WO2019167165A1 - イオンミリング装置及びイオンミリング装置のイオン源調整方法 - Google Patents

イオンミリング装置及びイオンミリング装置のイオン源調整方法 Download PDF

Info

Publication number
WO2019167165A1
WO2019167165A1 PCT/JP2018/007477 JP2018007477W WO2019167165A1 WO 2019167165 A1 WO2019167165 A1 WO 2019167165A1 JP 2018007477 W JP2018007477 W JP 2018007477W WO 2019167165 A1 WO2019167165 A1 WO 2019167165A1
Authority
WO
WIPO (PCT)
Prior art keywords
ion
ion source
ion beam
sample
source
Prior art date
Application number
PCT/JP2018/007477
Other languages
English (en)
French (fr)
Inventor
鴨志田 斉
高須 久幸
上野 敦史
岩谷 徹
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to DE112018006577.4T priority Critical patent/DE112018006577B4/de
Priority to US16/961,759 priority patent/US11244802B2/en
Priority to CN201880090114.6A priority patent/CN111758144B/zh
Priority to PCT/JP2018/007477 priority patent/WO2019167165A1/ja
Priority to KR1020207019868A priority patent/KR102464623B1/ko
Priority to KR1020227038540A priority patent/KR102551000B1/ko
Priority to CN202310581760.5A priority patent/CN116544088A/zh
Priority to JP2020503158A priority patent/JP7036902B2/ja
Priority to TW108106272A priority patent/TWI698900B/zh
Publication of WO2019167165A1 publication Critical patent/WO2019167165A1/ja
Priority to JP2022032598A priority patent/JP7350916B2/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/023Means for mechanically adjusting components not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
    • H01J37/147Arrangements for directing or deflecting the discharge along a desired path
    • H01J37/1472Deflecting along given lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/21Means for adjusting the focus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/24Circuit arrangements not adapted to a particular application of the tube and not otherwise provided for
    • H01J37/243Beam current control or regulation circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/244Detectors; Associated components or circuits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/304Controlling tubes by information coming from the objects or from the beam, e.g. correction signals
    • H01J37/3045Object or beam position registration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/31Electron-beam or ion-beam tubes for localised treatment of objects for cutting or drilling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/15Means for deflecting or directing discharge
    • H01J2237/1502Mechanical adjustments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/20Positioning, supporting, modifying or maintaining the physical state of objects being observed or treated
    • H01J2237/202Movement
    • H01J2237/20214Rotation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/245Detection characterised by the variable being measured
    • H01J2237/24564Measurements of electric or magnetic variables, e.g. voltage, current, frequency
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/304Controlling tubes
    • H01J2237/30472Controlling the beam

Definitions

  • the present invention relates to an ion milling apparatus and an ion source adjusting method for the ion milling apparatus.
  • the ion milling apparatus irradiates the surface or cross section of a sample (for example, metal, semiconductor, glass, ceramic, etc.) with an unfocused argon ion beam accelerated to, for example, several kV, and causes no stress on the surface of the sample by sputtering. Atoms can be blown off to smooth the sample surface.
  • a sample for example, metal, semiconductor, glass, ceramic, etc.
  • an ion beam irradiation unit for generating an ion beam is attached to a vacuum vessel.
  • the ion beam irradiation unit is removed from the vacuum vessel and reattached after maintenance.
  • an installation error occurs in the ion beam irradiation unit, and the irradiation direction of the ion beam irradiated from the ion beam irradiation unit May change from the previous ones.
  • Patent Document 1 discloses an ion beam irradiation apparatus in which a sample (here, a substrate) is held by a substrate holder, reciprocated across an ion beam irradiation region, and an ion beam irradiation unit irradiates the substrate with the ion beam. Disclose. In response to the above-described problems, an ion beam measurement mechanism for measuring the beam current density distribution of the irradiated ion beam is provided on the vacuum vessel wall surface facing the ion beam irradiation unit.
  • a focused ion beam (FIB) apparatus is used to form an inclined surface for exposing a cross section of a three-dimensional structure pattern on a sample surface.
  • the focused ion beam apparatus has a low processing speed and a narrow processing range, it takes time to form a target inclined surface on the sample surface. For this reason, the inventors examined the formation of an inclined surface by an ion milling apparatus using a non-focused ion beam having a high processing speed.
  • the processing speed is determined by the intensity of the ion beam irradiated on the sample, specifically, the speed and number of ions applied at an accelerating voltage, and ion irradiation. Depends on the angle.
  • the intensity of the ion beam emitted from the ion source is ideally the highest at the center of the ion beam and has a binomial distribution shape in which the intensity gradually decreases toward the periphery.
  • the ion beam emitted from the ion source is affected by the contamination of the electrode components that make up the ion source, fluctuations in the number of ions generated due to consumption of the electrode components, and external disturbances such as the electric field in the environment. It is difficult to keep the intensity of the irradiated ion beam constant.
  • the ion milling device uses the ion beam center as the axis. By irradiating an ion beam while rotating the sample, it is possible to suppress the formation of irregularities and obtain a smooth processed surface suitable for observation and measurement with an electron microscope.
  • FIG. 2A shows a main part of the ion milling apparatus.
  • the ion beam from the ion source 21 irradiates the sample 20 placed on the sample placement surface of the sample stage 22 in a state of spreading radially around the ion beam center B 0 .
  • the rotation center R 0 and the ion beam center B 0 coincide with each other.
  • the rotation center R 0 and the ion beam center B 0 are ⁇ as shown in FIG. It may be in a state that is shifted by only.
  • the processing depth formed on the surface of the sample 20 is shown in FIG. 2B.
  • the processing depth is deepest at the ion beam center B 0 where the ion beam intensity is highest, which is a position shifted ⁇ from the rotation center R 0 , and the processing depth decreases as the distance from the ion beam center B 0 increases.
  • the processing depth when the rotation center R 0 and the ion beam center B 0 coincide with each other is shown as a waveform 26.
  • the shape of the machined surface is gentler than the originally intended machined surface, and in an extreme case, the machined surface is wavy as shown by the waveform 25 in FIG. 2B.
  • the machined surface is wavy as shown by the waveform 25 in FIG. 2B.
  • the ion beam is irradiated so that the ion beam center B 0 is perpendicular to the surface of the sample 20 (or the sample mounting surface of the sample stage 22). It is also possible to incline in the direction so that the surface of the sample 20 is irradiated with the ion beam at a low incident angle. Thereby, it is possible to obtain a wide processing surface.
  • the ion beam diameter increases as the distance from the ion source outlet becomes longer, and the current / ion density decreases. For this reason, when the ion beam measurement position is away from the actual sample processing position as in Patent Document 1, the voltage applied to the ion source for measuring the ion beam is set to be higher than the conditions for performing actual processing. It may be possible to measure it higher. However, if the ion beam emission conditions are changed, the energy of the ion beam changes, so the milling speed changes, the ion density distribution also changes, and the magnitude of the influence of the disturbance also changes. Therefore, the adjustment is desirably performed under the same conditions as the injection conditions during actual processing.
  • an operator of the ion milling apparatus attaches a processing target such as a copper foil on the sample stage, and then performs ions under actual processing conditions.
  • the position of the ion source is adjusted so that the beam mark is left on the copper foil by irradiating the beam, and the beam mark and the rotation center R 0 coincide with each other.
  • there are limits to the accuracy of visual or microscopic adjustment using such beam marks and it is often necessary to align the ion source by repeatedly desorbing the ion source. Due to the lack of nature, the operator's adjustment burden was heavy.
  • the present invention provides an ion milling apparatus and an ion source adjustment method capable of easily and accurately adjusting the ion beam center and the sample rotation center after desorption of the ion source.
  • An ion milling apparatus is an ion milling apparatus that processes a sample by irradiating the sample with an unfocused ion beam, the sample chamber, and an ion source installed in the sample chamber A position adjustment mechanism, an ion source that is attached to the sample chamber via the ion source position adjustment mechanism, emits an ion beam, and a sample stage that rotates about the rotation center, and rotates with the ion beam center of the ion beam.
  • the ion source position adjusting mechanism can detect the position of the ion source on the XY plane and the Z direction. The position can be adjusted.
  • the processing accuracy of the ion milling device or the reproducibility of the machined surface shape can be increased.
  • the maintenance time of the ion milling device can be shortened.
  • FIG. It is a principal part block diagram of the ion milling apparatus of Example 1.
  • FIG. It is a figure explaining the subject of this invention. It is a figure explaining the subject of this invention. It is a figure which shows the structural example of a sample stage. It is a block diagram concerning position adjustment of an ion source.
  • 3 is a flowchart for adjusting the position of the ion source according to the first embodiment. It is an example of the shape of the conductor in a target board. It is another example of the shape of the conductor in a target board.
  • FIG. It is a position adjustment flow of the ion source of Example 2.
  • FIG. 1 is a main part configuration diagram of an ion milling apparatus according to a first embodiment.
  • a sample chamber 6 capable of maintaining a vacuum state, an ion source 1, a sample stage 2 on which a sample (not shown) is placed at the time of processing, a sample stage rotation drive source for rotating the sample stage 2 in the R direction around the rotation center R0 3.
  • the sample stage 2 may have an inclination mechanism for changing the incident angle of the ion beam.
  • the sample chamber 6 is provided with an observation window 7 for observing a sample to be processed.
  • the ion source 1 is attached to the sample chamber 6 via an ion source position adjusting mechanism 5 that finely adjusts the position in the X, Y, and Z directions.
  • the position of the ion beam center B 0 of the ion source 1 specifically the position on the XY plane (the plane including the X direction and the Y direction) and the operating distance (position in the Z direction, specifically the ion source 1
  • the distance from the ion beam emission position to the sample stage 2 can be finely adjusted.
  • the sample mounting plate of the sample stage 2 can be replaced.
  • a conductive material for detecting the ion beam current is used instead of the sample mounting plate.
  • a target plate is installed in a range where the material 4 includes the rotation center R 0 .
  • FIG. 1 shows this state.
  • the ion source position adjustment mechanism 5 is a support unit for fixing the ion source 1, a substrate on which the ion source position adjustment mechanism 5 is installed in the sample chamber 6, and the support unit provided on the substrate is independent in the X, Y, and Z directions. And an ion source moving mechanism that is movable.
  • the ion source moving mechanism for example, the position of the ion source 1 can be finely adjusted in each direction by using a precise screw mechanism used in a micrometer.
  • the ion beam When a predetermined voltage is applied to the ion source 1, the ion beam is emitted radially from the ion source 1 around the ion beam center B 0 and is conducted within a range including the rotation center R 0 installed on the sample stage 2.
  • the target plate provided with the material 4 is irradiated.
  • the ion beam emitted from the ion source 1 has a high current / ion density at the ion beam center B 0 and gradually decreases toward the outside. Moreover, the current / ion density decreases as the distance from the ion source 1 increases.
  • FIG. 3 shows a configuration example of the sample stage 2.
  • the state which installed the target board 30 which has the electrically conductive material 4 is shown.
  • the target plate 30 is installed such that the conductive material 4 is connected to the conductive material connection plate 31.
  • the center of the conductive material 4 is set to a position that coincides with the rotation center R 0 indicated by a one-dot chain line.
  • the ion beam from the ion source is applied to a region centered on the conductive material 4. However, since the ion beam is emitted radially from the ion source 1, depending on the distance between the ion source 1 and the conductive material 4. In addition to the conductive material 4, there is a possibility that the ion beam is irradiated.
  • the target plate 30 around the conductive material 4 is made of an insulating material in order to prevent a current due to the ion beam being irradiated to other components of the sample stage from flowing into the conductive material 4.
  • the conductive material connecting plate 31 is connected to a rotating shaft 33 that rotates the sample, and rotates the conductive material 4 by the power of the rotating gear 34 that is driven by the sample stage rotation drive source 3.
  • an insulating material 32 is provided between the conductive material connecting plate 31 and the rotating shaft 33 to block the current flow.
  • the current received by the conductive material 4 is drawn out by the rotating contact 35 and the beam current detection wiring 36 that are in contact with the conductive material connection plate 31, and the current value is detected.
  • the rotary contact 35 and the beam current detection wiring 36 are insulated from other components by a beam current detection wiring connector 37.
  • FIG. 4 is a block diagram relating to the position adjustment of the ion source 1 in the ion milling apparatus according to the first embodiment.
  • a cylindrical anode electrode 12 is disposed between the cathode electrodes 11a and 11b, and a discharge voltage Vd is applied between the cathode electrodes 11a and 11b and the anode electrode 12.
  • Ions are generated in the anode electrode 12 by introducing argon gas into the ion source 1 from the pipe 15 and applying a magnetic field to the anode electrode 12 by the magnet 13.
  • the generated ions are accelerated by accelerating electrodes 14 accelerating voltage V a is applied, it is released from the ion source 1 as an ion beam.
  • Discharge voltage V d and the acceleration voltage V a is generated by the power supply unit 40.
  • the power supply unit 40 has a ammeter, measures the current meter 41 is the discharge current V d, the ammeter 42 measures the ion beam current received by conductive material 4. Note that the values of the discharge voltage V d and the acceleration voltage V a are set by the control unit 45.
  • the ion source 1 is fixed to the support portion 16 of the ion source position adjusting mechanism 5, and the position of the ion source 1 is determined by an ion source moving mechanism 17 that can move the support portion 16 independently in the X direction, the Y direction, and the Z direction. Can be fine-tuned.
  • the power supply unit 40, the ion source moving mechanism 17 and the sample stage rotation drive source 3 are connected to the control unit 45, and the ion beam ejection conditions are set from the control unit 45, and the ion source is adjusted and adjusted according to a predetermined flow. Perform sample processing.
  • the control unit 45 is connected to the display unit 46, functions as a user interface from the operator to the control unit 45, and displays sensing data indicating the operation state of the ion milling apparatus collected by the control unit 45.
  • the sensing data displayed on the display unit 46 includes a discharge voltage value V d from the power supply unit 40, a discharge current value, an acceleration voltage value V a , an ion beam current value, and the like.
  • FIG. 5 shows an adjustment flow of the ion source 1 executed by the control unit 45 in the ion milling apparatus shown in FIG.
  • Step S51 The controller 45 starts the rotation of the sample stage 2 by the sample stage rotation drive source 3.
  • the sample stage 2 is installed so that the surface of the conductive material 4 is perpendicular to the ion beam emitted from the ion source 1.
  • Step S52 The control unit 45 controls the power supply unit and the like, and irradiates the conductive material 4 with the ion beam from the ion source 1.
  • the discharge voltage V d and the acceleration voltage V a applied by the power supply unit 40 to the ion source 1 are in accordance with the voltage application conditions applied when the sample is actually processed. Thereby, the ion beam when processing a sample can be accurately reproduced.
  • Step S53 The ion beam current is measured by the ammeter 42.
  • the control unit 45 takes in the ion beam current value measured by the ammeter 42.
  • Step S54 The control unit 45 controls the ion source position adjusting mechanism 5 so that the measured ion beam current value satisfies a predetermined reference.
  • the ion source moving mechanism 17 of the ion source position adjusting mechanism 5 is motor-driven by the control unit 45, and is first moved in the X direction and then in the Y direction so that the ion beam current value is maximized.
  • the position on the XY plane of the ion source 1 is adjusted. After that, by moving in the Z direction as necessary, the position and operating distance (Z direction position) of the ion beam center B 0 of the ion source 1 on the XY plane are finely adjusted based on the value of the ion beam current value.
  • This adjustment example is merely an example, and the position on the XY plane and the operating distance (position in the Z direction) of the ion beam center B 0 of the ion source 1 can be finely adjusted according to the algorithm provided in the control unit 45.
  • the target ion beam current value when adjusting the ion source 1 is not limited to the maximum value of the ion beam current, and may be determined as, for example, the ion beam current value at the time of previous machining.
  • the target plate 30 having a different shape of the conductive material 4 in the sample stage 2 or the conductive material 4 having a different shape with respect to the target plate 30 can be replaced.
  • FIG. 6A shows an example in which a circular conductive material 60 centered on the rotation center R 0 is disposed as the conductive material.
  • the ion source can be adjusted using a conductive material having a detection range that matches the diameter of the ion beam.
  • a conductive material smaller in diameter than the ion beam irradiated onto the target plate is used, and the ion source 1 is finely moved in the Z direction so that the ion beam current value detected by the conductive material 4 becomes the maximum value. It is possible to make adjustments.
  • FIG. 6B shows an example in which a circular conductive material 61 and an annular conductive material 62 having a larger diameter than the conductive material 61 are concentrically arranged around the rotation center R 0 as the conductive material.
  • the ion beam current value detected by the conductive material 61 and the ion beam current value detected by the conductive material 62 can be measured independently by the power supply unit 40.
  • the sample stage 2 is provided with two series of ion beam current extraction units corresponding to the conductive material 61 and the conductive material 62, and the power source unit 40 measures each ion beam current value.
  • the ion milling apparatus has been described mainly focusing on the position adjustment of the ion source, but various modifications are possible.
  • the control unit 45 only displays the ion beam current value measured by the ammeter 42 on the display unit 46, and the operator confirms the ion beam current value displayed on the display unit 46 while checking the ion beam current value. it may be adjusted manually discharge voltage V d of the movement amount, or the ion source 1 by ion source moving mechanism 17.
  • FIG. 7 is a main part configuration diagram of an ion milling apparatus according to the second embodiment.
  • the ion beam center B 0 and the rotation center R 0 can be aligned with a simpler mechanism.
  • constituent elements having the same functions as those of the first embodiment are denoted by the same reference numerals, and redundant description is omitted.
  • An observation microscope (optical microscope) 73 is installed above the sample chamber 6, and the sample placement surface of the sample stage 2 can be observed from the observation window 7. Further, a mirror member 71 is provided on the sample mounting surface of the sample stage 2. As the mirror member, any member that can reflect the plasma emission of the ion source 1 may be used. For example, a wafer other than a general mirror may be used. The mirror member may be mounted on the sample mounting plate of the sample stage instead of the sample.
  • the sample stage 2 has a tilting mechanism and can tilt in the C direction around a shaft 72 extending in the X direction. The shaft 72 is at a position that intersects the rotation center R 0 on the sample mounting surface of the sample stage 2.
  • FIG. 7 shows a state in which the sample stage 2 is inclined at an inclination angle T.
  • the tilt angle T is defined as the angle formed by the ion beam center B 0 and the normal line of the sample mounting surface of the sample stage 2.
  • Step S81 The sample stage 2 is tilted at 45 ° with respect to the ion beam center B 0 .
  • the tilt mechanism of the sample stage 2 tilts about the axis 72, the ion source 1 can be changed even if the tilt of the sample stage 2 is changed as long as the ion beam center B 0 and the rotation center R 0 are in a state of matching.
  • the tilt angle T may be a desired tilt angle other than 45 ° during sample processing.
  • Step S82 The sample stage 2 is started to rotate by the sample stage rotation drive source 3.
  • Step S83 The mirror surface member 71 is irradiated with an ion beam from the ion source 1. At this time, the discharge voltage V d and the acceleration voltage V a power supply unit 40 is applied to the ion source 1 is subject to the voltage application condition to be applied when actually processing the sample. Thereby, the ion beam when processing a sample can be accurately reproduced.
  • Step S84 The mirror member 71 is observed with the observation microscope 73, and the center position of the plasma emission luminance emitted from the exit of the ion source 1 is confirmed. If the ion beam center B 0 and the rotation center R 0 coincide with each other, the vicinity of the rotation center R 0 of the mirror surface member 71 shines in a dotted or circular shape, and the ion beam center B 0 and the rotation center R 0 If they do not match, the sample stage 2 appears to shine in an annular shape due to rotation.
  • Step S85 The position of the ion source 1 is finely adjusted by the ion source position adjustment mechanism 5 so that the plasma emission luminance center position of the ion source 1 confirmed in step S84 coincides with the rotation center R 0 of the sample stage 2.
  • the mirror surface member 71 is described as being installed on the sample stage 2.
  • a light emitting member that emits light by irradiation of an ion beam for example, a sample coated with a laser light emitting element or a phosphor. It is possible to obtain the same effect by installing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

試料に非集束のイオンビームを照射することにより、試料を加工するイオンミリング装置の加工精度、または加工面形状の再現精度を高める。このため、試料室6と、試料室に設置されるイオン源位置調整機構5と、イオン源位置調整機構を介して試料室に取り付けられ、イオンビームを射出するイオン源1と、回転中心を軸に回転する試料ステージ2とを有し、イオンビームのイオンビーム中心B0と回転中心R0とが一致するときの回転中心の延在する方向をZ方向とし、Z方向と垂直な面をXY面とすると、イオン源位置調整機構5は、イオン源1のXY面上の位置及びZ方向の位置を調整可能とする。

Description

イオンミリング装置及びイオンミリング装置のイオン源調整方法
 本発明は、イオンミリング装置、及びイオンミリング装置のイオン源調整方法に関する。
 試料の内部構造を観察・分析するためには、目的とする内部構造を表面に露出させる必要がある。従来から割断や機械研磨により試料を作製する方法があるが、これらの方法は物理的な圧力を試料に印加することによる変形や傷の発生を避けることができない。イオンミリング装置は、試料(例えば、金属、半導体、ガラス、セラミックなど)の表面あるいは断面に、例えば数kVに加速させた非集束のアルゴンイオンビームを照射し、スパッタリング現象により無応力で試料表面の原子を弾き飛ばし、試料表面を平滑化することができる。これは、走査電子顕微鏡(SEM:Scanning Electron Microscope)や透過電子顕微鏡(TEM:Transmission Electron Microscope)に代表される電子顕微鏡により試料の表面あるいは断面を観察するための平滑加工を行うために優れた特性である。
 イオンミリング装置では真空雰囲気中で試料の加工を行うため、イオンビームを発生させるイオンビーム照射部は真空容器に取り付けられている。試料を加工すると加工面より発生する試料由来の微小粒子がイオンビーム照射部に付着するため、イオンミリング装置は定期的な清掃が必要になる。このため、真空容器からイオンビーム照射部を取り外し、メンテナンス後に再度取り付けることになるが、再取り付けの際、イオンビーム照射部に取り付け誤差が生じ、イオンビーム照射部から照射されるイオンビームの照射方向がそれまでのものと変わってしまうおそれがある。
 特許文献1は、試料(ここでは基板)を基板ホルダに保持し、イオンビームの照射領域を横切るように往復運動を行わせ、イオンビーム照射部が基板にイオンビームを照射するイオンビーム照射装置を開示する。上述の課題に対し、イオンビーム照射部に正対する真空容器壁面に、照射されるイオンビームのビーム電流密度分布を測定するイオンビーム測定機構を設ける。イオンビーム測定機構によりイオンビーム中心位置を測定し、基板の往復運動のストローク中心位置をイオンビーム中心位置またはその位置に基づいて定まる所定位置に設定することにより、イオンビーム照射部に取り付け誤差が生じたとしても、基板へのイオン照射量の均一性を担保する。
 一方、近年の半導体デバイスにおいて集積度を飛躍的に高めるため、微細な立体構造を有するパターンを三次元に集積した半導体デバイスの開発が進んでいる。このような立体構造(三次元構造)パターンを集積したデバイスの製造管理のためには断面方向のパターンの評価が必要である。特許文献2は、このような立体構造パターンの深さ方向(あるいは高さ方向)の高精度な測定を実現するため、試料表面に傾斜面を形成し、パターンの深さ方向(高さ方向)の測定を行うことを開示する。
特開2017-199554号公報 国際公開第2016/002341号
 特許文献2では、試料表面に立体構造パターンの断面を露出させるための傾斜面を形成するために集束イオンビーム(FIB:Focused Ion Beam)装置を用いるとしている。しかしながら、集束イオンビーム装置は加工速度が遅く、また、加工範囲も狭いため試料表面に目的とする傾斜面を形成するには時間を要する。このため、発明者らは加工速度の速い、非集束のイオンビームを用いるイオンミリング装置により傾斜面を形成させることを検討した。
 非集束のイオンビームを試料の加工のために用いる場合、その加工速度は試料に照射されるイオンビーム強度、具体的には加速電圧で印加されたイオンの速度とイオンの数、およびイオンの照射角度に依存する。ここで、イオン源から放出されるイオンビームの強度は、理想的にはイオンビーム中心が最も高く、周辺に向けて次第に強度が漸減していく二項分布の形状を有すると考えられる。しかし、イオン源から放出されるイオンビームは、イオン源を構成する電極部品の汚れや、電極部品の消耗による生成されるイオン数の揺らぎや、環境における電場等の外乱の影響を受け、試料に照射されるイオンビーム強度を一定に保ち続けることが難しい。また、試料の組成や入射角度によるミリング速度の差に起因して凹凸が形成されてしまうため、試料に非集束のイオンビームを照射して加工を行う際、イオンミリング装置ではイオンビーム中心を軸として試料を回転させながらイオンビームを照射することにより、凹凸の形成を抑え、電子顕微鏡での観察や計測に適した平滑な加工面を得ることを可能にしている。
 本発明の課題を説明する。図2Aにはイオンミリング装置の主要部を示している。イオン源21、試料20を載置する試料ステージ22、回転中心R0を軸としてR方向に試料ステージ22を回転させる試料ステージ回転駆動源23を有している。イオン源21からのイオンビームは、イオンビーム中心B0を中心に放射状に広がった状態で、試料ステージ22の試料載置面に載置された試料20に照射される。本来、回転中心R0とイオンビーム中心B0とは一致することが前提であるが、イオン源21の取り付け誤差により、図2Aに示すように回転中心R0とイオンビーム中心B0とがεだけずれた状態になる場合がある。このとき、試料20の表面に形成される加工深度を図2Bに示す。波形25に示されるように、回転中心R0からεずれた位置である、イオンビーム強度が最も高くなるイオンビーム中心B0で加工深度が最も深くなり、そこから距離が離れるにつれて加工深度が小さくなる。これに対して、回転中心R0とイオンビーム中心B0とが一致する場合の加工深度を波形26として示す。このように、イオン源21の取り付け誤差により加工面の形状が本来意図した加工面よりもなだらかに、極端な場合は図2Bの波形25に示されるように加工面が波打ってしまうことが分かる。特に、微細な立体構造パターンの観察や計測を行うために試料に観察面、傾斜面を形成することを意図する場合には、このような加工面の形状の変化は無視できない。
 なお、図2Aの例ではイオンビーム中心B0が試料20の表面(あるいは試料ステージ22の試料載置面)に対して垂直になるようにイオンビームを照射しているが、試料ステージ22をC方向に傾斜させ、イオンビームが低入射角度で試料20表面に照射されるようにすることも可能である。これにより、広範な加工面を得ることが可能である。この場合も、試料ステージ22は、傾斜された状態で回転中心R0を軸に回転させながら試料20にイオンビームが照射されるため、回転中心R0とイオンビーム中心B0とがずれている(試料20の表面において、回転中心R0とイオンビーム中心B0とが交わらない)と、同様に回転中心R0とイオンビーム中心B0とのずれが加工面の形状変化として表れ、所望の観察面、傾斜面が得られなくなるおそれがある。
 従来装置のようにイオン源を真空容器に直接取り付ける構成を採用する場合、定期的な清掃のためイオン源を着脱可能とする必要があり、イオン源および試料室のイオン源装着部の機械加工公差を0にすることができない。したがって、イオン源を再度取り付けたときに位置ずれが生じることを避けることができない。このことは、図2A,Bを用いて説明したように、イオンミリング装置による加工精度のばらつきや加工面形状の再現性を低下させることにつながる。
 また、イオンビームはイオン源の射出口からの距離が長いほどイオンビーム径は広がり、電流・イオン密度は低下する。このため、特許文献1のようにイオンビーム測定位置が実際の試料加工位置から離れている場合、イオンビームの測定のためにイオン源に印加する電圧を、実際の加工を行うときの条件よりも高くして測定しなければならないということも考えられる。しかし、イオンビームの射出条件を変えてしまうとイオンビームのもつエネルギーが変化するため、ミリング速度が変わり、また、イオンの密度分布も変わってしまい、更には外乱の与える影響の大きさも変わってくるため、調整は実際の加工のときの射出条件と同じ条件で行うことが望ましい。このため、実際の加工時の射出条件で位置調整を行うために、イオンミリング装置のオペレータが、試料ステージ上に、例えば銅箔のような加工対象を取り付けた上で、実加工条件でのイオンビームを照射して銅箔上にビーム痕を残し、ビーム痕と回転中心R0とを一致させるよう、イオン源の位置調整を実施する場合もあった。しかし、このようなビーム痕による目視または顕微鏡観察下での調整は正確性に限界がある上に、何度もイオン源の脱着を繰り返して位置合わせをすることが必要になることが多く、リアルタイム性に欠けることからオペレータの調整負担は大きかった。
 本発明はこのような課題に鑑み、イオン源脱着後のイオンビーム中心と試料回転中心を容易、かつ、正確に調整可能なイオンミリング装置、およびイオン源調整方法を提供するものである。
 本発明の一実施の形態であるイオンミリング装置は、試料に非集束のイオンビームを照射することにより、試料を加工するイオンミリング装置であって、試料室と、試料室に設置されるイオン源位置調整機構と、イオン源位置調整機構を介して試料室に取り付けられ、イオンビームを射出するイオン源と、回転中心を軸に回転する試料ステージとを有し、イオンビームのイオンビーム中心と回転中心とが一致するときの回転中心の延在する方向をZ方向とし、Z方向と垂直な面をXY面とすると、イオン源位置調整機構は、イオン源のXY面上の位置及びZ方向の位置を調整可能とする。
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
 イオンミリング装置の加工精度、または加工面形状の再現精度を高めることができる。また、イオンミリング装置のメンテナンス時間を短縮できる。
実施例1のイオンミリング装置の要部構成図である。 本発明の課題を説明する図である。 本発明の課題を説明する図である。 試料ステージの構成例を示す図である。 イオン源の位置調整に係るブロック図である。 実施例1のイオン源の位置調整フローである。 ターゲット板における導電体の形状の一例である。 ターゲット板における導電体の形状の別の一例である。 実施例2のイオンミリング装置の要部構成図である。 実施例2のイオン源の位置調整フローである。
 以下、本発明の実施例を図面に基づいて説明する。
 図1は、実施例1に係るイオンミリング装置の要部構成図である。真空状態を保持可能な試料室6、イオン源1、加工時に試料(図示せず)を設置する試料ステージ2、回転中心R0を軸としてR方向に試料ステージ2を回転させる試料ステージ回転駆動源3を有している。なお、図2Aに示したように、試料ステージ2は、イオンビームの入射角度を変えるための傾斜機構を有していてもよい。また、試料室6には、加工する試料を観察するための観察窓7が設けられている。
 ここで、イオン源1は、その位置をX方向、Y方向、およびZ方向に位置を微調整するイオン源位置調整機構5を介して試料室6に取り付けられている。これにより、イオン源1のイオンビーム中心B0の位置、具体的にはXY面(X方向及びY方向を含む面)上の位置及び動作距離(Z方向の位置、具体的にはイオン源1のイオンビーム放出位置から試料ステージ2までの距離を指す)、を微調整可能とされている。また、後述するように試料ステージ2の試料載置板は付け替え可能であって、イオン源1の位置調整を行う場合には試料載置板に代えて、イオンビームの電流を検出するための導電材4が回転中心R0を含む範囲に設置されるターゲット板が設置される。図1はこの状態を示している。
 イオン源位置調整機構5はイオン源1を固定する支持部と、イオン源位置調整機構5を試料室6に設置する基板と、基板に設けられ支持部をX方向、Y方向、Z方向に独立に移動可能なイオン源移動機構とを有する。イオン源移動機構としては例えば、マイクロメータに用いられるような精密なネジ機構を使うことでイオン源1の位置を各方向に微調整することができる。
 イオン源1に所定の電圧が印加されることにより、イオン源1からイオンビーム中心B0を中心に、放射状にイオンビームが射出され、試料ステージ2に設置した回転中心R0を含む範囲に導電材4が設けられたターゲット板を照射する。イオン源1から射出されるイオンビームは、イオンビーム中心B0で電流・イオン密度が高く、外側に向かって徐々に電流・イオン密度が低下する。また、イオン源1からの距離が長いほど電流・イオン密度が低下する。そこで、導電材4を用いてイオンビーム電流を検出し、イオンビーム電流が所望の大きさとなるようにイオン源位置調整機構5によりイオン源1の位置を微調整することにより、所望の加工精度、または加工面形状の再現精度を実現できる。
 図3に試料ステージ2の構成例を示す。導電材4を有するターゲット板30を設置した状態を示している。ターゲット板30は、その導電材4が導電材接続板31と接続されるように設置される。このとき、導電材4の中心は一点鎖線で示す回転中心R0と一致する位置とされる。イオン源からのイオンビームは導電材4を中心とする領域に照射されることになるが、イオン源1からイオンビームは放射状に射出されるため、イオン源1と導電材4との距離によっては導電材4以外にもイオンビームが照射される可能性がある。このような場合に、試料ステージの他の構成部品にイオンビームが照射されたことによる電流が導電材4に流れ込むことを防止するため、導電材4の周囲のターゲット板30は絶縁材とする。導電材接続板31は、試料を回転させる回転シャフト33に接続され、試料ステージ回転駆動源3により駆動される回転歯車34の動力により導電材4を回転させるが、導電材4が受ける電流の回転シャフト33への流れ込みを防止するため、導電材接続板31と回転シャフト33との間に絶縁材32を設けて、電流の流れを遮断する。また、導電材4が受ける電流は、導電材接続板31に接触する回転接触接点35及びビーム電流検出配線36により引き出され、電流値が検出される。なお、回転接触接点35及びビーム電流検出配線36は、ビーム電流検出配線コネクタ37により他の構成部品とは絶縁されている。
 図4に実施例1のイオンミリング装置におけるイオン源1の位置調整に係るブロック図を示す。特に発明を限定するものではないが、ここではイオン源1としてぺニング放電によるイオン源を用いた例を示す。カソード電極11a,11bの間に円筒型のアノード電極12が配置され、カソード電極11a,11bとアノード電極12との間には放電電圧Vが印加される。配管15よりアルゴンガスをイオン源1内に導入し、磁石13によりアノード電極12内に磁界を作用させることにより、アノード電極12内にイオンが発生する。発生したイオンは加速電圧Vが印加された加速電極14により加速され、イオン源1からイオンビームとして放出される。
 放電電圧V及び加速電圧Vは電源部40により生成される。また、電源部40は電流計を有しており、電流計41は放電電流Vの計測、電流計42は導電材4で受けたイオンビーム電流を計測している。なお、放電電圧V及び加速電圧Vの値は、制御部45により設定される。
 また、イオン源1はイオン源位置調整機構5の支持部16に固定され、支持部16をX方向、Y方向、Z方向に独立に移動可能なイオン源移動機構17により、イオン源1の位置が微調整可能とされている。
 電源部40、イオン源移動機構17及び試料ステージ回転駆動源3は制御部45に接続されており、制御部45からイオンビーム射出条件を設定し、また、所定のフローに従い、イオン源の調整や試料の加工を実行する。さらに、制御部45は表示部46に接続されており、制御部45に対するオペレータからのユーザインタフェースとして機能するとともに、制御部45が収集したイオンミリング装置の動作状態を示すセンシングデータの表示なども行う。例えば、表示部46に表示されるセンシングデータとしては、電源部40からの放電電圧値V、放電電流値、加速電圧値V、イオンビーム電流値などが含まれる。
 図4に示したイオンミリング装置において、制御部45が実行するイオン源1の調整フローを図5に示す。
 ステップS51:制御部45は試料ステージ回転駆動源3により、試料ステージ2の回転を開始する。図4に示すように、イオン源1から射出されるイオンビームに対して導電材4の表面が垂直となるように試料ステージ2は設置されている。試料ステージ2を回転させることで、導電材4による電流の検出むらを抑制することができる。
 ステップS52:制御部45は電源部等を制御し、イオン源1からイオンビームを導電材4に照射する。このとき、電源部40がイオン源1に印加する放電電圧V及び加速電圧Vは試料を実際に加工するときに印加する電圧印加条件に従うものとする。これにより、試料を加工するときのイオンビームを精度よく再現することができる。
 ステップS53:電流計42によりイオンビーム電流を計測する。制御部45は電流計42が計測したイオンビーム電流値を取り込む。
 ステップS54:制御部45は、計測されるイオンビーム電流値があらかじめ定められた基準を満たすように、イオン源位置調整機構5を制御する。ここでは、イオン源位置調整機構5のイオン源移動機構17は制御部45によりモーター駆動されるものとし、まずX方向、続いてY方向に移動させて、イオンビーム電流値が最大となる位置にイオン源1のXY面上の位置を調整する。その後、必要に応じてZ方向に移動させることにより、イオンビーム電流値の値に基づき、イオン源1のイオンビーム中心B0のXY面上の位置及び動作距離(Z方向の位置)を微調整する。この調整例は一例であって、制御部45の備えるアルゴリズムにしたがって、イオン源1のイオンビーム中心B0のXY面上の位置及び動作距離(Z方向の位置)を微調整することができる。
 例えば、イオン源位置調整機構5によるZ方向の微調整に代えて、あるいはZ方向の微調整に加えて、イオン源1に印加する放電電圧値Vを調整するようにしてもよい。また、イオン源1の調整を行う際に目標とするイオンビーム電流値は、イオンビーム電流の最大値に限られず、例えば、前回加工実施時におけるイオンビーム電流値のように定めてもよい。
 また、試料ステージ2において導電材4の形状の異なるターゲット板30、またはターゲット板30に対して形状の異なる導電材4を取り換え可能にすることもできる。例えば、図6Aは導電材として回転中心R0を中心とする円形状の導電材60を配置した例である。さらに、同じ円形状であっても、複数の径の同心円形状の導電材を有するターゲット板を用いることも好ましい。これにより、イオンビームの径に合わせた検出範囲を持つ導電材を用いてイオン源の調整を行うことができる。一例としては、導電材4の直径をターゲット板に照射されるイオンビーム径より小さい導電材を用い、導電材4で検知するイオンビーム電流値が最大値となるようイオン源1をZ方向に微動させるような調整も可能である。
 一方、図6Bは導電材として円形状の導電材61と導電材61よりも径の大きい円環形状の導電材62とを、回転中心R0を中心に同心円状に配置した例である。このとき、導電材61で検出されるイオンビーム電流値と導電材62で検出されるイオンビーム電流値とが電源部40で独立して計測できるようにしておく。具体的には、試料ステージ2に導電材61と導電材62に対応する2系列のイオンビーム電流引き出し部を設け、電源部40でそれぞれのイオンビーム電流値を計測する。これにより、照射されるイオンビームプロファイル(二項分布に近似できるイオンビームの広がり具合)を含めて評価することが可能になり、イオンミリング装置の加工精度、または加工面形状の再現精度をより高めることが可能になる。
 実施例1におけるイオンミリング装置について、特にそのイオン源の位置調整を中心に説明したが、種々の変形が可能なものである。例えば、制御部45は電流計42で計測したイオンビーム電流値を表示部46に表示するに留め、オペレータが表示部46に表示されるイオンビーム電流値を確認しながらイオン源位置調整機構5のイオン源移動機構17による移動量、あるいはイオン源1の放電電圧Vを手動で調整するようにしても構わない。
 図7は、実施例2に係るイオンミリング装置の要部構成図である。実施例2は、より簡易な機構でイオンビーム中心B0と回転中心R0との位置合わせを可能とするものである。ここで、実施例1と機能の等しい構成要素については同じ符号を用い、重複する説明は省略する。
 試料室6の上方に観察用の顕微鏡(光学顕微鏡)73が設置され、観察窓7から試料ステージ2の試料載置面が観察可能とされている。また、試料ステージ2の試料載置面には鏡面部材71が設けられている。鏡面部材としては、イオン源1のプラズマ発光を反射可能な部材であればよく、例えば一般的な鏡の他、ウェハでもよい。鏡面部材は試料ステージの試料載置板に試料の代わりに搭載すればよい。試料ステージ2は傾斜機構を有し、X方向に延在する軸72を中心としてC方向に傾斜可能である。軸72は、試料ステージ2の試料載置面において、回転中心R0と交わる位置にある。図7では、試料ステージ2が傾斜角Tで傾斜している状態を示している。なお、傾斜角Tは、イオンビーム中心B0と試料ステージ2の試料載置面の法線とのなす角として定義される。
 このような構成のイオンミリング装置において、イオン源1の位置調整を行う方法について、図8を用いて説明する。
 ステップS81:試料ステージ2をイオンビーム中心B0に対して傾斜角Tを45°に傾斜させる。ここで、試料ステージ2の傾斜機構は軸72を中心に傾斜させるため、イオンビーム中心B0と回転中心R0とが一致した状態であれば、試料ステージ2の傾斜を変えてもイオン源1との距離に変化は生じない。したがって、試料加工時に傾斜角Tが45°以外の所望の傾斜角としても差し支えない。
 ステップS82:試料ステージ回転駆動源3により、試料ステージ2の回転を開始させる。
 ステップS83:イオン源1からイオンビームを鏡面部材71に照射する。このとき、電源部40がイオン源1に印加する放電電圧V及び加速電圧Vは、試料を実際に加工するときに印加する電圧印加条件に従うものとする。これにより、試料を加工するときのイオンビームを精度よく再現することができる。
 ステップS84:観察用顕微鏡73により鏡面部材71を観察し、イオン源1の射出口から放出されるプラズマ発光輝度の中心位置を確認する。イオンビーム中心B0と回転中心R0とが一致した状態であれば、鏡面部材71の回転中心R0近傍が点状または円形状に光ってみえ、イオンビーム中心B0と回転中心R0とが一致していない状態であれば、試料ステージ2が回転していることにより円環状に光ってみえる。
 ステップS85:ステップS84で確認したイオン源1のプラズマ発光輝度中心位置が、試料ステージ2の回転中心R0と一致するよう、イオン源位置調整機構5によりイオン源1の位置を微調整する。
 なお、以上の例では試料ステージ2に鏡面部材71を設置するものとして説明したが、これに代えて、イオンビームの照射により発光する発光部材、例えば、レーザー発光素子、または蛍光体を塗布した試料を設置することでも同様の効果を得ることが可能である。
1,21:イオン源、2,22:試料ステージ、3,23:試料ステージ回転駆動源、4,60,61,62:導電材、5:イオン源位置調整機構、6:試料室、7:観察窓、11a,11b:カソード電極、12:アノード電極、13:磁石、14:加速電極、15:配管、16:支持部、17:イオン源移動機構、20:試料、30:ターゲット板、31:導電材接続板、32:絶縁材、33:回転シャフト、34:回転歯車、35:回転接触接点、36:ビーム電流検出配線、37:ビーム電流検出配線コネクタ、40:電源部、41,42:電流計、45:制御部、46:表示部、71:鏡面部材、72:軸、73:顕微鏡。

Claims (15)

  1.  試料に非集束のイオンビームを照射することにより、前記試料を加工するイオンミリング装置であって、
     試料室と、
     前記試料室に設置されるイオン源位置調整機構と、
     前記イオン源位置調整機構を介して前記試料室に取り付けられ、前記イオンビームを射出するイオン源と、
     回転中心を軸に回転する試料ステージとを有し、
     前記イオンビームのイオンビーム中心と前記回転中心とが一致するときの前記回転中心の延在する方向をZ方向とし、前記Z方向と垂直な面をXY面とすると、前記イオン源位置調整機構は、前記イオン源の前記XY面上の位置及び前記Z方向の位置を調整可能とするイオンミリング装置。
  2.  請求項1において、
     前記試料ステージに設置され、前記回転中心を含む範囲に導電材が設けられたターゲット板と、
     前記導電材で受けたイオンビーム電流を計測する電流計とを有するイオンミリング装置。
  3.  請求項2において、
     前記導電材は、前記回転中心を中心とする円形状を有するイオンミリング装置。
  4.  請求項2において、
     前記導電材は、前記回転中心を中心として同心円状に配置された、円形状の第1の導電材と、前記第1の導電材よりも径の大きい円環形状の第2の導電材とを有し、
     前記第1の導電材で受けたイオンビーム電流と前記第2の導電材で受けたイオンビーム電流とを独立して計測するイオンミリング装置。
  5.  請求項2において、
     前記イオン源に所定の電圧を印加する電源部と、
     制御部と、
     表示部とを有し、
     前記制御部は、前記電源部が前記イオン源に印加する放電電圧値、放電電流値、加速電圧値、前記電流計が計測するイオンビーム電流値を含むセンシングデータを収集し、前記表示部に表示するイオンミリング装置。
  6.  請求項2において、
     前記イオン源に所定の電圧を印加する電源部と、
     制御部と、
     前記制御部は、前記電流計が計測するイオンビーム電流値に基づき、前記イオン源位置調整機構により、前記イオン源の前記XY面上の位置及び前記Z方向の位置を調整するイオンミリング装置。
  7.  請求項6において、
     前記制御部は、前記イオン源位置調整機構による前記Z方向の位置の調整に代えて、または前記イオン源位置調整機構による前記Z方向の位置の調整に加えて、前記電源部が前記イオン源に印加する放電電圧を調整するイオンミリング装置。
  8.  試料室内に置かれた試料に非集束のイオンビームを照射することにより、前記試料を加工するイオンミリング装置のイオン源調整方法であって、
     試料ステージ回転駆動源は、回転中心を含む範囲に導電材が設けられたターゲット板が設置された試料ステージを、前記回転中心を軸に回転させ、
     イオン源は、前記ターゲット板に向けて前記イオンビームを照射し、
     電流計は、前記導電材で受けたイオンビーム電流を計測し、
     前記イオン源は、前記イオン源の位置を調整可能とするイオン源位置調整機構を介して前記試料室に取り付けられており、
     前記イオン源位置調整機構により調整された前記イオン源の位置は、前記電流計により計測されるイオンビーム電流値が所定の目標を満たすように設定されるイオン源調整方法。
  9.  請求項8において、
     前記イオンビームのイオンビーム中心と前記回転中心とが一致するときの前記回転中心の延在する方向をZ方向とし、前記Z方向と垂直な面をXY面とすると、前記イオン源位置調整機構により調整される前記イオン源の位置は、前記イオン源の前記XY面上の位置及び前記Z方向の位置を含むイオン源調整方法。
  10.  請求項8において、
     前記イオン源の放電電圧の値は、前記電流計により計測されるイオンビーム電流値が前記所定の目標を満たすように設定されるイオン源調整方法。
  11.  請求項8において、
     前記ターゲット板に向けて前記イオンビームを照射するときの前記イオン源の射出条件は、前記試料を加工するときの前記イオン源の射出条件と等しくされるイオン源調整方法。
  12.  請求項8において、
     前記所定の目標として、前記イオンビーム電流の最大値または前回加工実施時におけるイオンビーム電流値とするイオン源調整方法。
  13.  試料室内に置かれた試料に非集束のイオンビームを照射することにより、前記試料を加工するイオンミリング装置のイオン源調整方法であって、
     試料ステージ回転駆動源は、回転中心を含む範囲に鏡面部材が設置された試料ステージを、前記試料ステージの傾斜角を45°に傾けた状態で、前記回転中心を軸に回転させ、
     イオン源は、前記鏡面部材に向けて前記イオンビームを照射し、
     前記イオン源は、前記イオン源の位置を調整可能とするイオン源位置調整機構を介して前記試料室に取り付けられており、
     前記イオン源位置調整機構により調整された前記イオン源の位置は、前記鏡面部材における前記回転中心近傍が、点状または円形状に光ってみえる状態に設定されるイオン源調整方法。
  14.  請求項13において、
     前記鏡面部材に代えて、前記イオンビームに反応して発光する発光部材を前記試料ステージに設置するイオン源調整方法。
  15.  請求項13または請求項14において、
     前記鏡面部材または前記発光部材に向けて前記イオンビームを照射するときの前記イオン源の射出条件は、前記試料を加工するときの前記イオン源の射出条件と等しくされるイオン源調整方法。
PCT/JP2018/007477 2018-02-28 2018-02-28 イオンミリング装置及びイオンミリング装置のイオン源調整方法 WO2019167165A1 (ja)

Priority Applications (10)

Application Number Priority Date Filing Date Title
DE112018006577.4T DE112018006577B4 (de) 2018-02-28 2018-02-28 Ionenfräsvorrichtung und Ionenquellen-Justierverfahren für Ionenfräsvorrichtung
US16/961,759 US11244802B2 (en) 2018-02-28 2018-02-28 Ion milling device and ion source adjusting method for ion milling device
CN201880090114.6A CN111758144B (zh) 2018-02-28 2018-02-28 离子铣削装置及离子铣削装置的离子源调整方法
PCT/JP2018/007477 WO2019167165A1 (ja) 2018-02-28 2018-02-28 イオンミリング装置及びイオンミリング装置のイオン源調整方法
KR1020207019868A KR102464623B1 (ko) 2018-02-28 2018-02-28 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법
KR1020227038540A KR102551000B1 (ko) 2018-02-28 2018-02-28 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법
CN202310581760.5A CN116544088A (zh) 2018-02-28 2018-02-28 离子铣削装置及离子铣削装置的离子源调整方法
JP2020503158A JP7036902B2 (ja) 2018-02-28 2018-02-28 イオンミリング装置及びイオンミリング装置のイオン源調整方法
TW108106272A TWI698900B (zh) 2018-02-28 2019-02-25 離子研磨裝置及離子研磨裝置的離子源調整方法
JP2022032598A JP7350916B2 (ja) 2018-02-28 2022-03-03 イオンミリング装置及びイオンミリング装置のイオン源調整方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007477 WO2019167165A1 (ja) 2018-02-28 2018-02-28 イオンミリング装置及びイオンミリング装置のイオン源調整方法

Publications (1)

Publication Number Publication Date
WO2019167165A1 true WO2019167165A1 (ja) 2019-09-06

Family

ID=67806027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007477 WO2019167165A1 (ja) 2018-02-28 2018-02-28 イオンミリング装置及びイオンミリング装置のイオン源調整方法

Country Status (7)

Country Link
US (1) US11244802B2 (ja)
JP (2) JP7036902B2 (ja)
KR (2) KR102464623B1 (ja)
CN (2) CN111758144B (ja)
DE (1) DE112018006577B4 (ja)
TW (1) TWI698900B (ja)
WO (1) WO2019167165A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114536113A (zh) * 2022-04-27 2022-05-27 四川欧瑞特光电科技有限公司 一种负压装置及离子束抛光机

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102464623B1 (ko) * 2018-02-28 2022-11-09 주식회사 히타치하이테크 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법
US12020893B2 (en) * 2020-01-29 2024-06-25 Hitachi High-Tech Corporation Ion milling device
JP7312778B2 (ja) * 2021-03-08 2023-07-21 日本電子株式会社 試料加工装置の調整方法および試料加工装置
WO2023242909A1 (ja) * 2022-06-13 2023-12-21 株式会社日立ハイテク イオンミリング装置、ホルダおよび断面ミリング処理方法
CN115019994B (zh) * 2022-07-21 2024-05-14 中国核动力研究设计院 一种基于离子注入机的透射电镜试样辐照装置及控温方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143351A (ja) * 1985-12-17 1987-06-26 Matsushita Electric Ind Co Ltd 自動光軸調整装置
JPH01142149U (ja) * 1988-03-23 1989-09-28
JPH02112138A (ja) * 1988-10-20 1990-04-24 Sony Corp 集束イオンビーム装置のイオンビームアライメント方法
JPH0329249A (ja) * 1990-06-12 1991-02-07 Seiko Instr Inc 集束イオンビーム装置
JPH0487155U (ja) * 1990-11-30 1992-07-29
JPH10134746A (ja) * 1996-10-29 1998-05-22 Seiko Instr Inc 集束イオンビームの光軸調整方法および集束イオンビーム装置
JP2008204905A (ja) * 2007-02-22 2008-09-04 Hitachi High-Tech Science Systems Corp イオンミリング装置、及びイオンミリング加工方法
WO2018003109A1 (ja) * 2016-07-01 2018-01-04 株式会社 日立ハイテクノロジーズ イオンミリング装置

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4128765A (en) * 1976-10-29 1978-12-05 Joseph Franks Ion beam machining techniques and apparatus
JP2985175B2 (ja) * 1988-10-17 1999-11-29 ソニー株式会社 イオンビーム装置
JPH0733589B2 (ja) * 1989-07-01 1995-04-12 株式会社日立サイエンスシステムズ イオンミリング方法及び装置
JP3271395B2 (ja) * 1993-10-26 2002-04-02 株式会社島津製作所 イオンビーム照射装置
US6768110B2 (en) 2000-06-21 2004-07-27 Gatan, Inc. Ion beam milling system and method for electron microscopy specimen preparation
US20060145095A1 (en) * 2004-12-30 2006-07-06 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for ion implantation with control of incidence angle by beam deflection
JP2006236601A (ja) * 2005-02-22 2006-09-07 Kobe Steel Ltd 軌道位置検出装置,組成分析装置,荷電粒子ビームの軌道調整方法及び位置座標検出装置
JP4504880B2 (ja) * 2005-07-08 2010-07-14 株式会社日立ハイテクノロジーズ 真空排気系を利用したシリンダを用いたイオンビーム電流測定機構
JP4594193B2 (ja) * 2005-08-26 2010-12-08 日本電子株式会社 イオンミリング装置
WO2007067296A2 (en) 2005-12-02 2007-06-14 Alis Corporation Ion sources, systems and methods
JP2008091221A (ja) * 2006-10-02 2008-04-17 Hitachi High-Tech Science Systems Corp イオンビーム加工装置及び方法
JP5619002B2 (ja) * 2009-07-30 2014-11-05 株式会社日立ハイテクノロジーズ イオンミリング装置
DE112010004286B4 (de) * 2009-11-06 2021-01-28 Hitachi High-Tech Corporation Ladungsteilchenmikroskop
JP2011154920A (ja) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp イオンミリング装置,試料加工方法,加工装置、および試料駆動機構
JP5989959B2 (ja) * 2010-02-16 2016-09-07 株式会社日立ハイテクサイエンス 集束イオンビーム装置
US8283642B2 (en) * 2010-04-11 2012-10-09 Gatan, Inc. Ion beam sample preparation apparatus and methods
DE112011106139B3 (de) * 2010-11-05 2018-10-11 Hitachi High-Technologies Corporation Ionenätzvorrichtung
JP5918999B2 (ja) * 2012-01-06 2016-05-18 株式会社日立ハイテクノロジーズ 真空容器を備えた荷電粒子線照射装置
JP5732421B2 (ja) * 2012-03-26 2015-06-10 株式会社日立ハイテクノロジーズ イオンミリング装置
US9347127B2 (en) * 2012-07-16 2016-05-24 Veeco Instruments, Inc. Film deposition assisted by angular selective etch on a surface
WO2014106182A1 (en) * 2012-12-31 2014-07-03 Fei Company Fiducial design for tilted or glancing mill operations with a charged particle beam
WO2015016039A1 (ja) * 2013-07-29 2015-02-05 株式会社 日立ハイテクノロジーズ イオンミリング装置、及びイオンミリング装置を用いた加工方法
KR102306979B1 (ko) * 2014-04-01 2021-09-30 에베 그룹 에. 탈너 게엠베하 기질의 표면 처리를 위한 방법 및 장치
WO2016002341A1 (ja) 2014-06-30 2016-01-07 株式会社 日立ハイテクノロジーズ パターン測定方法、及びパターン測定装置
US10731246B2 (en) * 2014-07-28 2020-08-04 Gatan, Inc. Ion beam sample preparation and coating apparatus and methods
JP6637055B2 (ja) * 2015-09-25 2020-01-29 株式会社日立ハイテクノロジーズ イオンミリング装置
KR102195030B1 (ko) * 2016-02-26 2020-12-28 주식회사 히타치하이테크 이온 밀링 장치, 및 이온 밀링 방법
JP2017199554A (ja) 2016-04-27 2017-11-02 日新電機株式会社 イオンビーム照射装置及びイオンビーム照射方法
KR102464623B1 (ko) * 2018-02-28 2022-11-09 주식회사 히타치하이테크 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법
JP6998467B2 (ja) * 2018-08-31 2022-01-18 株式会社日立ハイテク イオンミリング装置
GB2582242A (en) * 2018-11-30 2020-09-23 Oxford Instruments Nanotechnology Tools Ltd Charged particle beam source, surface processing apparatus and surface processing method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62143351A (ja) * 1985-12-17 1987-06-26 Matsushita Electric Ind Co Ltd 自動光軸調整装置
JPH01142149U (ja) * 1988-03-23 1989-09-28
JPH02112138A (ja) * 1988-10-20 1990-04-24 Sony Corp 集束イオンビーム装置のイオンビームアライメント方法
JPH0329249A (ja) * 1990-06-12 1991-02-07 Seiko Instr Inc 集束イオンビーム装置
JPH0487155U (ja) * 1990-11-30 1992-07-29
JPH10134746A (ja) * 1996-10-29 1998-05-22 Seiko Instr Inc 集束イオンビームの光軸調整方法および集束イオンビーム装置
JP2008204905A (ja) * 2007-02-22 2008-09-04 Hitachi High-Tech Science Systems Corp イオンミリング装置、及びイオンミリング加工方法
WO2018003109A1 (ja) * 2016-07-01 2018-01-04 株式会社 日立ハイテクノロジーズ イオンミリング装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114536113A (zh) * 2022-04-27 2022-05-27 四川欧瑞特光电科技有限公司 一种负压装置及离子束抛光机
CN114536113B (zh) * 2022-04-27 2022-07-29 四川欧瑞特光电科技有限公司 一种负压装置及离子束抛光机

Also Published As

Publication number Publication date
JP7350916B2 (ja) 2023-09-26
US20210066020A1 (en) 2021-03-04
JP2022081571A (ja) 2022-05-31
CN116544088A (zh) 2023-08-04
TW201937529A (zh) 2019-09-16
JP7036902B2 (ja) 2022-03-15
DE112018006577B4 (de) 2024-08-01
CN111758144B (zh) 2023-06-02
TWI698900B (zh) 2020-07-11
KR20220154249A (ko) 2022-11-21
US11244802B2 (en) 2022-02-08
KR102551000B1 (ko) 2023-07-05
CN111758144A (zh) 2020-10-09
DE112018006577T5 (de) 2020-11-12
KR20200096619A (ko) 2020-08-12
JPWO2019167165A1 (ja) 2021-02-04
KR102464623B1 (ko) 2022-11-09

Similar Documents

Publication Publication Date Title
WO2019167165A1 (ja) イオンミリング装置及びイオンミリング装置のイオン源調整方法
US6768110B2 (en) Ion beam milling system and method for electron microscopy specimen preparation
TWI719564B (zh) 離子研磨裝置
TWI767464B (zh) 離子研磨裝置
KR20040046204A (ko) 이온 주입 장치의 모니터링 방법 및 이를 수행하기 위한섀도우 지그를 갖는 이온 주입 장치
US20220262593A1 (en) System and Method for Uniform Ion Milling
WO2024195014A1 (ja) イオンミリング装置及びそれを用いた加工方法
TWI821868B (zh) 離子銑削裝置
TWI773042B (zh) 離子研磨裝置
WO2024034052A1 (ja) イオンミリング装置及びそれを用いた加工方法
WO2022244149A1 (ja) イオンミリング装置
CN118553584A (zh) 超精密离子研磨仪
KR100499172B1 (ko) 이온 주입 공정의 기판 경사각 측정 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18907730

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207019868

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020503158

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18907730

Country of ref document: EP

Kind code of ref document: A1