JP6637055B2 - イオンミリング装置 - Google Patents

イオンミリング装置 Download PDF

Info

Publication number
JP6637055B2
JP6637055B2 JP2017541208A JP2017541208A JP6637055B2 JP 6637055 B2 JP6637055 B2 JP 6637055B2 JP 2017541208 A JP2017541208 A JP 2017541208A JP 2017541208 A JP2017541208 A JP 2017541208A JP 6637055 B2 JP6637055 B2 JP 6637055B2
Authority
JP
Japan
Prior art keywords
ion
ion gun
permanent magnet
magnetic shield
acceleration electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017541208A
Other languages
English (en)
Other versions
JPWO2017051469A1 (ja
Inventor
浅井 健吾
健吾 浅井
岩谷 徹
徹 岩谷
高須 久幸
久幸 高須
志知 広康
広康 志知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Publication of JPWO2017051469A1 publication Critical patent/JPWO2017051469A1/ja
Application granted granted Critical
Publication of JP6637055B2 publication Critical patent/JP6637055B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/31Electron-beam or ion-beam tubes for localised treatment of objects for cutting or drilling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/08Ion sources; Ion guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/28Electron or ion microscopes; Electron or ion diffraction tubes with scanning beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/30Electron-beam or ion-beam tubes for localised treatment of objects
    • H01J37/305Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching
    • H01J37/3053Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching
    • H01J37/3056Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating or etching for evaporating or etching for microworking, e.g. etching of gratings, trimming of electrical components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/026Shields
    • H01J2237/0262Shields electrostatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/02Details
    • H01J2237/026Shields
    • H01J2237/0264Shields magnetic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/04Means for controlling the discharge
    • H01J2237/047Changing particle velocity
    • H01J2237/0473Changing particle velocity accelerating
    • H01J2237/04732Changing particle velocity accelerating with magnetic means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/08Ion sources
    • H01J2237/0815Methods of ionisation
    • H01J2237/082Electron beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/30Electron or ion beam tubes for processing objects
    • H01J2237/317Processing objects on a microscale
    • H01J2237/3174Etching microareas
    • H01J2237/31745Etching microareas for preparing specimen to be viewed in microscopes or analyzed in microanalysers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Electron Sources, Ion Sources (AREA)
  • Drying Of Semiconductors (AREA)

Description

本発明は、イオンミリング装置に関する。
イオンミリング装置は、加速したイオンを試料へ衝突させて、イオンが原子や分子をはじき飛ばすスパッタ現象を利用して、試料を削る加工装置である。また加工される試料は、上面にイオンビームの遮蔽板となるマスクを載せ、マスク端面からの突出部分(マスクでカバーされていない露出部分)がスパッタされることで平滑な断面が加工できる。イオンミリング装置は、金属、ガラス、セラミック、電子部品、複合材料などを対象に用いられ、例えば電子部品においては、内部構造や断面積形状、膜厚評価、結晶状態、故障や異物断面の解析といった用途に対して、走査型電子顕微鏡による形態像、試料組成像、チャネリング像の取得やX線分析、結晶方位解析など取得するための断面試料作成に利用されている。
イオンミリング装置においては、使い勝手向上、三次元解析の要求、そして大気暴露できない材料の解析要求などから、イオンミリング装置と電子顕微鏡装置の複合化の要求が高い。特許文献1に、イオンビームにより試料をミリング加工している途中で、加工の進捗を確認する手法として、電子顕微鏡を搭載したイオンミリング装置が開示されている。特許文献2に、試料の内部構造を三次元的に解析する方法として、試料表面からイオンミリングで少しずつ加工を行いながら走査電子顕微鏡で観察する方法が開示されている。特許文献3に、走査電子顕微鏡にイオンガンを搭載した試料前処理装置を設け、同一真空内で試料の表面から少しずつイオン研磨を行い、表面から深さ方向の構造を順次走査電子顕微鏡で観察する方法が開示されている。
国際公開第2012/060416号 特開2000−195460号公報 特開平8−298092号公報
イオンミリング装置で加工する観察対象が、例えば1μm又はそれ以下の寸法の異物断面の場合であっても、走査電子顕微鏡(SEM)を搭載することにより試料の加工位置合わせを容易に行える、またイオンミリング装置による加工途中の或いは加工後の断面を同一装置内にてSEM観察することができる等のメリットが期待される。そこで、発明者等は、SEMを搭載したイオンミリング装置について検討した。以下、検討結果について説明する。
発明者等は、イオンガンとして単純な構成で小型なペニング放電方式のイオンガンが用いられているイオンミリング装置について検討した。ペニング放電方式のイオンガンは、カソードから放出された電子が永久磁石からの磁場により旋回運動を行い、イオンガン内部に導入されたガスと衝突することでイオン化される。アノード両端にカソードを配置することで、同電位の電極間を電子が往復運動をするため、その軌道を長くすることが可能となりイオン化効率が向上する。イオン化室で発生した陽イオンの一部は、カソード出口孔を通り、加速電極で加速され加速電極出口孔から外部に放出される。ミリング性能を高めるにはイオンガンから放出されるイオンの量を多くする必要がある。そのためには高いプラズマ密度が不可欠であり、高磁束密度の磁場を形成することで電子軌道を長く取る必要がある。ペニング放電方式のイオンガンは内部に永久磁石を有する構成であるため、電子顕微鏡観察時にはイオンガンからの漏洩磁場が電子ビームに悪影響を与えることになる。電子顕微鏡カラムから放出される電子は微弱な磁界によっても軌道が曲げられる性質を持つため,電子顕微鏡からの電子ビームが大きく曲げられるという課題の有ることが判明した。
本発明は、このような点に鑑みてなされたものであり、その目的は電子顕微鏡カラムから放出される電子ビームの軌道シフトを抑圧可能なイオンミリング装置を提供することにある。
上記目的を達成するための一実施形態として、永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
前記永久磁石からの漏洩磁場を低減する磁気シールドを有することを特徴とするイオンミリング装置とする。
本発明によれば、電子顕微鏡カラムから放出される電子ビームの軌道シフトを抑圧可能なイオンミリング装置を提供することができる。
イオンミリング装置(本発明の各実施例に係る、或いは磁気シールド無イオンガンを備えた場合)の一例を示す全体構成断面図である。 磁気シールド構造を含まないイオンガンを説明するための構造断面図である。 本発明の第1の実施例に係るイオンミリング装置におけるイオンガン(磁気シールド構造を含む)の一例(構成1、2)を示す構造断面図である。 本発明の第1の実施例に係るイオンミリング装置におけるイオンガン(磁気シールド構造を含む)の他の例(構成3)を示す構造断面図である。 本発明の第1の実施例に係るイオンミリング装置におけるイオンガン(磁気シールド構造を含む)の他の例(構成4)を示す構造断面図である。 本発明の第1の実施例に係るイオンミリング装置におけるイオンガン(磁気シールド構造を含む)の他の例(構成5)を示す構造断面図である。 本発明の第1の実施例に係るイオンミリング装置におけるイオンガン(磁気シールド構造を含む)の他の例(構成6)を示す構造断面図である。 本発明の第1の実施例に係るイオンミリング装置におけるイオンガン(磁気シールド構造を含む)の他の例(構成7)を示す構造断面図である。 本発明の第1の実施例に係るイオンミリング装置におけるイオンガン(磁気シールド構造を含む)の他の例(構成8)を示す構造断面図である。 イオンガンから漏洩する磁場強度を示す図であり、(a)は構成3、4、5、8および磁気シールド無の場合、(b)は構成1、2、6、7および磁気シールド無の場合を示す。 イオンガン内部の軸上磁場強度を示す図であり、(a)は構成3、4、5、8および磁気シールド無の場合、(b)は構成1、2、6、7および磁気シールド無の場合を示す。 磁気シールド無のイオンガンにおけるイオンガン内部の軸上磁場強度を示す図である(特性の異なる搭載磁石がパラメータ)。 図1に示す構成2のイオンガンにおけるイオンガン内部の軸上磁場強度を示す図である(特性の異なる搭載磁石がパラメータ)。 本実施例の効果を説明するためのビームプロファイルの一例 を示す図である。 本発明の第2の実施例に係るイオンミリング装置におけるイオンガン(加速電極ガイド部材を含む)の一例を示す構造断面図である 。 本発明の第2の実施例に係るイオンミリング装置におけるイオンガン(加速電極ガイド部材を含む)の他の例を示す構造断面図である 。
発明者等は上記課題について検討し、ペニング放電方式のイオンガンに磁気シールドを付加することにした。これにより、イオンガン内部に設置されている永久磁石からの漏洩磁場を低減することが可能となる。
具体的には、例えばイオンガン内部にガスを供給するガス供給機構と、イオンガン内部に配置され正電圧が印加されるアノードと、アノードとの間に電位差を発生させる2個のカソードと、カソードリングおよびインシュレータと、永久磁石を備え、前記2個のカソードから放出された電子を前記磁場により旋回させ、その旋回する電子により前記ガスをイオン化し、発生したイオンを加速電極により前記イオンガンの外に放出するようにしたイオンガンにおいて、加速電極を強磁性体材料にて形成する。これにより、イオンガンからの漏洩磁場を低減し、電子顕微鏡カラムから放出される電子ビームの軌道シフトを十分に抑圧する。
その際、イオンガンベースの加速電極が配置される面に強磁性体材料を形成することもできる。
また、ステンレスで形成される加速電極の外周面およびイオンガンベースの加速電極が配置される表面に強磁性体材料を被覆することもできる。
また、ステンレスで形成される加速電極の内周面およびイオンガンベースの加速電極が配置される表面に強磁性体材料を被覆することもできる。
また、イオンガン外部に強磁性体材料からなる磁気シールド構造を形成し、かつ、イオンガンベースの加速電極が配置される面に強磁性体材料を形成することもできる。
また、カソードリングを強磁性体材料により形成することもできる。
また、加速電極の内部に強磁性体材料からなる磁気シールド構造を形成することもできる。
前記強磁性体材料としては、パーマロイ、純鉄、ニッケル、銅、モリブデン、および前記の少なくとも一種を主成分とする材料を含んでいることが望ましい。
イオンガンに磁気シールド構造を付加することにより、イオンガンの内部に配置された永久磁石からの漏洩磁場を十分に低下させることが可能となる。
また、イオンガンに付加した磁気シールド電極の構造変更を行うことにより、イオンガン内部の軸上磁場強度を制御することが可能となる。これにより、イオンガン性能を引き出す最適な軸上磁場強度を選択できるため、従来よりも著しく大きいミリング速度を得ることが可能となる。
以下、本発明の好ましい実施形態について図面を参照して説明する。なお、同一符号は同一構成要素を示す。
イオンミリング装置について図面を用いて説明する。図1はイオンミリング装置の一例を示す全体構成断面図である。ペニング放電方式のイオンガン101は、その内部にイオンを発生するために必要な構成要素が配置され、イオンビーム102を試料106に照射するための照射系を形成する。電子顕微鏡カラム161は、その内部に電子ビーム162を発生するために必要な構成要素が配置され、電子ビーム162を試料106に照射するための照射系を形成する。ガス源142はガス供給機構141を介してイオンガン101に接続され、ガス供給機構141により制御されたガス流量がイオンガン101のイオン化室内に供給される。イオンビーム102の照射とそのイオンビーム電流は、イオンガン制御部103によって制御される。イオンビーム102のイオンビーム電流は、電流測定手段151によって測定される。電流測定子153はイオンビームのシャッタの役割も兼ねており、電流測定子駆動部152により稼動する機構を有する。真空チャンバー104は、真空排気系105によって大気圧または真空に制御される。試料106は試料台107の上に保持され、試料台107は試料台駆動部108によって保持されている。試料台駆動部108は、真空チャンバー104が大気開放したときに真空チャンバー104の外へ引き出すことができ、また試料106をイオンビーム102の光軸に対して任意の角度に傾斜させることができるための機構要素をすべて含んでいる。これにより、イオンビームによる加工時と電子ビームによる観察時で試料を所望の向きに調整することができる。試料台駆動制御部109は、試料台駆動部108を制御し、試料を傾斜させたり、前後左右へスイングすることができ、その速度を制御することができる。
図2は、磁気シールド構造を含まないイオンガン101と関連する周辺部の構成を示す断面図である。イオンガン101はイオンガン内部にガスを供給するガス供給機構141と、アノード113と、第1カソード111と第2カソード112と、永久磁石114と、加速電極115と、インシュレータ116と、カソードリング119により構成され、イオンガンベース117に固定される。イオンガン制御部103は放電電源121と加速電源122に電気的に接続されており、放電電圧と加速電圧を制御している。なお、符号118はイオン化室、符号131はアノード出口孔、符号132はカソード出口孔、符号133は加速電極出口孔を示す。
第1カソード111と第2カソード112は強磁性体の純鉄製であり、起磁力である永久磁石114と共に磁気回路を形成する。一方、加速電極115と、カソードリング119と、イオンガンベース117はステンレス(SUS:Steel Special Use Stainless)で作製されているため、アルミナ製インシュレータ116及びアルミニウム製アノード113と共に磁気回路には含まれない。
このようなペニング放電方式のイオンガンでは、内部に永久磁石を有する構成であるため、電子顕微鏡観察時にはイオンガンからの漏洩磁場が電子ビームに影響を与えることになる。特に、特定の微小領域を観察する場合には僅かな電子ビームの軌道シフトも問題となる。電子顕微鏡カラムから放出される電子は微弱な磁界によっても軌道が曲げられる性質を持つため,電子顕微鏡が搭載されたイオンミリング装置においては、加速電圧の引き換え時などに電子ビームが大きく曲がり、それに伴い観察している観察像が大きくシフトすることになる。この観察像のシフトを回避するためにイオンガンからの漏洩磁場を抑圧する必要がある。
図3は、本実施例に係るイオンミリング装置におけるイオンガン(磁気シールド構造を含む。以下、磁気シールド構造イオンガンという。)の一例を示す構造断面図である。本実施例に係るイオンミリング装置は、図1におけるイオンガン101を磁気シールド構造イオンガン100に置き換えた構成を有する。本ペニング放電方式の磁気シールド構造イオンガン100は、イオンガン内部にガスを供給するガス供給機構141と、イオンガン内部に配置され正電圧が印加される例えばアルミニウム製のアノード113と、アノード113との間に電位差を発生させる例えば純鉄製の第1カソード111および第2カソード112と、例えばステンレス製のカソードリング119および例えばアルミナ製のインシュレータ116と、例えばネオジムによる永久磁石114を備えたペニング放電方式のイオンガンにおいて、加速電極には例えばパーマロイ製の磁気シールド171を適用することにより十分なシールド効果を得て、磁気シールド構造イオンガン100からの漏洩磁場を低減し、電子顕微鏡カラム161から放出される電子ビーム162の軌道シフトを十分に抑圧することを特徴とする(構成1)。
或いは、上記磁気シールド構造イオンガン100において、加速電極としてパーマロイ製の磁気シールドに代えて、例えば純鉄製の磁気シールド171にて形成することにより磁気シールド効果を得て、磁気シールド構造イオンガン100からの漏洩磁場を低減し、電子顕微鏡カラム161から放出される電子ビーム162の軌道シフトを十分に抑圧することもできる(構成2)。
図4は、本実施例に係るイオンミリング装置における磁気シールド構造イオンガンの別の例を示す構造断面図である。本ペニング放電方式の磁気シールド構造イオンガン100は、加速電極を例えば純鉄製の磁気シールド172により形成し、それに加えて例えばステンレス製のイオンガンベース117の加速電極が配置される側の表面に例えば純鉄製の磁気シールド172を形成することにより、磁気シールド構造イオンガン100からの漏洩磁場をより低減することを可能にし、電子顕微鏡カラム161から放出される電子ビーム162の軌道シフトを十分に抑圧することを特徴とする(構成3)。
図5は、本実施例に係るイオンミリング装置における磁気シールド構造イオンガンの更に別の例を示す構造断面図である。本ペニング放電方式の磁気シールド構造イオンガン100は、例えばステンレスで形成される加速電極115の外周面および、例えばステンレス製のイオンガンベース117の加速電極115が配置される側の表面に例えば純鉄による磁気シールド173を被覆することにより、磁気シールド構造イオンガン100からの漏洩磁場を低減し、電子顕微鏡カラム161から放出される電子ビーム162の軌道シフトを十分に抑圧することを特徴とする(構成4)。
図6は、本実施例に係るイオンミリング装置における磁気シールド構造イオンガンの更に別の例を示す構造断面図である。本ペニング放電方式の磁気シールド構造イオンガン100は、例えばステンレスで形成される加速電極115の内周面および、例えばステンレス製のイオンガンベース117の加速電極115が配置される側の表面に例えば純鉄による磁気シールド174を被覆することにより、磁気シールド構造イオンガン100からの漏洩磁場を低減し、電子顕微鏡カラム161から放出される電子ビーム162の軌道シフトを十分に抑圧することを特徴とする(構成5)。
図7は、本実施例に係るイオンミリング装置における磁気シールド構造イオンガンの更に別の例を示す構造断面図である。本ペニング放電方式の磁気シールド構造イオンガン100は、イオンガンの最外部に例えば純鉄製の強磁性体材料からなる磁気シールド175を形成し、かつ、例えばステンレス製のイオンガンベース117の例えばステンレス製の加速電極115が配置される側の表面に例えば純鉄製の磁気シールド175を形成することにより、磁気シールド構造イオンガン100からの漏洩磁場を低減し、電子顕微鏡カラム161から放出される電子ビーム162の軌道シフトを十分に抑圧することを特徴とする(構成6)。
図8は、本実施例に係るイオンミリング装置における磁気シールド構造イオンガンの更に別の例を示す構造断面図である。本ペニング放電方式の磁気シールド構造イオンガン100は、カソードリングを例えば純鉄製である磁気シールド176により形成することにより、磁気シールド構造イオンガン100からの漏洩磁場を低減し、電子顕微鏡カラム161から放出される電子ビーム162の軌道シフトを十分に抑圧することを特徴とする(構成7)。
図9は、本実施例に係るイオンミリング装置における磁気シールド構造イオンガンの更に別の例を示す構造断面図である。本ペニング放電方式の磁気シールド構造イオンガン100は、例えばステンレス製の加速電極115の内側に例えば純鉄からなる磁気シールド177を形成することにより、磁気シールド構造イオンガン100からの漏洩磁場を低減し、電子顕微鏡カラム161から放出される電子ビーム162の軌道シフトを十分に抑圧することを特徴とする(構成8)。
図10は、本実施例に係るイオンミリング装置における上記各構成を有する磁気シールド構造イオンガン100から漏洩する磁場強度を示す図であり、(a)は構成3、4、5、8および磁気シールド無の場合、(b)は構成1、2、6、7および磁気シールド無の場合を示す。イオンガン内に搭載する永久磁石114として残留磁束密度が1250から1320mTの範囲で保持力が859kA/mのネオジム磁石を適用した場合の漏洩磁束密度を磁場シミュレータにて算出した結果である。図10の横軸はイオンガンの先端からの距離、横軸はイオンガンからの漏洩磁場強度を示している。例えばイオンガン先端から80mm離れた領域の漏洩磁場強度は、磁気シールドを付加しないイオンガン101では0.69mTであるのに対して、構成1の磁気シールド構造イオンガンでは0.12mT、構成2では0.09mT、構成3では0.03mT、構成4では0.12mT、構成5では0.27mT、構成6では0.12mT、構成7では0.42mT、構成8では0.34mTに低減できる。イオンガンに付加する磁気シールドの構造を選択することによって、漏洩磁場強度は磁気シールドを付加しないイオンガンに対して4%から60%の範囲で任意に調整可能であることが分かる。
以上のように、本実施例によれば、イオンガンからの漏洩磁場を低減することができ、電子顕微鏡カラムから放出される電子ビームの軌道シフトを十分に抑圧することが可能なペニング放電方式のイオンガンを備えたイオンミリング装置を提供することができる。
図11は、イオンガン内部の軸上磁場強度を示す図であり、(a)は構成3、4、5、8および磁気シールド無の場合、(b)は構成1、2、6、7および磁気シールド無の場合を示す。イオンガン内に搭載する永久磁石114として残留磁束密度が1250から1320mTの範囲で保持力が859kA/mのネオジム磁石を適用した場合のイオンガンの中心軸上の磁場強度を磁場シミュレータにて算出した結果である。図11の横軸となるZ軸座標のうち磁石が配置される位置はZ=−22.5mmから−10.5mmの範囲である。この領域がイオンガン内部でプラズマ生成室となる。その軸上磁場強度は磁気シールドを付加しないイオンガン101では約220mTであるのに対して、構成1の磁気シールド構造イオンガンでは約120mT、構成2では約90mT、構成3では約60mT、構成4では約105mT、構成5では約100mT、構成6では約180mT、構成7では約130mT、構成8では約140mTとなる。イオンガンに付加する磁気シールドの構造を選択することによって、磁気シールド構造イオンガン100内部の軸上磁場強度は磁気シールドを付加しないイオンガンに対して27%から82%の範囲で任意に調整可能であることが分かる。
次に、軸上磁場強度と永久磁石114の性能との関係について検討した結果について説明する。使用した磁石の性能一覧を表1に示す。図12は磁気シールドを付加しないイオンガン101に対して、表1に示した磁石Aから磁石Dまでの4種類の磁石を、永久磁石114として組み込んだ場合のイオンガンの中心軸上の磁場強度(磁束密度)を磁場シミュレータにて算出した結果である。計算に用いた残留磁束密度および保持力は表1に示した数値を用いている。図12の横軸となるZ軸座標のうち磁石が配置される位置はZ=−22.5mmから−10.5mmの範囲である。この領域がイオンガン内部でプラズマ生成室となり、その軸上磁場強度は磁石Aが約220mT、磁石Bが約195mT、磁石Cが約160mT、磁石Dが約145mTとなる。
Figure 0006637055
一方、図13は、本実施例の一例として構成2に示した磁気シールド構造イオンガン100に対して、表1に示した磁石Aから磁石Dまでの4種類の磁石を、永久磁石114として組み込んだ場合のイオンガンの中心軸上の磁場強度(磁束密度)を磁場シミュレータにて算出した結果である。計算に用いた残留磁束密度および保持力は表1に示した数値を用いている。図13の横軸となるZ軸座標のうち磁石が配置される位置はZ=−22.5mmから−10.5mmの範囲である。この領域がイオンガン内部でプラズマ生成室となり、その軸上磁束密度は磁石Aが約90mT、磁石Bが約80mT、磁石Cが約65mT、磁石Dが約60mTとなる。構成2の磁気シールド構造イオンガンを適用することによって、磁気シールド構造イオンガン100内部の軸上磁場強度は磁気シールドを付加しないイオンガンに対して、磁石の種類によらず約41%低下することが分かる。これにより、磁石種の選択と磁気シールド構造の選択によりイオンガン内部の軸上磁場強度は大きな範囲で任意に調整可能であることが分かる。選択するイオンガン構成に関係して、適切な磁場強度の選択と、適切なイオン化室領域との、組み合わせを限定することにより、イオンガンから放出されるイオンの量を理想的に多くすることが可能となる。即ちこの場合、磁気シールドは、軸上磁場を制御する磁場制御板を構成する。これにより、例えば、加工試料の材料や材質等が異なる各種用途に応じて加工速度を制御することができる。なお、この効果自体は電子顕微鏡を備えなくても得ることができる。
図14は、本実施例の効果を説明するためのビームプロファイルの一例 を示す図であり、本実施例の一例として構成2に示した磁気シールド構造イオンガン100に表1の磁石Bを搭載したイオンガン構成におけるスポット深さを示す。図14に示す従来例は磁気シールドを付加しないイオンガン101に表1の磁石Bを永久磁石114として組み込んだイオンガンである。イオンガン構成は共に、アノード内径を4mm、アノード出口孔131の直径を4mmとした。加速電圧は6kV、放電電圧を1.5kVとし、イオンガンに導入するガスには流量0.07cm/分のArガスを用いた。被加工材料にはシリコンを用い、遮蔽板となるマスクなしでのミリング加工を1時間実施した場合のビームプロファイルである。図14の結果から、従来例ではビーム痕の深さが約100μmとなるのに対して、構成2ではビーム痕の深さが約300μmとなり、すなわちミリング速度は毎時300μmを記録し、従来例と比較して約3倍のミリング速度を得ることが可能である。また、この場合においてもイオンビームスポット径は縮小していない。
以上、本実施例によれば、イオンガンに磁気シールド構造を付加することにより電子顕微鏡カラムから放出される電子ビームの軌道シフトを抑圧可能なイオンミリング装置を提供することができる。また、イオンガンに磁気シールド構造を付加してイオンガン内部の軸上磁場強度を最適値に制御することができる。またこれにより、従来よりも著しく大きいミリング速度を得る、或いは各種材料等に応じてミリング速度の最適値を得ることが可能なペニング放電方式のイオンミリング装置を提供することができる。
本発明の第2の実施例に係るイオンミリング装置について説明する。なお、実施例1に記載され本実施例に未記載の事項は特段の事情がない限り本実施例にも適用することができる。
図15は、本実施例に係るイオンミリング装置におけるイオンガン(加速電極ガイドを含む)の一例を示す構造断面図であり、実施例1で示した構成2と基本的には同様である。図15に示すイオンガンと構成2との違いは、図15に示す磁気シールド型加速電極180が3分割構造であり、加速電極ガイド部材181、第一の加速電極部材182、第二の加速電極部材183とを有する点にある。
加速電極ガイド部材181は、強磁性体以外の材料、例えばステンレスで作製されイオンガンベース117にねじ込み式(又は嵌め込み式)で固定される。第一の加速電極部材182は、強磁性体、例えば純鉄で形成され加速電極ガイド部材181の外周に沿ってはめ込み式で設置され、永久磁石114の磁場で固定される。第二の加速電極部材183は、強磁性体、例えば純鉄で形成され加速電極ガイド部材181と第一の加速電極部材182の先端部に形成された溝にはめ込むことで磁気シールド構造イオンガン100に対して位置決めされる構造である。シールド型加速電極を3分割構造にすることで、先ず強磁性体以外の材料からなる加速電極ガイド部材181を永久磁石114の影響を受けずに取り付け、次にこの加速電極ガイド部材をガイドとして用いて磁性体材料である第一および第二の加速電極部材を容易に取り付けることができる。即ち、強磁性体材料である磁気シールド型加速電極180は永久磁石114の干渉を受けずに取り外すことが可能であり、メンテナンス性が確保できる。
図16は、本実施例に係るイオンミリング装置におけるイオンガン(加速電極ガイドを含む)の他の例を示す構造断面図であり、実施例1で示した構成2と基本的には同様である。図16に示すイオンガンと構成2との違いは、図16に示す磁気シールド型加速電極180が2分割構造であり、加速電極ガイド部材181と加速電極部材182とを有する点にある。
加速電極ガイド部材181は、強磁性体以外の材料、例えばステンレスで作製されイオンガンベース117にねじ込み式で固定される。加速電極部材182は、強磁性体、例えば純鉄で形成され加速電極ガイド部材181の外周に沿ってはめ込み式で設置され、永久磁石114の磁場で固定されることで磁気シールド構造イオンガン100に対して位置決めされる構造である。この2分割構造にすることで、先ず強磁性体以外の材料からなる加速電極ガイド部材181を永久磁石114の影響を受けずに取り付け、次にこの加速電極ガイド部材181をガイドとして用いて磁性体材料である加速電極部材182を容易に取り付けることができる。即ち、強磁性体材料である磁気シールド型加速電極180は永久磁石114の干渉を受けずに取り外すことが可能であり、メンテナンス性が確保できる。なお、本実施例では、磁気シールドとして加速電極を用いたため加速電極ガイド部材を設けたが、基本的には強磁性体以外の材料からなる磁気シールドガイド部材を設けることにより同様の効果を得ることができる。
以上、本実施例によれば、実施例1と同様の効果がある。また、強磁性体以外の材料からなる加速電極ガイド部材等の磁気シールドガイド部材を設けることにより、強磁性体磁気シールドの取り付けや取り外しが容易となり、メンテナンス性を確保することができる。
なお、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることも可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
以上、本願発明を詳細に説明したが、本願発明は以下の形態を含む。
(1)永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
前記永久磁石からの漏洩磁場を低減する磁気シールドを有し、
前記磁気シールドは、前記磁気シールドの構造の変更により前記イオンガンにおける軸上磁場を制御する磁場制御板を構成するものであることを特徴とするイオンミリング装置。
(2)永久磁石を含み試料を加工するイオンを発生させるイオンガンを備えたイオンミリング装置において、
前記永久磁石の外周を取り囲んで配置され、強磁性材料からなり、前記イオンガンの軸上磁場強度を制御する磁場制御板が配置されていることを特徴とするイオンミリング装置。
(3)上記(2)に記載のイオンミリング装置において、
前記イオンガンは、前記イオンを加速する加速電極と、前記永久磁石と前記加速電極とを保持するイオンガンベースとを備え、
前記磁場制御板は、前記イオンガンベースの前記加速電極が配置される側の表面にも配置されていることを特徴とするイオンミリング装置。
(4)上記(2)に記載のイオンミリング装置において、
前記イオンガン内部の軸上磁場強度は、前記磁場制御板の構造の変更により制御されることを特徴とするイオンミリング装置。
100…磁気シールド構造イオンガン、101…イオンガン、102…イオンビーム、103…イオンガン制御部、104…真空チャンバー、105…真空排気系、106…試料、107…試料台、108…試料台駆動部、109…試料台駆動制御部、111…第1カソード、112…第2カソード、113…アノード、114…永久磁石、115…加速電極、116…インシュレータ、117…イオンガンベース、118…イオン化室、119…カソードリング、121…放電電源、122…加速電源、131…アノード出口孔、132…カソード出口孔、133…加速電極出口孔、141…ガス供給機構、142…ガス源、151…電流測定手段、152…電流測定子駆動部、153…電流測定子、161…電子顕微鏡カラム、162…電子ビーム、171、172、173、174、175、176、177…磁気シールド、180…磁気シールド型加速電極、181…加速電極ガイド部材、182、183…加速電極部材。

Claims (12)

  1. 永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
    前記永久磁石からの漏洩磁場を低減する磁気シールドを有し、
    前記イオンガンは、前記イオンを加速する加速電極を備え、
    前記磁気シールドは、前記加速電極を強磁性体材料で構成したものであることを特徴とするイオンミリング装置。
  2. 請求項1に記載のイオンミリング装置において、
    前記イオンガンは、前記永久磁石と前記加速電極とを保持するイオンガンベースを備え、
    前記イオンガンベースの前記加速電極が配置される側の表面に強磁性体材料が配置されていることを特徴とするイオンミリング装置。
  3. 永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
    前記永久磁石からの漏洩磁場を低減する磁気シールドを有し、
    前記イオンガンは、前記イオンを加速する加速電極と、前記永久磁石と前記加速電極とを保持するイオンガンベースとを備え、
    前記磁気シールドは、前記加速電極の外周面および前記イオンガンベースの前記加速電極が配置される側の表面に被覆された強磁性体材料で構成されていることを特徴とするイオンミリング装置。
  4. 永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
    前記永久磁石からの漏洩磁場を低減する磁気シールドを有し、
    前記イオンガンは、前記イオンを加速する加速電極と、前記永久磁石と前記加速電極とを保持するイオンガンベースとを備え、
    前記磁気シールドは、前記加速電極の内周面および前記イオンガンベースの前記加速電極が配置される側の表面に被覆された強磁性体材料で構成されていることを特徴とするイオンミリング装置。
  5. 永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
    前記永久磁石からの漏洩磁場を低減する磁気シールドを有し、
    前記イオンガンは、前記イオンを加速する加速電極と、前記永久磁石と前記加速電極とを保持するイオンガンベースとを備え、
    前記磁気シールドは、前記イオンガンベースの前記加速電極が配置される側の表面に配置された強磁性体材料と、前記加速電極を覆い前記加速電極とは離間して配置された強磁性体材料とで構成されていることを特徴とするイオンミリング装置。
  6. 永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
    前記永久磁石からの漏洩磁場を低減する磁気シールドを有し、
    前記イオンガンは、前記永久磁石の外周面に配置されたカソードリングを備え、
    前記磁気シールドは、前記カソードリングを強磁性体材料で構成したものであることを特徴とするイオンミリング装置。
  7. 請求項1〜6のいずれか1項に記載のイオンミリング装置において、
    前記磁気シールドは、パーマロイ、純鉄、ニッケル、銅、モリブデン、および前記の少なくとも一種を主成分とする材料で構成されていることを特徴とするイオンミリング装置。
  8. 請求項1に記載のイオンミリング装置において、
    前記イオンガンは、前記永久磁石と前記加速電極とを保持するイオンガンベースを備え、
    前記加速電極は、加速電極ガイド部材、第一の加速電極部材、第二の加速電極部材の3分割構造であり、
    前記加速電極ガイド部材は、強磁性体以外の材料で形成され前記イオンガンベースに固定され、
    前記第一の加速電極部材は、強磁性体で形成され前記加速電極ガイド部材の外側に設置され、
    前記第二の加速電極部材は、強磁性体で形成され前記加速電極ガイド部材と前記第一の加速電極部材にて位置決めされて設置され、
    前記第一および前記第二の加速電極部材は前記永久磁石の磁場により固定されていることを特徴とするイオンミリング装置。
  9. 永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
    前記永久磁石からの漏洩磁場を低減する磁気シールドを有し、
    前記磁気シールドは、前記永久磁石の外側を取り囲んで配置され、強磁性体以外の材料からなる磁気シールドガイド部材と、前記磁気シールドガイド部材の外側を取り囲んで配置され強磁性体材料からなる磁気シールド部材とを有することを特徴とするイオンミリング装置。
  10. 永久磁石を含み試料を加工するイオンを発生させるイオンガンと、前記試料を観察する走査電子顕微鏡と、を備えたイオンミリング装置において、
    前記永久磁石からの漏洩磁場を低減する磁気シールドを有し、
    前記磁気シールドは、前記磁気シールドの構造の変更により前記イオンガンにおける軸上磁場を制御する磁場制御板を構成するものであることを特徴とするイオンミリング装置。
  11. 永久磁石を含み試料を加工するイオンを発生させるイオンガンを備えたイオンミリング装置において、
    前記永久磁石の外周を取り囲んで配置され、強磁性材料からなり、前記イオンガンの軸上磁場強度を制御する磁場制御板が配置され
    前記イオンガンは、前記イオンを加速する加速電極と、前記永久磁石と前記加速電極とを保持するイオンガンベースとを備え、
    前記磁場制御板は、前記イオンガンベースの前記加速電極が配置される側の表面にも配置されていることを特徴とするイオンミリング装置。
  12. 永久磁石を含み試料を加工するイオンを発生させるイオンガンを備えたイオンミリング装置において、
    前記永久磁石の外周を取り囲んで配置され、強磁性材料からなり、前記イオンガンの軸上磁場強度を制御する磁場制御板が配置され、
    前記イオンガン内部の軸上磁場強度は、前記磁場制御板の構造の変更により制御されることを特徴とするイオンミリング装置。
JP2017541208A 2015-09-25 2015-09-25 イオンミリング装置 Active JP6637055B2 (ja)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/077095 WO2017051469A1 (ja) 2015-09-25 2015-09-25 イオンミリング装置

Publications (2)

Publication Number Publication Date
JPWO2017051469A1 JPWO2017051469A1 (ja) 2018-07-05
JP6637055B2 true JP6637055B2 (ja) 2020-01-29

Family

ID=58385912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017541208A Active JP6637055B2 (ja) 2015-09-25 2015-09-25 イオンミリング装置

Country Status (5)

Country Link
US (1) US10361065B2 (ja)
JP (1) JP6637055B2 (ja)
CN (1) CN107949899B (ja)
DE (1) DE112015006787B4 (ja)
WO (1) WO2017051469A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102464623B1 (ko) * 2018-02-28 2022-11-09 주식회사 히타치하이테크 이온 밀링 장치 및 이온 밀링 장치의 이온원 조정 방법
CN108878249B (zh) * 2018-06-19 2020-01-17 大连理工大学 一种脉冲潘宁放电等离子体发生装置
CN110449645B (zh) * 2019-07-26 2020-06-16 武汉数字化设计与制造创新中心有限公司 一种提高fibm三维微结构面形精度的方法
US20220285123A1 (en) * 2019-08-28 2022-09-08 Hitachi High-Tech Corporation Ion gun and ion milling machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4800281A (en) 1984-09-24 1989-01-24 Hughes Aircraft Company Compact penning-discharge plasma source
JPH08298092A (ja) 1995-04-26 1996-11-12 Hitachi Ltd 走査電子顕微鏡の分析方法
JP2000195460A (ja) 1998-12-28 2000-07-14 Canon Inc 走査電子顕微鏡による分析方法
JP4354657B2 (ja) * 2001-01-11 2009-10-28 エスアイアイ・ナノテクノロジー株式会社 集束イオンビーム装置
JP2003342757A (ja) * 2002-05-28 2003-12-03 Canon Inc ミリング方法およびミリング装置
WO2010082466A1 (ja) * 2009-01-15 2010-07-22 株式会社日立ハイテクノロジーズ イオンビーム装置
JP2011154920A (ja) * 2010-01-28 2011-08-11 Hitachi High-Technologies Corp イオンミリング装置,試料加工方法,加工装置、および試料駆動機構
KR101470267B1 (ko) 2010-11-05 2014-12-05 가부시키가이샤 히다치 하이테크놀로지즈 이온 밀링 장치
JP5480110B2 (ja) * 2010-11-22 2014-04-23 株式会社日立ハイテクノロジーズ イオンミリング装置及びイオンミリング加工方法
JP5542749B2 (ja) * 2011-06-30 2014-07-09 株式会社日立ハイテクノロジーズ 試料の作製装置,作製方法、及びそれを用いた荷電粒子線装置
EP2690648B1 (en) 2012-07-26 2014-10-15 Fei Company Method of preparing and imaging a lamella in a particle-optical apparatus
JP6100619B2 (ja) * 2013-06-04 2017-03-22 株式会社日立ハイテクノロジーズ イオン源およびイオンミリング装置
JP6180952B2 (ja) * 2014-01-31 2017-08-16 東芝メモリ株式会社 デバイス製造装置及び磁気デバイスの製造方法

Also Published As

Publication number Publication date
DE112015006787B4 (de) 2021-11-25
DE112015006787T5 (de) 2018-04-26
CN107949899A (zh) 2018-04-20
US10361065B2 (en) 2019-07-23
CN107949899B (zh) 2019-11-15
JPWO2017051469A1 (ja) 2018-07-05
WO2017051469A1 (ja) 2017-03-30
US20180286633A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US11158481B2 (en) Ion milling device, ion source, and ion milling method
JP6637055B2 (ja) イオンミリング装置
US20100002840A1 (en) Field emission x-ray apparatus, methods, and systems
JP6100619B2 (ja) イオン源およびイオンミリング装置
CN110431649B (zh) 带电粒子束装置
JP6646150B2 (ja) イオンミリング装置
JP2019145328A (ja) 荷電粒子ビーム装置、試料加工観察方法
US11412607B2 (en) Atomic beam generator, bonding apparatus, surface modification method, and bonding method
US9773646B2 (en) Plasma ion source and charged particle beam apparatus
US9773637B2 (en) Plasma ion source and charged particle beam apparatus
JP7186884B2 (ja) イオンガン及びイオンミリング装置
JP2018022701A (ja) イオンガン及びイオンミリング装置、イオンミリング方法
JP2018170295A (ja) イオンガン及びイオンミリング装置、イオンミリング方法
WO2022244149A1 (ja) イオンミリング装置
US20230352263A1 (en) Ion milling device
WO2020044429A1 (ja) イオンビーム装置
JP2023091280A (ja) 試料加工装置および試料加工方法
JP2011124035A (ja) イオンビーム照射装置
JPS60180050A (ja) イオン照射装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190312

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190917

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191219

R150 Certificate of patent or registration of utility model

Ref document number: 6637055

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350