WO2023242909A1 - イオンミリング装置、ホルダおよび断面ミリング処理方法 - Google Patents
イオンミリング装置、ホルダおよび断面ミリング処理方法 Download PDFInfo
- Publication number
- WO2023242909A1 WO2023242909A1 PCT/JP2022/023644 JP2022023644W WO2023242909A1 WO 2023242909 A1 WO2023242909 A1 WO 2023242909A1 JP 2022023644 W JP2022023644 W JP 2022023644W WO 2023242909 A1 WO2023242909 A1 WO 2023242909A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sample
- holder
- ion beam
- ion
- mask
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/20—Means for supporting or positioning the object or the material; Means for adjusting diaphragms or lenses associated with the support
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N1/00—Sampling; Preparing specimens for investigation
- G01N1/28—Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/305—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/305—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching
- H01J37/3053—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching
- H01J37/3056—Electron-beam or ion-beam tubes for localised treatment of objects for casting, melting, evaporating, or etching for evaporating or etching for microworking, e. g. etching of gratings or trimming of electrical components
Definitions
- the present invention relates to an ion milling device, a holder, and a cross-sectional milling method.
- Patent Document 1 discloses an ion milling device that shields a portion of the ion beam with a mask (shielding plate) placed above the sample, and performs cross-sectional milling that exposes the cross section of the sample along the end face of the mask. . Further, in the ion milling apparatus of Patent Document 1, it is possible to slide the sample mask unit to form a cross section larger than the ion beam width or to perform processing at multiple points.
- Patent Document 2 discloses that an inclined cross section of a sample including circuit elements is exposed by irradiation with a focused ion beam, and a pattern is measured in the depth direction.
- An object of the present invention is to provide an ion milling apparatus capable of producing a wide and precisely controlled inclined cross section of a laminated structure such as a coating film or a functional thin film, or a three-dimensional device such as MEMS.
- An ion milling apparatus that is an embodiment of the present invention includes a mask sample stand unit that includes a holder to which a sample is attached, a sample unit base on which the mask sample stand unit is mounted, and a sample that is irradiated with an unfocused ion beam.
- the holder has a first surface to a third surface, the first surface and the second surface to which the sample is bonded are connected by the third surface, and the first surface and the third surface are connected to each other by the third surface.
- the angle between the first surface and the second surface is a right angle, and the angle between the first surface and the second surface is an acute angle.
- the plane is perpendicular to the center of the ion beam.
- FIG. 1 is a diagram showing an example of the configuration of an ion milling device. It is a bird's eye view of the holder.
- FIG. 3 is a top view of the holder.
- FIG. 3 is a side view of the holder. This is an operation flow for performing cross-sectional milling processing to create an inclined cross-section of a sample.
- FIG. 6 is a diagram for explaining a method for adjusting the protrusion amount of a sample using an adjustment table.
- FIG. 3 is a diagram for explaining a method of adjusting an ion beam irradiation position.
- FIG. 3 is a diagram for explaining a method of adjusting an ion beam irradiation position.
- FIG. 1 It is a figure which shows the state of a holder and a sample after the cross-sectional milling process is completed. It is a figure which shows the state of a holder and a sample after the cross-sectional milling process is completed. It is a schematic diagram of a sample cross section. This is an example of a holder with a small inclination angle of the sample mounting surface. This is an example of a holder with a large inclination angle of the sample mounting surface. This is an example in which a mask sample stage unit is mounted on the sample unit base 106 via a slide movement mechanism.
- FIG. 1 shows an example of the configuration of the ion milling device 101.
- the ion milling apparatus 101 mainly includes a vacuum chamber 102, an ion source 103 attached to the vacuum chamber 102, a sample stage 105 attached to a different surface from the ion source 103, and a sample extended from the sample stage 105.
- a unit base 106, a mask sample stage unit 113 placed on the sample unit base 106 and on which a sample 112 to be cross-sectionally milled is placed, a vacuum exhaust system 109 that evacuates the inside of the vacuum chamber 102, and a sample stage 105 are attached.
- a linear guide 110 is provided on the surface of the vacuum chamber 102.
- the sample stage 105 is attached to a flange 102f that also serves as a part of the container wall of the vacuum chamber 102, and by pulling out the flange 102f along the linear guide 110, the vacuum chamber 102 can be opened to the atmosphere. At this time, both the sample unit base 106 and the sample unit base 106 are pulled out of the vacuum chamber 102 . In this way, the sample stage pull-out mechanism is configured.
- the mask sample stage unit 113 is assembled so that the fine movement mechanism 107, the connecting member 108, and the holder 111 are stacked in this order, and the sample 112 is adhesively fixed onto the holder 111.
- the holder 111 is a mask sample stand integrated holder that functions as a sample stand on which the sample 112 is placed and as a mask that masks the sample 112.
- a drive source included in the sample stage 105 causes the mask sample stage unit 113 to swing around a swing axis S perpendicular to the center B of the ion beam 104 (ion beam center). In FIG.
- the ion beam center B is parallel to the Z-axis
- the swing axis S is parallel to the Y-axis
- the ion source 103 and the mask sample stage unit 113 are directly facing each other, and the boundary between the holder 111 and the sample 112 is shown.
- (Edge) is shown in a state parallel to the X axis.
- the mask sample stage unit 113 is rotationally driven within the range of ⁇ between the edge and the X-axis direction.
- the fine movement mechanism 107 constituting the mask sample stage unit 113 is configured to be able to move in two axes, the X-axis direction and the Y-axis direction, in a plane perpendicular to the ion beam center B, that is, in the state shown in FIG. , is used to adjust the relative position between the ion beam center B and the mask sample stage unit 113. Details of the adjustment will be described later.
- the connecting member 108 serves as a base on which the holder 111 is placed on the fine movement mechanism 107.
- FIGS. 2A to 2C The shape of the holder 111 is shown in FIGS. 2A to 2C.
- FIG. 2A is a bird's eye view
- FIG. 2B is a top view
- FIG. 2C is a side view.
- FIGS. 2B and 2C show coordinate axes corresponding to the coordinate axes in FIG. 1.
- the holder 111 has a mask surface (first surface) 201 facing the ion source 103 and a sample mounting surface (second surface) on which the sample 112 is adhesively fixed when the mask sample stage unit 113 is directly opposed to the ion source 103.
- the mask surface 201 and the sample mounting surface 203 are connected by a sample protection surface (third surface) 202.
- the sample protection surface 202 is provided to prevent portions of the sample 112 other than the intended processing position (the position where the cross section is desired to be exposed) from being scraped by ion beam irradiation.
- the material is preferably titanium, graphite carbon, etc., which have high ion beam resistance.
- the angle between the mask surface 201 and the sample protection surface 202 is a right angle.
- the sample mounting surface 203 is inclined in the Z direction, and the angle between the mask surface 201 and the sample mounting surface 203 is an acute angle.
- the line of intersection between the mask surface 201 and the sample protection surface 202 and the line of intersection between the sample protection surface 202 and the sample mounting surface 203 are parallel.
- S301 The user adhesively fixes the sample 112 to the sample mounting surface 203 of the holder 111.
- a portion of the sample 112 that protrudes from the intersection line of the sample protection surface 202 of the holder 111 and the sample placement surface 203 is the portion to which cross-sectional milling processing is performed by the ion beam 104. Therefore, when fixing the sample 112 to the holder 111, the adjustment table 205 is used to adjust the amount of protrusion so that the target processing position of the sample 112 is located on the intersection line of the sample protection surface 202 and the sample placement surface 203. do.
- FIG. 4 shows how the holder 111 is placed on the adjustment table 205 and the amount of protrusion of the sample 112 is adjusted.
- the adjustment table 205 is a table made to match the holder 111 and used to adjust the amount of protrusion of the sample 112.
- the adjustment table 205 is provided with a triangular groove in which the holder 111 is mounted.
- the amount of protrusion is adjusted by making sure that the bottom surface of the holder 111 contacts the mounting surface 206, which is one side of the triangular groove, and the mask surface 201 of the holder 111 contacts the adjustment surface 207, which is the other side of the triangular groove. This is performed with the holder 111 placed on the adjustment table 205.
- a protrusion amount adjustment jig 204 is provided on the adjustment table 205.
- the triangular groove is formed such that when the sample 112 is placed on the sample mounting surface 203 of the holder 111, the sample 112 slides down toward the sample protection surface 202 due to its own weight.
- the sample 112 is held on the sample mounting surface 203 by a protrusion amount adjustment jig 204, and the amount of sample protrusion can be set by sliding the protrusion amount adjustment bar 208 in the direction of the arrow.
- the protrusion amount of the sample can be precisely adjusted.
- the sample 112 is adhesively fixed to the sample mounting surface 203.
- the amount of protrusion is set based on the distance from the tip of the trimmed sample 112 to the target processing position when the sample 112 is trimmed. If the target machining position is not specified and an arbitrary location is to be machined, it is desirable that the protrusion amount be approximately 50 ⁇ m.
- an adhesive such as carbon paste, hot wax, or nail polish can be used.
- an optical microscope is used.
- the optical microscope is equipped with a fixing stand that arranges the mask sample stand unit 113 at a fixed position on the observation stand of the optical microscope with good reproducibility.
- the field of view of the optical microscope is adjusted so that the ion beam center B is at the center of the field of view of the optical microscope. This adjustment should be done at the time of maintenance and does not need to be done every time a sample is placed on the holder.
- the field of view adjustment of the optical microscope will be explained using FIG. 5A.
- a photosensitive paper, silver foil, etc. is attached to the mask surface 201 of the holder 111, and the marks made by irradiating the ion beam 104, that is, the ions
- the field of view of the optical microscope is moved so that the beam center 502 is at the center of the field of view 501 of the optical microscope.
- FIG. 5B shows the field of view 503 of the optical microscope when the mask sample stage unit 113 on which the sample 112 is placed in step S302 is installed on the fixed stage of the optical microscope.
- the image of the sample 112 is a sample image 112I 1
- the image of the mask surface 201 is a mask surface image 201I 1 .
- the ion beam center is the center of the field of view 503
- the position X3 in the X-axis direction and the position Y3 in the Y-axis direction of the fine movement mechanism 107 are adjusted so that the processing target position, and therefore the center of the end of the sample protection surface 202 of the holder 111, is It suffices if it is placed in the center of the field of view 503.
- the sample protection surface 202 of the holder is adjusted to be located along the center of the ion beam.
- the image of the sample 112 after adjustment by the fine movement mechanism 107 is the sample image 112I 2
- the image of the mask surface 201 is the mask surface image 201I 2 .
- S303 Attach the mask sample stage unit 113 to the sample unit base 106.
- the mounting position of the mask sample stage unit on the sample unit base 106 is fixed.
- the mask surface 201 of the holder 111 is fixed so as to face the ion source 103.
- S304 The ion beam 104 is irradiated toward the sample 112 to perform cross-sectional milling processing. If the irradiation direction of the ion beam 104 is concentrated in one direction, machining streaks will appear on the cross section of the sample. In order to prevent the occurrence of such cross-sectional disturbances, swing processing is performed in which milling processing is performed while swinging the mask sample stage unit 113 around the swing axis S.
- the protruding region of the sample 112 adhesively fixed to the sample mounting surface 203 is milled by ion beam irradiation.
- FIGS. 6A to 6C show the state of the holder 111 and sample 112 after the cross-sectional milling process is completed.
- a cross section 601 of the sample 112 is exposed along the sample protection surface 202 of the holder 111.
- the cross section 601 is an inclined cross section whose cut end is inclined according to the inclination of the sample mounting surface 203 of the holder 111.
- the ion beam 104 is adjusted so that it is emitted so that the ion beam center B is along the sample protection surface 202.
- the sample protection surface 202 of 111 will also be scraped.
- FIG. 6B the milling area 602 of the sample protection surface 202 is milled in the direction of extension of the ion beam center B (Z-axis direction) as the machining depth D, and the length of the milling area 602 at the end of the sample protection surface 202 is defined as the machining depth D.
- the width be the machining width W.
- the length L of the sample protection surface 202 in the Z-axis direction affects the accuracy of milling processing. If the length L is too short, for example L ⁇ 0.1 mm, the milling region 602 will reach the sample mounting surface 203 before processing is completed, and a cross section along the sample protection surface 202 will not be obtained. On the other hand, if the length L is too long, for example L>10 mm, the position of the sample 112 with respect to the ion source 103 becomes distant, and the intensity of the unfocused ion beam 104 decreases. This reduces the processing rate.
- the length L of the sample protection surface 202 in the Z-axis direction is desirably 0.1 mm or more and 10 mm or less, particularly 0.5 mm or more and 3 mm or less, particularly 2 mm or less.
- FIG. 6C schematically shows a cross section 601 of the obtained sample 112 observed with a scanning electron microscope.
- the sample 112 has a structure in which a semiconductor layer and an insulating film layer are stacked on a semiconductor substrate. Since the cross section 601 is obtained as a flat surface without curving, it becomes possible to observe the boundaries of the parallel laminated films without distortion.
- the inclination angle ⁇ of the sample placement surface 203 of the holder 111 can be changed by changing the holder 111 according to the sample 112 to be placed, and can be customized in the range from several degrees to 70 degrees or less.
- FIG. 8 shows an example in which the mask sample stage unit 113 is mounted on the sample unit base 106 via the slide movement mechanism 801.
- the slide movement mechanism 801 is a mechanism for realizing wide area milling processing or multi-point milling processing.
- the slide movement mechanism 801 includes a drive source and reciprocates the mask sample stage unit 113 in the direction of the intersection between the sample protection surface 202 and the sample placement surface 203 of the holder 111, here the X-axis direction.
- the wide-area milling process is a process in which a region wider than the width of the ion beam 104 is processed
- the multi-point milling process is a process in which a plurality of processing target positions on a sample are processed.
- the milling process may be performed while performing both a reciprocating operation by the slide movement mechanism 801 and a swinging operation centered on the swing axis S. Furthermore, when performing multi-point milling processing, the milling processing may be performed on a plurality of processing target positions by moving the irradiation position of the ion beam 104 using the slide movement mechanism 801.
- the present invention is not limited to the above-described embodiments, and includes various modifications.
- the embodiments described above are described in detail to make the present invention easier to understand, and the present invention is not necessarily limited to having all the configurations described.
- it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.
- 101 Ion milling device, 102: Vacuum chamber, 102f: Flange, 103: Ion source, 104: Ion beam, 105: Sample stage, 106: Sample unit base, 107: Fine movement mechanism, 108: Connection member, 109: Vacuum exhaust system, 110: linear guide, 111: holder, 112: sample, 113: mask sample stage unit, 201: mask surface, 202: sample protection surface, 203: sample mounting surface, 204: protrusion amount adjustment jig, 205: Adjustment table, 206: Placement surface, 207: Adjustment surface, 208: Protrusion amount adjustment bar, 501, 503: Field of view, 502: Ion beam center, 601: Cross section, 602: Milling area, 801: Slide movement mechanism.
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Sampling And Sample Adjustment (AREA)
Abstract
Description
Claims (15)
- 試料が接着されるホルダを備えるマスク試料台ユニットと、
前記マスク試料台ユニットが搭載される試料ユニットベースと、
非集束のイオンビームを前記試料に照射するイオン源と、を有し、
前記ホルダは第1面乃至第3面を備え、前記第1面と前記試料が接着される前記第2面とは前記第3面によって接続されており、前記第1面と前記第3面とのなす角は直角であり、前記第1面と前記第2面とのなす角は鋭角であり、
前記イオン源と正対するように前記マスク試料台ユニットを前記試料ユニットベースに搭載したとき、前記ホルダの前記第1面が前記イオンビームのイオンビーム中心と垂直となることを特徴とするイオンミリング装置。 - 請求項1において、
前記試料は、前記ホルダの前記第2面と前記第3面との交線からの突出量が所定の突出量となるように前記第2面に接着されることを特徴とするイオンミリング装置。 - 請求項1において、
前記ホルダの前記第1面と前記第3面との交線と前記第2面と前記第3面との交線との距離は、0.1mm以上10mm以下とされることを特徴とするイオンミリング装置。 - 請求項1において、
前記マスク試料台ユニットは微動機構を備え、
前記微動機構は、前記マスク試料台ユニットが前記イオン源と正対した状態で、前記試料ユニットベースを前記イオンビームのイオンビーム中心と垂直な面内で移動させることが可能に構成されており、
前記微動機構は、前記イオンビームのイオンビーム中心に沿うように前記ホルダの前記第3面が位置するよう調整されることを特徴とするイオンミリング装置。 - 請求項1において、
前記試料ユニットベースを介して前記マスク試料台ユニットを回転駆動する試料ステージを有し、
前記試料ステージは、前記イオンビームのイオンビーム中心及び前記ホルダの前記第2面と前記第3面との交線と直交するスイング軸を中心に前記マスク試料台ユニットをスイングさせることを特徴とするイオンミリング装置。 - 請求項5において、
前記マスク試料台ユニットはスライド移動機構を介して、前記試料ユニットベースに搭載され、
前記スライド移動機構は、前記マスク試料台ユニットを前記ホルダの前記第2面と前記第3面との交線方向に往復動作させることを特徴とするイオンミリング装置。 - 非集束のイオンビームにより断面ミリング処理を行う試料が接着されるホルダであって、
第1面乃至第3面を有し、
前記第1面と前記試料が接着される前記第2面とは前記第3面によって接続されており、前記第1面と前記第3面とのなす角は直角であり、前記第1面と前記第2面とのなす角は鋭角であり、
前記イオンビームは、前記第1面の方向から前記試料に照射されることを特徴とするホルダ。 - 請求項7において、
前記試料は、前記ホルダの前記第2面と前記第3面との交線から所定の突出量となるように前記第2面に接着されることを特徴とするホルダ。 - 請求項7において、
前記第1面と前記第3面との交線と前記第2面と前記第3面との交線との距離は、0.1mm以上10mm以下とされることを特徴とするホルダ。 - 請求項7において、
材質がチタンまたはグラファイトカーボンであるホルダ。 - ホルダを備えるマスク試料台ユニットと、前記マスク試料台ユニットが搭載される試料ユニットベースと、イオン源と、を備えるイオンミリング装置を用いた断面ミリング処理方法であって、
前記ホルダは第1面乃至第3面を備え、前記第1面と前記第2面とは前記第3面によって接続されており、前記第1面と前記第3面とのなす角は直角であり、前記第1面と前記第2面とのなす角は鋭角であり、
前記ホルダの前記第2面と前記第3面との交線からの突出量が所定の突出量となるように、試料を前記ホルダの前記第2面に接着し、
前記ホルダの前記第1面の方向から、前記イオン源から前記試料に非集束のイオンビームを照射することを特徴とする断面ミリング処理方法。 - 請求項11において、
前記マスク試料台ユニットは微動機構を備え、
前記微動機構は、前記マスク試料台ユニットが前記イオン源と正対した状態で、前記試料ユニットベースを前記イオンビームのイオンビーム中心と垂直な面内で移動させることが可能に構成されており、
前記微動機構は、前記イオンビームのイオンビーム中心に沿うように前記ホルダの前記第3面が位置するよう調整されることを特徴とする断面ミリング処理方法。 - 請求項11において、
前記イオンミリング装置は、前記試料ユニットベースを介して前記マスク試料台ユニットを回転駆動する試料ステージを備え、
前記イオン源が前記試料に前記イオンビームを照射する期間において、前記試料ステージは、前記イオンビームのイオンビーム中心及び前記ホルダの前記第2面と前記第3面との交線と直交するスイング軸を中心に前記マスク試料台ユニットをスイングさせることを特徴とする断面ミリング処理方法。 - 請求項13において、
前記マスク試料台ユニットはスライド移動機構を介して、前記試料ユニットベースに搭載され、
前記イオン源が前記試料に前記イオンビームを照射する期間において、前記スライド移動機構は、前記マスク試料台ユニットを前記ホルダの前記第2面と前記第3面との交線方向に往復動作させることを特徴とする断面ミリング処理方法。 - 請求項14において、
前記試料は、前記イオンビームの幅よりも広い幅の領域が加工される、あるいは複数の加工目的位置が加工されることを特徴とする断面ミリング処理方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2024527912A JP7706021B2 (ja) | 2022-06-13 | イオンミリング装置、ホルダおよび断面ミリング処理方法 | |
PCT/JP2022/023644 WO2023242909A1 (ja) | 2022-06-13 | 2022-06-13 | イオンミリング装置、ホルダおよび断面ミリング処理方法 |
KR1020247037841A KR20250002493A (ko) | 2022-06-13 | 2022-06-13 | 이온 밀링 장치, 홀더 및 단면 밀링 처리 방법 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/023644 WO2023242909A1 (ja) | 2022-06-13 | 2022-06-13 | イオンミリング装置、ホルダおよび断面ミリング処理方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023242909A1 true WO2023242909A1 (ja) | 2023-12-21 |
Family
ID=89192508
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/023644 WO2023242909A1 (ja) | 2022-06-13 | 2022-06-13 | イオンミリング装置、ホルダおよび断面ミリング処理方法 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR20250002493A (ja) |
WO (1) | WO2023242909A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012113865A (ja) * | 2010-11-22 | 2012-06-14 | Hitachi High-Technologies Corp | イオンミリング装置及びイオンミリング加工方法 |
JP2016026374A (ja) * | 2010-04-11 | 2016-02-12 | ガタン インコーポレイテッドGatan Inc. | イオンビーム試料準備熱管理装置及び方法 |
JP2016100111A (ja) * | 2014-11-19 | 2016-05-30 | 日本電子株式会社 | 試料ホルダー、試料作製装置、および位置合わせ方法 |
JP2022081571A (ja) * | 2018-02-28 | 2022-05-31 | 株式会社日立ハイテク | イオンミリング装置及びイオンミリング装置のイオン源調整方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10184790B2 (en) | 2014-06-30 | 2019-01-22 | Hitachi High-Technologies Corporation | Pattern measurement method and pattern measurement device |
KR102195030B1 (ko) | 2016-02-26 | 2020-12-28 | 주식회사 히타치하이테크 | 이온 밀링 장치, 및 이온 밀링 방법 |
-
2022
- 2022-06-13 WO PCT/JP2022/023644 patent/WO2023242909A1/ja active Application Filing
- 2022-06-13 KR KR1020247037841A patent/KR20250002493A/ko active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016026374A (ja) * | 2010-04-11 | 2016-02-12 | ガタン インコーポレイテッドGatan Inc. | イオンビーム試料準備熱管理装置及び方法 |
JP2012113865A (ja) * | 2010-11-22 | 2012-06-14 | Hitachi High-Technologies Corp | イオンミリング装置及びイオンミリング加工方法 |
JP2016100111A (ja) * | 2014-11-19 | 2016-05-30 | 日本電子株式会社 | 試料ホルダー、試料作製装置、および位置合わせ方法 |
JP2022081571A (ja) * | 2018-02-28 | 2022-05-31 | 株式会社日立ハイテク | イオンミリング装置及びイオンミリング装置のイオン源調整方法 |
Also Published As
Publication number | Publication date |
---|---|
KR20250002493A (ko) | 2025-01-07 |
JPWO2023242909A1 (ja) | 2023-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5770123A (en) | Method and apparatus for energy beam machining | |
KR102656747B1 (ko) | 마이크로구조 진단용 샘플을 제조하기 위한 방법, 및 마이크로구조 진단용 샘플 | |
JP2013257317A (ja) | 角度が固定されたビームと回転する試料ステージとを使用する薄片製作方法および装置 | |
JP4037809B2 (ja) | イオンミーリング試料作製装置用マスクおよび試料作製装置 | |
KR102417323B1 (ko) | 반도체 자재의 부분 차폐방법 | |
CN108723599B (zh) | 聚光点位置检测方法 | |
KR970005523B1 (ko) | 투명판 표면의 결함 수정 방법 | |
KR20120046208A (ko) | 이온 밀링 장치 | |
CN104094374A (zh) | 离子铣削装置 | |
TW202212036A (zh) | 雷射處理系統及其方法 | |
US20140299785A1 (en) | Method and Arrangement for Manufacturing a Sample for Microstructural Materials Diagnostics and Corresponding Sample | |
TW201515753A (zh) | 鐳射蝕刻裝置的可調式空間濾波器 | |
CN112384323A (zh) | 激光加工装置、激光加工方法以及成膜掩模的制造方法 | |
WO2017134764A1 (ja) | 試料ホルダ、イオンミリング装置、試料加工方法、試料観察方法、及び試料加工・観察方法 | |
WO2023242909A1 (ja) | イオンミリング装置、ホルダおよび断面ミリング処理方法 | |
JP7706021B2 (ja) | イオンミリング装置、ホルダおよび断面ミリング処理方法 | |
JP5331342B2 (ja) | イオンミリング装置 | |
JP2000225485A (ja) | レーザ加工装置のステージ | |
JP4675701B2 (ja) | イオンミリング装置およびイオンミリング方法 | |
JP3236484B2 (ja) | エネルギービーム加工法 | |
CN113921439B (zh) | 一种激光辅助巨量转移MicroLED的对准装置及对准方法 | |
JP2009245783A (ja) | イオンミリング装置及びイオンミリング方法 | |
JP6727307B2 (ja) | 荷電粒子線装置 | |
CN106735872A (zh) | 利用微束激光对材料进行精细加工和处理的装置和方法 | |
JP2005109324A (ja) | レーザーダイシング装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22946729 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2024527912 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18860101 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20247037841 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1020247037841 Country of ref document: KR |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22946729 Country of ref document: EP Kind code of ref document: A1 |