WO2019167971A1 - アルミナの保護液、保護方法及びこれを用いたアルミナ層を有する半導体基板の製造方法 - Google Patents

アルミナの保護液、保護方法及びこれを用いたアルミナ層を有する半導体基板の製造方法 Download PDF

Info

Publication number
WO2019167971A1
WO2019167971A1 PCT/JP2019/007409 JP2019007409W WO2019167971A1 WO 2019167971 A1 WO2019167971 A1 WO 2019167971A1 JP 2019007409 W JP2019007409 W JP 2019007409W WO 2019167971 A1 WO2019167971 A1 WO 2019167971A1
Authority
WO
WIPO (PCT)
Prior art keywords
barium
alumina
beryllium
strontium
magnesium
Prior art date
Application number
PCT/JP2019/007409
Other languages
English (en)
French (fr)
Inventor
俊行 尾家
プリアンガ プルダナ プトラ
明伸 堀田
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to IL277046A priority Critical patent/IL277046B1/en
Priority to US16/976,565 priority patent/US20210002551A1/en
Priority to EP21200791.8A priority patent/EP3975223A1/en
Priority to JP2020503539A priority patent/JP7180667B2/ja
Priority to CN201980012078.6A priority patent/CN111699547A/zh
Priority to KR1020207019594A priority patent/KR20200125582A/ko
Priority to EP19759900.4A priority patent/EP3761346A4/en
Publication of WO2019167971A1 publication Critical patent/WO2019167971A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • C01B21/38Nitric acid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • H01L21/0206Cleaning during device manufacture during, before or after processing of insulating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/20Nitrogen oxides; Oxyacids of nitrogen; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D1/00Coating compositions, e.g. paints, varnishes or lacquers, based on inorganic substances
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K15/00Anti-oxidant compositions; Compositions inhibiting chemical change
    • C09K15/02Anti-oxidant compositions; Compositions inhibiting chemical change containing inorganic compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02057Cleaning during device manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02178Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing aluminium, e.g. Al2O3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/033Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers
    • H01L21/0332Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising inorganic layers characterised by their composition, e.g. multilayer masks, materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers

Definitions

  • the present invention relates to a protective solution for suppressing corrosion of alumina in a manufacturing process of a semiconductor integrated circuit, an alumina protection method, and a method of manufacturing a semiconductor substrate having an alumina layer using the same.
  • Non-Patent Document 1 In the cleaning process of the semiconductor integrated circuit with the cleaning liquid, dry etching residues, resists, hard masks, and the like are removed. Generally, in this cleaning process, it is required not to corrode materials other than the removal target. In recent years, with the miniaturization of design rules, the structure of the gate of a transistor has been changed from a combination of silicon oxide and polycrystalline silicon to a combination of a high dielectric constant material and a metal. In some cases, alumina is used as the high dielectric constant material. Further, when forming a via by dry etching, a fluorine-based gas is selected, but alumina may be selected as an etch stop layer because of its high resistance to the fluorine-based gas (Non-Patent Document 1). .
  • alumina may be used as a material for the hard mask (Patent Document 1).
  • alumina is sometimes used in the semiconductor integrated circuit and the manufacturing process thereof, but a cleaning solution containing a fluorine compound, an oxidizing agent, an alkali, or the like generally used in the cleaning step comes into contact with the alumina.
  • a cleaning solution containing a fluorine compound, an oxidizing agent, an alkali, or the like generally used in the cleaning step comes into contact with the alumina.
  • a cleaning solution containing a fluorine compound, an oxidizing agent, an alkali, or the like generally used in the cleaning step comes into contact with the alumina.
  • the alumina is severely corroded. Therefore, there is a strong demand for a method for suppressing corrosion on alumina in a cleaning process in which these cleaning liquids are used.
  • An object of the present invention is to provide a protective solution for alumina, a protective method, and a method for manufacturing a semiconductor substrate having an alumina layer using the same.
  • the present invention is as follows.
  • An alumina protective liquid (protective film forming liquid) containing 0.0001 to 20% by mass of an alkaline earth metal compound, wherein the alkaline earth metal is selected from the group consisting of beryllium, magnesium, strontium and barium 1 or more of an alumina protective solution.
  • the alkaline earth metal compound is Beryllium nitrate, beryllium acetate, beryllium chloride, beryllium hydroxide, beryllium sulfite, beryllium chlorate, beryllium peroxide, beryllium peroxide, beryllium chromate, beryllium oxide, beryllium cyanide, beryllium bromide, beryllium carbonate, beryllium metaborate , Beryllium iodide, beryllium tetrafluoroborate, beryllium sulfate, beryllium sulfide, and salts obtained by reacting beryllium hydroxide with an acid;
  • the method for protecting alumina according to the present invention includes a step of treating at least a part of the surface of the alumina layer containing alumina using the alumina protective liquid according to any one of [1] to [6].
  • substrate of this invention is a manufacturing method of the semiconductor substrate which has an alumina layer, Comprising: The process of protecting the alumina contained in an alumina layer using the protection method of an alumina as described in [7] is included.
  • a protective film is formed on at least a part of the surface of the alumina layer by treating at least a part of the surface of the alumina layer with an alumina protective liquid, and the alumina contained in the alumina layer is It can be protected from corrosion by chemicals such as cleaning liquid.
  • an alumina protective solution containing an alkaline earth metal compound is used.
  • an alumina protective solution, a protection method, and a method for producing a semiconductor substrate having an alumina layer using the same will be described in detail.
  • the alkaline earth metal compound used in the present invention is an inorganic substance containing one or more metals selected from the group consisting of beryllium, magnesium, strontium, and barium. These have the effect of forming a protective film on at least a part of the surface of the alumina layer. For example, corrosion of the alumina by the cleaning liquid in the cleaning process after the protective film is formed can be suppressed. Calcium of the same genus has insufficient anticorrosion performance against alkalis, and radium is expensive and often unstable as a compound and is not suitable for use.
  • alkaline earth metal compounds include Beryllium nitrate, beryllium acetate, beryllium chloride, beryllium hydroxide, beryllium sulfite, beryllium chlorate, beryllium peroxide, beryllium peroxide, beryllium chromate, beryllium oxide, beryllium cyanide, beryllium bromide, beryllium carbonate, beryllium metaborate , Beryllium iodide, beryllium tetrafluoroborate, beryllium sulfate, beryllium sulfide, and salts obtained by reacting beryllium hydroxide with an acid;
  • barium compounds namely barium nitrate, barium acetate, barium chloride, barium hydroxide, barium sulfite, barium chlorate, barium perchlorate, barium peroxide, barium chromate, barium oxide, barium cyanide, odor
  • barium fluoride, barium carbonate, barium metaborate, barium iodide, barium tetrafluoroborate, barium sulfate, barium sulfide, and a salt obtained by reacting barium hydroxide with an acid are preferable because they have a high corrosion inhibitory effect on alumina.
  • the concentration (content) of the alkaline earth metal compound in the alumina protective solution of the present invention is 0.0001 to 20% by mass, preferably 0.00025 to 17.5% by mass, more preferably 0.0005 to 15% by mass. Particularly preferably, the content is 0.001 to 10% by mass, more preferably more than 1% by mass, and still more preferably 1.5 to 10% by mass. By being in this range, a protective film can be formed on at least a part of the alumina surface, and damage to the alumina can be effectively suppressed.
  • the alumina protective solution of the present invention may be blended with components conventionally used in semiconductor compositions as long as it does not impair the purpose of the present invention.
  • components conventionally used in semiconductor compositions for example, alkalis, acids, chelating agents, surfactants, antifoaming agents, oxidizing agents, reducing agents, metal anticorrosives, water-soluble organic solvents, and the like can be added as additives.
  • the balance of the alumina protective solution of the present invention is water.
  • the water that can be used in the present invention is not particularly limited, but water from which metal ions, organic impurities, particles, and the like have been removed by distillation, ion exchange treatment, filter treatment, various adsorption treatments, and the like is preferable, and pure water is more preferable. Ultrapure water is particularly preferable.
  • the concentration (content) of water in the alumina protective solution is preferably 70 to 100% by mass, more preferably 90 to 100% by mass, still more preferably 95 to 100% by mass, and particularly preferably 98 to 100% by mass. .
  • the alumina protective solution of the present invention is prepared by adding water (preferably ultrapure water) to the alkaline earth metal compound and other components as necessary and stirring until uniform.
  • the alumina protective solution of the present invention is preferably substantially free of hydrogen peroxide, and the concentration (content) of hydrogen peroxide in the alumina protective solution is more preferably less than 0.002% by mass. .
  • the temperature at which the alumina protective solution of the present invention is used is usually 20 to 70 ° C., preferably 30 to 60 ° C., particularly preferably 40 to 55 ° C. What is necessary is just to select suitably the use conditions of an alumina protective liquid with the semiconductor substrate used.
  • the time for using the alumina protective solution of the present invention is usually 0.2 to 60 minutes. What is necessary is just to select suitably the use conditions of an alumina protective liquid with the semiconductor substrate used.
  • a protective film can be suitably formed on at least a part of the surface of the alumina layer of the semiconductor substrate, and the alumina contained in the alumina layer can be protected.
  • the thickness of the protective film is not particularly limited. According to a preferred embodiment of the present invention, by treating at least a part of the surface of the alumina layer with the alumina protective liquid of the present invention, the alumina contained in the alumina layer can be protected from corrosion due to a chemical liquid such as a cleaning liquid. .
  • the alumina protective liquid used in the present invention can be added to the cleaning liquid used in the semiconductor substrate cleaning process, and the alumina can be cleaned while protecting the alumina.
  • an inorganic substance containing barium is contained as the alkaline earth metal compound, the semiconductor substrate can be suitably cleaned, and corrosion of alumina by the cleaning liquid can be suppressed.
  • semiconductor substrate As a semiconductor substrate that can be suitably used in the present invention, Substrate materials such as silicon, amorphous silicon, polysilicon, glass; Insulating materials such as silicon oxide, silicon nitride, silicon carbide and their derivatives; Materials such as cobalt, cobalt alloy, tungsten, titanium-tungsten; Substrates using compound semiconductors such as gallium-arsenide, gallium-phosphorus, indium-phosphorus, indium-gallium-arsenic, indium-aluminum-arsenic, and oxide semiconductors such as chromium oxide, particularly low dielectric constant interlayer insulating films
  • the semiconductor substrate having any material has an alumina layer containing alumina.
  • an alumina layer is provided as an etch stop layer and a hard mask.
  • the content of alumina in the alumina layer is preferably 30% by mass or more, more preferably 50% by mass or more, further preferably 70% by mass or more, still more preferably 90% by mass or more, and particularly preferably 100% by mass.
  • the method for protecting alumina of the present invention includes a step of treating at least a part of the surface of the alumina layer with the alumina protective solution of the present invention.
  • the treatment is performed by bringing the alumina protective solution of the present invention into contact with at least a part of the surface of the alumina layer.
  • the operating temperature and operating time of the alumina protective liquid of the present invention are as described in the above “Usage method of alumina protective liquid”.
  • the method for bringing the alumina protective solution of the present invention into contact with the surface of the alumina layer is not particularly limited.
  • a method of immersing the surface of the alumina layer in the alumina protective liquid of the present invention can be employed. Any method may be employed in the present invention.
  • the alumina contained in the alumina layer can be protected from corrosion by a chemical solution such as a cleaning solution, and the corrosion of alumina can be suppressed.
  • the manufacturing method of the semiconductor substrate of this invention includes the process of protecting the alumina contained in the alumina layer which a semiconductor substrate has using the protection method of the alumina of this invention.
  • the alumina contained in the alumina layer can be protected from corrosion by chemicals such as a cleaning solution, and the semiconductor substrate can be manufactured without inhibiting the corrosion of alumina and affecting the electrical characteristics.
  • the use temperature and use time of the composition of the present invention are as described in the above “Method for using alumina protective solution”.
  • the method of bringing the composition of the present invention into contact with the surface of the alumina layer of the semiconductor substrate is also as described in the above “Alumina protection method”.
  • 1 to 5 show an example of a cross-sectional structure of a semiconductor substrate having an alumina layer.
  • FIG. 1 is a schematic diagram of a cross-sectional view of an embodiment of a semiconductor substrate having a low dielectric constant interlayer insulating film in a semiconductor substrate before dry etching residue removal when the bottom of the via is alumina.
  • a via is formed in the low dielectric constant interlayer insulating film 6 by dry etching, and the bottom of the via is alumina 1.
  • the dry etching residue 2 is attached to the surface of the via and the low dielectric constant interlayer insulating film 6.
  • FIG. 2 is a schematic diagram of a cross-sectional view of one embodiment of a semiconductor substrate having a low dielectric constant interlayer insulating film in a semiconductor substrate before removal of dry etching residues when the hard mask is alumina.
  • an alumina-based hard mask 3 is laminated on a low dielectric constant interlayer insulating film 6, and vias are formed thereon by dry etching.
  • the dry etching residue 2 is attached to the surface of the via and the alumina hard mask 3.
  • FIG. 3 is a schematic diagram of a cross-sectional view of one embodiment of a semiconductor substrate having a low dielectric constant interlayer insulating film in a semiconductor substrate before removal of a hard mask (excluding an alumina-based hard mask) when the via bottom is alumina. is there.
  • a hard mask (excluding an alumina hard mask) 4 is laminated on a low dielectric constant interlayer insulating film 6, and a via is formed in the hard mask.
  • the bottom of the via is alumina 1.
  • FIG. 4 is a schematic diagram of a cross-sectional view of one embodiment of a semiconductor substrate having a low dielectric constant interlayer insulating film in a semiconductor substrate before resist removal when the bottom of the via is alumina.
  • a resist 5 is laminated on a low dielectric constant interlayer insulating film 6, and a via is formed in this.
  • the bottom of the via is alumina 1.
  • FIG. 5 is a schematic diagram of a cross-sectional view of one embodiment of a semiconductor substrate having a low dielectric constant interlayer insulating film in a semiconductor substrate before resist removal when the hard mask is alumina.
  • an alumina-based hard mask 3 and a resist 5 are laminated in this order on a low dielectric constant interlayer insulating film 6, and a via is formed in this layer. The bottom of the via is a low dielectric constant interlayer insulating film 6.
  • the alumina protective liquid of the present invention In the method for producing a semiconductor substrate of the present invention, at various stages where the alumina layer of such a semiconductor substrate is exposed on the surface, the surface of the alumina layer is protected by using the alumina protective liquid of the present invention, and thereafter In this step, the alumina contained in the alumina layer can be protected from corrosion by a chemical solution such as a cleaning solution, and the corrosion of alumina can be suppressed. According to a preferred aspect of the present invention, a high-precision and high-quality semiconductor substrate can be manufactured with high yield without affecting electrical characteristics.
  • ⁇ Wafer with Film for Evaluation> For Evaluation of Damage to Alumina A chip piece obtained by cutting a 12-inch film-coated wafer (alumina film thickness of 300 mm) formed with alumina into 1 cm ⁇ 1 cm was used.
  • Examples 1 to 13 and Comparative Examples 1 to 7 In Examples 1 to 13 and Comparative Example 1, the wafer with the alumina film was immersed in the protective liquid described in Table 1 at 50 ° C. for 1 minute, and then immersed in the cleaning liquid at 50 ° C. for 0.5 minute. Water rinsing and dry nitrogen gas jetting were performed. By dividing the difference in film thickness between the wafers with the alumina film before and after the treatment by the immersion time of the cleaning liquid, R. was calculated. In Comparative Examples 2 to 7, the immersion treatment with the protective solution was omitted, and the substrate was immersed in the cleaning solution at 50 ° C. for 0.5 minutes, and then rinsed with ultrapure water and dried by dry nitrogen gas injection. E. R.
  • Reference Examples 1 to 6 the wafer with an alumina film was immersed in a cleaning solution containing the alkaline earth metal compound shown in Table 2 at 50 ° C. for 5 minutes, and then rinsed with ultrapure water and dried by dry nitrogen gas injection. It was. By dividing the film thickness difference between the wafers with the alumina film before and after the treatment by the immersion time of the cleaning solution, R. was calculated. Compared to Reference Examples 3 to 6, in Reference Examples 1 and 2, it was found that corrosion of alumina by the cleaning liquid could be suppressed by adding an inorganic substance containing barium to the cleaning liquid.
  • Alumina 2 Dry etching residue 3: Alumina hard mask 4: Hard mask (other than alumina) 5: Resist 6: Low dielectric constant interlayer insulating film

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Geology (AREA)
  • Plasma & Fusion (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

本発明は、アルミナ保護液、アルミナの保護方法、およびこれを用いたアルミナ層を有する半導体基板の製造方法に関する。本発明のアルミナ保護液は、アルカリ土類金属化合物を0.0001~20質量%を含有し、前記アルカリ土類金属がベリリウム、マグネシウム、ストロンチウム及びバリウムからなる群より選択される1以上であることを特徴とする。本発明により、半導体回路の製造工程において、アルミナの腐食を抑制することが可能となる。

Description

アルミナの保護液、保護方法及びこれを用いたアルミナ層を有する半導体基板の製造方法
 本発明は、半導体集積回路の製造工程においてアルミナの腐食を抑制するための保護液、アルミナの保護方法、及びこれを用いたアルミナ層を有する半導体基板の製造方法に関するものである。
 半導体集積回路の洗浄液による洗浄工程では、ドライエッチング残渣、レジスト、ハードマスクなどの除去が行われる。一般的に、この洗浄工程においては除去対象以外の材質へ腐食を与えないことが求められる。
 近年、デザインルールの微細化に伴い、トランジスタのゲートの構成が酸化シリコンと多結晶シリコンの組み合わせから高誘電率材料と金属の組み合わせに変更されるようになってきた。この高誘電率材料として、アルミナが用いられる場合がある。
 また、ドライエッチングでビアを形成する際、フッ素系のガスが選択されるが、フッ素系のガスへの耐性が高い点からエッチストップ層としてアルミナが選択される場合がある(非特許文献1)。
 さらに、ハードマスクの材質としてアルミナが用いられる場合もある(特許文献1)。
 以上のように、半導体集積回路及びその製造工程では、アルミナが使用されることがあるが、洗浄工程において一般的に使用されるフッ素化合物や酸化剤、アルカリなどを含む洗浄液がアルミナと接液する場合、アルミナを激しく腐食してしまう問題がある。そのため、これらの洗浄液が使用される洗浄工程において、アルミナへの腐食を抑制する方法が強く求められている。
特開2013-534039号公報
16th MME workshop, Goeteborg, Sweden, 2005 "Etch stop materials for release by vapor HF etching"
 本発明の課題は、アルミナの保護液、保護方法、およびこれを用いたアルミナ層を有する半導体基板の製造方法を提供することである。
 本発明者らは鋭意研究を重ねた結果、以下の発明により本課題を解決できることを見出した。本発明は以下の通りである。
[1] アルカリ土類金属化合物を0.0001~20質量%を含有するアルミナ保護液(保護膜形成液)であって、前記アルカリ土類金属がベリリウム、マグネシウム、ストロンチウム及びバリウムからなる群より選択される1以上である、アルミナ保護液。
[2] 前記アルカリ土類金属化合物が、
 硝酸ベリリウム、酢酸ベリリウム、塩化ベリリウム、水酸化ベリリウム、亜硫酸ベリリウム、塩素酸ベリリウム、過塩素酸ベリリウム、過酸化ベリリウム、クロム酸ベリリウム、酸化ベリリウム、シアン化ベリリウム、臭化ベリリウム、炭酸ベリリウム、メタホウ酸ベリリウム、ヨウ化ベリリウム、テトラフルオロホウ酸ベリリウム、硫酸ベリリウム、硫化ベリリウム、及び水酸化ベリリウムと酸を反応させた塩;
 硝酸マグネシウム、酢酸マグネシウム、塩化マグネシウム、水酸化マグネシウム、亜硫酸マグネシウム、塩素酸マグネシウム、過塩素酸マグネシウム、過酸化マグネシウム、クロム酸マグネシウム、酸化マグネシウム、シアン化マグネシウム、臭化マグネシウム、炭酸マグネシウム、メタホウ酸マグネシウム、ヨウ化マグネシウム、テトラフルオロホウ酸マグネシウム、硫酸マグネシウム、硫化マグネシウム、及び水酸化マグネシウムと酸を反応させた塩;
 硝酸ストロンチウム、酢酸ストロンチウム、塩化ストロンチウム、水酸化ストロンチウム、亜硫酸ストロンチウム、塩素酸ストロンチウム、過塩素酸ストロンチウム、過酸化ストロンチウム、クロム酸ストロンチウム、酸化ストロンチウム、シアン化ストロンチウム、臭化ストロンチウム、炭酸ストロンチウム、メタホウ酸ストロンチウム、ヨウ化ストロンチウム、テトラフルオロホウ酸ストロンチウム、硫酸ストロンチウム、硫化ストロンチウム、及び水酸化ストロンチウムと酸を反応させた塩;並びに
 硝酸バリウム、酢酸バリウム、塩化バリウム、水酸化バリウム、亜硫酸バリウム、塩素酸バリウム、過塩素酸バリウム、過酸化バリウム、クロム酸バリウム、酸化バリウム、シアン化バリウム、臭化バリウム、炭酸バリウム、メタホウ酸バリウム、ヨウ化バリウム、テトラフルオロホウ酸バリウム、硫酸バリウム、硫化バリウム、及び水酸化バリウムと酸を反応させた塩
からなる群より選択される1以上である、[1]に記載のアルミナ保護液。
[3] 前記アルカリ土類金属がバリウムである、[1]又は[2]に記載のアルミナ保護液。
[4] 前記アルカリ土類金属化合物が硝酸バリウム、酢酸バリウム、塩化バリウム及び水酸化バリウムからなる群より選択される1以上である、[1]~[3]のいずれか一項に記載のアルミナ保護液。
[5] 前記アルカリ土類金属化合物を1質量%超含有する、[1]~[4]のいずれか一項に記載のアルミナ保護液。
[6] 過酸化水素の含有量が0.002質量%未満である、[1]~[5]のいずれか一項に記載のアルミナ保護液。
[7] [1]~[6]のいずれか一項に記載のアルミナ保護液を用いたアルミナの保護方法。本発明のアルミナの保護方法は、[1]~[6]のいずれか一項に記載のアルミナ保護液を用いてアルミナを含有するアルミナ層の表面の少なくとも一部を処理する工程を含む。
[8] [7]に記載のアルミナの保護方法を用いた基板の製造方法。本発明の基板の製造方法は、アルミナ層を有する半導体基板の製造方法であって、[7]に記載のアルミナの保護方法を用いてアルミナ層に含有されるアルミナを保護する工程を含む。
 本発明の好ましい態様によれば、アルミナ保護液でアルミナ層の表面の少なくとも一部を処理することで、アルミナ層の表面の少なくとも一部に保護膜が形成され、アルミナ層に含有されるアルミナを洗浄液などの薬液等による腐食から保護することができる。
 本発明の好ましい態様によれば、半導体回路の製造工程において、アルミナの腐食を抑制することが可能となり、高精度、高品質の半導体基板を歩留まりよく製造できる。
ビアの底がアルミナの場合における、ドライエッチング残渣除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。 ハードマスクがアルミナの場合における、ドライエッチング残渣除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。 ビアの底がアルミナの場合における、ハードマスク(アルミナ系ハードマスクを除く)除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。 ビアの底がアルミナの場合における、レジスト除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。 ハードマスクがアルミナの場合における、レジスト除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。
 本発明におけるアルミナの保護方法では、アルカリ土類金属化合物を含むアルミナ保護液が使用される。以下、アルミナ保護液、保護方法及びこれを用いたアルミナ層を有する半導体基板の製造方法について詳細に説明する。
[アルミナ保護液]
(アルカリ土類金属化合物)
 本発明で使用されるアルカリ土類金属化合物は、ベリリウム、マグネシウム、ストロンチウム、及びバリウムからなる群より選択される1以上の金属を含有する無機物である。これらはアルミナ層の表面の少なくとも一部に保護膜を形成する効果があり、例えば保護膜形成後の洗浄工程における洗浄液によるアルミナへの腐食を抑制できる。同属のカルシウムは、アルカリへの防食性能が十分ではなく、またラジウムは高価であり、かつ化合物として不安定な場合が多く使用に適さない。
 アルカリ土類金属化合物の具体例としては、
 硝酸ベリリウム、酢酸ベリリウム、塩化ベリリウム、水酸化ベリリウム、亜硫酸ベリリウム、塩素酸ベリリウム、過塩素酸ベリリウム、過酸化ベリリウム、クロム酸ベリリウム、酸化ベリリウム、シアン化ベリリウム、臭化ベリリウム、炭酸ベリリウム、メタホウ酸ベリリウム、ヨウ化ベリリウム、テトラフルオロホウ酸ベリリウム、硫酸ベリリウム、硫化ベリリウム、及び水酸化ベリリウムと酸を反応させた塩;
 硝酸マグネシウム、酢酸マグネシウム、塩化マグネシウム、水酸化マグネシウム、亜硫酸マグネシウム、塩素酸マグネシウム、過塩素酸マグネシウム、過酸化マグネシウム、クロム酸マグネシウム、酸化マグネシウム、シアン化マグネシウム、臭化マグネシウム、炭酸マグネシウム、メタホウ酸マグネシウム、ヨウ化マグネシウム、テトラフルオロホウ酸マグネシウム、硫酸マグネシウム、硫化マグネシウム、及び水酸化マグネシウムと酸を反応させた塩;
 硝酸ストロンチウム、酢酸ストロンチウム、塩化ストロンチウム、水酸化ストロンチウム、亜硫酸ストロンチウム、塩素酸ストロンチウム、過塩素酸ストロンチウム、過酸化ストロンチウム、クロム酸ストロンチウム、酸化ストロンチウム、シアン化ストロンチウム、臭化ストロンチウム、炭酸ストロンチウム、メタホウ酸ストロンチウム、ヨウ化ストロンチウム、テトラフルオロホウ酸ストロンチウム、硫酸ストロンチウム、硫化ストロンチウム、及び水酸化ストロンチウムと酸を反応させた塩;
 硝酸バリウム、酢酸バリウム、塩化バリウム、水酸化バリウム、亜硫酸バリウム、塩素酸バリウム、過塩素酸バリウム、過酸化バリウム、クロム酸バリウム、酸化バリウム、シアン化バリウム、臭化バリウム、炭酸バリウム、メタホウ酸バリウム、ヨウ化バリウム、テトラフルオロホウ酸バリウム、硫酸バリウム、硫化バリウム、及び水酸化バリウムと酸を反応させた塩が挙げられ、これらは単独または2種類以上を組み合わせて使用できる。
 これらの中でバリウム化合物、すなわち、硝酸バリウム、酢酸バリウム、塩化バリウム、水酸化バリウム、亜硫酸バリウム、塩素酸バリウム、過塩素酸バリウム、過酸化バリウム、クロム酸バリウム、酸化バリウム、シアン化バリウム、臭化バリウム、炭酸バリウム、メタホウ酸バリウム、ヨウ化バリウム、テトラフルオロホウ酸バリウム、硫酸バリウム、硫化バリウム、及び水酸化バリウムと酸を反応させた塩が、アルミナの腐食抑制効果が高いため、好ましい。さらに、硝酸バリウム、酢酸バリウム、塩化バリウム及び水酸化バリウムが高い水溶性があり、入手が容易なため特に好ましい。
 本発明のアルミナ保護液中のアルカリ土類金属化合物の濃度(含有量)は0.0001~20質量%、好ましくは0.00025~17.5質量%、さらに好ましくは0.0005~15質量%、特に好ましくは0.001~10質量%、なお好ましくは1質量%超、さらになお好ましくは1.5~10質量%である。この範囲にあることでアルミナ表面の少なくとも一部に保護膜を形成でき、アルミナへのダメージを効果的に抑制できる。
(その他の成分)
 本発明のアルミナ保護液には、所望により本発明の目的を損なわない範囲で従来から半導体用組成物に使用されている成分を配合してもよい。
 例えば、添加剤として、アルカリ、酸、キレート剤、界面活性剤、消泡剤、酸化剤、還元剤、金属防食剤及び水溶性有機溶剤などを添加することができる。
(水)
 本発明のアルミナ保護液の残部は水である。本発明に使用できる水としては、特に限定されないが、蒸留、イオン交換処理、フイルター処理、各種吸着処理などによって、金属イオンや有機不純物、パーテイクルなどが除去されたものが好ましく、純水がより好ましく、超純水が特に好ましい。
 アルミナ保護液中の水の濃度(含有量)は、70~100質量%が好ましく、より好ましくは90~100質量%、さらに好ましくは95~100質量%、特に好ましくは98~100質量%である。
(アルミナ保護液の調製方法)
 本発明のアルミナ保護液は、アルカリ土類金属化合物及び必要に応じてその他の成分に水(好ましくは超純水)を加えて均一になるまで攪拌することで調製される。
 なお、本発明のアルミナ保護液は、過酸化水素を実質的に含まないことが好ましく、過酸化水素のアルミナ保護液中の濃度(含有量)は0.002質量%未満とすることがより好ましい。
(アルミナ保護液の使用方法)
 本発明のアルミナ保護液を使用する温度は通常20~70℃、好ましくは30~60℃、特に好ましくは40~55℃である。アルミナ保護液の使用条件は、使用される半導体基板により適宜選択すればよい。
 本発明のアルミナ保護液を使用する時間は通常0.2~60分である。アルミナ保護液の使用条件は、使用される半導体基板により適宜選択すればよい。
 このような条件でアルミナ保護液を使用することで、半導体基板が有するアルミナ層の表面の少なくとも一部に好適に保護膜を形成し、アルミナ層に含有されるアルミナを保護することができる。なお、本発明において保護膜の厚みは特に制限されない。本発明の好ましい態様によれば、アルミナ層の表面の少なくとも一部を本発明のアルミナ保護液で処理することでアルミナ層に含有されるアルミナを洗浄液などの薬液等による腐食から保護することができる。
(洗浄液への添加)
 本発明で使用されるアルミナ保護液は、半導体基板の洗浄工程で使用される洗浄液に添加することもでき、アルミナを保護しつつ洗浄を行うことも出来る。このような場合は、アルカリ土類金属化合物としてバリウムを含有する無機物が含有されていることが好ましく、好適に半導体基板の洗浄を実施でき、洗浄液によるアルミナへの腐食を抑制できる。
[半導体基板]
 本発明が好適に使用できる半導体基板としては、
 シリコン、非晶質シリコン、ポリシリコン、ガラスなどの基板材料;
 酸化シリコン、窒化シリコン、炭化シリコン及びこれらの誘導体などの絶縁材料;
 コバルト、コバルト合金、タングステン、チタン-タングステンなどの材料;
 ガリウム-砒素、ガリウム-リン、インジウム-リン、インジウム-ガリウム-砒素、インジウム-アルミニウム-砒素などの化合物半導体及びクロム酸化物などの酸化物半導体、特に低誘電率層間絶縁膜を使用している基板であり、いずれの材料を有する半導体基板も、アルミナを含有するアルミナ層を有する。具体的には、例えば、エッチストップ層及びハードマスクなどとしてアルミナ層を有する。
 アルミナ層におけるアルミナの含有量は、好ましくは30質量%以上、より好ましくは50質量%以上、さらに好ましくは70質量%以上、さらにより好ましくは90質量%以上、特に好ましくは100質量%である。
[アルミナの保護方法]
 本発明のアルミナの保護方法は、本発明のアルミナ保護液でアルミナ層の表面の少なくとも一部を処理する工程を含む。例えば、本発明のアルミナ保護液をアルミナ層の表面の少なくとも一部と接触させることで処理する。
 本発明のアルミナ保護液の使用温度及び使用時間は、前記「アルミナ保護液の使用方法」で述べたとおりである。アルミナ層の表面に本発明のアルミナ保護液を接触させる方法は特に制限されなく、例えば滴下(枚葉スピン処理)またはスプレーなどの形式によりアルミナ層の表面に本発明のアルミナ保護液を接触させる方法、またはアルミナ層の表面を本発明のアルミナ保護液に浸漬させる方法などを採用することができる。本発明においては、いずれの方法を採用してもよい。
 本発明のアルミナの保護方法を用いることにより、アルミナ層に含有されるアルミナを洗浄液などの薬液等による腐食から保護することができ、アルミナの腐食を抑制することができる。
[アルミナ層を有する半導体基板の製造方法]
 本発明の半導体基板の製造方法は、本発明のアルミナの保護方法を用いて半導体基板が有するアルミナ層に含有されるアルミナを保護する工程を含む。これによりアルミナ層に含有されるアルミナを洗浄液などの薬液等による腐食から保護することができ、アルミナの腐食を抑制し、電気特性に影響を与えることなく、半導体基板を製造することができる。
 本発明の組成物の使用温度及び使用時間は、前記「アルミナ保護液の使用方法」で述べたとおりである。半導体基板が有するアルミナ層の表面に本発明の組成物を接触させる方法についても、前記「アルミナの保護方法」で述べたとおりである。
 図1から5は、アルミナ層を有する半導体基板の断面構造の一例を示したものである。
 図1は、ビアの底がアルミナの場合における、ドライエッチング残渣除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。図1では、ドライエッチングにより低誘電率層間絶縁膜6にビアが形成されており、ビアの底はアルミナ1である。ビア及び低誘電率層間絶縁膜6の表面にドライエッチング残渣2が付着している。
 図2は、ハードマスクがアルミナの場合における、ドライエッチング残渣除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。図2では、低誘電率層間絶縁膜6上にアルミナ系ハードマスク3が積層されており、これにドライエッチングによりビアが形成されている。ビア及びアルミナ系ハードマスク3の表面にドライエッチング残渣2が付着している。
 図3は、ビアの底がアルミナの場合における、ハードマスク(アルミナ系ハードマスクを除く)除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。図3では、低誘電率層間絶縁膜6上にハードマスク(アルミナ系ハードマスクを除く)4が積層されており、これにビアが形成されている。ビアの底はアルミナ1である。
 図4は、ビアの底がアルミナの場合における、レジスト除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。図4では、低誘電率層間絶縁膜6上にレジスト5が積層されており、これにビアが形成されている。ビアの底はアルミナ1である。
 図5は、ハードマスクがアルミナの場合における、レジスト除去前の半導体基板における、低誘電率層間絶縁膜を有する半導体基板の一形態における断面図の模式図である。図5では、低誘電率層間絶縁膜6上に、アルミナ系ハードマスク3及びレジスト5がこの順に積層されており、これにビアが形成されている。ビアの底は低誘電率層間絶縁膜6である。
 本発明の半導体基板の製造方法では、このような半導体基板が有するアルミナ層が表面に露出した様々な段階で、本発明のアルミナ保護液を使用してアルミナ層の表面を保護することにより、その後の工程においてアルミナ層に含有されるアルミナを洗浄液などの薬液等による腐食から保護することができ、アルミナの腐食を抑制することができる。本発明の好ましい態様によれば、電気特性に影響を与えることなく、高精度、高品質の半導体基板を歩留まりよく製造できる。
 以下、実施例及び比較例により本発明を具体的に説明するが、本発明の効果を奏する限りにおいて実施形態を適宜変更することができる。
 尚、特に指定しない限り%は質量%を意味する。
<評価用膜付きウェハ>:アルミナへのダメージ評価用
 アルミナが製膜された12インチの膜付きウェハ(アルミナの膜厚300Å)を、1cm×1cmにカットしたチップ片を用いた。
[評価方法]
<E.R.(エッチングレート)>
 アルミナ膜付きウェハを保護液による処理、及び洗浄液による処理を50℃で実施し、一連の処理の前後の膜厚差を洗浄液による処理時間で除することでE.R.を算出した。アルミナ膜付きウェハの膜厚は、n&kテクノロジー社製光学式膜厚計n&k1280を用いて測定した。
[実施例1~13及び比較例1~7]
 実施例1~13と比較例1では、表1に記した保護液にアルミナ膜付きウェハを50℃で1分間浸漬し、次いで、洗浄液に50℃で0.5分浸漬し、その後、超純水によるリンス、乾燥窒素ガス噴射による乾燥を行った。
 処理前後のアルミナ膜付きウェハの膜厚差を洗浄液の浸漬時間で除することで、E.R.を算出した。
 比較例2~7では、保護液による浸漬処理を省き、洗浄液に50℃で0.5分浸漬し、その後、超純水によるリンス、乾燥窒素ガス噴射による乾燥を行った。E.R.は上記と同様に算出した。
 比較例2~7と比較して、実施例1~13では、保護液による浸漬処理を加えたことで、洗浄液によるアルミナへの腐食を抑制できていることがわかる。
 比較例1では、カルシウムを含有する無機物を含む水溶液による浸漬を行っても、その後の洗浄液でアルミナへの腐食を抑制できていないことがわかる。
Figure JPOXMLDOC01-appb-T000001
[参考例1~6]
 参考例1~6では、表2に記したアルカリ土類金属化合物を含む洗浄液にアルミナ膜付きウェハを50℃で5分浸漬し、その後、超純水によるリンス、乾燥窒素ガス噴射による乾燥を行った。処理前後のアルミナ膜付きウェハの膜厚差を洗浄液の浸漬時間で除することでE.R.を算出した。参考例3~6と比較して、参考例1~2では、バリウムを含有する無機物を洗浄液に添加することで、洗浄液によるアルミナへの腐食を抑制できていることがわかる。
Figure JPOXMLDOC01-appb-T000002
1:アルミナ
2:ドライエッチング残渣
3:アルミナ系ハードマスク
4:ハードマスク(アルミナ系以外)
5:レジスト
6:低誘電率層間絶縁膜
 

Claims (8)

  1.  アルカリ土類金属化合物を0.0001~20質量%含有するアルミナ保護液であって、前記アルカリ土類金属がベリリウム、マグネシウム、ストロンチウム及びバリウムからなる群より選択される1以上である、アルミナ保護液。
  2.  前記アルカリ土類金属化合物が、
     硝酸ベリリウム、酢酸ベリリウム、塩化ベリリウム、水酸化ベリリウム、亜硫酸ベリリウム、塩素酸ベリリウム、過塩素酸ベリリウム、過酸化ベリリウム、クロム酸ベリリウム、酸化ベリリウム、シアン化ベリリウム、臭化ベリリウム、炭酸ベリリウム、メタホウ酸ベリリウム、ヨウ化ベリリウム、テトラフルオロホウ酸ベリリウム、硫酸ベリリウム、硫化ベリリウム、及び水酸化ベリリウムと酸を反応させた塩;
     硝酸マグネシウム、酢酸マグネシウム、塩化マグネシウム、水酸化マグネシウム、亜硫酸マグネシウム、塩素酸マグネシウム、過塩素酸マグネシウム、過酸化マグネシウム、クロム酸マグネシウム、酸化マグネシウム、シアン化マグネシウム、臭化マグネシウム、炭酸マグネシウム、メタホウ酸マグネシウム、ヨウ化マグネシウム、テトラフルオロホウ酸マグネシウム、硫酸マグネシウム、硫化マグネシウム、及び水酸化マグネシウムと酸を反応させた塩;
     硝酸ストロンチウム、酢酸ストロンチウム、塩化ストロンチウム、水酸化ストロンチウム、亜硫酸ストロンチウム、塩素酸ストロンチウム、過塩素酸ストロンチウム、過酸化ストロンチウム、クロム酸ストロンチウム、酸化ストロンチウム、シアン化ストロンチウム、臭化ストロンチウム、炭酸ストロンチウム、メタホウ酸ストロンチウム、ヨウ化ストロンチウム、テトラフルオロホウ酸ストロンチウム、硫酸ストロンチウム、硫化ストロンチウム、及び水酸化ストロンチウムと酸を反応させた塩;並びに
     硝酸バリウム、酢酸バリウム、塩化バリウム、水酸化バリウム、亜硫酸バリウム、塩素酸バリウム、過塩素酸バリウム、過酸化バリウム、クロム酸バリウム、酸化バリウム、シアン化バリウム、臭化バリウム、炭酸バリウム、メタホウ酸バリウム、ヨウ化バリウム、テトラフルオロホウ酸バリウム、硫酸バリウム、硫化バリウム、及び水酸化バリウムと酸を反応させた塩
    からなる群より選択される1以上である、請求項1に記載のアルミナ保護液。
  3.  前記アルカリ土類金属がバリウムである、請求項1又は2に記載のアルミナ保護液。
  4.  前記アルカリ土類金属化合物が硝酸バリウム、酢酸バリウム、塩化バリウム及び水酸化バリウムからなる群より選択される1以上である、請求項1~3のいずれか一項に記載のアルミナ保護液。
  5.  前記アルカリ土類金属化合物を1質量%超含有する、請求項1~4のいずれか一項に記載のアルミナ保護液。
  6.  過酸化水素の含有量が0.002質量%未満である、請求項1~5のいずれか一項に記載のアルミナ保護液。
  7.  請求項1~6のいずれか一項に記載のアルミナ保護液を用いてアルミナを含有するアルミナ層の表面の少なくとも一部を処理する工程を含む、アルミナの保護方法。
  8.  請求項7に記載のアルミナの保護方法を用いてアルミナ層に含有されるアルミナを保護する工程を含む、アルミナ層を有する半導体基板の製造方法。
     
     
     

     
PCT/JP2019/007409 2018-03-02 2019-02-27 アルミナの保護液、保護方法及びこれを用いたアルミナ層を有する半導体基板の製造方法 WO2019167971A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
IL277046A IL277046B1 (en) 2018-03-02 2019-02-27 A preparation for the protection of aluminum and its uses
US16/976,565 US20210002551A1 (en) 2018-03-02 2019-02-27 Protective fluid for alumina, protection method, and production method for semiconductor substrate having alumina layer using same
EP21200791.8A EP3975223A1 (en) 2018-03-02 2019-02-27 Protective fluid for alumina
JP2020503539A JP7180667B2 (ja) 2018-03-02 2019-02-27 アルミナの保護液、保護方法及びこれを用いたアルミナ層を有する半導体基板の製造方法
CN201980012078.6A CN111699547A (zh) 2018-03-02 2019-02-27 氧化铝的保护液、保护方法和使用了其的具有氧化铝层的半导体基板的制造方法
KR1020207019594A KR20200125582A (ko) 2018-03-02 2019-02-27 알루미나의 보호액, 보호방법 및 이것을 이용한 알루미나층을 가지는 반도체 기판의 제조방법
EP19759900.4A EP3761346A4 (en) 2018-03-02 2019-02-27 ALUMINA PROTECTIVE LIQUID, ALUMINA PROTECTION PROCESS AND PROCESS FOR MANUFACTURING A SEMICONDUCTOR SUBSTRATE HAVING AN ALUMINA LAYER IMPLEMENTING THIS ALUMINA PROTECTION PROCESS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018037144 2018-03-02
JP2018-037144 2018-03-02

Publications (1)

Publication Number Publication Date
WO2019167971A1 true WO2019167971A1 (ja) 2019-09-06

Family

ID=67806207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/007409 WO2019167971A1 (ja) 2018-03-02 2019-02-27 アルミナの保護液、保護方法及びこれを用いたアルミナ層を有する半導体基板の製造方法

Country Status (8)

Country Link
US (1) US20210002551A1 (ja)
EP (2) EP3975223A1 (ja)
JP (1) JP7180667B2 (ja)
KR (1) KR20200125582A (ja)
CN (1) CN111699547A (ja)
IL (1) IL277046B1 (ja)
TW (1) TW201938480A (ja)
WO (1) WO2019167971A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384110B1 (ko) 2021-07-23 2022-04-08 주식회사 코닉스 반도체 및 디스플레이 에칭 공정용 저유전손실 소재 및 그 제조 장치
CN117712036B (zh) * 2024-02-06 2024-04-16 中国科学院长春光学精密机械与物理研究所 一种硅通孔的形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181048A (ja) * 1994-08-15 1996-07-12 Applied Materials Inc 半導体プロセス装置用の耐腐食性アルミニウム物品
JP2000284487A (ja) * 1999-03-31 2000-10-13 Mitsubishi Paper Mills Ltd 平版印刷版の製版方法
JP2003195517A (ja) * 2001-12-14 2003-07-09 Shipley Co Llc フォトレジスト用現像液
JP2013534039A (ja) 2010-03-29 2013-08-29 シレクス オサケユキチュア アルミナベースのエッチング耐性コーティング
JP2014090156A (ja) * 2012-10-04 2014-05-15 Fujifilm Corp 成膜用有機材料及びそれを用いて得られた有機光電変換素子、撮像素子、成膜方法、有機光電変換素子の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4902664A (en) * 1987-08-13 1990-02-20 Engelhard Corporation Thermally stabilized catalysts containing alumina and methods of making the same
JP4123644B2 (ja) * 1999-06-22 2008-07-23 トヨタ自動車株式会社 排ガス浄化触媒
KR100830090B1 (ko) * 2003-07-17 2008-05-19 로제 가부시키가이샤 저유전율막 및 그 제조방법, 그리고 그것을 사용한전자부품
CN102309458B (zh) * 2010-07-09 2016-02-03 北京圣医耀科技发展有限责任公司 海藻酸钠交联莫西沙星缓释微球、其制备方法和用途以及含有所述微球的血管靶向栓塞剂
GB201012236D0 (en) * 2010-07-21 2010-09-08 Qinetiq Ltd Method of fabrication of semiconductor device
US9269580B2 (en) * 2011-06-27 2016-02-23 Cree, Inc. Semiconductor device with increased channel mobility and dry chemistry processes for fabrication thereof
KR101433857B1 (ko) * 2013-07-05 2014-08-26 연세대학교 산학협력단 과산화수소를 이용한 산화물 박막 형성 방법 및 산화물 박막 트랜지스터 제조 방법
EP3220409B1 (en) * 2014-11-13 2020-08-05 Mitsubishi Gas Chemical Company, Inc. Semiconductor element cleaning solution that suppresses damage to cobalt, and method for cleaning semiconductor element using same
KR102405631B1 (ko) * 2014-11-13 2022-06-07 미쯔비시 가스 케미칼 컴파니, 인코포레이티드 탄탈을 포함하는 재료의 데미지를 억제한 반도체소자의 세정액, 및 이를 이용한 세정방법
US10818705B2 (en) * 2016-03-18 2020-10-27 Ricoh Company, Ltd. Method for manufacturing a field effect transistor, method for manufacturing a volatile semiconductor memory element, method for manufacturing a non-volatile semiconductor memory element, method for manufacturing a display element, method for manufacturing an image display device, and method for manufacturing a system
JP6922923B2 (ja) * 2016-09-30 2021-08-18 日本ゼオン株式会社 積層体の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08181048A (ja) * 1994-08-15 1996-07-12 Applied Materials Inc 半導体プロセス装置用の耐腐食性アルミニウム物品
JP2000284487A (ja) * 1999-03-31 2000-10-13 Mitsubishi Paper Mills Ltd 平版印刷版の製版方法
JP2003195517A (ja) * 2001-12-14 2003-07-09 Shipley Co Llc フォトレジスト用現像液
JP2013534039A (ja) 2010-03-29 2013-08-29 シレクス オサケユキチュア アルミナベースのエッチング耐性コーティング
JP2014090156A (ja) * 2012-10-04 2014-05-15 Fujifilm Corp 成膜用有機材料及びそれを用いて得られた有機光電変換素子、撮像素子、成膜方法、有機光電変換素子の製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Etch stop materials for release by vapor HF etching", 16TH MME WORKSHOP, GOETEBORG, SWEDEN, 2005
See also references of EP3761346A4

Also Published As

Publication number Publication date
IL277046B1 (en) 2024-05-01
KR20200125582A (ko) 2020-11-04
IL277046A (en) 2020-10-29
JP7180667B2 (ja) 2022-11-30
EP3761346A4 (en) 2021-04-21
TW201938480A (zh) 2019-10-01
CN111699547A (zh) 2020-09-22
US20210002551A1 (en) 2021-01-07
EP3761346A1 (en) 2021-01-06
EP3975223A1 (en) 2022-03-30
JPWO2019167971A1 (ja) 2021-03-04

Similar Documents

Publication Publication Date Title
JP6866428B2 (ja) TiNハードマスク除去及びエッチング残渣クリーニング用組成物
EP1381663B1 (en) Cleaning compositions
KR102398801B1 (ko) 코발트의 데미지를 억제한 반도체 소자의 세정액, 및 이것을 이용한 반도체 소자의 세정방법
EP2922086B1 (en) Composition, system, and process for TiNxOy removal
KR102405637B1 (ko) 텅스텐을 포함하는 재료의 데미지를 억제한 반도체 소자의 세정액, 및 이것을 이용한 반도체 소자의 세정방법
CN106601598B (zh) 半导体元件的清洗用液体组合物、半导体元件的清洗方法及半导体元件的制造方法
JP5886946B2 (ja) 銅、タングステンおよび多孔質低κ誘電体に対する増強された相溶性を有する半水溶性ポリマー除去組成物
KR102405631B1 (ko) 탄탈을 포함하는 재료의 데미지를 억제한 반도체소자의 세정액, 및 이를 이용한 세정방법
JP2023171815A (ja) 水性組成物及びこれを用いた洗浄方法
JP7180667B2 (ja) アルミナの保護液、保護方法及びこれを用いたアルミナ層を有する半導体基板の製造方法
JP7294315B2 (ja) アルミナのダメージを抑制した組成物及びこれを用いた半導体基板の製造方法
JP6733475B2 (ja) 半導体素子の洗浄用液体組成物および半導体素子の洗浄方法、並びに半導体素子の製造方法
JP2023171814A (ja) 水性組成物及びこれを用いた洗浄方法
WO2022071069A1 (ja) 半導体基板洗浄用組成物及び洗浄方法
TW202146638A (zh) 化學清洗液及其使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19759900

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503539

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 277046

Country of ref document: IL

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2019759900

Country of ref document: EP