、特に限定させず、公知のものを用いることができる。飽和多塩基酸の例としては、コハク酸、グルタル酸、マレイン酸、無水マレイン酸、クロロマレイン酸、メサコン酸、アジピン酸、ドデカン二酸、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、オルソフタル酸、イソフタル酸、テレフタル酸等に由来する構成単位が挙げられる。中でも、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸、オルソフタル酸、イソフタル酸、テレフタル酸に由来する構成単位が好ましく、ヘキサヒドロ無水フタル酸、テトラヒドロ無水フタル酸に由来する構成単位がより好ましい。
多価アルコールに由来する構成単位(a-2)
 本発明における多価アルコールに由来する構成単位(a-2)は、少なくとも水素化ビスフェノールAに由来する構成単位を含んでなる。水素化ビスフェノールAは単独もしくは他の多価アルコールと併用して用いてもよい。併用することができる多価アルコールとしては、例えば、エチレングリコ-ル、1,2-プロピレングリコール、1,3-プロパンジオ-ル、2-メチル-1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、1,5-ペンタンジオ-ル、1,6-ヘキサンジオ-ル、3-メチル-1,5-ペンタンジオール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、1,9-ノナンジオール、2-メチルオクタンジオール、グリセリン、1,10-デカンジオール、ビスフェノールA、ビスフェノールF、水素化ビスフェノールF等が挙げられる。
 中でも1,3-ブタンジオール、1,4-ブタンジオール、ジプロピレングリコールが好ましい。
 多価アルコールに由来する構成単位(a-2)において、全多価アルコールに由来する構成単位中、水素化ビスフェノールAに由来する構成単位は、20モル%以上100モル%(例えば、20モル%以上100モル%、20モル%以上95モル%以下であり、20モル%以上80%モル%以下であり、20モル%以上70モル%以下が挙げられる)の範囲であればよい。上記範囲であれば、インキとした際の低粘度を維持しつつ、プラスチック基材との密着性に優れるインクジェットインキ組成物が得られる。これらの中でも、多価アルコールに由来する構成単位(a-2)に含まれる水素化ビスフェノールAに由来する構成単位は、好ましくは、20モル%以上100モル%以下、50モル%以上100モル%以下、80モル%以上100モル%以下、90モル%以上100モル%以下、99モル%以上100モル%以下、100モル%が好ましい。
 ポリエステル樹脂(A)の数平均分子量(Mn)は、500~4,500が好ましく、800~3,000がより好ましく、800~2,000がさらに好ましい。ポリエステル樹脂(A)の重量平均分子量(Mw)は、特に限定されないが、500~5,000が好ましく、800~3,000がより好ましい。分子量が小さすぎるとポリエステル樹脂(A)添加後のインキ組成物とのプラスチック基材の硬化性が低下し、分子量が大きすぎるとポリエステル樹脂(A)添加後のインキ組成物が高粘度化してインクジェット吐出できなくなる。なお、本明細書において「数平均分子量」、及び「重量平均分子量」とは、ゲルパーミエーションクロマトグラフィー(島津製作所製Prominence-i、LC-2030)を用いて40℃下で測定し、標準ポリスチレン検量線を用いて求めたものである。ポリエステル樹脂(A)の酸価は5~300であればよく、10~200であることが好ましく、15~150であることがより好ましい。
 ポリエステル樹脂(A)を得るための反応は、上記のような原料を用いて公知の方法で合成することができる。この合成における各種条件は、使用する原料やその量に応じて適宜設定する必要がある。この反応では、必要に応じて触媒を使用することができる。触媒の例としては、酢酸マンガン、ジブチル錫オキサイド、シュウ酸第一錫、酢酸亜鉛、及び酢酸コバルト等の公知の触媒を例示することができる。これらは、単独または複数を組み合わせて用いることができる。反応温度は、最適な反応速度と収率を得るために150~220℃の範囲であるのが好ましく、170~200℃の範囲であるのがより好ましい。
 本発明のポリエステル樹脂(A)を得る際の原料の添加順は、目的とする構造を有するポリエステル樹脂(A)に応じて、適宜調整すればよいが、例えば、多塩基酸や多価アルコールとして、2種類のものを用いる場合、2種類の多塩基酸と多価アルコールを一度に添加して反応を行ってもよく、また、多塩基酸と1種類の多価アルコールの反応組成の比率をモル比として、1:2または2:1の比率に調整し、1段階目の反応を実施した後、もう1種類の末端構造を決める多塩基酸または多価アルコールを適宜添加し2段階目の反応を実施することによって、内部構成単位と末端構造が異なるポリエステル樹脂を得ることができる。
 反応雰囲気は、窒素やアルゴンのような不活性ガス雰囲気下で行うことが好ましい。また反応圧力は大気圧下、加圧下いずれでもよいが、作業の簡便性を鑑みて大気圧下で行うことが好ましい。反応は攪拌羽根を備えた反応装置に原料を一度、または分割して仕込んだうえで上記の所定温度にて反応させることにより行なうことができる。
 活性エネルギー線硬化型インクジェットインキ組成物中におけるポリエステル樹脂(A)の含有量は、1~20重量%の範囲であればよく、5~15重量%の範囲であることが好ましい。1%以下であると基材との十分な密着性が得られず、20%以上であると粘度が増粘し、インクジェットインキとして吐出することができなくなる。
(メタ)アクリレートモノマー(B)
 本発明の活性エネルギー線硬化型インクジェットインキ組成物においては、必要に応じて、(メタ)アクリレートモノマー(B)を含有する。
 (メタ)アクリレートモノマー(B)は、インクジェットインキとして吐出できるものであれば特に限定されるものではないが、低粘度を示す必要がある。目安としては25℃で5~20mPa・s程度を示すものがよく、一般的には単官能または二官能の(メタ)アクリレートモノマーであればよい。なお、粘度を低く維持できれば、少量の多官能(メタ)アクリレート(例えば、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート)を必要に応じて添加することができる。
 (メタ)アクリレートモノマー(B)の例としては、イソボニルアクリレート、4-ヒドロキシブチルアクリレート、ラウリルアクリレート、2-メトキシエチルアクリレート、フェノキシエチルアクリレート、イソオクチルアクリレート、ステアリルアクリレート、シクロヘキシルアクリレート、2-エトキシエチルアクリレート、ベンジルアクリレート、1H,1H,5H-オクタフルオロペンチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、イソブチルアクリレート、tert-ブチルアクリレート、テトラヒドロフルフリルアクリレート、エチルカルビトールアクリレート、2,2,2-トリフルオロエチルアクリレート、2,2,3,3-テトラフルオロプロピルアクリレート、メトキシトリエチレングリコールアクリレート、プロピレンオキサイド(PO)変性ノニルフェノールアクリレート、エチレンオキサイド(EO)変性ノニルフェノールアクリレート、エチレンオキサイド(EO)変性2エチルヘキシルアクリレート、フェニルグリシジルエーテルアクリレート、フェノキシジエチレングリコールアクリレート、エチレンオキサイド(EO)変性フェノールアクリレート、エチレンオキサイド(EO)変性クレゾールアクリレート、メトキシポリエチレングリコールアクリレート、ジプロピレングリコールアクリレート、ジシクロペンテニルアクリレート、ジシクロペンテニルオキシエチルアクリレート、2-n-ブチル-2-エチル-1,3-プロパンジオールジアクリレート、トリプロピレングリコールジアクリレート、テトラエチレングリコールジアクリレート、1,9-ノナンジオールジアクリレート、1,4-ブタンジオールジアクリレート、ビスフェノールA エチレンオキサイド(EO)変性ジアクリレート、1,6-ヘキサンジオールジアクリレート、ポリエチレングリコール200ジアクリレート、ネオペンチルグリコールヒドロキシピバレートジアクリレート、2-エチル-2-ブチル-プロパンジオールジアクリレート、ポリプロピレングリコールジアクリレート、プロピレンオキサイド(PO)変性ビスフェノールAジアクリレート、エチレンオキサイド(EO)変性水添ビスフェノールAジアクリレート、ジプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、トリメチロールプロパントリアクリレート、ペンタエリスリトールトリアクリレート、γ-ブチロラクトンアクリレート、ペンタメチルピペリジルアクリレート、テトラメチルピペリジルアクリレート、2-メチル-2-アダマンチルアクリレート、2-エチル-2-アダマンチルアクリレート、メバロン酸ラクトンアクリレート、ジメチロールトリシクロデカンジアクリレート、アクリル酸2-(2-ビニロキシエトキシ)エチル、1-アダマンチルメチルアクリレート、1-アダマンチルアクリレート、2-アクリロイロキシエチルフタレート、イソボルニルアクリレート、3-アクリロイロキシプロピルアクリレート、ジシクロペンタニルアクリレート、2-ヒドロキシ3-フェノキシプロピルアクリレート、ジエチレングリコールジエチルエーテル、N-ビニルカプロラクタム、N-ビニルピロリドン等を例示することができる。中でも、イソボニルアクリレート、フェノキシエチルアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、ジプロピレングリコールジアクリレートが好ましい。
 また、(メタ)アクリレートモノマー(B)としては、クロスカット耐性を向上させる観点から、ホモポリマーガラス転移温度-5~-20℃である単官能(メタ)アクリレートを用いることも好ましい。より具体的には、重合性モノマー成分(A)において、ホモポリマーガラス転移温度-5~-20℃である単官能(メタ)アクリレートを6~50重量%と、当該単官能(メタ)アクリレートとは異なる(メタ)アクリレートモノマーを50~94重量%とすることが好ましく、ホモポリマーガラス転移温度-5~-20℃である単官能(メタ)アクリレートを15~45重量%と、当該単官能(メタ)アクリレートとは異なる(メタ)アクリレートモノマーを55~85重量%とすることがより好ましい。
 ホモポリマーガラス転移温度-5~-20℃である単官能(メタ)アクリレートの例としては、2-エチルヘキシルメタクリレート(-10℃)、2-ヒドロキシルアクリレート(-10℃)、2-ヒドロキシエチルアクリレート(-15℃)、2-ヒドロキシプロピルアクリレート(-7℃)、フェノキシエチルアクリレート(-20℃)、フェノキシジエチレングリコールアクリレート(-15℃)、フェノキシポリエチレングリコールアクリレート(-20℃)、メトキシポリエチレングリコールメタクリレート(-10℃)、テトラヒドロフルフリルアクリレート(-15℃)、エトキシ化ノニルフェノールアクリレート(-20℃)、アルコキシ化フェノールアクリレート(-20℃)等が挙げられ、好ましくはフェノキシジエチレングリコールアクリレート、および/またはテトラヒドロフルフリルアクリレートである。なお、カッコ内の数値はホモポリマーのガラス転移温度を示す。
 当該単官能(メタ)アクリレートは、1種類を用いてもよく、2種類を組み合わせて用いてもよい。なお、2種以上を組み合わせて用いる場合の比率は特に限定されないが、例えば、2種を組み合わせて用いる場合、1種の単官能(メタ)アクリレート:もう1種の単官能(メタ)アクリレートの比率は、5:95~95:5の範囲であればよく、20:80~80:20の範囲であることが好ましい。
 活性エネルギー線硬化型インクジェットインキ組成物中における(メタ)アクリレートモノマー(B)の含有量は、ポリエステル樹脂(A)100重量部に対して、(メタ)アクリレートモノマー(B)50~1500重量部の範囲であればよく、50~1300重量部の範囲であることがより好ましく、50~1200重量部の範囲であることが特に好ましい。
重合開始剤(C)
 本発明の活性エネルギー線硬化型インクジェットインキ組成物には、必要に応じて、重合開始剤を含有する。本発明においては、重合開始剤を限定なく用いることができる。特に光重合開始剤を含有することが好ましい。
 本発明における活性エネルギー線硬化型インクジェットインキ組成物中の重合開始剤の配合量は、(メタ)アクリルモノマー(B)とポリエステル樹脂(A)の合計を100重量部として、0.1~20重量部の範囲であることが好ましく、1~15重量部の範囲であることがより好ましく、5~10重量部に範囲であることが特に好ましい。
 光重合開始剤の例としては、特に限定されないが、ベンジル、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインn-プロピルエーテル、ベンゾインイソプロピルエーテル、ベンゾインn-ブチルエーテル等のベンゾイン類やベンゾインアルキルエーテル類、ベンゾフェノン、p-メチルベンゾフェノン、ミヒラーズケトン、メチルベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン等のベンゾフェノン類、アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシ-シクロヘキシル-フェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-1-プロパノン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、N,N-ジメチルアミノアセトフェノン等のアセトフェノン類、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジイソプロピルチオキサントン等のチオキサントン類、アントラキノン、クロロアントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノン、2-アミノアントラキノン等のアントラキノン類、アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類、1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)等のオキシムエステル類、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド等のアシルホスフィン類、フェニルジスルフィド2-ニトロフルオレン、ブチロイン、アニソインエチルエーテル、アゾビスイソブチロニトリル等を例示することができる。中でも、アセトフェノン類、アルキルフェノン類、アシルフォスフィンオキサイド類、オキシフェニル類、オキシムエステルベンゾイン類が好ましく、アセトフェノン類、アルキルフェノン類がより好ましい。これらの光重合開始剤は単独で用いてもよく、2種以上を併用してもよい。さらに光重合開始剤と、増感剤を併用することも可能である。
 増感剤としては、例えば、アントラセン、フェノチアゼン、ぺリレン、チオキサントン、ベンゾフェノンチオキサントン等が挙げられる。
 本発明の活性エネルギー線硬化型インクジェットインキ組成物を硬化させるために用いる活性エネルギー線としては、紫外線の他、電子線、α線、β線、γ線、X線等の、組成物中の重合性成分(例えば、(メタ)アクリレートモノマー)の重合反応を進める上で必要なエネルギーを付与できるものであればよく、特に限定されない。特に高エネルギーな光源を使用する場合には、重合開始剤を使用しなくても重合反応を進めることができる。また、紫外線照射の場合、環境保護の観点から水銀フリー化が強く望まれており、GaN系半導体紫外発光デバイスへの置き換えは産業的、環境的にも非常に有用である。さらに、紫外線発光ダイオード(UV-LED)及び紫外線レーザダイオード(UV-LD)は小型、高寿命、高効率、低コストであり、紫外線光源として好ましい。
 本発明の活性エネルギー線硬化型インクジェットインキ組成物には、種々の添加剤、例示すれば、安定剤(例えば、ハイドロキノン、メトキノン、メチルハイドロキノン等の重合禁止剤)、顔料(例えば、シアニンブルー、ジスアゾエロー、カーミン6b、レーキッドC、カーボンブラック、チタンホワイト)等の着色剤、充填剤、粘度調整剤等の各種添加剤を目的に応じて含有することができる。
活性エネルギー線硬化型インクジェットインキ組成物の調製
 本発明の活性エネルギー線硬化型インクジェットインキ組成物は、上述した各種成分を用いて作製することができ、その調製手段や条件は特に限定されないが、例えば、顔料、分散剤等をボールミル、キティーミル、ディスクミル、ピンミル、ダイノーミル等の分散機に投入し、分散させて顔料分散液を調製し、当該顔料分散液にさらに(メタ)アクリレートモノマー、重合開始剤、重合禁止剤、界面活性剤等を混合させることにより調製することができる。
 本発明の活性エネルギー線硬化型インクジェットインキ組成物の粘度としては、用途や適用手段に応じて適宜調整すればよく、特に限定されないが、例えば、当該組成物をノズルから吐出させるような吐出手段を適用する場合には、20℃から65℃の範囲における粘度、好ましくは25℃における粘度として1mPa・s以上20mPa・s以下であり、5mPa・s以上15mPa・s以下が好ましい。また、当該粘度範囲となるように有機溶媒等を添加して調整してもよい。なお、上記粘度は、Thermo Scientific製MARSIIIレオメーターを使用し、回転数10rpm、恒温循環水の温度を20℃~65℃の範囲で適宜設定して測定することができる。
用途
 本発明の活性エネルギー線硬化型インクジェットインキ組成物の用途は、一般に活性エネルギー線硬化型材料が用いられている分野であれば特に制限はなく、目的に応じて適宜選択することができ、例えば、成形用樹脂、塗料、接着剤、絶縁材、離型剤、コーティング材、シーリング材、各種レジスト、各種光学材料等が挙げられる。
 さらに、本発明の活性エネルギー線硬化インクジェットインキ型組成物は、インクとして用いて2次元の文字や画像、各種基材への意匠塗膜を形成するだけでなく、3次元の立体像(立体造形物)を形成するための立体造形用材料としても用いることができる。
 本発明の活性エネルギー線硬化型インクジェットインキ組成物を用いて立体造形物を造形するための立体造形装置としては、公知のものを使用することができ、特に限定されないが、例えば、該組成物の収容手段、供給手段、吐出手段や活性エネルギー線照射手段等を備えるものが挙げられる。
 また、本発明は、活性エネルギー線硬化型インクジェットインキ組成物を硬化させて得られた硬化物や当該硬化物が基材上に形成された構造体を加工してなる成形加工品も含む。前記成形加工品は、例えば、シート状、フィルム状に形成された硬化物や構造体に対して、加熱延伸や打ち抜き加工等の成形加工を施したものであり、例えば、自動車、OA機器、電気・電子機器、カメラ等のメーターや操作部のパネル等、表面を加飾後に成形することが必要な用途に好適に使用される。
 上記基材としては、特に限定されず、目的に応じて適宜選択することができ、例えば、紙、糸、繊維、布帛、皮革、金属、プラスチック、ガラス、木材、セラミックス、またはこれらの複合材料等が挙げられ、加工性の観点からはプラスチック基材(例えば、ポリピロピレン(PP)、ポリエチレン(PE)、ポリカーボネート(PC)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)等)が好ましい。
 以下、実施例により本発明を更に詳しく説明するが、本発明は実施例により何ら限定されるものではない。
 後述の実施例及び比較例で用いた材料を以下に説明する。
ポリエステル樹脂
 以下に示した材料を用いて、後述する重合例でポリエステル樹脂を合成した。
 テトラヒドロ無水フタル酸(以下THPA、新日本理化社製リカシッドTH)
 水素化ビスフェノールA(以下HBPA、TCI製)
 1,3-ブタンジオール(以下BG、和光純薬製)
重合例1:ポリエステル樹脂1の合成
 500ml円柱丸底フラスコにTHPAを154g投入し100℃に加温、融解させた。150℃まで昇温、窒素200ml/min、100rpmで回転させながらHBPA粉末192gを4回にわけて投入した。目視で粉末が溶解しているのを確認したら、ヒーター温度を200℃まであげ、150rpmで回転させながら水留出を待ち、液落ち確認後、30分おきにサンプリングして数平均分子量と酸価の測定をしながらTHPAを計20g添加して反応させて、目的の数平均分子量と酸価になったところで反応停止し、数平均分子量1280、酸価140、多価アルコール中のHBPA100モル%のポリエステル樹脂1を301g得た。得られたポリエステル樹脂1を実施例1,6~8で用いた。
重合例2:ポリエステル樹脂2の合成
 500ml円柱丸底フラスコにTHPAを92g投入し100℃に加温、融解させた。150℃まで昇温、窒素200ml/min、100rpmで回転させながらHBPA粉末120gを4回にわけて投入した。目視で粉末が溶解しているのを確認したら、ヒーター温度を200℃まであげ、150rpmで回転させながら水留出を待ち、液落ち確認後、30分おきにサンプリングして数平均分子量と酸価の測定をしながらHBPAを計100g添加して反応させて、目的の数平均分子量と酸価になったところで反応停止し、数平均分子量800、酸価23、多価アルコール中のHBPA100モル%のポリエステル樹脂2を270g得た。得られたポリエステル樹脂2を実施例2で用いた。
重合例3:ポリエステル樹脂3の合成
 500ml円柱丸底フラスコにTHPAを280g投入し100℃に加温、融解させた。150℃まで昇温、窒素200ml/min、100rpmで回転させながらBG80gを投入した。目視で溶解しているのを確認したら、ヒーター温度を200℃まであげ、150rpmで回転させながら水留出を待ち、液落ち確認後、30分おきにサンプリングして数平均分子量と酸価の測定をしながらHBPAを計70g添加して反応させて、目的の数平均分子量と酸価になったところで反応停止し、数平均分子量1020、酸価130、多価アルコール中のHBPA25モル%のポリエステル樹脂3を260g得た。得られたポリエステル樹脂3を実施例3で用いた。
重合例4:ポリエステル樹脂4の合成
 500ml円柱丸底フラスコにTHPAを150g投入し100℃に加温、融解させた。150℃まで昇温、窒素200ml/min、100rpmで回転させながらBG70gを投入した。目視で溶解しているのを確認したら、ヒーター温度を200℃まであげ、150rpmで回転させながら水留出を待ち、液落ち確認後、30分おきにサンプリングして数平均分子量と酸価の測定をしながらHBPAを計90g添加して反応させて、目的の数平均分子量と酸価になったところで反応停止し、数平均分子量1250、酸価32、多価アルコール中のHBPA20モル%のポリエステル樹脂4を202g得た。得られたポリエステル樹脂4を実施例4で用いた。
重合例5:ポリエステル樹脂5の合成
 500ml円柱丸底フラスコにTHPAを230g投入し100℃に加温、融解させた。150℃まで昇温、窒素200ml/min、100rpmで回転させながらBG135gを投入した。目視で溶解しているのを確認したら、ヒーター温度を200℃まであげ、150rpmで回転させながら水留出を待ち、液落ち確認後、30分おきにサンプリングして数平均分子量と酸価の測定をしながらHBPAを計70g添加して反応させて、目的の数平均分子量と酸価になったところで反応停止し、数平均分子量1050、酸価34、多価アルコール中のHBPA16モル%のポリエステル樹脂5を254g得た。得られたポリエステル樹脂5を比較例2で用いた。
ポリエステル樹脂6の調製
 上記で得られたポリエステル樹脂1とポリエステル樹脂2を50gずつ秤量して混合し、ポリエステル樹脂6を調製した。得られたポリエステル樹脂6を実施例5で用いた。
 比較例にはユニチカ製エリーテルUE3350(比較ポリエステル樹脂)を用いた。
 合成した各ポリエステル樹脂の物性値の測定は下記の方法で測定した。
(1)GPC測定条件
 以下の条件で、重量平均分子量及び数平均分子量をGPC法により、標準ポリスチレン検量線を用いて測定した。結果を表1,3に示す。
装置:島津製作所製Prominence-i、LC-2030
カラム:ShodexLF-804×2本、ガードカラムS
異動相:THF
流速:1.0ml/min
注入量50μl
カラム温度40℃
(2)酸価の測定
  合成した各ポリエステル樹脂をそれぞれ三角フラスコに1.5g秤量し、溶剤(トルエン/メタノール=7/3(体積比))約10mlを加えて溶解した。次に指示薬(1%フェノールフタレイン・エチルアルコール溶液)3滴を加えて0.1N水酸化カリウム水溶液で滴定し、液色が白から桃に変化した時を終点として、次式により算出した。結果を表1,3に示す。
酸価(mgKOH/g)=A×F/S
F:0.1N水酸化カリウム水溶液の係数(f×5.61)、f=1
V:0.1N水酸化カリウム水溶液の滴定量(ml)
W:サンプル重量(g)
 活性エネルギー線硬化型インクジェットインキ組成物としての評価するにあたり、(メタ)アクリレートモノマーとして、ジプロピレングリコールジアクリレート90重量部、光重合開始剤を1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins B.V.製Irgacure184)10重量部の混合物を作製し、ポリエステル樹脂1~6を10重量部溶解させたワニス組成物を作製し、これを評価に用いた。溶解はいずれも混合物ディスパーつき容器に投入して40℃加温しながら目視にて透明になるまで撹拌した。
 ワニス組成物の各物性の測定は下記方法に従って行った。
(1)粘度
  Thermo Scientific製MARSIIIレオメーターを用いて25℃におけるワニス組成物の粘度を測定した。コーンプレート角度は2°、粘度値の読み取りは10rpm時とした。結果を表2,4に示す。
(2)テープ剥離試験
  ポリプロピレン基材(東洋紡製P2161、二軸延伸ポリプロピレン、コロナ処理あり)上にバーコーターで6±1μmの塗膜を作製し、メタルハライド光源200mJ/cm2の照射にてUV硬化塗膜を作製した。ここにニチバン製セロハンテープを当てて指で強くこすり剥がしたときの状態を以下の5段階で評価した。結果を表2,4に示す。
5:すばやく剥がして剥離なし
4:すばやく剥がして50%剥離テープにもっていかれないが基材剥離あり
3:すばやく剥がして完全に剥離も、ゆっくり剥がすと剥離なし
2:ゆっくり剥がして50%剥離
1:ゆっくり剥がして完全剥離
(3)クロスカット密着耐性試験
 ポリプロピレン基材(東洋紡株式会社製P2161、二軸延伸ポリプロピレン、コロナ処理あり)上にバーコーターで6±1μmの塗膜を作製し、メタルハライド光源200mJ/cm2の照射にてUV硬化塗膜を作製した。ASTM D3359に従い、塗膜にクロスカッターで格子状の切り目を入れ、ここにニチバン製セロハンテープを当てて指で強くこすったのち剥離して、25マス中基材に残っていたマスの数をカウントした。結果を表2,4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例1は市販のポリエステル樹脂を使ったもので、粘度が35mPa・s@25℃とインクジェットインキとしては不適な高粘度であった。これは樹脂の分子量が高すぎることが原因と考えられる。
 実施例1と2より、多価アルコール中のHBPA100モル%の樹脂の酸価が20~140であれば低粘度(15mPa・s)を維持しつつ、ポリプロピレン基材へ高い密着性が得られる。
 実施例1と3より、高酸価ポリエステル樹脂中の多価アルコールに由来する構成単位中のHBPAのモル%が25~100の範囲であれば低粘度を維持しつつ、ポリプロピレン基材へ高い密着性が得られる。
 実施例2と4より、低酸価ポリエステル樹脂中の多価アルコールに由来する構成単位中のHBPAモル%が20~100の範囲であれば低粘度を維持しつつ、ポリプロピレン基材へ高い密着性が得られる。
 比較例2より、ポリエステル樹脂中の多価アルコールに由来する構成単位中のHBPAがモル16%だと低粘度は維持されるが、ポリプロピレン基材へ密着性が得られない。
 実施例5より、ポリエステル樹脂1とポリエステル樹脂2を2種類ブレンドしても同様の結果が得られる。
Figure JPOXMLDOC01-appb-T000003
 実施例6~8及び比較例3,4に用いたワニス組成物の組成を表3に示す。表内組成の数値単位は重量部である。
ジプロピレングリコールジアクリレート;新中村化学工業製APG-100、ホモポリマーガラス転移温度110℃
ジエチレングリコールモノエチルエーテルアクリレート;共栄社化学製ライトアクリレートEC-A、ホモポリマーガラス転移温度-70℃
フェノキシジエチレングリコールアクリレート;共栄社化学製ライトアクリレートP2H-A、ガラス転移温度-15℃
テトラヒドロフルフリルアクリレート;共栄社化学製THF-A、ホモポリマーガラス転移温度-15℃
Figure JPOXMLDOC01-appb-T000004
 ワニス組成物の測定結果を表4に示す。
 比較例3は特定の重合性モノマー成分と樹脂成分が入っておらず、基材との密着が乏しく、クロスカット耐性を示さなかった。比較例4は特定の重合性モノマー成分は含むものの樹脂成分が入っておらず、基材密着が乏しく、クロスカット耐性が低かった。
 実施例6~8は、特定の重合性モノマー成分と樹脂成分を配合することで、基材との密着が得られ、且つ塗膜が適度な柔軟性を有するため、高いクロスカット耐性を示した。
 本発明の活性エネルギー線硬化型インクジェットインキ組成物は、インクジェットインキとして、各種インキ、コーティング剤、塗料等に使用することができる。

Claims (5)

  1.  ポリエステル樹脂(A)を含有する活性エネルギー線硬化型インクジェットインキ組成物であって、
     前記ポリエステル樹脂(A)は、多塩基酸に由来する構成単位(a-1)と、多価アルコールに由来する構成単位(a-2)と含み、
     前記多価アルコールに由来する構成単位(a-2)は、水素化ビスフェノールAに由来する構成単位を20モル%以上100モル%以下含有し、
     ポリエステル樹脂(A)は、数平均分子量(Mn)が500~4,500、酸価が5~300である、活性エネルギー線硬化型インクジェットインキ組成物。
  2.  さらに、(メタ)アクリレートモノマー(B)を含有する請求項1に記載の活性エネルギー線硬化型インクジェットインキ組成物。
  3.  さらに、重合開始剤(C)を含有する請求項1または2に記載の活性エネルギー線硬化型インクジェットインキ組成物。
  4.  粘度が5~20mPa・sである請求項1~3の何れかに記載の活性エネルギー線硬化型インクジェットインキ組成物。
  5.  請求項1~4の何れかに記載の活性エネルギー線硬化型インクジェットインキ組成物を印刷し、活性エネルギー線を照射して得られる印刷物。
PCT/JP2019/007419 2018-02-28 2019-02-27 活性エネルギー線硬化型インクジェットインキ組成物 WO2019167976A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19761710.3A EP3760679A4 (en) 2018-02-28 2019-02-27 COMPOSITION OF INK FOR INKJET, CURING BY ACTINIC RAYS
CN201980009200.4A CN111630118A (zh) 2018-02-28 2019-02-27 活性能量射线固化型喷墨油墨组合物
JP2020503542A JP7264148B2 (ja) 2018-02-28 2019-02-27 活性エネルギー線硬化型インクジェットインキ組成物
US16/976,237 US20200407579A1 (en) 2018-02-28 2019-02-27 Active energy ray-curable inkjet ink composition

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018034901 2018-02-28
JP2018-034901 2018-02-28
JP2018061216 2018-03-28
JP2018-061216 2018-03-28

Publications (1)

Publication Number Publication Date
WO2019167976A1 true WO2019167976A1 (ja) 2019-09-06

Family

ID=67805345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007419 WO2019167976A1 (ja) 2018-02-28 2019-02-27 活性エネルギー線硬化型インクジェットインキ組成物

Country Status (5)

Country Link
US (1) US20200407579A1 (ja)
EP (1) EP3760679A4 (ja)
JP (1) JP7264148B2 (ja)
CN (1) CN111630118A (ja)
WO (1) WO2019167976A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220135833A1 (en) * 2019-03-18 2022-05-05 Osaka Soda Co., Ltd. Coating composition
JP2022147319A (ja) * 2021-03-23 2022-10-06 株式会社リコー インクジェット用活性エネルギー線硬化型組成物、立体造形物の製造方法、及び立体造形物の製造装置
EP4083104B1 (en) * 2021-04-28 2023-08-16 Lawter, Inc. Tackifier for adhesive composition

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235914A (ja) * 2009-03-11 2010-10-21 Toyo Ink Mfg Co Ltd インキ組成物およびそれを用いた硬化物
JP2012067151A (ja) * 2010-09-21 2012-04-05 Jnc Corp インクジェット用光硬化性インク組成物
JP2012149228A (ja) * 2010-12-27 2012-08-09 Seiko Epson Corp インクジェット用インク組成物
JP5540862B2 (ja) 2010-04-21 2014-07-02 東洋インキScホールディングス株式会社 Uv硬化型平版印刷インキおよびその印刷物
JP2015052046A (ja) * 2013-09-06 2015-03-19 Dic株式会社 活性エネルギー線硬化型インクジェット記録用インク及び画像形成方法
JP2015098552A (ja) * 2013-11-20 2015-05-28 花王株式会社 インクジェット記録用水系インク
JP2016069579A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 インク組成物、インク組成物の製造方法、及び画像形成方法
JP2017019989A (ja) 2015-07-08 2017-01-26 株式会社リコー 活性エネルギー線硬化型組成物、組成物収容容器、2次元又は3次元の像の形成装置及び形成方法、並びに硬化物
JP2017025263A (ja) * 2015-07-28 2017-02-02 花王株式会社 水系インク

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2501764B1 (en) * 2009-11-18 2019-02-27 OCE-Technologies B.V. Radiation curable ink composition
EP2694603B1 (en) * 2011-04-05 2016-11-02 Allnex Belgium, S.A. Radiation curable compositions
WO2018168733A1 (ja) * 2017-03-14 2018-09-20 株式会社Screenホールディングス インクジェット用水性コーティング組成物、印刷方法及び印刷物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010235914A (ja) * 2009-03-11 2010-10-21 Toyo Ink Mfg Co Ltd インキ組成物およびそれを用いた硬化物
JP5540862B2 (ja) 2010-04-21 2014-07-02 東洋インキScホールディングス株式会社 Uv硬化型平版印刷インキおよびその印刷物
JP2012067151A (ja) * 2010-09-21 2012-04-05 Jnc Corp インクジェット用光硬化性インク組成物
JP2012149228A (ja) * 2010-12-27 2012-08-09 Seiko Epson Corp インクジェット用インク組成物
JP2015052046A (ja) * 2013-09-06 2015-03-19 Dic株式会社 活性エネルギー線硬化型インクジェット記録用インク及び画像形成方法
JP2015098552A (ja) * 2013-11-20 2015-05-28 花王株式会社 インクジェット記録用水系インク
JP2016069579A (ja) * 2014-09-30 2016-05-09 富士フイルム株式会社 インク組成物、インク組成物の製造方法、及び画像形成方法
JP2017019989A (ja) 2015-07-08 2017-01-26 株式会社リコー 活性エネルギー線硬化型組成物、組成物収容容器、2次元又は3次元の像の形成装置及び形成方法、並びに硬化物
JP2017025263A (ja) * 2015-07-28 2017-02-02 花王株式会社 水系インク

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3760679A4

Also Published As

Publication number Publication date
CN111630118A (zh) 2020-09-04
JP7264148B2 (ja) 2023-04-25
US20200407579A1 (en) 2020-12-31
JPWO2019167976A1 (ja) 2021-03-04
EP3760679A1 (en) 2021-01-06
EP3760679A4 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
US11028278B2 (en) Single phase water based energy curable compositions and method of preparing coatings and printing inks
US7479511B2 (en) Water based energy curable hybrid systems with improved properties
TWI703184B (zh) 光硬化性樹脂組成物、油墨及塗料
JP7264148B2 (ja) 活性エネルギー線硬化型インクジェットインキ組成物
WO2017169166A1 (ja) インクジェット用硬化性組成物、硬化物およびプリント配線板
JP4457907B2 (ja) 硬化性樹脂組成物およびその用途
US8334352B2 (en) Branched polyesteramine acrylate
US20040157959A1 (en) Homogenous aqueous energy curable metallic printing ink compositions
KR20180086144A (ko) 잉크젯용 경화성 조성물, 경화물 및 프린트 배선판
JP2003313489A (ja) アルミニウム材にコーティングする放射線硬化型樹脂組成物
JP5151179B2 (ja) 活性エネルギー線硬化型組成物および該組成物を用いてなる印刷物および成型加工された加飾シート成型物
JP4285694B2 (ja) エネルギー線硬化性水中油滴型エマルション及び水系ハードコート剤
JP3654100B2 (ja) 活性エネルギー線硬化型水性エマルジョン
TWI808944B (zh) 光硬化性樹脂組成物、墨水及塗料
WO2020189066A1 (ja) コーティング組成物
JP2021024906A (ja) 光硬化型樹脂組成物
JP2019178260A (ja) インクジェット印刷用硬化性組成物、その硬化物、及びその硬化物を有する電子部品
JP2020033391A (ja) 活性エネルギー線硬化型インクジェットインキ組成物
JP4973072B2 (ja) 活性エネルギー線硬化型組成物
JP2003002914A (ja) 活性エネルギー線硬化型樹脂組成物およびそれを含むオーバープリントワニス
JP2000234045A (ja) 反応性共重合体の水性組成物
JP2023131699A (ja) 組成物および印刷方法
JP2020002298A (ja) 硬化物の製造方法
GB2461624A (en) Ink-jet ink
JP2005336274A (ja) 活性エネルギー線硬化性印刷インキ用樹脂組成物および印刷物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19761710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503542

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019761710

Country of ref document: EP

Effective date: 20200928