WO2019167165A1 - イオンミリング装置及びイオンミリング装置のイオン源調整方法 - Google Patents
イオンミリング装置及びイオンミリング装置のイオン源調整方法 Download PDFInfo
- Publication number
- WO2019167165A1 WO2019167165A1 PCT/JP2018/007477 JP2018007477W WO2019167165A1 WO 2019167165 A1 WO2019167165 A1 WO 2019167165A1 JP 2018007477 W JP2018007477 W JP 2018007477W WO 2019167165 A1 WO2019167165 A1 WO 2019167165A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion
- ion source
- ion beam
- sample
- source
- Prior art date
Links
- 238000000992 sputter etching Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims description 20
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 106
- 230000007246 mechanism Effects 0.000 claims abstract description 39
- 230000001678 irradiating effect Effects 0.000 claims abstract description 9
- 239000004020 conductor Substances 0.000 claims description 51
- 238000012545 processing Methods 0.000 claims description 32
- 230000001133 acceleration Effects 0.000 claims description 7
- 230000008569 process Effects 0.000 claims description 4
- 230000004044 response Effects 0.000 claims description 2
- 238000003754 machining Methods 0.000 abstract description 5
- 150000002500 ions Chemical class 0.000 description 101
- 239000000758 substrate Substances 0.000 description 7
- 230000007423 decrease Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 238000001514 detection method Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000009826 distribution Methods 0.000 description 4
- 239000011810 insulating material Substances 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000003760 hair shine Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/08—Ion sources; Ion guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/023—Means for mechanically adjusting components not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
- H01J37/1472—Deflecting along given lines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/21—Means for adjusting the focus
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/24—Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
- H01J37/243—Beam current control or regulation circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/244—Detectors; Associated components or circuits therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/304—Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
- H01J37/3045—Object or beam position registration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/305—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/31—Electron-beam or ion-beam tubes for localised treatment of objects for cutting or drilling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/15—Means for deflecting or directing discharge
- H01J2237/1502—Mechanical adjustments
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/20—Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
- H01J2237/202—Movement
- H01J2237/20214—Rotation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/245—Detection characterised by the variable being measured
- H01J2237/24564—Measurements of electric or magnetic variables, e.g. voltage, current, frequency
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/30—Electron or ion beam tubes for processing objects
- H01J2237/304—Controlling tubes
- H01J2237/30472—Controlling the beam
Definitions
- the present invention relates to an ion milling apparatus and an ion source adjusting method for the ion milling apparatus.
- the ion milling apparatus irradiates the surface or cross section of a sample (for example, metal, semiconductor, glass, ceramic, etc.) with an unfocused argon ion beam accelerated to, for example, several kV, and causes no stress on the surface of the sample by sputtering. Atoms can be blown off to smooth the sample surface.
- a sample for example, metal, semiconductor, glass, ceramic, etc.
- an ion beam irradiation unit for generating an ion beam is attached to a vacuum vessel.
- the ion beam irradiation unit is removed from the vacuum vessel and reattached after maintenance.
- an installation error occurs in the ion beam irradiation unit, and the irradiation direction of the ion beam irradiated from the ion beam irradiation unit May change from the previous ones.
- Patent Document 1 discloses an ion beam irradiation apparatus in which a sample (here, a substrate) is held by a substrate holder, reciprocated across an ion beam irradiation region, and an ion beam irradiation unit irradiates the substrate with the ion beam. Disclose. In response to the above-described problems, an ion beam measurement mechanism for measuring the beam current density distribution of the irradiated ion beam is provided on the vacuum vessel wall surface facing the ion beam irradiation unit.
- a focused ion beam (FIB) apparatus is used to form an inclined surface for exposing a cross section of a three-dimensional structure pattern on a sample surface.
- the focused ion beam apparatus has a low processing speed and a narrow processing range, it takes time to form a target inclined surface on the sample surface. For this reason, the inventors examined the formation of an inclined surface by an ion milling apparatus using a non-focused ion beam having a high processing speed.
- the processing speed is determined by the intensity of the ion beam irradiated on the sample, specifically, the speed and number of ions applied at an accelerating voltage, and ion irradiation. Depends on the angle.
- the intensity of the ion beam emitted from the ion source is ideally the highest at the center of the ion beam and has a binomial distribution shape in which the intensity gradually decreases toward the periphery.
- the ion beam emitted from the ion source is affected by the contamination of the electrode components that make up the ion source, fluctuations in the number of ions generated due to consumption of the electrode components, and external disturbances such as the electric field in the environment. It is difficult to keep the intensity of the irradiated ion beam constant.
- the ion milling device uses the ion beam center as the axis. By irradiating an ion beam while rotating the sample, it is possible to suppress the formation of irregularities and obtain a smooth processed surface suitable for observation and measurement with an electron microscope.
- FIG. 2A shows a main part of the ion milling apparatus.
- the ion beam from the ion source 21 irradiates the sample 20 placed on the sample placement surface of the sample stage 22 in a state of spreading radially around the ion beam center B 0 .
- the rotation center R 0 and the ion beam center B 0 coincide with each other.
- the rotation center R 0 and the ion beam center B 0 are ⁇ as shown in FIG. It may be in a state that is shifted by only.
- the processing depth formed on the surface of the sample 20 is shown in FIG. 2B.
- the processing depth is deepest at the ion beam center B 0 where the ion beam intensity is highest, which is a position shifted ⁇ from the rotation center R 0 , and the processing depth decreases as the distance from the ion beam center B 0 increases.
- the processing depth when the rotation center R 0 and the ion beam center B 0 coincide with each other is shown as a waveform 26.
- the shape of the machined surface is gentler than the originally intended machined surface, and in an extreme case, the machined surface is wavy as shown by the waveform 25 in FIG. 2B.
- the machined surface is wavy as shown by the waveform 25 in FIG. 2B.
- the ion beam is irradiated so that the ion beam center B 0 is perpendicular to the surface of the sample 20 (or the sample mounting surface of the sample stage 22). It is also possible to incline in the direction so that the surface of the sample 20 is irradiated with the ion beam at a low incident angle. Thereby, it is possible to obtain a wide processing surface.
- the ion beam diameter increases as the distance from the ion source outlet becomes longer, and the current / ion density decreases. For this reason, when the ion beam measurement position is away from the actual sample processing position as in Patent Document 1, the voltage applied to the ion source for measuring the ion beam is set to be higher than the conditions for performing actual processing. It may be possible to measure it higher. However, if the ion beam emission conditions are changed, the energy of the ion beam changes, so the milling speed changes, the ion density distribution also changes, and the magnitude of the influence of the disturbance also changes. Therefore, the adjustment is desirably performed under the same conditions as the injection conditions during actual processing.
- an operator of the ion milling apparatus attaches a processing target such as a copper foil on the sample stage, and then performs ions under actual processing conditions.
- the position of the ion source is adjusted so that the beam mark is left on the copper foil by irradiating the beam, and the beam mark and the rotation center R 0 coincide with each other.
- there are limits to the accuracy of visual or microscopic adjustment using such beam marks and it is often necessary to align the ion source by repeatedly desorbing the ion source. Due to the lack of nature, the operator's adjustment burden was heavy.
- the present invention provides an ion milling apparatus and an ion source adjustment method capable of easily and accurately adjusting the ion beam center and the sample rotation center after desorption of the ion source.
- An ion milling apparatus is an ion milling apparatus that processes a sample by irradiating the sample with an unfocused ion beam, the sample chamber, and an ion source installed in the sample chamber A position adjustment mechanism, an ion source that is attached to the sample chamber via the ion source position adjustment mechanism, emits an ion beam, and a sample stage that rotates about the rotation center, and rotates with the ion beam center of the ion beam.
- the ion source position adjusting mechanism can detect the position of the ion source on the XY plane and the Z direction. The position can be adjusted.
- the processing accuracy of the ion milling device or the reproducibility of the machined surface shape can be increased.
- the maintenance time of the ion milling device can be shortened.
- FIG. It is a principal part block diagram of the ion milling apparatus of Example 1.
- FIG. It is a figure explaining the subject of this invention. It is a figure explaining the subject of this invention. It is a figure which shows the structural example of a sample stage. It is a block diagram concerning position adjustment of an ion source.
- 3 is a flowchart for adjusting the position of the ion source according to the first embodiment. It is an example of the shape of the conductor in a target board. It is another example of the shape of the conductor in a target board.
- FIG. It is a position adjustment flow of the ion source of Example 2.
- FIG. 1 is a main part configuration diagram of an ion milling apparatus according to a first embodiment.
- a sample chamber 6 capable of maintaining a vacuum state, an ion source 1, a sample stage 2 on which a sample (not shown) is placed at the time of processing, a sample stage rotation drive source for rotating the sample stage 2 in the R direction around the rotation center R0 3.
- the sample stage 2 may have an inclination mechanism for changing the incident angle of the ion beam.
- the sample chamber 6 is provided with an observation window 7 for observing a sample to be processed.
- the ion source 1 is attached to the sample chamber 6 via an ion source position adjusting mechanism 5 that finely adjusts the position in the X, Y, and Z directions.
- the position of the ion beam center B 0 of the ion source 1 specifically the position on the XY plane (the plane including the X direction and the Y direction) and the operating distance (position in the Z direction, specifically the ion source 1
- the distance from the ion beam emission position to the sample stage 2 can be finely adjusted.
- the sample mounting plate of the sample stage 2 can be replaced.
- a conductive material for detecting the ion beam current is used instead of the sample mounting plate.
- a target plate is installed in a range where the material 4 includes the rotation center R 0 .
- FIG. 1 shows this state.
- the ion source position adjustment mechanism 5 is a support unit for fixing the ion source 1, a substrate on which the ion source position adjustment mechanism 5 is installed in the sample chamber 6, and the support unit provided on the substrate is independent in the X, Y, and Z directions. And an ion source moving mechanism that is movable.
- the ion source moving mechanism for example, the position of the ion source 1 can be finely adjusted in each direction by using a precise screw mechanism used in a micrometer.
- the ion beam When a predetermined voltage is applied to the ion source 1, the ion beam is emitted radially from the ion source 1 around the ion beam center B 0 and is conducted within a range including the rotation center R 0 installed on the sample stage 2.
- the target plate provided with the material 4 is irradiated.
- the ion beam emitted from the ion source 1 has a high current / ion density at the ion beam center B 0 and gradually decreases toward the outside. Moreover, the current / ion density decreases as the distance from the ion source 1 increases.
- FIG. 3 shows a configuration example of the sample stage 2.
- the state which installed the target board 30 which has the electrically conductive material 4 is shown.
- the target plate 30 is installed such that the conductive material 4 is connected to the conductive material connection plate 31.
- the center of the conductive material 4 is set to a position that coincides with the rotation center R 0 indicated by a one-dot chain line.
- the ion beam from the ion source is applied to a region centered on the conductive material 4. However, since the ion beam is emitted radially from the ion source 1, depending on the distance between the ion source 1 and the conductive material 4. In addition to the conductive material 4, there is a possibility that the ion beam is irradiated.
- the target plate 30 around the conductive material 4 is made of an insulating material in order to prevent a current due to the ion beam being irradiated to other components of the sample stage from flowing into the conductive material 4.
- the conductive material connecting plate 31 is connected to a rotating shaft 33 that rotates the sample, and rotates the conductive material 4 by the power of the rotating gear 34 that is driven by the sample stage rotation drive source 3.
- an insulating material 32 is provided between the conductive material connecting plate 31 and the rotating shaft 33 to block the current flow.
- the current received by the conductive material 4 is drawn out by the rotating contact 35 and the beam current detection wiring 36 that are in contact with the conductive material connection plate 31, and the current value is detected.
- the rotary contact 35 and the beam current detection wiring 36 are insulated from other components by a beam current detection wiring connector 37.
- FIG. 4 is a block diagram relating to the position adjustment of the ion source 1 in the ion milling apparatus according to the first embodiment.
- a cylindrical anode electrode 12 is disposed between the cathode electrodes 11a and 11b, and a discharge voltage Vd is applied between the cathode electrodes 11a and 11b and the anode electrode 12.
- Ions are generated in the anode electrode 12 by introducing argon gas into the ion source 1 from the pipe 15 and applying a magnetic field to the anode electrode 12 by the magnet 13.
- the generated ions are accelerated by accelerating electrodes 14 accelerating voltage V a is applied, it is released from the ion source 1 as an ion beam.
- Discharge voltage V d and the acceleration voltage V a is generated by the power supply unit 40.
- the power supply unit 40 has a ammeter, measures the current meter 41 is the discharge current V d, the ammeter 42 measures the ion beam current received by conductive material 4. Note that the values of the discharge voltage V d and the acceleration voltage V a are set by the control unit 45.
- the ion source 1 is fixed to the support portion 16 of the ion source position adjusting mechanism 5, and the position of the ion source 1 is determined by an ion source moving mechanism 17 that can move the support portion 16 independently in the X direction, the Y direction, and the Z direction. Can be fine-tuned.
- the power supply unit 40, the ion source moving mechanism 17 and the sample stage rotation drive source 3 are connected to the control unit 45, and the ion beam ejection conditions are set from the control unit 45, and the ion source is adjusted and adjusted according to a predetermined flow. Perform sample processing.
- the control unit 45 is connected to the display unit 46, functions as a user interface from the operator to the control unit 45, and displays sensing data indicating the operation state of the ion milling apparatus collected by the control unit 45.
- the sensing data displayed on the display unit 46 includes a discharge voltage value V d from the power supply unit 40, a discharge current value, an acceleration voltage value V a , an ion beam current value, and the like.
- FIG. 5 shows an adjustment flow of the ion source 1 executed by the control unit 45 in the ion milling apparatus shown in FIG.
- Step S51 The controller 45 starts the rotation of the sample stage 2 by the sample stage rotation drive source 3.
- the sample stage 2 is installed so that the surface of the conductive material 4 is perpendicular to the ion beam emitted from the ion source 1.
- Step S52 The control unit 45 controls the power supply unit and the like, and irradiates the conductive material 4 with the ion beam from the ion source 1.
- the discharge voltage V d and the acceleration voltage V a applied by the power supply unit 40 to the ion source 1 are in accordance with the voltage application conditions applied when the sample is actually processed. Thereby, the ion beam when processing a sample can be accurately reproduced.
- Step S53 The ion beam current is measured by the ammeter 42.
- the control unit 45 takes in the ion beam current value measured by the ammeter 42.
- Step S54 The control unit 45 controls the ion source position adjusting mechanism 5 so that the measured ion beam current value satisfies a predetermined reference.
- the ion source moving mechanism 17 of the ion source position adjusting mechanism 5 is motor-driven by the control unit 45, and is first moved in the X direction and then in the Y direction so that the ion beam current value is maximized.
- the position on the XY plane of the ion source 1 is adjusted. After that, by moving in the Z direction as necessary, the position and operating distance (Z direction position) of the ion beam center B 0 of the ion source 1 on the XY plane are finely adjusted based on the value of the ion beam current value.
- This adjustment example is merely an example, and the position on the XY plane and the operating distance (position in the Z direction) of the ion beam center B 0 of the ion source 1 can be finely adjusted according to the algorithm provided in the control unit 45.
- the target ion beam current value when adjusting the ion source 1 is not limited to the maximum value of the ion beam current, and may be determined as, for example, the ion beam current value at the time of previous machining.
- the target plate 30 having a different shape of the conductive material 4 in the sample stage 2 or the conductive material 4 having a different shape with respect to the target plate 30 can be replaced.
- FIG. 6A shows an example in which a circular conductive material 60 centered on the rotation center R 0 is disposed as the conductive material.
- the ion source can be adjusted using a conductive material having a detection range that matches the diameter of the ion beam.
- a conductive material smaller in diameter than the ion beam irradiated onto the target plate is used, and the ion source 1 is finely moved in the Z direction so that the ion beam current value detected by the conductive material 4 becomes the maximum value. It is possible to make adjustments.
- FIG. 6B shows an example in which a circular conductive material 61 and an annular conductive material 62 having a larger diameter than the conductive material 61 are concentrically arranged around the rotation center R 0 as the conductive material.
- the ion beam current value detected by the conductive material 61 and the ion beam current value detected by the conductive material 62 can be measured independently by the power supply unit 40.
- the sample stage 2 is provided with two series of ion beam current extraction units corresponding to the conductive material 61 and the conductive material 62, and the power source unit 40 measures each ion beam current value.
- the ion milling apparatus has been described mainly focusing on the position adjustment of the ion source, but various modifications are possible.
- the control unit 45 only displays the ion beam current value measured by the ammeter 42 on the display unit 46, and the operator confirms the ion beam current value displayed on the display unit 46 while checking the ion beam current value. it may be adjusted manually discharge voltage V d of the movement amount, or the ion source 1 by ion source moving mechanism 17.
- FIG. 7 is a main part configuration diagram of an ion milling apparatus according to the second embodiment.
- the ion beam center B 0 and the rotation center R 0 can be aligned with a simpler mechanism.
- constituent elements having the same functions as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
- An observation microscope (optical microscope) 73 is installed above the sample chamber 6, and the sample placement surface of the sample stage 2 can be observed from the observation window 7. Further, a mirror member 71 is provided on the sample mounting surface of the sample stage 2. As the mirror member, any member that can reflect the plasma emission of the ion source 1 may be used. For example, a wafer other than a general mirror may be used. The mirror member may be mounted on the sample mounting plate of the sample stage instead of the sample.
- the sample stage 2 has a tilting mechanism and can tilt in the C direction around a shaft 72 extending in the X direction. The shaft 72 is at a position that intersects the rotation center R 0 on the sample mounting surface of the sample stage 2.
- FIG. 7 shows a state in which the sample stage 2 is inclined at an inclination angle T.
- the tilt angle T is defined as the angle formed by the ion beam center B 0 and the normal line of the sample mounting surface of the sample stage 2.
- Step S81 The sample stage 2 is tilted at 45 ° with respect to the ion beam center B 0 .
- the tilt mechanism of the sample stage 2 tilts about the axis 72, the ion source 1 can be changed even if the tilt of the sample stage 2 is changed as long as the ion beam center B 0 and the rotation center R 0 are in a state of matching.
- the tilt angle T may be a desired tilt angle other than 45 ° during sample processing.
- Step S82 The sample stage 2 is started to rotate by the sample stage rotation drive source 3.
- Step S83 The mirror surface member 71 is irradiated with an ion beam from the ion source 1. At this time, the discharge voltage V d and the acceleration voltage V a power supply unit 40 is applied to the ion source 1 is subject to the voltage application condition to be applied when actually processing the sample. Thereby, the ion beam when processing a sample can be accurately reproduced.
- Step S84 The mirror member 71 is observed with the observation microscope 73, and the center position of the plasma emission luminance emitted from the exit of the ion source 1 is confirmed. If the ion beam center B 0 and the rotation center R 0 coincide with each other, the vicinity of the rotation center R 0 of the mirror surface member 71 shines in a dotted or circular shape, and the ion beam center B 0 and the rotation center R 0 If they do not match, the sample stage 2 appears to shine in an annular shape due to rotation.
- Step S85 The position of the ion source 1 is finely adjusted by the ion source position adjustment mechanism 5 so that the plasma emission luminance center position of the ion source 1 confirmed in step S84 coincides with the rotation center R 0 of the sample stage 2.
- the mirror surface member 71 is described as being installed on the sample stage 2.
- a light emitting member that emits light by irradiation of an ion beam for example, a sample coated with a laser light emitting element or a phosphor. It is possible to obtain the same effect by installing.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Sampling And Sample Adjustment (AREA)
- Electron Sources, Ion Sources (AREA)
Abstract
Description
Claims (15)
- 試料に非集束のイオンビームを照射することにより、前記試料を加工するイオンミリング装置であって、
試料室と、
前記試料室に設置されるイオン源位置調整機構と、
前記イオン源位置調整機構を介して前記試料室に取り付けられ、前記イオンビームを射出するイオン源と、
回転中心を軸に回転する試料ステージとを有し、
前記イオンビームのイオンビーム中心と前記回転中心とが一致するときの前記回転中心の延在する方向をZ方向とし、前記Z方向と垂直な面をXY面とすると、前記イオン源位置調整機構は、前記イオン源の前記XY面上の位置及び前記Z方向の位置を調整可能とするイオンミリング装置。 - 請求項1において、
前記試料ステージに設置され、前記回転中心を含む範囲に導電材が設けられたターゲット板と、
前記導電材で受けたイオンビーム電流を計測する電流計とを有するイオンミリング装置。 - 請求項2において、
前記導電材は、前記回転中心を中心とする円形状を有するイオンミリング装置。 - 請求項2において、
前記導電材は、前記回転中心を中心として同心円状に配置された、円形状の第1の導電材と、前記第1の導電材よりも径の大きい円環形状の第2の導電材とを有し、
前記第1の導電材で受けたイオンビーム電流と前記第2の導電材で受けたイオンビーム電流とを独立して計測するイオンミリング装置。 - 請求項2において、
前記イオン源に所定の電圧を印加する電源部と、
制御部と、
表示部とを有し、
前記制御部は、前記電源部が前記イオン源に印加する放電電圧値、放電電流値、加速電圧値、前記電流計が計測するイオンビーム電流値を含むセンシングデータを収集し、前記表示部に表示するイオンミリング装置。 - 請求項2において、
前記イオン源に所定の電圧を印加する電源部と、
制御部と、
前記制御部は、前記電流計が計測するイオンビーム電流値に基づき、前記イオン源位置調整機構により、前記イオン源の前記XY面上の位置及び前記Z方向の位置を調整するイオンミリング装置。 - 請求項6において、
前記制御部は、前記イオン源位置調整機構による前記Z方向の位置の調整に代えて、または前記イオン源位置調整機構による前記Z方向の位置の調整に加えて、前記電源部が前記イオン源に印加する放電電圧を調整するイオンミリング装置。 - 試料室内に置かれた試料に非集束のイオンビームを照射することにより、前記試料を加工するイオンミリング装置のイオン源調整方法であって、
試料ステージ回転駆動源は、回転中心を含む範囲に導電材が設けられたターゲット板が設置された試料ステージを、前記回転中心を軸に回転させ、
イオン源は、前記ターゲット板に向けて前記イオンビームを照射し、
電流計は、前記導電材で受けたイオンビーム電流を計測し、
前記イオン源は、前記イオン源の位置を調整可能とするイオン源位置調整機構を介して前記試料室に取り付けられており、
前記イオン源位置調整機構により調整された前記イオン源の位置は、前記電流計により計測されるイオンビーム電流値が所定の目標を満たすように設定されるイオン源調整方法。 - 請求項8において、
前記イオンビームのイオンビーム中心と前記回転中心とが一致するときの前記回転中心の延在する方向をZ方向とし、前記Z方向と垂直な面をXY面とすると、前記イオン源位置調整機構により調整される前記イオン源の位置は、前記イオン源の前記XY面上の位置及び前記Z方向の位置を含むイオン源調整方法。 - 請求項8において、
前記イオン源の放電電圧の値は、前記電流計により計測されるイオンビーム電流値が前記所定の目標を満たすように設定されるイオン源調整方法。 - 請求項8において、
前記ターゲット板に向けて前記イオンビームを照射するときの前記イオン源の射出条件は、前記試料を加工するときの前記イオン源の射出条件と等しくされるイオン源調整方法。 - 請求項8において、
前記所定の目標として、前記イオンビーム電流の最大値または前回加工実施時におけるイオンビーム電流値とするイオン源調整方法。 - 試料室内に置かれた試料に非集束のイオンビームを照射することにより、前記試料を加工するイオンミリング装置のイオン源調整方法であって、
試料ステージ回転駆動源は、回転中心を含む範囲に鏡面部材が設置された試料ステージを、前記試料ステージの傾斜角を45°に傾けた状態で、前記回転中心を軸に回転させ、
イオン源は、前記鏡面部材に向けて前記イオンビームを照射し、
前記イオン源は、前記イオン源の位置を調整可能とするイオン源位置調整機構を介して前記試料室に取り付けられており、
前記イオン源位置調整機構により調整された前記イオン源の位置は、前記鏡面部材における前記回転中心近傍が、点状または円形状に光ってみえる状態に設定されるイオン源調整方法。 - 請求項13において、
前記鏡面部材に代えて、前記イオンビームに反応して発光する発光部材を前記試料ステージに設置するイオン源調整方法。 - 請求項13または請求項14において、
前記鏡面部材または前記発光部材に向けて前記イオンビームを照射するときの前記イオン源の射出条件は、前記試料を加工するときの前記イオン源の射出条件と等しくされるイオン源調整方法。
Priority Applications (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE112018006577.4T DE112018006577B4 (de) | 2018-02-28 | 2018-02-28 | Ionenfräsvorrichtung und Ionenquellen-Justierverfahren für Ionenfräsvorrichtung |
US16/961,759 US11244802B2 (en) | 2018-02-28 | 2018-02-28 | Ion milling device and ion source adjusting method for ion milling device |
CN201880090114.6A CN111758144B (zh) | 2018-02-28 | 2018-02-28 | 离子铣削装置及离子铣削装置的离子源调整方法 |
PCT/JP2018/007477 WO2019167165A1 (ja) | 2018-02-28 | 2018-02-28 | イオンミリング装置及びイオンミリング装置のイオン源調整方法 |
KR1020207019868A KR102464623B1 (ko) | 2018-02-28 | 2018-02-28 | 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법 |
KR1020227038540A KR102551000B1 (ko) | 2018-02-28 | 2018-02-28 | 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법 |
CN202310581760.5A CN116544088A (zh) | 2018-02-28 | 2018-02-28 | 离子铣削装置及离子铣削装置的离子源调整方法 |
JP2020503158A JP7036902B2 (ja) | 2018-02-28 | 2018-02-28 | イオンミリング装置及びイオンミリング装置のイオン源調整方法 |
TW108106272A TWI698900B (zh) | 2018-02-28 | 2019-02-25 | 離子研磨裝置及離子研磨裝置的離子源調整方法 |
JP2022032598A JP7350916B2 (ja) | 2018-02-28 | 2022-03-03 | イオンミリング装置及びイオンミリング装置のイオン源調整方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/007477 WO2019167165A1 (ja) | 2018-02-28 | 2018-02-28 | イオンミリング装置及びイオンミリング装置のイオン源調整方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019167165A1 true WO2019167165A1 (ja) | 2019-09-06 |
Family
ID=67806027
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/007477 WO2019167165A1 (ja) | 2018-02-28 | 2018-02-28 | イオンミリング装置及びイオンミリング装置のイオン源調整方法 |
Country Status (7)
Country | Link |
---|---|
US (1) | US11244802B2 (ja) |
JP (2) | JP7036902B2 (ja) |
KR (2) | KR102464623B1 (ja) |
CN (2) | CN111758144B (ja) |
DE (1) | DE112018006577B4 (ja) |
TW (1) | TWI698900B (ja) |
WO (1) | WO2019167165A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114536113A (zh) * | 2022-04-27 | 2022-05-27 | 四川欧瑞特光电科技有限公司 | 一种负压装置及离子束抛光机 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102464623B1 (ko) * | 2018-02-28 | 2022-11-09 | 주식회사 히타치하이테크 | 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법 |
US12020893B2 (en) * | 2020-01-29 | 2024-06-25 | Hitachi High-Tech Corporation | Ion milling device |
JP7312778B2 (ja) * | 2021-03-08 | 2023-07-21 | 日本電子株式会社 | 試料加工装置の調整方法および試料加工装置 |
WO2023242909A1 (ja) * | 2022-06-13 | 2023-12-21 | 株式会社日立ハイテク | イオンミリング装置、ホルダおよび断面ミリング処理方法 |
CN115019994B (zh) * | 2022-07-21 | 2024-05-14 | 中国核动力研究设计院 | 一种基于离子注入机的透射电镜试样辐照装置及控温方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62143351A (ja) * | 1985-12-17 | 1987-06-26 | Matsushita Electric Ind Co Ltd | 自動光軸調整装置 |
JPH01142149U (ja) * | 1988-03-23 | 1989-09-28 | ||
JPH02112138A (ja) * | 1988-10-20 | 1990-04-24 | Sony Corp | 集束イオンビーム装置のイオンビームアライメント方法 |
JPH0329249A (ja) * | 1990-06-12 | 1991-02-07 | Seiko Instr Inc | 集束イオンビーム装置 |
JPH0487155U (ja) * | 1990-11-30 | 1992-07-29 | ||
JPH10134746A (ja) * | 1996-10-29 | 1998-05-22 | Seiko Instr Inc | 集束イオンビームの光軸調整方法および集束イオンビーム装置 |
JP2008204905A (ja) * | 2007-02-22 | 2008-09-04 | Hitachi High-Tech Science Systems Corp | イオンミリング装置、及びイオンミリング加工方法 |
WO2018003109A1 (ja) * | 2016-07-01 | 2018-01-04 | 株式会社 日立ハイテクノロジーズ | イオンミリング装置 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4128765A (en) * | 1976-10-29 | 1978-12-05 | Joseph Franks | Ion beam machining techniques and apparatus |
JP2985175B2 (ja) * | 1988-10-17 | 1999-11-29 | ソニー株式会社 | イオンビーム装置 |
JPH0733589B2 (ja) * | 1989-07-01 | 1995-04-12 | 株式会社日立サイエンスシステムズ | イオンミリング方法及び装置 |
JP3271395B2 (ja) * | 1993-10-26 | 2002-04-02 | 株式会社島津製作所 | イオンビーム照射装置 |
US6768110B2 (en) | 2000-06-21 | 2004-07-27 | Gatan, Inc. | Ion beam milling system and method for electron microscopy specimen preparation |
US20060145095A1 (en) * | 2004-12-30 | 2006-07-06 | Varian Semiconductor Equipment Associates, Inc. | Methods and apparatus for ion implantation with control of incidence angle by beam deflection |
JP2006236601A (ja) * | 2005-02-22 | 2006-09-07 | Kobe Steel Ltd | 軌道位置検出装置,組成分析装置,荷電粒子ビームの軌道調整方法及び位置座標検出装置 |
JP4504880B2 (ja) * | 2005-07-08 | 2010-07-14 | 株式会社日立ハイテクノロジーズ | 真空排気系を利用したシリンダを用いたイオンビーム電流測定機構 |
JP4594193B2 (ja) * | 2005-08-26 | 2010-12-08 | 日本電子株式会社 | イオンミリング装置 |
WO2007067296A2 (en) | 2005-12-02 | 2007-06-14 | Alis Corporation | Ion sources, systems and methods |
JP2008091221A (ja) * | 2006-10-02 | 2008-04-17 | Hitachi High-Tech Science Systems Corp | イオンビーム加工装置及び方法 |
JP5619002B2 (ja) * | 2009-07-30 | 2014-11-05 | 株式会社日立ハイテクノロジーズ | イオンミリング装置 |
DE112010004286B4 (de) * | 2009-11-06 | 2021-01-28 | Hitachi High-Tech Corporation | Ladungsteilchenmikroskop |
JP2011154920A (ja) * | 2010-01-28 | 2011-08-11 | Hitachi High-Technologies Corp | イオンミリング装置,試料加工方法,加工装置、および試料駆動機構 |
JP5989959B2 (ja) * | 2010-02-16 | 2016-09-07 | 株式会社日立ハイテクサイエンス | 集束イオンビーム装置 |
US8283642B2 (en) * | 2010-04-11 | 2012-10-09 | Gatan, Inc. | Ion beam sample preparation apparatus and methods |
DE112011106139B3 (de) * | 2010-11-05 | 2018-10-11 | Hitachi High-Technologies Corporation | Ionenätzvorrichtung |
JP5918999B2 (ja) * | 2012-01-06 | 2016-05-18 | 株式会社日立ハイテクノロジーズ | 真空容器を備えた荷電粒子線照射装置 |
JP5732421B2 (ja) * | 2012-03-26 | 2015-06-10 | 株式会社日立ハイテクノロジーズ | イオンミリング装置 |
US9347127B2 (en) * | 2012-07-16 | 2016-05-24 | Veeco Instruments, Inc. | Film deposition assisted by angular selective etch on a surface |
WO2014106182A1 (en) * | 2012-12-31 | 2014-07-03 | Fei Company | Fiducial design for tilted or glancing mill operations with a charged particle beam |
WO2015016039A1 (ja) * | 2013-07-29 | 2015-02-05 | 株式会社 日立ハイテクノロジーズ | イオンミリング装置、及びイオンミリング装置を用いた加工方法 |
KR102306979B1 (ko) * | 2014-04-01 | 2021-09-30 | 에베 그룹 에. 탈너 게엠베하 | 기질의 표면 처리를 위한 방법 및 장치 |
WO2016002341A1 (ja) | 2014-06-30 | 2016-01-07 | 株式会社 日立ハイテクノロジーズ | パターン測定方法、及びパターン測定装置 |
US10731246B2 (en) * | 2014-07-28 | 2020-08-04 | Gatan, Inc. | Ion beam sample preparation and coating apparatus and methods |
JP6637055B2 (ja) * | 2015-09-25 | 2020-01-29 | 株式会社日立ハイテクノロジーズ | イオンミリング装置 |
KR102195030B1 (ko) * | 2016-02-26 | 2020-12-28 | 주식회사 히타치하이테크 | 이온 밀링 장치, 및 이온 밀링 방법 |
JP2017199554A (ja) | 2016-04-27 | 2017-11-02 | 日新電機株式会社 | イオンビーム照射装置及びイオンビーム照射方法 |
KR102464623B1 (ko) * | 2018-02-28 | 2022-11-09 | 주식회사 히타치하이테크 | 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법 |
JP6998467B2 (ja) * | 2018-08-31 | 2022-01-18 | 株式会社日立ハイテク | イオンミリング装置 |
GB2582242A (en) * | 2018-11-30 | 2020-09-23 | Oxford Instruments Nanotechnology Tools Ltd | Charged particle beam source, surface processing apparatus and surface processing method |
-
2018
- 2018-02-28 KR KR1020207019868A patent/KR102464623B1/ko active IP Right Grant
- 2018-02-28 CN CN201880090114.6A patent/CN111758144B/zh active Active
- 2018-02-28 WO PCT/JP2018/007477 patent/WO2019167165A1/ja active Application Filing
- 2018-02-28 JP JP2020503158A patent/JP7036902B2/ja active Active
- 2018-02-28 US US16/961,759 patent/US11244802B2/en active Active
- 2018-02-28 DE DE112018006577.4T patent/DE112018006577B4/de active Active
- 2018-02-28 KR KR1020227038540A patent/KR102551000B1/ko active IP Right Grant
- 2018-02-28 CN CN202310581760.5A patent/CN116544088A/zh active Pending
-
2019
- 2019-02-25 TW TW108106272A patent/TWI698900B/zh active
-
2022
- 2022-03-03 JP JP2022032598A patent/JP7350916B2/ja active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62143351A (ja) * | 1985-12-17 | 1987-06-26 | Matsushita Electric Ind Co Ltd | 自動光軸調整装置 |
JPH01142149U (ja) * | 1988-03-23 | 1989-09-28 | ||
JPH02112138A (ja) * | 1988-10-20 | 1990-04-24 | Sony Corp | 集束イオンビーム装置のイオンビームアライメント方法 |
JPH0329249A (ja) * | 1990-06-12 | 1991-02-07 | Seiko Instr Inc | 集束イオンビーム装置 |
JPH0487155U (ja) * | 1990-11-30 | 1992-07-29 | ||
JPH10134746A (ja) * | 1996-10-29 | 1998-05-22 | Seiko Instr Inc | 集束イオンビームの光軸調整方法および集束イオンビーム装置 |
JP2008204905A (ja) * | 2007-02-22 | 2008-09-04 | Hitachi High-Tech Science Systems Corp | イオンミリング装置、及びイオンミリング加工方法 |
WO2018003109A1 (ja) * | 2016-07-01 | 2018-01-04 | 株式会社 日立ハイテクノロジーズ | イオンミリング装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114536113A (zh) * | 2022-04-27 | 2022-05-27 | 四川欧瑞特光电科技有限公司 | 一种负压装置及离子束抛光机 |
CN114536113B (zh) * | 2022-04-27 | 2022-07-29 | 四川欧瑞特光电科技有限公司 | 一种负压装置及离子束抛光机 |
Also Published As
Publication number | Publication date |
---|---|
JP7350916B2 (ja) | 2023-09-26 |
US20210066020A1 (en) | 2021-03-04 |
JP2022081571A (ja) | 2022-05-31 |
CN116544088A (zh) | 2023-08-04 |
TW201937529A (zh) | 2019-09-16 |
JP7036902B2 (ja) | 2022-03-15 |
DE112018006577B4 (de) | 2024-08-01 |
CN111758144B (zh) | 2023-06-02 |
TWI698900B (zh) | 2020-07-11 |
KR20220154249A (ko) | 2022-11-21 |
US11244802B2 (en) | 2022-02-08 |
KR102551000B1 (ko) | 2023-07-05 |
CN111758144A (zh) | 2020-10-09 |
DE112018006577T5 (de) | 2020-11-12 |
KR20200096619A (ko) | 2020-08-12 |
JPWO2019167165A1 (ja) | 2021-02-04 |
KR102464623B1 (ko) | 2022-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019167165A1 (ja) | イオンミリング装置及びイオンミリング装置のイオン源調整方法 | |
US6768110B2 (en) | Ion beam milling system and method for electron microscopy specimen preparation | |
TWI719564B (zh) | 離子研磨裝置 | |
TWI767464B (zh) | 離子研磨裝置 | |
KR20040046204A (ko) | 이온 주입 장치의 모니터링 방법 및 이를 수행하기 위한섀도우 지그를 갖는 이온 주입 장치 | |
US20220262593A1 (en) | System and Method for Uniform Ion Milling | |
WO2024195014A1 (ja) | イオンミリング装置及びそれを用いた加工方法 | |
TWI821868B (zh) | 離子銑削裝置 | |
TWI773042B (zh) | 離子研磨裝置 | |
WO2024034052A1 (ja) | イオンミリング装置及びそれを用いた加工方法 | |
WO2022244149A1 (ja) | イオンミリング装置 | |
CN118553584A (zh) | 超精密离子研磨仪 | |
KR100499172B1 (ko) | 이온 주입 공정의 기판 경사각 측정 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18907730 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20207019868 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020503158 Country of ref document: JP Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18907730 Country of ref document: EP Kind code of ref document: A1 |