WO2019167110A1 - Component conveying apparatus, component conveying method and component mounting apparatus - Google Patents

Component conveying apparatus, component conveying method and component mounting apparatus Download PDF

Info

Publication number
WO2019167110A1
WO2019167110A1 PCT/JP2018/007169 JP2018007169W WO2019167110A1 WO 2019167110 A1 WO2019167110 A1 WO 2019167110A1 JP 2018007169 W JP2018007169 W JP 2018007169W WO 2019167110 A1 WO2019167110 A1 WO 2019167110A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
nozzle
inspection
unit
mounting
Prior art date
Application number
PCT/JP2018/007169
Other languages
French (fr)
Japanese (ja)
Inventor
大介 春日
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to CN201880086938.6A priority Critical patent/CN111742625B/en
Priority to PCT/JP2018/007169 priority patent/WO2019167110A1/en
Priority to JP2020503117A priority patent/JP6884494B2/en
Priority to KR1020207016615A priority patent/KR102387058B1/en
Publication of WO2019167110A1 publication Critical patent/WO2019167110A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0812Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines the monitoring devices being integrated in the mounting machine, e.g. for monitoring components, leads, component placement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/04Mounting of components, e.g. of leadless components
    • H05K13/0404Pick-and-place heads or apparatus, e.g. with jaws
    • H05K13/0408Incorporating a pick-up tool
    • H05K13/0409Sucking devices
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/08Monitoring manufacture of assemblages
    • H05K13/081Integration of optical monitoring devices in assembly lines; Processes using optical monitoring devices specially adapted for controlling devices or machines in assembly lines
    • H05K13/0813Controlling of single components prior to mounting, e.g. orientation, component geometry

Definitions

  • the present invention relates to a component conveying apparatus and a component conveying method for picking up a component from a component container such as a tray or a tape or a diced wafer, and conveying the component to a predetermined destination, and a substrate by conveying the component by the component conveying device.
  • the present invention relates to a component mounting apparatus to be mounted on the machine.
  • a die is picked up as a component from a diced wafer held on a wafer stage, and mounted on a substrate for component mounting.
  • a component (die) taken out from a wafer by a wafer head and supplied is sucked and held by a nozzle provided in the mounting head.
  • a suction deviation may occur, so that the holding state of the part by the nozzle is imaged, and the part suction deviation is obtained based on the part image obtained by the imaging.
  • the movement destination of the nozzle is corrected according to the suction deviation, and after the nozzle has moved to the corrected movement destination and the component conveyance has been completed, the component is mounted on the substrate. In this way, the component is mounted on the board.
  • Patent Document 2 the quality of a component is inspected based on the component image, but the specific method is neither disclosed nor suggested.
  • a diced portion of a wafer that is, a dicing line is set.
  • the following problems may occur.
  • an area to be inspected hereinafter referred to as “inspection area” of the parts is set in advance on the assumption that dicing of the wafer is performed at a predetermined position.
  • the wafer is diced and divided into a plurality of dies, fluctuations in the position at which the dies are separated (in this case, the “dicing line” corresponds to this) are unavoidable.
  • the inspection region is specified to be outside the part due to the variation, an erroneous detection is performed (see the “false detection” column in FIG. 6 described later).
  • the inspection area is specified within a functional area having a functional part of a component (a part where wiring, electrodes, circuits, etc. are provided), the inspection for the inspection area itself may be impossible.
  • a problem is caused by another component supply system, for example, a component (hereinafter referred to as a “storage component”) stored in a component storage body such as a tray or a tape is conveyed by a nozzle provided in the mounting head. It also occurs in the device.
  • a component hereinafter referred to as a “storage component” stored in a component storage body such as a tray or a tape is conveyed by a nozzle provided in the mounting head. It also occurs in the device.
  • a component hereinafter referred to as a “storage component” stored in a component storage body such as a tray or a tape is conveyed by a nozzle provided in the mounting head. It also occurs in the device.
  • the present invention has been made in view of the above problems, and a component transport technology capable of accurately inspecting a component in parallel with transporting a component to a destination, and a component mounting apparatus incorporating the component transport technology The purpose is to provide.
  • a first aspect of the present invention includes a nozzle that receives and holds a component supplied from a component supply unit, an imaging unit that captures an image of the component held by the nozzle, and a nozzle that moves the nozzle holding the component from the component supply unit And a drive unit that corrects the movement destination of the nozzle based on the component image captured by the imaging unit and then moves the nozzle to the corrected movement destination by the nozzle drive unit to convey the component.
  • an outline information acquisition unit that acquires outline information of a part based on the part image, an inspection area specification part that specifies an inspection area of the part from the outline information, and whether or not an abnormality of the part has occurred in the inspection area And inspecting the component in parallel with at least one of the correction of the movement destination and the movement of the nozzle to the corrected movement destination.
  • a second aspect of the present invention is a component conveying method, which is obtained by performing a component holding step of receiving and holding a component by a nozzle, an imaging step of imaging the component held by the nozzle, and an imaging step.
  • the movement destination correction step of correcting the movement destination of the nozzle based on the component image obtained, the nozzle movement step of moving the nozzle holding the component to the corrected movement destination, and acquiring the external information of the component based on the component image
  • the inspection area identification process that identifies the inspection area of the part from the outline information, the movement destination correction process, and the nozzle movement process, an abnormality in the inspection area occurs. And an inspection process for inspecting whether or not it is present.
  • a third aspect of the present invention is a component mounting apparatus, which moves when it is determined that no component abnormality has occurred by the component supply unit that supplies the component, the component conveying device, and the component inspection unit.
  • a component is mounted on the substrate by the nozzle that has moved first, and a control unit that stops mounting the component on the substrate when it is determined that a component abnormality has occurred.
  • the nozzle moves to the movement destination corrected based on the component image captured by the imaging unit and conveys the component.
  • a component inspection based on the component image is performed in parallel with at least one of the correction of the movement destination and the movement of the nozzle to the movement destination. Therefore, at the same time when the part is accurately transported to a desired destination, the inspection area is accurately specified based on the external shape information of the part being transported, and the occurrence of abnormality in the inspection area is inspected satisfactorily.
  • the mounting on the board is stopped for the component that has been determined to have a component abnormality based on the inspection result. Therefore, mounting of defective parts is avoided and the manufacturing yield of the board is improved.
  • examples of the component include a die supplied by a component supply unit from a wafer divided into a plurality of dies by dicing, and a storage component supplied by a component supply unit from a component storage body that stores a plurality of storage components. included.
  • the outer shape information acquisition unit may be configured to be able to acquire a plurality of different outer shape information, whereby the inspection area can be accurately obtained, and the inspection accuracy can be further increased.
  • the outline information acquisition unit includes the outline center coordinates in the plan view of the part and the part as the outline information. It may be configured such that one corner coordinate of the plurality of corner portions can be acquired.
  • the outer shape center coordinates may be obtained from, for example, N sides or N corners in plan view of an N-shaped part, and the outer shape center coordinates can be obtained with high accuracy. Therefore, the inspection area can be obtained accurately, and the inspection accuracy can be further increased.
  • the outline information acquisition unit selects one of the outline center coordinates and corner coordinates as outline information for each inspection area, and the inspection area.
  • the specifying unit may be configured to specify the inspection region based on the outer shape information selected by the outer shape information acquiring unit.
  • FIG. 1 It is a top view which shows typically the component mounting apparatus equipped with one Embodiment of the component conveying apparatus which concerns on this invention.
  • FIG. 1 It is a block diagram which shows the main electrical structures of the component mounting apparatus shown in FIG.
  • FIG. It is a flowchart which shows operation
  • FIG. It is a figure which shows typically the main process of a mounting turn.
  • FIG. 1 is a plan view schematically showing a component mounting apparatus equipped with an embodiment of a component conveying apparatus according to the present invention.
  • FIG. 2 is a block diagram showing the main electrical configuration of the component mounting apparatus shown in FIG.
  • XYZ orthogonal coordinate axes configured by a conveyance direction X, a width direction Y, and a vertical direction Z are appropriately used.
  • the transport direction X and the width direction Y are parallel to the horizontal direction and orthogonal to each other, and the vertical direction Z is orthogonal to the transport direction X and the width direction Y.
  • the component mounting apparatus 10 mounts components on the board B carried in from the upstream side in the transport direction X, and carries it out downstream in the transport direction X.
  • the board B is provided with a plurality of mounting target points (not shown), and the control unit 100 provided in the component mounting apparatus 10 controls each part of the component mounting apparatus 10 so that each mounting target point has a component.
  • One Wp is mounted at a time.
  • Each component Wp is a die formed in a lattice shape on the wafer W by dicing the wafer W, and has the same configuration.
  • a circuit configuration such as a bump is formed on one main surface.
  • the component mounting apparatus 10 includes a transport unit 2 that transports the substrate B in the transport direction X.
  • the transport unit 2 includes a standby conveyor 21, a mounting conveyor 22, a standby conveyor 23, a mounting conveyor 24, and an unloading conveyor 25 that are arranged in this order in the transport direction X, and these conveyors 21 to 25 cooperate in the transport direction.
  • the substrate B can be transferred to X.
  • the standby conveyor 21 is provided with respect to the standby position P1, and the board B loaded from the outside of the component mounting apparatus 10 is made to wait at the standby position P1 or is transferred to the mounting conveyor 22.
  • the mounting conveyor 22 is provided with respect to the mounting position P2 located downstream of the standby position P1 in the transport direction X, and the substrate B received from the standby conveyor 21 is fixed to the mounting position P2 or transferred to the standby conveyor 23.
  • the standby conveyor 23 is provided with respect to the standby position P3 located downstream of the mounting position P2 in the transport direction X, and waits for the substrate B received from the mounting conveyor 22 at the standby position P3 or transfers it to the mounting conveyor 24.
  • the mounting conveyor 24 is provided with respect to the mounting position P4 located downstream of the standby position P3 in the transport direction X, and the substrate B received from the standby conveyor 23 is fixed to the mounting position P4 or transferred to the carry-out conveyor 25.
  • the carry-out conveyor 25 is provided at a position downstream of the mounting position P4 in the transport direction X, and carries the board B received from the mounting conveyor 24 out of the component mounting apparatus 10.
  • M mounting positions P2 and P4 are provided side by side in the transport direction X.
  • M is an integer greater than or equal to 2
  • M 2 in the example of FIG.
  • the component mounting apparatus 10 includes a component supply unit 3 that supplies a component Wp.
  • the component supply unit 3 includes a wafer storage unit 31 that can store a plurality of wafers W, and a wafer extraction unit 33 that pulls out the wafer W from the wafer storage unit 31 to the wafer supply position Pp.
  • the wafer storage unit 31 raises and lowers the rack in which the plurality of wafer holders Wh each holding the wafer W are arranged in the vertical direction Z in the vertical direction Z so that the wafer extraction unit 33 can receive the wafer W.
  • the wafer holder Wh can be positioned, and the wafer holder Wh can be pushed out to the wafer extraction portion 33.
  • the wafer pull-out unit 33 is provided on the wafer support table 331 provided in the width direction Y, a wafer support table 331 that supports the wafer holder Wh, a fixed rail 332 that supports the wafer support table 331 to be movable in the width direction Y, and the wafer support table 331. And a Y-axis motor 334 that drives the ball screw 333. Therefore, the wafer support table 331 can be moved in the width direction Y along the fixed rail 332 by rotating the ball screw 333 by the Y-axis motor 334. As shown in FIG.
  • the wafer storage unit 31 and the wafer supply position Pp are arranged so as to sandwich the transfer unit 2 from the width direction Y, and the wafer support table 331 passes below the transfer unit 2.
  • the wafer support table 331 receives the wafer holder Wh from the wafer storage unit 31 at the reception position adjacent to the wafer storage unit 31 and moves from the reception position to the wafer supply position Pp away from the wafer storage unit 31 in the width direction Y. As a result, the wafer W is pulled out to the wafer supply position Pp.
  • the component supply unit 3 has a component take-out unit 35 for taking out the component Wp from the wafer supply position Pp.
  • the component take-out unit 35 has a take-out head 36 that takes out the component Wp from the wafer supply position Pp, and can drive the take-out head 36 in the XY directions.
  • the component extraction unit 35 includes a support member 351 that supports the extraction head 36 so as to be movable in the conveyance direction X, and an X-axis motor 352 that is provided in the conveyance direction X and drives a ball screw attached to the extraction head 36.
  • the take-out head 36 can be moved in the transport direction X by driving the ball screw by the X-axis motor 352.
  • the component take-out unit 35 includes a fixed rail 353 that supports the support member 351 so as to be movable in the width direction Y, a ball screw 354 that is provided in the width direction Y and attached to the fixed rail 353, and a Y that drives the ball screw 354.
  • the take-out head 36 has a bracket 361 extending in the transport direction X and two nozzles 362 rotatably supported by the bracket 361. Each nozzle 362 is positioned at either a suction position facing downward or a delivery position (position in FIG. 1) facing upward by rotating around a rotation axis parallel to the transport direction X.
  • the bracket 361 can be moved up and down with each nozzle 362.
  • the component supplier 3 lowers the nozzle 362 to contact the component Wp. Furthermore, the component supply unit 3 sucks the component Wp from the wafer supply position Pp by raising the nozzle 362 while applying a negative pressure to the nozzle 362. And the components supply part 3 supplies the components Wp by positioning the nozzle 362 in a delivery position.
  • the component mounting apparatus 10 includes mounting units 4A and 4B that mount the component Wp thus supplied by the component supply unit 3 on the substrate B.
  • the mounting portions 4A and 4B include a support member 41 movable along a fixed rail provided in the width direction Y on the ceiling of the component mounting apparatus 10, and a mounting head supported by the support member 41 so as to be movable in the transport direction X.
  • the mounting head 42 has two nozzles 421 facing downward, and the nozzle 421 can be moved in the XY directions by the movement of the mounting head 42 by the head driving unit.
  • each of the mounting portions 4A and 4B moves above the take-out head 36 and moves the nozzle 421 from above with respect to the component Wp held by the nozzle 362 located at the delivery position.
  • the nozzle 421 is lowered and brought into contact with the component Wp.
  • the component supply unit 3 releases the negative pressure of the nozzle 362, and the mounting units 4A and 4B raise the nozzle 421 while applying a negative pressure to the nozzle 421.
  • the nozzle 421 receives the component Wp from the component supply unit 3 and holds it by suction.
  • the movement of the mounting head 42 by the head drive unit causes the nozzle 421 holding the component Wp to move to a desired movement destination via the upper position of the component recognition camera 5, so that the component Wp moves to the mounting positions P 2 and P 4.
  • the component Wp is conveyed from the component supply unit 3 to the destination by the mounting head 42 while being held by the nozzle 421.
  • the component Wp that has been conveyed to the movement destination that is, the position above the mounting target point, is mounted on the substrate B by the nozzle 421, and component mounting is performed.
  • the component recognition cameras 5 and 5 described above are fixed at predetermined positions.
  • the component Wp and the nozzle 421 that are sucked and held by the nozzle 421 are imaged, and a signal of the captured image (hereinafter referred to as “component image”) is subjected to image processing. Output to the unit 150.
  • This component image is used not only when the movement state of the component Wp is recognized by recognizing the holding state of the component Wp by the nozzle 421 during the movement of the nozzle 421, but also when the component Wp is inspected as will be described in detail later. Is also used.
  • the component mounting apparatus 10 is provided with a display unit 7 (FIG. 2) that functions as an interface with the operator.
  • the display unit 7 is connected to the control unit 100 and has a function as an input terminal configured by a touch panel and receiving an input from an operator, in addition to a function of displaying an operation state of the component mounting apparatus 10.
  • the control unit 100 is provided at a proper position inside the apparatus main body, and is a well-known CPU (Central Processing Unit) for executing logical operations, a ROM (Read Only Memory) for storing initial settings, and various devices during operation of the apparatus. It is composed of RAM (Random Access Memory) that temporarily stores data.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • control unit 100 includes an arithmetic processing unit 110, a storage unit 120, a motor control unit 130, an external input / output unit 140, an image processing unit 150, and the like.
  • the motor control unit 130 controls driving of motors provided in the conveyors 21 to 25, the wafer drawing unit 33, the take-out head 36 and the head driving unit.
  • the external input / output unit 140 inputs signals from various sensors mounted on the component mounting apparatus 10, and outputs signals to various actuators mounted on the component mounting apparatus 10.
  • the image processing unit 150 receives an image signal from the component recognition camera 5 and performs various image processing on the component image to generate a component image suitable for component recognition and component inspection.
  • the storage unit 120 stores a program for performing component mounting processing, a board position in each mounting turn, mounting data indicating a mounted component and a mounting position, and a component image.
  • the arithmetic processing unit 110 has an arithmetic function such as a CPU and the like, and controls the motor control unit 130 and the image processing unit 150 in accordance with the program and mounting data stored in the storage unit 120, so that the nozzle 421 to the component supply unit 3, suction holding of the component Wp supplied from the component supply unit 3 by the nozzle 421, movement of the nozzle 421 holding the component Wp to the destination, and the component recognition camera 5 during the movement Component mounting by repeating a series of operations (hereinafter referred to as “mounting turn”) consisting of component recognition based on the captured component image, movement of the nozzle 421 holding the component Wp to the destination, and mounting of the component Wp on the board B I do.
  • mounting turn a series of operations
  • the arithmetic processing unit 110 performs the inspection of the component Wp in parallel during the execution of the mounting turn.
  • the outer shape information of the component Wp is acquired based on the component image (outer shape information acquisition step), and the inspection region of the component Wp is specified from the outer shape information (inspection region specifying step). ), Whether or not an abnormality of the component Wp has occurred in the inspection region is inspected (inspection process).
  • These processes are performed by the arithmetic processing unit 110, and the arithmetic processing unit 110 functions as an outer shape information acquisition unit 111, an inspection region specifying unit 112, and a component inspection unit 113.
  • FIG. 3 is a flowchart showing the operation of the component mounting apparatus of FIG.
  • FIG. 4 is a diagram schematically showing the main steps of the mounting turn.
  • the arithmetic processing unit 110 controls each part of the apparatus as follows according to the program stored in the storage unit 120, and repeats the mounting turn for each of the mounting parts 4A and 4B.
  • the component inspection is performed while the component Wp is held by the nozzle 421 and is conveyed from the component supply unit 3 to the movement destination, that is, the position above the mounting target point.
  • a dot is attached to the inspection step for reference, and in the following, first, by the mounting unit 4A excluding the inspection step.
  • the mounting step will be described, and then the inspection step will be described in detail. Since the mounting step and the inspection step by the mounting unit 4B are basically the same, the description thereof is omitted here.
  • step S1 Mounting data for executing the mounting turn by the mounting unit 4A is created (step S1), and the following mounting turn is executed accordingly.
  • the mounting head 42 of the mounting unit 4A moves to the component supply unit 3 (step S2), receives the component Wp supplied from the component supply unit 3, and holds it by suction (step S3).
  • This component holding operation is executed for the number of nozzles 421.
  • the description will be continued assuming that the component Wp is sucked and held by only one nozzle 421.
  • the mounting head 42 moves upward of the substrate B via the upper position of the component recognition camera 5 (step S4). While the nozzle 421 is moving, the component recognition camera 5 captures an image of the component Wp and the nozzle 421 held by the nozzle 421, and stores, for example, a component image I 1 as shown in the column (a) of FIG. 4 in the storage unit 120. (Step S5).
  • reference numeral Id indicates an overall image of the die constituting the component Wp
  • reference numeral Ib indicates an image of a bump BP (see FIG. 4) formed on one main surface of the die.
  • a reference component image I0 that functions as a template that has been acquired in advance and stored in the storage unit 120 is read out.
  • the reference component image I0 and the component image I1 are read out.
  • the X direction component dx, the Y direction component dy, and the rotation direction component dr of the suction deviation of the component Wp are derived, respectively, and based on these, the movement destination of the nozzle 421 is corrected (step S6).
  • the component Wp is mounted on the substrate B so that the bumps BP are finally in contact with the wiring WR on the substrate B.
  • step S9 the coordinate position of each bump image Ib in the component image I1 is obtained, and these are compared with the coordinate position of each bump image Ib in the reference component image I0, whereby the X direction component dx, the Y direction component dy, and the rotation direction component dr. Are used to correct the movement destination. Accordingly, the movement destination and the rotation angle of the nozzle 421 holding the component Wp are adjusted by this correction, and the component Wp is positioned with the proper component posture above the mounting target point as shown in the column (c) of FIG. After that (step S9), the component Wp is mounted on the substrate B from the nozzle 421 (step S10). As a result, the bump BP is accurately positioned with respect to the wiring WR formed in advance on the substrate B and mounted on the substrate B.
  • step S7 component inspection
  • step S8 inspection result determination
  • step S11 defective component disposal
  • FIG. 5 is a flowchart showing the component inspection operation executed during the mounting turn.
  • the component image I1 is read from the storage unit 120 (step S701), and based on the component image I1, whether there is an abnormality in the edge portion or corner portion of the component Wp, cracks, scratches, etc. You can check whether or not.
  • the edge portion and the corner portion of the component Wp are used as the inspection region.
  • the inspection region since the coordinate position of the bump BP is obtained, it is conceivable to specify the inspection region based on the coordinate position.
  • the inspection region K is, for example, as shown in the column (a) of FIG.
  • the inspection region K is, for example, as shown in the column (a) of FIG.
  • the inspection region K may be deviated from the entire image Id as shown in the column (b) of FIG.
  • the inspection region K may become close to the circuit configuration such as the bump BP and become undetectable.
  • the inspection region K is accurately and appropriately identified without being affected by fluctuations in the dicing position, and the parts Wp in the inspection region K are identified.
  • An abnormality can be inspected.
  • the component Wp is identified and inspected.
  • FIG. 7 is a diagram schematically showing an outline of a specific algorithm for specifying an inspection region.
  • the first specifying algorithm and the second specifying algorithm are shown.
  • the outer shape center coordinates (xd, yd) of the part Wp are obtained as the “outer shape information” and “outer shape center information” of the present invention from the entire image Id of the die.
  • the X direction distance Lx and the Y direction distance Ly from the outer shape center coordinates (xd, yd) and the outer shape center coordinates (xd, yd) are obtained as specific information for specifying the center coordinates (xk, yk) of the inspection region K. And stored in the storage unit 120.
  • the difference between the first specifying algorithm and the second specifying algorithm is only the method of deriving the outer shape center coordinates (xd, yd), and the other points are the same. Specifically, the first specific algorithm derives based on the edge information of the four sides of the entire image Id, whereas the second specific algorithm derives based on the edge information of the four corners of the entire image Id. doing.
  • the third specific algorithm is shown in the (b) column of FIG.
  • one corner coordinate (xc, yc) of the plurality of corners included in the overall image Id of the die is obtained as the “outer shape information” of the present invention
  • the corner coordinate (xc, yc) and The X-direction distance Lx and the Y-direction distance Ly from the corner coordinates (xc, yc) are obtained as specific information for specifying the center coordinates (xk, yk) of the inspection region K and are stored in the storage unit 120.
  • step S702 one of the inspection areas KC1 to KC4 and KE1 to KE4 is selected as an inspection target, and a specific algorithm for specifying the selected inspection target is selected from the above three specific algorithms. . Then, it is determined whether specific information has already been obtained and registered in the storage unit 120 according to the selected specific algorithm (step S703), and steps S704 to S706 are executed according to the determination result. For example, when the specific information is not registered (“NO” in step S703), specific information for specifying the examination region is obtained according to the selected specific algorithm (step S704) and registered in the storage unit 120. (Step S705). On the other hand, if the specific information is already registered (“YES” in step S703), the registered specific information is read from the storage unit 120 and acquired (step S706).
  • the inspection area is specified based on the specific information. That is, the position offset from the outer shape center coordinates (xd, yd) and the corner coordinates (xc, yc) by the X-direction distance Lx and the Y-direction distance Ly is the center coordinates of the inspection region, and the inspection is performed in the part image I1.
  • Image data corresponding to the region is extracted as inspection data (step S707).
  • step S708 it is determined whether or not the parts have been inspected for all the inspection areas KC1 to KC4 and KE1 to KE4 (step S711).
  • step S711 it is determined whether or not the parts have been inspected for all the inspection areas KC1 to KC4 and KE1 to KE4 (step S711).
  • step S711 it is determined whether or not the parts have been inspected for all the inspection areas KC1 to KC4 and KE1 to KE4 (step S711).
  • step S711 an uninspected inspection area exists
  • step S8 it is determined whether the result of the component inspection is a non-defective product or a defective product.
  • the mounting head 42 continues to move so that the component Wp is positioned (step S9) and mounted on the board B (step S9). S10) is executed.
  • the mounting of the component Wp is stopped and the component Wp is discarded in a defective product collection unit (not shown) ( Step S11).
  • the movement destination of the nozzle 421 is corrected to increase the mounting accuracy of the component Wp on the board B and the component. Wp inspection is performed.
  • recognition for component mounting derivation of X-direction component dx, Y-direction component dy and rotational direction component dr of suction deviation
  • recognition for component inspection identification of inspection regions KC1 to KC4, KE1 to KE4 and (Acquisition of inspection data) can be performed at a time, so that a decrease in yield can be prevented without causing tact loss.
  • the inspection areas KC1 to KC4 and KE1 to KE4 are specified based on the external shape information of the part Wp for the part inspection, even if the dicing position on the wafer W is changed, the inspection areas KC1 to KC1 KC4 and KE1 to KE4 can be reliably identified, and the occurrence of abnormality in each of the inspection areas KC1 to KC4 and KE1 to KE4 can be inspected satisfactorily.
  • three different specific algorithms are prepared, and one of three types of external shape information can be selectively acquired for the same part Wp.
  • the outer shape information is selectively acquired for each of the inspection areas KC1 to KC4 and KE1 to KE4, and then the inspection area is specified. Therefore, the inspection areas KC1 to KC4 and KE1 to KE4 can be accurately obtained, and the inspection accuracy can be further increased. Further, the inspection areas KC1 to KC4 and KE1 to KE4 are specified while selecting three specific algorithms in this way, so that inspection data with high robustness can be obtained. For this reason, the inspection of the component Wp can be performed stably.
  • the quality determination of the part Wp can be performed with high accuracy, and defective products can be reliably removed, Only the non-defective component Wp can be mounted on the substrate B, and a highly reliable product can be provided.
  • the component recognition camera 5 and the head driving unit correspond to examples of the “imaging unit” and the “nozzle driving unit” of the present invention, respectively.
  • the combination functions as the “component conveying device” of the present invention.
  • steps S3, S5, and S6 in FIG. 3 correspond to examples of the “component holding process”, “imaging process”, and “movement destination correction process” of the present invention, respectively
  • steps S4 and S9 correspond to the “nozzle of the present invention”. This corresponds to an example of the “movement process”.
  • steps S703 to S706 in FIG. 5 correspond to an example of the “external shape information acquisition process” of the present invention
  • steps S707 and S708 correspond to examples of the “inspection area specifying process” and the “inspection process” of the present invention, respectively. doing.
  • the present invention is not limited to the above embodiment, and various modifications can be made to the above without departing from the spirit of the present invention.
  • the present invention can also be applied to the case of the component Wp.
  • the eight inspection areas KC1 to KC4 and KE1 to KE4 are inspected, but the number, shape, position, etc. of the inspection areas are arbitrary.
  • the component recognition camera 5 is fixed, and the component is imaged when the mounting head 42 passes above the component recognition camera 5, but a so-called scan camera is attached to the mounting head 42 and mounted.
  • a component image may be acquired by a scan camera while the head 42 is moving.
  • the component inspection (step S7) is performed in parallel with the movement correction operation and the movement operation of the nozzle 421 to the corrected movement destination. It may be configured to execute the component inspection (step S7) only in parallel.
  • the present invention is applied to the component mounting apparatus 10 including the two mounting portions 4A and 4B.
  • the number of mounting portions is not limited to this and is arbitrary.
  • the components Wp supplied from the component supply part 3 are conveyed as it is to the upper position of the board
  • the present invention is applied to an apparatus using a die supplied from a wafer divided into a plurality of dies by dicing as a component, but the application target of the present invention is not limited to this. Absent.
  • the present invention can also be applied to a component transport apparatus that transports stored components that are stored in advance in a component storage body such as a tray or a tape, and a component mounting apparatus that includes the component transport apparatus.
  • the external information of the storage component is acquired based on the component image of the storage component, the inspection region of the storage component is specified from the external shape information, and then it is inspected whether the storage component has an abnormality in the inspection region. You may comprise. Accordingly, it is possible to reliably specify the inspection area of the storage component, and it is possible to satisfactorily inspect the occurrence of abnormality in each inspection area.
  • the present invention can be applied to general component conveying technology for picking up a component and conveying it to a predetermined destination, and component mounting technology for conveying a component using the component conveying technology and mounting it on a substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Operations Research (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Abstract

The purpose of the present invention is to inspect a component accurately in parallel with the conveyance of the component to the destination. The present invention provides a component conveying apparatus comprising: an external shape information acquisition unit 111 that acquires external shape information on a component Wp on the basis of a component image I1; an inspection area specifying unit 112 that specifies an inspection area K of the component Wp from the external shape information; and a component inspection unit 113 that inspects whether or not an abnormality of the component Wp occurs in the inspection area K, wherein the inspection of the component Wp is performed in parallel with at least one of the correction of the movement destination and the movement of a nozzle 421 to the corrected movement destination.

Description

部品搬送装置、部品搬送方法および部品実装装置Component conveying apparatus, component conveying method, and component mounting apparatus
 この発明は、トレイやテープなどの部品収納体やダイシング済みのウエハから部品をピックアップし、所定の移動先に搬送する部品搬送装置および部品搬送方法、ならびに上記部品搬送装置により部品を搬送して基板に搭載する部品実装装置に関するものである。 The present invention relates to a component conveying apparatus and a component conveying method for picking up a component from a component container such as a tray or a tape or a diced wafer, and conveying the component to a predetermined destination, and a substrate by conveying the component by the component conveying device. The present invention relates to a component mounting apparatus to be mounted on the machine.
 従来から、種々の部品供給方式が採用されている。例えば特許文献1に記載の装置では、ウエハステージ上に保持されたダイシング済みのウエハからダイを部品としてピックアップし、基板上に搭載して部品実装が行われる。この部品実装装置では、ウエハヘッドによりウエハから取り出されて供給される部品(ダイ)を実装用ヘッドに設けられたノズルが吸着して保持する。この際に吸着ずれが発生することがあるため、ノズルによる部品の保持状態が撮像されるとともに、上記撮像により得られる部品画像に基づいて部品の吸着ずれが求められる。こうした部品認識後に、当該吸着ずれに応じてノズルの移動先が補正され、さらに当該補正された移動先にノズルが移動して部品搬送を完了した後で当該部品が基板に搭載される。こうして、部品の基板への実装が実行される。 Conventionally, various parts supply methods have been adopted. For example, in the apparatus described in Patent Document 1, a die is picked up as a component from a diced wafer held on a wafer stage, and mounted on a substrate for component mounting. In this component mounting apparatus, a component (die) taken out from a wafer by a wafer head and supplied is sucked and held by a nozzle provided in the mounting head. At this time, a suction deviation may occur, so that the holding state of the part by the nozzle is imaged, and the part suction deviation is obtained based on the part image obtained by the imaging. After such component recognition, the movement destination of the nozzle is corrected according to the suction deviation, and after the nozzle has moved to the corrected movement destination and the component conveyance has been completed, the component is mounted on the substrate. In this way, the component is mounted on the board.
 ここで、基板に実装した部品に割れ、欠けや傷などの異常が含まれていたとしても、上記部品実装の後工程、例えばモールディング工程において、上記異常を検出することは難しい。 Here, even if an abnormality such as a crack, a chip or a scratch is included in a component mounted on the board, it is difficult to detect the abnormality in a subsequent process of the component mounting, for example, a molding process.
 そこで、特許文献2に記載の部品搬送技術を上記部品実装装置に適用することが考えられている。この特許文献2に記載の装置では、ウエハからピックアップした部品(ダイ)の下面を撮像して得られる部品画像に基づいて位置測定認識を行ってノズルの移動先を補正するのと同時に、上記部品画像に基づいてチップ欠け認識を行って部品の良否を検査している。 Therefore, it is considered to apply the component conveying technique described in Patent Document 2 to the component mounting apparatus. In the apparatus described in Patent Document 2, position measurement recognition is performed on the basis of a component image obtained by imaging the lower surface of a component (die) picked up from a wafer, and the nozzle movement destination is corrected at the same time. Chip defect recognition is performed based on the image to inspect the quality of the parts.
特開2017-17348号公報JP 2017-17348 A 特開2012-199321号公報JP 2012-199321 A
 上記特許文献2では、部品画像に基づいて部品の良否を検査しているが、その具体的な手法は開示も示唆もされておらず、例えばウエハのうちダイシングされた部分、つまりダイシングラインが設定位置からずれると、以下のような問題が発生することがあった。例えば部品のうち検査すべき領域(以下「検査領域」という)は、ウエハのダイシングが所定位置で行われているという前提の下で、予め設定されている。しかしながら、通常、ウエハにダイシング処理を施して複数のダイに分割する場合、ダイを分離させる位置(上記の場合には、「ダイシングライン」がこれに相当)の変動は不可避である。このため、当該変動により検査領域が部品の外側にあると特定されてしまうと、誤った検出がなされる(後述の図6中の「誤検出」欄を参照)。また、検査領域が部品の機能部位(配線、電極や回路などが設けられる部位)を有する機能領域内に特定されてしまうと、検査領域に対する検査自体が不能となることがある。 In Patent Document 2, the quality of a component is inspected based on the component image, but the specific method is neither disclosed nor suggested. For example, a diced portion of a wafer, that is, a dicing line is set. When shifted from the position, the following problems may occur. For example, an area to be inspected (hereinafter referred to as “inspection area”) of the parts is set in advance on the assumption that dicing of the wafer is performed at a predetermined position. However, normally, when the wafer is diced and divided into a plurality of dies, fluctuations in the position at which the dies are separated (in this case, the “dicing line” corresponds to this) are unavoidable. For this reason, if the inspection region is specified to be outside the part due to the variation, an erroneous detection is performed (see the “false detection” column in FIG. 6 described later). In addition, if the inspection area is specified within a functional area having a functional part of a component (a part where wiring, electrodes, circuits, etc. are provided), the inspection for the inspection area itself may be impossible.
 また、このような問題は他の部品供給方式、例えばトレイやテープなどの部品収納体に予め収納されている部品(以下「収納部品」と称する)を実装用ヘッドに設けられたノズルにより搬送する装置においても生じる。いわゆる段取り作業を行っている間や部品収納体の輸送中など種々の場面で部品に割れ、欠けや傷などの異常が発生することがあるが、収納部品の検査領域を適切に特定することができず、検査を良好に行うことが困難となることがあった。 In addition, such a problem is caused by another component supply system, for example, a component (hereinafter referred to as a “storage component”) stored in a component storage body such as a tray or a tape is conveyed by a nozzle provided in the mounting head. It also occurs in the device. There are cases where abnormalities such as cracks, chippings and scratches occur in various situations such as during the so-called setup work or during transportation of the parts container, but it is possible to appropriately specify the inspection area of the stored parts In some cases, it was difficult to perform the inspection well.
 この発明は上記課題に鑑みなされたものであり、移動先に部品を搬送するのと並行して部品の検査を正確に行うことができる部品搬送技術、ならびに当該部品搬送技術を組み込んだ部品実装装置を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and a component transport technology capable of accurately inspecting a component in parallel with transporting a component to a destination, and a component mounting apparatus incorporating the component transport technology The purpose is to provide.
 この発明の第1態様は、部品供給部から供給される部品を受け取って保持するノズルと、ノズルにより保持された部品を撮像する撮像部と、部品を保持したノズルを部品供給部から移動させるノズル駆動部とを有し、撮像部により撮像された部品画像に基づいてノズルの移動先を補正した後で補正された移動先にノズルをノズル駆動部により移動させて部品を搬送する部品搬送装置であって、部品画像に基づいて部品の外形情報を取得する外形情報取得部と、外形情報から部品の検査領域を特定する検査領域特定部と、検査領域で部品の異常が発生しているか否かを検査する部品検査部とを備え、移動先の補正と補正された移動先へのノズルの移動とのうちの少なくとも一方と並行して部品の検査を行うことを特徴としている。 A first aspect of the present invention includes a nozzle that receives and holds a component supplied from a component supply unit, an imaging unit that captures an image of the component held by the nozzle, and a nozzle that moves the nozzle holding the component from the component supply unit And a drive unit that corrects the movement destination of the nozzle based on the component image captured by the imaging unit and then moves the nozzle to the corrected movement destination by the nozzle drive unit to convey the component. In addition, an outline information acquisition unit that acquires outline information of a part based on the part image, an inspection area specification part that specifies an inspection area of the part from the outline information, and whether or not an abnormality of the part has occurred in the inspection area And inspecting the component in parallel with at least one of the correction of the movement destination and the movement of the nozzle to the corrected movement destination.
 また、この発明の第2態様は、部品搬送方法であって、部品をノズルにより受け取って保持する部品保持工程と、ノズルにより保持された部品を撮像する撮像工程と、撮像工程の実行により取得された部品画像に基づいてノズルの移動先を補正する移動先補正工程と、部品を保持したノズルを補正された移動先に移動させるノズル移動工程と、部品画像に基づいて部品の外形情報を取得する外形情報取得工程と、外形情報から部品の検査領域を特定する検査領域特定工程と、移動先補正工程とノズル移動工程とのうちの少なくとも一方と並行して、検査領域で部品の異常が発生しているか否かを検査する検査工程とを備えることを特徴としている。 A second aspect of the present invention is a component conveying method, which is obtained by performing a component holding step of receiving and holding a component by a nozzle, an imaging step of imaging the component held by the nozzle, and an imaging step. The movement destination correction step of correcting the movement destination of the nozzle based on the component image obtained, the nozzle movement step of moving the nozzle holding the component to the corrected movement destination, and acquiring the external information of the component based on the component image In parallel with at least one of the outline information acquisition process, the inspection area identification process that identifies the inspection area of the part from the outline information, the movement destination correction process, and the nozzle movement process, an abnormality in the inspection area occurs. And an inspection process for inspecting whether or not it is present.
 さらに、この発明の第3態様は、部品実装装置であって、部品を供給する部品供給部と、上記部品搬送装置と、部品検査部により部品の異常が発生していないと判定されたときには移動先に移動してきたノズルにより部品を基板に搭載する一方、部品の異常が発生していると判定されたときには部品の基板への搭載を中止する制御部とを備えることを特徴としている。 Furthermore, a third aspect of the present invention is a component mounting apparatus, which moves when it is determined that no component abnormality has occurred by the component supply unit that supplies the component, the component conveying device, and the component inspection unit. A component is mounted on the substrate by the nozzle that has moved first, and a control unit that stops mounting the component on the substrate when it is determined that a component abnormality has occurred.
 このように構成された発明では、撮像部により撮像された部品画像に基づいて補正された移動先にノズルが移動して部品を搬送する。また、上記移動先の補正および移動先へのノズルの移動のうち少なくとも一方と並行して上記部品画像に基づく部品の検査が行われる。したがって、部品を所望の移動先に正確に搬送するのと同時に、搬送中の部品の外形情報に基づいて検査領域が正確に特定され、当該検査領域での異常発生が良好に検査される。 In the invention configured as described above, the nozzle moves to the movement destination corrected based on the component image captured by the imaging unit and conveys the component. In addition, a component inspection based on the component image is performed in parallel with at least one of the correction of the movement destination and the movement of the nozzle to the movement destination. Therefore, at the same time when the part is accurately transported to a desired destination, the inspection area is accurately specified based on the external shape information of the part being transported, and the occurrence of abnormality in the inspection area is inspected satisfactorily.
 また、部品実装装置では、上記検査結果を受けて部品の異常が発生していると判定された部品については基板への搭載が中止される。したがって、不良部品の実装が回避されて基板の製造歩留りが改善される。 In addition, in the component mounting apparatus, the mounting on the board is stopped for the component that has been determined to have a component abnormality based on the inspection result. Therefore, mounting of defective parts is avoided and the manufacturing yield of the board is improved.
 ここで、部品としては、例えばダイシングにより複数のダイに分割されたウエハから部品供給部により供給されるダイや複数の収納部品を収納する部品収納体から部品供給部により供給される収納部品などが含まれる。 Here, examples of the component include a die supplied by a component supply unit from a wafer divided into a plurality of dies by dicing, and a storage component supplied by a component supply unit from a component storage body that stores a plurality of storage components. included.
 また、外形情報取得部が互いに異なる複数の外形情報を取得可能となるように構成してもよく、これによって検査領域を正確に求めることができ、検査精度をさらに高めることができる。 Also, the outer shape information acquisition unit may be configured to be able to acquire a plurality of different outer shape information, whereby the inspection area can be accurately obtained, and the inspection accuracy can be further increased.
 また、部品が平面視でN(ただし、Nは3以上の自然数)角形状を有しているとき、外形情報取得部が、外形情報として、部品の平面視における外形中心座標と、部品に含まれる複数の角部うちの一の角部座標とを取得可能となるように構成してもよい。このように複数の外形情報を用意することで種々の検査領域に対応することができ、後で説明するように部品を多面的に検査することができる。その結果、高精度な検査が可能となる。 Further, when the part has an N shape (where N is a natural number of 3 or more) in a plan view, the outline information acquisition unit includes the outline center coordinates in the plan view of the part and the part as the outline information. It may be configured such that one corner coordinate of the plurality of corner portions can be acquired. By preparing a plurality of pieces of external shape information in this way, it is possible to deal with various inspection areas, and it is possible to inspect parts in a multifaceted manner as will be described later. As a result, highly accurate inspection is possible.
 上記外形中心座標については例えばN角形状の部品の平面視におけるN個の辺部またはN個の角部から取得してもよく、外形中心座標を精度良く求めることができる。したがって、検査領域を正確に求めることができ、検査精度をさらに高めることができる。 The outer shape center coordinates may be obtained from, for example, N sides or N corners in plan view of an N-shaped part, and the outer shape center coordinates can be obtained with high accuracy. Therefore, the inspection area can be obtained accurately, and the inspection accuracy can be further increased.
 なお、部品の検査領域が複数個存在することがあるが、このような場合、外形情報取得部が検査領域毎に外形情報として外形中心座標および角部座標からいずれか一方を選択し、検査領域特定部が外形情報取得部により選択された外形情報に基づいて検査領域を特定するように構成してもよい。このような構成を採用することで多様な検査領域をそれぞれ高精度に特定することができ、検査精度を高めることができる。 There may be a plurality of parts inspection areas. In such a case, the outline information acquisition unit selects one of the outline center coordinates and corner coordinates as outline information for each inspection area, and the inspection area. The specifying unit may be configured to specify the inspection region based on the outer shape information selected by the outer shape information acquiring unit. By adopting such a configuration, it is possible to specify various inspection regions with high accuracy, and to increase inspection accuracy.
 上記のように構成された発明によれば、ウエハをダイシングする位置が変動したとしても、移動先に部品を正確に搬送するのと同時に当該部品の検査を正確に行うことができる。 According to the invention configured as described above, even if the position of dicing the wafer fluctuates, it is possible to accurately inspect the part at the same time that the part is accurately conveyed to the destination.
本発明に係る部品搬送装置の一実施形態を装備する部品実装装置を模式的に示す平面図である。It is a top view which shows typically the component mounting apparatus equipped with one Embodiment of the component conveying apparatus which concerns on this invention. 図1に示す部品実装装置の主要な電気的構成を示すブロック図である。It is a block diagram which shows the main electrical structures of the component mounting apparatus shown in FIG. 図1の部品実装装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the component mounting apparatus of FIG. 実装ターンの主要工程を模式的に示す図である。It is a figure which shows typically the main process of a mounting turn. 実装ターン中に実行される部品検査動作を示すフローチャートである。It is a flowchart which shows the components test | inspection operation | movement performed during a mounting turn. バンプ基準で検査領域を特定する場合におけるダイシング位置の変動による影響を模式的に示す図である。It is a figure which shows typically the influence by the fluctuation | variation of a dicing position in the case of specifying a test | inspection area | region on bump reference | standard. 検査領域を特定する特定アルゴリズムの概要を模式的に示す図である。It is a figure which shows typically the outline | summary of the specific algorithm which specifies a test | inspection area | region. 検査領域の一例を模式的に示す図である。It is a figure which shows an example of a test | inspection area | region typically.
 図1は本発明に係る部品搬送装置の一実施形態を装備する部品実装装置を模式的に示す平面図である。また、図2は図1に示す部品実装装置の主要な電気的構成を示すブロック図である。図1に示すように、本明細書では、搬送方向X、幅方向Yおよび鉛直方向Zで構成されるXYZ直交座標軸を適宜用いる。搬送方向Xおよび幅方向Yは水平方向に並行であるとともに互いに直交し、鉛直方向Zは搬送方向Xおよび幅方向Yに直交する。 FIG. 1 is a plan view schematically showing a component mounting apparatus equipped with an embodiment of a component conveying apparatus according to the present invention. FIG. 2 is a block diagram showing the main electrical configuration of the component mounting apparatus shown in FIG. As shown in FIG. 1, in this specification, XYZ orthogonal coordinate axes configured by a conveyance direction X, a width direction Y, and a vertical direction Z are appropriately used. The transport direction X and the width direction Y are parallel to the horizontal direction and orthogonal to each other, and the vertical direction Z is orthogonal to the transport direction X and the width direction Y.
 この部品実装装置10は、搬送方向Xの上流側から搬入された基板Bに対して部品を実装して搬送方向Xの下流側に搬出する。基板Bには複数の実装対象点(図示省略)が設けられており、部品実装装置10に具備された制御部100は、部品実装装置10の各部を制御することで、各実装対象点に部品Wpを1個ずつ実装する。また、各部品WpはウエハWをダイシングすることでウエハWにおいて格子状に形成されたダイであり、互いに同一の構成を有している。この部品Wpでは、一方主面にバンプなどの回路構成が形成されている。また、各部品Wpの平面視は矩形形状である(本発明のN=4)。 The component mounting apparatus 10 mounts components on the board B carried in from the upstream side in the transport direction X, and carries it out downstream in the transport direction X. The board B is provided with a plurality of mounting target points (not shown), and the control unit 100 provided in the component mounting apparatus 10 controls each part of the component mounting apparatus 10 so that each mounting target point has a component. One Wp is mounted at a time. Each component Wp is a die formed in a lattice shape on the wafer W by dicing the wafer W, and has the same configuration. In the component Wp, a circuit configuration such as a bump is formed on one main surface. Each component Wp has a rectangular shape in plan view (N = 4 in the present invention).
 この部品実装装置10は搬送方向Xに基板Bを搬送する搬送部2を備える。搬送部2は、搬送方向Xにこの順番で並ぶ、待機コンベア21、実装コンベア22、待機コンベア23、実装コンベア24および搬出コンベア25を有し、これらのコンベア21~25が協働して搬送方向Xに基板Bを搬送することができる。待機コンベア21は待機位置P1に対して設けられ、部品実装装置10の外部から搬入した基板Bを待機位置P1に待機させ、あるいは実装コンベア22に受け渡す。実装コンベア22は待機位置P1の搬送方向Xの下流側に位置する実装位置P2に対して設けられ、待機コンベア21から受け取った基板Bを実装位置P2に固定し、あるいは待機コンベア23に受け渡す。待機コンベア23は実装位置P2の搬送方向Xの下流側に位置する待機位置P3に対して設けられ、実装コンベア22から受け取った基板Bを待機位置P3で待機させ、あるいは実装コンベア24に受け渡す。実装コンベア24は待機位置P3の搬送方向Xの下流側に位置する実装位置P4に対して設けられ、待機コンベア23から受け取った基板Bを実装位置P4に固定し、あるいは搬出コンベア25に受け渡す。搬出コンベア25は実装位置P4の搬送方向Xの下流側の位置に対して設けられ、実装コンベア24から受け取った基板Bを部品実装装置10の外部へ搬出する。このように、搬送部2では、M個の実装位置P2、P4が搬送方向Xに並んで設けられている。ここで、Mは2以上の整数で、図1の例ではM=2である。 The component mounting apparatus 10 includes a transport unit 2 that transports the substrate B in the transport direction X. The transport unit 2 includes a standby conveyor 21, a mounting conveyor 22, a standby conveyor 23, a mounting conveyor 24, and an unloading conveyor 25 that are arranged in this order in the transport direction X, and these conveyors 21 to 25 cooperate in the transport direction. The substrate B can be transferred to X. The standby conveyor 21 is provided with respect to the standby position P1, and the board B loaded from the outside of the component mounting apparatus 10 is made to wait at the standby position P1 or is transferred to the mounting conveyor 22. The mounting conveyor 22 is provided with respect to the mounting position P2 located downstream of the standby position P1 in the transport direction X, and the substrate B received from the standby conveyor 21 is fixed to the mounting position P2 or transferred to the standby conveyor 23. The standby conveyor 23 is provided with respect to the standby position P3 located downstream of the mounting position P2 in the transport direction X, and waits for the substrate B received from the mounting conveyor 22 at the standby position P3 or transfers it to the mounting conveyor 24. The mounting conveyor 24 is provided with respect to the mounting position P4 located downstream of the standby position P3 in the transport direction X, and the substrate B received from the standby conveyor 23 is fixed to the mounting position P4 or transferred to the carry-out conveyor 25. The carry-out conveyor 25 is provided at a position downstream of the mounting position P4 in the transport direction X, and carries the board B received from the mounting conveyor 24 out of the component mounting apparatus 10. Thus, in the transport unit 2, M mounting positions P2 and P4 are provided side by side in the transport direction X. Here, M is an integer greater than or equal to 2, and M = 2 in the example of FIG.
 また、部品実装装置10は部品Wpを供給する部品供給部3を備える。部品供給部3は、複数のウエハWを収納可能なウエハ収納部31と、ウエハ収納部31からウエハ供給位置PpまでウエハWを引き出すウエハ引出部33とを有する。ウエハ収納部31は、それぞれウエハWを保持する複数のウエハホルダーWhを鉛直方向Zに並べて収納するラックを鉛直方向Zに昇降させることで、ウエハ引出部33がウエハWを受取可能な高さにウエハホルダーWhを位置させて、このウエハホルダーWhをウエハ引出部33に押し出すことができる。 In addition, the component mounting apparatus 10 includes a component supply unit 3 that supplies a component Wp. The component supply unit 3 includes a wafer storage unit 31 that can store a plurality of wafers W, and a wafer extraction unit 33 that pulls out the wafer W from the wafer storage unit 31 to the wafer supply position Pp. The wafer storage unit 31 raises and lowers the rack in which the plurality of wafer holders Wh each holding the wafer W are arranged in the vertical direction Z in the vertical direction Z so that the wafer extraction unit 33 can receive the wafer W. The wafer holder Wh can be positioned, and the wafer holder Wh can be pushed out to the wafer extraction portion 33.
 ウエハ引出部33は、ウエハホルダーWhを支持するウエハ支持テーブル331と、ウエハ支持テーブル331を幅方向Yに移動可能に支持する固定レール332と、幅方向Yに設けられてウエハ支持テーブル331に取り付けられたボールネジ333と、ボールネジ333を駆動するY軸モータ334とを有する。したがって、Y軸モータ334によりボールネジ333を回転させることで、ウエハ支持テーブル331を固定レール332に沿って幅方向Yに移動させることができる。なお、図1に示すように、ウエハ収納部31とウエハ供給位置Ppとは搬送部2を幅方向Yから挟むように配置されており、ウエハ支持テーブル331は搬送部2の下方を通過する。かかるウエハ支持テーブル331は、ウエハ収納部31に隣接する受取位置でウエハ収納部31からウエハホルダーWhを受け取って、受取位置よりウエハ収納部31から幅方向Yに離れたウエハ供給位置Ppへと移動することで、ウエハ供給位置PpにウエハWを引き出す。 The wafer pull-out unit 33 is provided on the wafer support table 331 provided in the width direction Y, a wafer support table 331 that supports the wafer holder Wh, a fixed rail 332 that supports the wafer support table 331 to be movable in the width direction Y, and the wafer support table 331. And a Y-axis motor 334 that drives the ball screw 333. Therefore, the wafer support table 331 can be moved in the width direction Y along the fixed rail 332 by rotating the ball screw 333 by the Y-axis motor 334. As shown in FIG. 1, the wafer storage unit 31 and the wafer supply position Pp are arranged so as to sandwich the transfer unit 2 from the width direction Y, and the wafer support table 331 passes below the transfer unit 2. The wafer support table 331 receives the wafer holder Wh from the wafer storage unit 31 at the reception position adjacent to the wafer storage unit 31 and moves from the reception position to the wafer supply position Pp away from the wafer storage unit 31 in the width direction Y. As a result, the wafer W is pulled out to the wafer supply position Pp.
 さらに、部品供給部3は、ウエハ供給位置Ppから部品Wpを取り出す部品取出部35を有する。部品取出部35は、ウエハ供給位置Ppから部品Wpを取り出す取出ヘッド36を有し、取出ヘッド36をXY方向に駆動可能である。つまり、部品取出部35は、取出ヘッド36を搬送方向Xに移動可能に支持する支持部材351と、搬送方向Xに設けられて取出ヘッド36に取り付けられたボールネジを駆動するX軸モータ352とを有し、X軸モータ352によりボールネジを駆動することで、取出ヘッド36を搬送方向Xに移動させることができる。また、部品取出部35は、支持部材351を幅方向Yに移動可能に支持する固定レール353と、幅方向Yに設けられて固定レール353に取り付けられたボールネジ354と、ボールネジ354を駆動するY軸モータ355とを有する。したがって、Y軸モータ355によりボールネジ354を駆動することで、支持部材351とともに取出ヘッド36を幅方向Yに移動させることができる。 Furthermore, the component supply unit 3 has a component take-out unit 35 for taking out the component Wp from the wafer supply position Pp. The component take-out unit 35 has a take-out head 36 that takes out the component Wp from the wafer supply position Pp, and can drive the take-out head 36 in the XY directions. That is, the component extraction unit 35 includes a support member 351 that supports the extraction head 36 so as to be movable in the conveyance direction X, and an X-axis motor 352 that is provided in the conveyance direction X and drives a ball screw attached to the extraction head 36. The take-out head 36 can be moved in the transport direction X by driving the ball screw by the X-axis motor 352. The component take-out unit 35 includes a fixed rail 353 that supports the support member 351 so as to be movable in the width direction Y, a ball screw 354 that is provided in the width direction Y and attached to the fixed rail 353, and a Y that drives the ball screw 354. A shaft motor 355. Therefore, by driving the ball screw 354 by the Y-axis motor 355, the take-out head 36 can be moved in the width direction Y together with the support member 351.
 取出ヘッド36は、搬送方向Xに延設されたブラケット361と、ブラケット361に回転可能に支持された2個のノズル362とを有する。各ノズル362は、搬送方向Xに平行な回転軸を中心に回転することで、下方を向く吸着位置および上方を向く受渡位置(図1の位置)のいずれかに位置する。また、ブラケット361は、各ノズル362を伴って昇降可能である。 The take-out head 36 has a bracket 361 extending in the transport direction X and two nozzles 362 rotatably supported by the bracket 361. Each nozzle 362 is positioned at either a suction position facing downward or a delivery position (position in FIG. 1) facing upward by rotating around a rotation axis parallel to the transport direction X. The bracket 361 can be moved up and down with each nozzle 362.
 かかる部品供給部3は、吸着位置に位置させたノズル362を、ウエハ供給位置Pp上の部品Wpに上方から対向させると、ノズル362を下降させて部品Wpに接触させる。さらに、部品供給部3はノズル362に負圧を与えつつノズル362を上昇させることで、ウエハ供給位置Ppから部品Wpを吸着する。そして、部品供給部3は、ノズル362を受渡位置に位置させることで、部品Wpを供給する。 When the nozzle 362 positioned at the suction position is opposed to the component Wp on the wafer supply position Pp from above, the component supplier 3 lowers the nozzle 362 to contact the component Wp. Furthermore, the component supply unit 3 sucks the component Wp from the wafer supply position Pp by raising the nozzle 362 while applying a negative pressure to the nozzle 362. And the components supply part 3 supplies the components Wp by positioning the nozzle 362 in a delivery position.
 部品実装装置10は、こうして部品供給部3によって供給された部品Wpを基板Bに実装する実装部4A、4Bを備える。特にM個の実装位置P2、P4に対して一対一の対応関係で、M個の実装部4A、4Bが設けられている(上述の通り、図1の例ではM=2である)。つまり、実装部4Aは、実装位置P2に対応して設けられ、実装部4Bは、実装位置P4に対応して設けられている。実装部4A、4Bは、部品実装装置10の天井に幅方向Yに設けられた固定レールに沿って移動可能な支持部材41と、支持部材41によって搬送方向Xに移動可能に支持された実装ヘッド42と、実装ヘッド42をXY方向に移動させてヘッド駆動部(図示省略)とを有している。なお、実装ヘッド42は、下方を向く2個のノズル421を有しており、ヘッド駆動部による実装ヘッド42の移動によってノズル421をXY方向に移動可能となっている。 The component mounting apparatus 10 includes mounting units 4A and 4B that mount the component Wp thus supplied by the component supply unit 3 on the substrate B. In particular, M mounting portions 4A and 4B are provided in a one-to-one correspondence with M mounting positions P2 and P4 (as described above, M = 2 in the example of FIG. 1). That is, the mounting portion 4A is provided corresponding to the mounting position P2, and the mounting portion 4B is provided corresponding to the mounting position P4. The mounting portions 4A and 4B include a support member 41 movable along a fixed rail provided in the width direction Y on the ceiling of the component mounting apparatus 10, and a mounting head supported by the support member 41 so as to be movable in the transport direction X. 42 and a head drive unit (not shown) by moving the mounting head 42 in the XY directions. The mounting head 42 has two nozzles 421 facing downward, and the nozzle 421 can be moved in the XY directions by the movement of the mounting head 42 by the head driving unit.
 部品Wpの吸着・認識・実装に際しては、実装部4A、4Bそれぞれは、取出ヘッド36の上方に移動して、受渡位置に位置するノズル362に保持される部品Wpに対してノズル421を上方から対向させると、ノズル421を下降させて部品Wpに接触させる。続いて、部品供給部3がノズル362の負圧を解除するとともに、実装部4A、4Bがノズル421に負圧を与えつつノズル421を上昇させる。こうして、ノズル421は部品供給部3から部品Wpを受け取って吸着保持する。そして、ヘッド駆動部による実装ヘッド42の移動により部品Wpを保持したノズル421が部品認識カメラ5の上方位置を経由して所望の移動先に移動することで当該部品Wpが実装位置P2、P4の基板Bの上方に位置決めされる。このように本実施形態では部品Wpがノズル421に保持された状態で実装ヘッド42により部品供給部3から移動先に搬送される。こうして移動先、つまり実装対象点の上方位置に搬送されてきた部品Wpがノズル421により基板Bに搭載され、部品実装が行われる。 When picking up, recognizing and mounting the component Wp, each of the mounting portions 4A and 4B moves above the take-out head 36 and moves the nozzle 421 from above with respect to the component Wp held by the nozzle 362 located at the delivery position. When facing each other, the nozzle 421 is lowered and brought into contact with the component Wp. Subsequently, the component supply unit 3 releases the negative pressure of the nozzle 362, and the mounting units 4A and 4B raise the nozzle 421 while applying a negative pressure to the nozzle 421. Thus, the nozzle 421 receives the component Wp from the component supply unit 3 and holds it by suction. Then, the movement of the mounting head 42 by the head drive unit causes the nozzle 421 holding the component Wp to move to a desired movement destination via the upper position of the component recognition camera 5, so that the component Wp moves to the mounting positions P 2 and P 4. Positioned above the substrate B. As described above, in the present embodiment, the component Wp is conveyed from the component supply unit 3 to the destination by the mounting head 42 while being held by the nozzle 421. In this way, the component Wp that has been conveyed to the movement destination, that is, the position above the mounting target point, is mounted on the substrate B by the nozzle 421, and component mounting is performed.
 上記した部品認識カメラ5、5は所定位置に固定されており、ノズル421により吸着保持される部品Wpおよびノズル421を撮像し、その撮像した画像(以下「部品画像」という)の信号を画像処理部150に出力する。この部品画像は、ノズル421の移動中にノズル421による部品Wpの保持状態を認識して移動先を補正する際に用いられるだけでなく、後で詳述するように部品Wpを検査する際にも利用される。 The component recognition cameras 5 and 5 described above are fixed at predetermined positions. The component Wp and the nozzle 421 that are sucked and held by the nozzle 421 are imaged, and a signal of the captured image (hereinafter referred to as “component image”) is subjected to image processing. Output to the unit 150. This component image is used not only when the movement state of the component Wp is recognized by recognizing the holding state of the component Wp by the nozzle 421 during the movement of the nozzle 421, but also when the component Wp is inspected as will be described in detail later. Is also used.
 さらに、部品実装装置10には、オペレータとのインターフェースとして機能する表示ユニット7(図2)が設けられている。表示ユニット7は、制御部100と接続され、部品実装装置10の動作状態を表示する機能のほか、タッチパネルで構成されてオペレータからの入力を受け付ける入力端末としての機能も有する。 Furthermore, the component mounting apparatus 10 is provided with a display unit 7 (FIG. 2) that functions as an interface with the operator. The display unit 7 is connected to the control unit 100 and has a function as an input terminal configured by a touch panel and receiving an input from an operator, in addition to a function of displaying an operation state of the component mounting apparatus 10.
 次に、制御部100の構成について図2を参照しつつ説明する。制御部100は、装置本体の内部の適所に設けられ、論理演算を実行する周知のCPU(Central Processing Unit)、初期設定等を記憶しているROM(Read Only Memory)、装置動作中の様々なデータを一時的に記憶するRAM(Random Access Memory)等から構成されている。 Next, the configuration of the control unit 100 will be described with reference to FIG. The control unit 100 is provided at a proper position inside the apparatus main body, and is a well-known CPU (Central Processing Unit) for executing logical operations, a ROM (Read Only Memory) for storing initial settings, and various devices during operation of the apparatus. It is composed of RAM (Random Access Memory) that temporarily stores data.
 制御部100は、機能的には、演算処理部110、記憶部120、モータ制御部130、外部入出力部140および画像処理部150などを備えている。これらのうちモータ制御部130は、コンベア21~25、ウエハ引出部33、取出ヘッド36やヘッド駆動部に装備されたモータの駆動を制御する。外部入出力部140は、部品実装装置10に装備されている各種センサー類からの信号を入力する一方、部品実装装置10に装備されている各種アクチュエータ等に対して信号を出力する。画像処理部150は、部品認識カメラ5から画像信号を取り込み、部品画像に対して種々の画像処理を施して部品認識や部品検査に好適な部品画像を生成する。 Functionally, the control unit 100 includes an arithmetic processing unit 110, a storage unit 120, a motor control unit 130, an external input / output unit 140, an image processing unit 150, and the like. Among these, the motor control unit 130 controls driving of motors provided in the conveyors 21 to 25, the wafer drawing unit 33, the take-out head 36 and the head driving unit. The external input / output unit 140 inputs signals from various sensors mounted on the component mounting apparatus 10, and outputs signals to various actuators mounted on the component mounting apparatus 10. The image processing unit 150 receives an image signal from the component recognition camera 5 and performs various image processing on the component image to generate a component image suitable for component recognition and component inspection.
 記憶部120は、部品実装処理を行うためのプログラム、各実装ターンでの基板位置、実装される部品や実装位置などを示す実装データや部品画像を記憶する。 The storage unit 120 stores a program for performing component mounting processing, a board position in each mounting turn, mounting data indicating a mounted component and a mounting position, and a component image.
 上記演算処理部110は、CPU等のような演算機能を有するものであり、上記記憶部120に記憶されているプログラムおよび実装データに従ってモータ制御部130や画像処理部150を制御することで、ノズル421の部品供給部3への移動、部品供給部3から供給される部品Wpのノズル421による吸着保持、部品Wpを保持するノズル421の移動先への移動、当該移動中に部品認識カメラ5により撮像された部品画像に基づく部品認識、部品Wpを保持するノズル421の移動先への移動および基板Bへの部品Wpの搭載からなる一連の動作(以下「実装ターン」という)を繰り返して部品実装を行う。また、演算処理部110は、実装ターンの実行中に部品Wpの検査を並行して行う。この部品検査では、次に詳述するように、部品画像に基づいて部品Wpの外形情報が取得され(外形情報取得工程)、その外形情報から部品Wpの検査領域が特定され(検査領域特定工程)、その検査領域で部品Wpの異常が発生しているか否かが検査される(検査工程)。これらの工程は演算処理部110により行われ、演算処理部110は外形情報取得部111、検査領域特定部112および部品検査部113として機能する。 The arithmetic processing unit 110 has an arithmetic function such as a CPU and the like, and controls the motor control unit 130 and the image processing unit 150 in accordance with the program and mounting data stored in the storage unit 120, so that the nozzle 421 to the component supply unit 3, suction holding of the component Wp supplied from the component supply unit 3 by the nozzle 421, movement of the nozzle 421 holding the component Wp to the destination, and the component recognition camera 5 during the movement Component mounting by repeating a series of operations (hereinafter referred to as “mounting turn”) consisting of component recognition based on the captured component image, movement of the nozzle 421 holding the component Wp to the destination, and mounting of the component Wp on the board B I do. Further, the arithmetic processing unit 110 performs the inspection of the component Wp in parallel during the execution of the mounting turn. In this component inspection, as will be described in detail below, the outer shape information of the component Wp is acquired based on the component image (outer shape information acquisition step), and the inspection region of the component Wp is specified from the outer shape information (inspection region specifying step). ), Whether or not an abnormality of the component Wp has occurred in the inspection region is inspected (inspection process). These processes are performed by the arithmetic processing unit 110, and the arithmetic processing unit 110 functions as an outer shape information acquisition unit 111, an inspection region specifying unit 112, and a component inspection unit 113.
 次に、上記のように構成された部品実装装置10の動作について図3ないし図8を参照しつつ説明する。図3は図1の部品実装装置の動作を示すフローチャートである。また、図4は実装ターンの主要工程を模式的に示す図である。部品実装装置10では、記憶部120に記憶されているプログラムにしたがって演算処理部110が装置各部を以下のように制御して実装部4A、4B毎に実装ターンを繰り返す。また、部品Wpをノズル421で保持しながら部品供給部3から移動先、つまり実装対象点の上方位置に搬送させる間に部品検査を行う。そこで、部品検査に関連する検査ステップを部品実装に関連する実装ステップと明確に区別するために検査ステップに対してドットを参考的に付すとともに、以下においては、まず検査ステップを除く実装部4Aによる実装ステップについて説明し、その後で検査ステップについて詳述する。なお、実装部4Bによる実装ステップおよび検査ステップについても基本的に同一であるため、ここでは説明を省略する。 Next, the operation of the component mounting apparatus 10 configured as described above will be described with reference to FIGS. FIG. 3 is a flowchart showing the operation of the component mounting apparatus of FIG. FIG. 4 is a diagram schematically showing the main steps of the mounting turn. In the component mounting apparatus 10, the arithmetic processing unit 110 controls each part of the apparatus as follows according to the program stored in the storage unit 120, and repeats the mounting turn for each of the mounting parts 4A and 4B. In addition, the component inspection is performed while the component Wp is held by the nozzle 421 and is conveyed from the component supply unit 3 to the movement destination, that is, the position above the mounting target point. Therefore, in order to clearly distinguish the inspection step related to the component inspection from the mounting step related to the component mounting, a dot is attached to the inspection step for reference, and in the following, first, by the mounting unit 4A excluding the inspection step. The mounting step will be described, and then the inspection step will be described in detail. Since the mounting step and the inspection step by the mounting unit 4B are basically the same, the description thereof is omitted here.
 実装部4Aによる実装ターンを実行するための実装データが作成され(ステップS1)、それにしたがって以下の実装ターンが実行される。実装部4Aの実装ヘッド42は部品供給部3に移動し(ステップS2)、部品供給部3から供給される部品Wpを受け取って吸着保持する(ステップS3)。この部品保持動作はノズル421の本数分だけ実行される。なお、ここでは、発明内容の理解を容易にするため、1本のノズル421にのみ部品Wpが吸着保持されるものとして説明を続ける。 Mounting data for executing the mounting turn by the mounting unit 4A is created (step S1), and the following mounting turn is executed accordingly. The mounting head 42 of the mounting unit 4A moves to the component supply unit 3 (step S2), receives the component Wp supplied from the component supply unit 3, and holds it by suction (step S3). This component holding operation is executed for the number of nozzles 421. Here, in order to facilitate understanding of the content of the invention, the description will be continued assuming that the component Wp is sucked and held by only one nozzle 421.
 ノズル421による部品Wpの吸着保持が完了すると、実装ヘッド42は部品認識カメラ5の上方位置を経由して基板Bの上方に向けて移動する(ステップS4)。こうしたノズル421の移動中に部品認識カメラ5によりノズル421に保持された部品Wpとノズル421とが撮像され、例えば図4の(a)欄に示すような部品画像I1が記憶部120に記憶される(ステップS5)。同図中の符号Idは部品Wpを構成するダイの全体像を示し、符号Ibはダイの一方主面に形成されたバンプBP(図4参照)の像を示している。 When the suction holding of the component Wp by the nozzle 421 is completed, the mounting head 42 moves upward of the substrate B via the upper position of the component recognition camera 5 (step S4). While the nozzle 421 is moving, the component recognition camera 5 captures an image of the component Wp and the nozzle 421 held by the nozzle 421, and stores, for example, a component image I 1 as shown in the column (a) of FIG. 4 in the storage unit 120. (Step S5). In the figure, reference numeral Id indicates an overall image of the die constituting the component Wp, and reference numeral Ib indicates an image of a bump BP (see FIG. 4) formed on one main surface of the die.
 次に、予め取得して記憶部120に記憶しておいたテンプレートして機能する基準部品画像I0が読み出され、図4の(b)欄に示すように、基準部品画像I0と部品画像I1とを比較することで部品Wpの吸着ずれのX方向成分dx、Y方向成分dyおよび回転方向成分drがそれぞれ導出されるとともに、これらに基づいてノズル421の移動先が補正される(ステップS6)。より詳しくは、この実施形態では、図4の(c)欄に示すように、最終的に基板B上の配線WRにバンプBPが正確に接触するように基板Bに部品Wpを実装するものであるため、部品画像I1における各バンプ像Ibの座標位置を求め、これらを基準部品画像I0における各バンプ像Ibの座標位置と比較することでX方向成分dx、Y方向成分dyおよび回転方向成分drを導出し、それらを移動先の補正に用いている。したがって、この補正によって部品Wpを保持したノズル421の移動先および回転角が調整され、図4の(c)欄に示すように、部品Wpが実装対象点の上方位置に適正な部品姿勢で位置決めされた(ステップS9)後でノズル421から基板Bに部品Wpが搭載される(ステップS10)。これによってバンプBPが基板Bに予め形成されている配線WRに対して正確に位置決めされて基板Bに実装される。 Next, a reference component image I0 that functions as a template that has been acquired in advance and stored in the storage unit 120 is read out. As shown in the column (b) of FIG. 4, the reference component image I0 and the component image I1 are read out. And the X direction component dx, the Y direction component dy, and the rotation direction component dr of the suction deviation of the component Wp are derived, respectively, and based on these, the movement destination of the nozzle 421 is corrected (step S6). . More specifically, in this embodiment, as shown in the column (c) of FIG. 4, the component Wp is mounted on the substrate B so that the bumps BP are finally in contact with the wiring WR on the substrate B. Therefore, the coordinate position of each bump image Ib in the component image I1 is obtained, and these are compared with the coordinate position of each bump image Ib in the reference component image I0, whereby the X direction component dx, the Y direction component dy, and the rotation direction component dr. Are used to correct the movement destination. Accordingly, the movement destination and the rotation angle of the nozzle 421 holding the component Wp are adjusted by this correction, and the component Wp is positioned with the proper component posture above the mounting target point as shown in the column (c) of FIG. After that (step S9), the component Wp is mounted on the substrate B from the nozzle 421 (step S10). As a result, the bump BP is accurately positioned with respect to the wiring WR formed in advance on the substrate B and mounted on the substrate B.
 次に、部品検査に関連する検査ステップについて説明する。上記のようにして実装ターンが行われる間に、部品の検査(ステップS7)、検査結果の判定(ステップS8)および不良部品の廃棄(ステップS11)が実行される。より具体的には、上記移動先の補正および補正された移動先へのノズル421の移動と並行して部品の検査が実行される(ステップS7)。 Next, inspection steps related to component inspection will be described. While the mounting turn is performed as described above, component inspection (step S7), inspection result determination (step S8), and defective component disposal (step S11) are executed. More specifically, component inspection is performed in parallel with the correction of the movement destination and the movement of the nozzle 421 to the corrected movement destination (step S7).
 図5は実装ターン中に実行される部品検査動作を示すフローチャートである。この部品検査では、記憶部120から部品画像I1が読み出され(ステップS701)、当該部品画像I1に基づいて部品Wpのエッジ部分や角部に割れ、欠けや傷などに異常が存在しているか否かを調べられる。本実施形態では、部品Wpのエッジ部分や角部を検査領域としている。ここで、上記部品認識においてはバンプBPの座標位置を求めているため、それを基準に検査領域を特定することが考えられる。しかしながら、上記したようにダイシング位置の変動は不可避であるため、図6に示すようにダイの全体像Idに対する検査領域Kの位置はダイシング位置に応じて相違する。したがって、バンプBPに対して検査領域Kが所定距離だけ離れた位置が検査領域Kであるというルールにしたがって検査領域Kを特定したときに、例えば図6の(a)欄に示すように当該検査領域Kを検査することで割れ、欠けや傷などの異常を検査することができる場合がある。しかしながら、ダイシング位置の変動によって部品WpにおけるバンプBPの位置が変位すると、上記ルールに従う限り、同図の(b)欄に示すように検査領域Kが全体像Idから外れて誤検出を招いたり、同図の(c)欄に示すように検査領域KがバンプBPなどの回路構成に近づいて検出不能となることがある。 FIG. 5 is a flowchart showing the component inspection operation executed during the mounting turn. In this component inspection, the component image I1 is read from the storage unit 120 (step S701), and based on the component image I1, whether there is an abnormality in the edge portion or corner portion of the component Wp, cracks, scratches, etc. You can check whether or not. In the present embodiment, the edge portion and the corner portion of the component Wp are used as the inspection region. Here, in the component recognition, since the coordinate position of the bump BP is obtained, it is conceivable to specify the inspection region based on the coordinate position. However, as described above, since the variation of the dicing position is unavoidable, the position of the inspection region K with respect to the entire die image Id differs depending on the dicing position, as shown in FIG. Therefore, when the inspection region K is specified according to the rule that the inspection region K is located at a predetermined distance from the bump BP, the inspection region K is, for example, as shown in the column (a) of FIG. By inspecting the region K, it may be possible to inspect abnormalities such as cracks, chips and scratches. However, if the position of the bump BP in the component Wp is displaced due to the variation of the dicing position, as long as the above rules are followed, the inspection region K is deviated from the entire image Id as shown in the column (b) of FIG. As shown in the column (c) of the figure, the inspection region K may become close to the circuit configuration such as the bump BP and become undetectable.
 そこで、本実施形態では、図5に示す一連の処理を実行することでダイシング位置の変動による影響を受けることなく、検査領域Kを正確に、かつ適切に特定して検査領域Kにおける部品Wpの異常を検査可能となっている。また、多くの場合、検査領域Kは複数個所であり、しかも種類も相違している。したがって、多様なアプローチで検査領域Kを特定するのが望ましい。そこで、本実施形態では、図7に示すように検査領域を特定する特定アルゴリズムを3種類用意するとともに、図8に示す8つの検査領域KC1~KC4、KE1~KE4をそれぞれ上記特定アルゴリズムと組み合わせて特定し、部品Wpの検査を行っている。 Therefore, in the present embodiment, by executing the series of processes shown in FIG. 5, the inspection region K is accurately and appropriately identified without being affected by fluctuations in the dicing position, and the parts Wp in the inspection region K are identified. An abnormality can be inspected. In many cases, there are a plurality of inspection areas K, and the types are also different. Therefore, it is desirable to specify the inspection region K by various approaches. Therefore, in this embodiment, three types of specific algorithms for specifying the inspection area are prepared as shown in FIG. 7, and the eight inspection areas KC1 to KC4 and KE1 to KE4 shown in FIG. 8 are combined with the above specific algorithm. The component Wp is identified and inspected.
 図7は検査領域を特定する特定アルゴリズムの概要を模式的に示す図である。同図の(a)欄では、第1特定アルゴリズムおよび第2特定アルゴリズムが示されている。これらでは、ダイの全体像Idから部品Wpの外形中心座標(xd、yd)が本発明の「外形情報」および「外形中心情報」として求められる。さらに外形中心座標(xd、yd)および外形中心座標(xd、yd)からのX方向距離LxおよびY方向距離Lyが検査領域Kの中心座標(xk、yk)を特定するための特定情報として求められ、記憶部120に記憶される。なお、第1特定アルゴリズムおよび第2特定アルゴリズムの相違点は、外形中心座標(xd、yd)の導出方法のみであり、その他の点については同一である。具体的には、第1特定アルゴリズムでは全体像Idの4つの辺部のエッジ情報に基づき導出しているのに対し、第2特定アルゴリズムでは全体像Idの4つの角部のエッジ情報に基づき導出している。 FIG. 7 is a diagram schematically showing an outline of a specific algorithm for specifying an inspection region. In the (a) column of the figure, the first specifying algorithm and the second specifying algorithm are shown. In these, the outer shape center coordinates (xd, yd) of the part Wp are obtained as the “outer shape information” and “outer shape center information” of the present invention from the entire image Id of the die. Further, the X direction distance Lx and the Y direction distance Ly from the outer shape center coordinates (xd, yd) and the outer shape center coordinates (xd, yd) are obtained as specific information for specifying the center coordinates (xk, yk) of the inspection region K. And stored in the storage unit 120. The difference between the first specifying algorithm and the second specifying algorithm is only the method of deriving the outer shape center coordinates (xd, yd), and the other points are the same. Specifically, the first specific algorithm derives based on the edge information of the four sides of the entire image Id, whereas the second specific algorithm derives based on the edge information of the four corners of the entire image Id. doing.
 一方、同図の(b)欄には、第3特定アルゴリズムが示されている。ここでは、ダイの全体像Idに含まれる複数の角部うちの一の角部座標(xc、yc)が本発明の「外形情報」として求められ、さらに角部座標(xc、yc)並びに当該角部座標(xc、yc)からのX方向距離LxおよびY方向距離Lyが検査領域Kの中心座標(xk、yk)を特定するための特定情報として求められ、記憶部120に記憶される。このように、本実施形態では、3つの特定アルゴリズムから選択可能となっている。 On the other hand, the third specific algorithm is shown in the (b) column of FIG. Here, one corner coordinate (xc, yc) of the plurality of corners included in the overall image Id of the die is obtained as the “outer shape information” of the present invention, and the corner coordinate (xc, yc) and The X-direction distance Lx and the Y-direction distance Ly from the corner coordinates (xc, yc) are obtained as specific information for specifying the center coordinates (xk, yk) of the inspection region K and are stored in the storage unit 120. Thus, in this embodiment, it is possible to select from three specific algorithms.
 図5に戻って部品検査動作(ステップS7)の説明を続ける。次のステップS702では、検査領域KC1~KC4、KE1~KE4のうちの1つが検査対象として選択されるとともに、選択された検査対象を特定するための特定アルゴリズムが上記3つの特定アルゴリズムから選択される。そして、選択された特定アルゴリズムにしたがって特定情報が既に求められて記憶部120に登録されているか否かが判定され(ステップS703)、その判定結果に応じてステップS704~S706が実行される。例えば特定情報が登録されていない場合(ステップS703で「NO」)には、選択された特定アルゴリズムにしたがって検査領域を特定するための特定情報が求められ(ステップS704)、記憶部120に登録される(ステップS705)。一方、特定情報が既に登録されている場合(ステップS703で「YES」)には、記憶部120から登録済みの特定情報が読み出されて取得される(ステップS706)。 Referring back to FIG. 5, the description of the component inspection operation (step S7) will be continued. In the next step S702, one of the inspection areas KC1 to KC4 and KE1 to KE4 is selected as an inspection target, and a specific algorithm for specifying the selected inspection target is selected from the above three specific algorithms. . Then, it is determined whether specific information has already been obtained and registered in the storage unit 120 according to the selected specific algorithm (step S703), and steps S704 to S706 are executed according to the determination result. For example, when the specific information is not registered (“NO” in step S703), specific information for specifying the examination region is obtained according to the selected specific algorithm (step S704) and registered in the storage unit 120. (Step S705). On the other hand, if the specific information is already registered (“YES” in step S703), the registered specific information is read from the storage unit 120 and acquired (step S706).
 上記したステップS703~S706の実行によって検査領域に対応する特定情報が取得されると、その特定情報に基づいて検査領域が特定される。つまり、外形中心座標(xd、yd)や角部座標(xc、yc)からX方向距離LxおよびY方向距離Lyだけオフセットされた位置が検査領域の中心座標であり、部品画像I1のうち当該検査領域に相当する画像データが検査データとして抽出される(ステップS707)。そして、検査データに基づいて検査領域に割れ、欠けや傷などの異常が含まれているかが検査される(ステップS708)。このステップS708で異常が見つかると、その他の検査領域について部品の検査を行うことなく、直ちに部品Wpは不良品であるとの判定が下され(ステップS710)、部品の検査(ステップS7)を終了する。 When the specific information corresponding to the inspection area is acquired by executing the above steps S703 to S706, the inspection area is specified based on the specific information. That is, the position offset from the outer shape center coordinates (xd, yd) and the corner coordinates (xc, yc) by the X-direction distance Lx and the Y-direction distance Ly is the center coordinates of the inspection region, and the inspection is performed in the part image I1. Image data corresponding to the region is extracted as inspection data (step S707). Then, based on the inspection data, it is inspected whether the inspection area includes an abnormality such as a crack, a chip or a scratch (step S708). If an abnormality is found in step S708, it is immediately determined that the part Wp is defective without inspecting the parts in other inspection areas (step S710), and the part inspection (step S7) is ended. To do.
 一方、ステップS708で異常が見つからなかった場合には、全ての検査領域KC1~KC4、KE1~KE4について部品の検査が行われたか否かが判定される(ステップS711)。ここで、未検査の検査領域が存在している(ステップS711で「NO」)間、上記した一連の処理(ステップS702~S709)が繰り返して実行される。そして、全ての検査領域KC1~KC4、KE1~KE4において異常が認められなかった場合(ステップS711で「YES」)には、部品Wpは良品であるとの判定が下され(ステップS712)、部品の検査(ステップS7)を終了する。 On the other hand, if no abnormality is found in step S708, it is determined whether or not the parts have been inspected for all the inspection areas KC1 to KC4 and KE1 to KE4 (step S711). Here, while an uninspected inspection area exists (“NO” in step S711), the above-described series of processing (steps S702 to S709) is repeatedly executed. If no abnormality is found in all the inspection areas KC1 to KC4 and KE1 to KE4 (“YES” in step S711), it is determined that the component Wp is a non-defective product (step S712). This inspection (step S7) is completed.
 このようにして部品の検査が終了すると、図3に示すように、実装ヘッド42が移動先に到達する前に部品検査の結果が良品および不良品のいずれであるかが判定される(ステップS8)。ここで、ノズル421に吸着保持されている部品Wpが良品であると判定された場合には、実装ヘッド42の移動が継続されて部品Wpの位置決め(ステップS9)および基板Bへの搭載(ステップS10)が実行される。一方、ノズル421に吸着保持されている部品Wpが不良品であると判定された場合には、部品Wpの実装が中止され、当該部品Wpが不良品回収部(図示省略)に廃棄される(ステップS11)。 When the component inspection is completed in this way, as shown in FIG. 3, before the mounting head 42 reaches the destination, it is determined whether the result of the component inspection is a non-defective product or a defective product (step S8). ). Here, when it is determined that the component Wp sucked and held by the nozzle 421 is a non-defective product, the mounting head 42 continues to move so that the component Wp is positioned (step S9) and mounted on the board B (step S9). S10) is executed. On the other hand, when it is determined that the component Wp sucked and held by the nozzle 421 is a defective product, the mounting of the component Wp is stopped and the component Wp is discarded in a defective product collection unit (not shown) ( Step S11).
 こうして実装ターンが完了するため、ステップS1に戻って次の実装ターン処理が繰り返して実行される。 Thus, since the mounting turn is completed, the process returns to step S1 and the next mounting turn process is repeatedly executed.
 以上のように、本実施形態によれば、部品認識カメラ5により撮像された部品画像I1に基づいて、ノズル421の移動先を補正して基板Bへの部品Wpの搭載精度を高めるとともに当該部品Wpの検査を行っている。このように部品搭載のための認識(吸着ずれのX方向成分dx、Y方向成分dyおよび回転方向成分drの導出)と部品検査のための認識(検査領域KC1~KC4、KE1~KE4の特定および検査データの取得)とを一度にできることから、タクトロスを発生させることなく、歩留りの低下を防止することができる。しかも、部品検査のために部品Wpの外形情報に基づいて検査領域KC1~KC4、KE1~KE4を特定しているため、ウエハW上でのダイシングの位置が変動していたとしても検査領域KC1~KC4、KE1~KE4を確実に特定することができ、各検査領域KC1~KC4、KE1~KE4での異常発生を良好に検査することができる。 As described above, according to the present embodiment, on the basis of the component image I1 captured by the component recognition camera 5, the movement destination of the nozzle 421 is corrected to increase the mounting accuracy of the component Wp on the board B and the component. Wp inspection is performed. Thus, recognition for component mounting (derivation of X-direction component dx, Y-direction component dy and rotational direction component dr of suction deviation) and recognition for component inspection (identification of inspection regions KC1 to KC4, KE1 to KE4 and (Acquisition of inspection data) can be performed at a time, so that a decrease in yield can be prevented without causing tact loss. In addition, since the inspection areas KC1 to KC4 and KE1 to KE4 are specified based on the external shape information of the part Wp for the part inspection, even if the dicing position on the wafer W is changed, the inspection areas KC1 to KC1 KC4 and KE1 to KE4 can be reliably identified, and the occurrence of abnormality in each of the inspection areas KC1 to KC4 and KE1 to KE4 can be inspected satisfactorily.
 また、互いに異なる3つの特定アルゴリズムが準備されており、同一の部品Wpについて3種類の外形情報のうちの一つを選択的に取得可能となっている。このように外形情報を検査領域KC1~KC4、KE1~KE4毎に選択的に取得し、その上で検査領域の特定を行っている。したがって、各検査領域KC1~KC4、KE1~KE4を正確に求めることができ、検査精度をさらに高めることができる。また、このように3つの特定アルゴリズムを選択しながら検査領域KC1~KC4、KE1~KE4を特定しており、ロバスト性が高い検査データを得ることができる。このため、部品Wpの検査を安定して行うことができる。 Also, three different specific algorithms are prepared, and one of three types of external shape information can be selectively acquired for the same part Wp. As described above, the outer shape information is selectively acquired for each of the inspection areas KC1 to KC4 and KE1 to KE4, and then the inspection area is specified. Therefore, the inspection areas KC1 to KC4 and KE1 to KE4 can be accurately obtained, and the inspection accuracy can be further increased. Further, the inspection areas KC1 to KC4 and KE1 to KE4 are specified while selecting three specific algorithms in this way, so that inspection data with high robustness can be obtained. For this reason, the inspection of the component Wp can be performed stably.
 また本実施形態では、数多くの検査領域KC1~KC4、KE1~KE4について異常発生の有無を検査しているため、部品Wpの良否判定を高い精度で行うことができ、不良品を確実に取り除き、良品の部品Wpのみを基板Bに実装することができ、信頼性の高い製品を提供することができる。 In the present embodiment, since the presence / absence of occurrence of abnormality is inspected for a large number of inspection areas KC1 to KC4 and KE1 to KE4, the quality determination of the part Wp can be performed with high accuracy, and defective products can be reliably removed, Only the non-defective component Wp can be mounted on the substrate B, and a highly reliable product can be provided.
 このように本実施形態では、部品認識カメラ5およびヘッド駆動部がそれぞれ本発明の「撮像部」および「ノズル駆動部」の一例に相当しており、これらと実装ヘッド42および制御部100との組み合わせが本発明の「部品搬送装置」として機能している。また、図3中のステップS3、S5、S6がそれぞれ本発明の「部品保持工程」、「撮像工程」および「移動先補正工程」の一例に相当し、ステップS4、S9が本発明の「ノズル移動工程」の一例に相当している。また、図5中のステップS703~S706が本発明の「外形情報取得工程」の一例に相当し、ステップS707、S708がそれぞれ本発明の「検査領域特定工程」および「検査工程」の一例に相当している。 As described above, in the present embodiment, the component recognition camera 5 and the head driving unit correspond to examples of the “imaging unit” and the “nozzle driving unit” of the present invention, respectively. The combination functions as the “component conveying device” of the present invention. Also, steps S3, S5, and S6 in FIG. 3 correspond to examples of the “component holding process”, “imaging process”, and “movement destination correction process” of the present invention, respectively, and steps S4 and S9 correspond to the “nozzle of the present invention”. This corresponds to an example of the “movement process”. Further, steps S703 to S706 in FIG. 5 correspond to an example of the “external shape information acquisition process” of the present invention, and steps S707 and S708 correspond to examples of the “inspection area specifying process” and the “inspection process” of the present invention, respectively. doing.
 なお、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて上述したものに対して種々の変更を加えることが可能である。例えば、上記実施形態では、平面視で矩形形状のダイを部品Wpとしている、つまり本発明の「N」が4の場合について説明しているが、N=3、5、6、…のダイを部品Wpとする場合にも、本発明を適用することができる。 The present invention is not limited to the above embodiment, and various modifications can be made to the above without departing from the spirit of the present invention. For example, in the above-described embodiment, a case where a rectangular die in a plan view is used as the part Wp, that is, “N” in the present invention is 4, but dies with N = 3, 5, 6,. The present invention can also be applied to the case of the component Wp.
 また、上記実施形態では、8個の検査領域KC1~KC4、KE1~KE4について検査しているが、検査領域の数、形状や位置などについては任意である。 In the above embodiment, the eight inspection areas KC1 to KC4 and KE1 to KE4 are inspected, but the number, shape, position, etc. of the inspection areas are arbitrary.
 また、上記実施形態では、3つの特定アルゴリズムを用いているが、特定アルゴリズムの個数はこれに限定されるものではなく、任意である。 In the above embodiment, three specific algorithms are used, but the number of specific algorithms is not limited to this and is arbitrary.
 また、上記実施形態では、部品認識カメラ5を固定し、当該部品認識カメラ5の上方を実装ヘッド42が通過した際に部品を撮像しているが、いわゆるスキャンカメラを実装ヘッド42に取り付け、実装ヘッド42の移動中にスキャンカメラによって部品画像を取得するように構成してもよい。 In the above-described embodiment, the component recognition camera 5 is fixed, and the component is imaged when the mounting head 42 passes above the component recognition camera 5, but a so-called scan camera is attached to the mounting head 42 and mounted. A component image may be acquired by a scan camera while the head 42 is moving.
 また、上記実施形態では、移動先の補正動作および補正された移動先へのノズル421の移動動作と並行して部品の検査(ステップS7)を実行しているが、上記補正動作または上記移動動作とのみ並行して部品の検査(ステップS7)を実行するように構成してもよい。 In the above-described embodiment, the component inspection (step S7) is performed in parallel with the movement correction operation and the movement operation of the nozzle 421 to the corrected movement destination. It may be configured to execute the component inspection (step S7) only in parallel.
 また、上記実施形態では、2つの実装部4A、4Bを備えた部品実装装置10に本発明を適用しているが、実装部の個数はこれに限定されるものではなく、任意である。 In the above embodiment, the present invention is applied to the component mounting apparatus 10 including the two mounting portions 4A and 4B. However, the number of mounting portions is not limited to this and is arbitrary.
 また、上記実施形態では、部品供給部3から供給された部品Wpをそのまま基板Bの上方位置に搬送しているが、フラックス塗布部を経由して基板の上方位置に搬送した後で当該部品を基板に搭載して実装する部品実装装置に対して本発明に係る部品搬送装置(=実装ヘッド42+部品認識カメラ5+ヘッド駆動部+制御部100)を適用してもよい。また、当該部品搬送装置に適用対象はこれに限定されるものではなく、例えば特許文献2に記載のチップソータに適用してもよい。 Moreover, in the said embodiment, although the components Wp supplied from the component supply part 3 are conveyed as it is to the upper position of the board | substrate B as it is, after conveying to the upper position of a board | substrate via a flux application part, the said component is carried out. The component conveying device (= mounting head 42 + component recognition camera 5 + head driving unit + control unit 100) according to the present invention may be applied to a component mounting apparatus that is mounted on a substrate and mounted. Further, the application target of the component conveying apparatus is not limited to this, and may be applied to a chip sorter described in Patent Document 2, for example.
 さらに、上記実施形態では、ダイシングにより複数のダイに分割されたウエハから供給されるダイを部品とする装置に本発明を適用しているが、本発明の適用対象はこれに限定されるものではない。例えばトレイやテープなどの部品収納体に予め収納されている収納部品を搬送する部品搬送装置およびこれを備える部品実装装置に対しても適用可能である。つまり、収納部品の部品画像に基づいて収納部品の外形情報を取得し、その外形情報から収納部品の検査領域を特定した上で当該検査領域で収納部品の異常が発生しているか否かを検査するように構成してもよい。これによって、収納部品の検査領域を確実に特定することができ、各検査領域での異常発生を良好に検査することができる。 Furthermore, in the above-described embodiment, the present invention is applied to an apparatus using a die supplied from a wafer divided into a plurality of dies by dicing as a component, but the application target of the present invention is not limited to this. Absent. For example, the present invention can also be applied to a component transport apparatus that transports stored components that are stored in advance in a component storage body such as a tray or a tape, and a component mounting apparatus that includes the component transport apparatus. In other words, the external information of the storage component is acquired based on the component image of the storage component, the inspection region of the storage component is specified from the external shape information, and then it is inspected whether the storage component has an abnormality in the inspection region. You may comprise. Accordingly, it is possible to reliably specify the inspection area of the storage component, and it is possible to satisfactorily inspect the occurrence of abnormality in each inspection area.
 この発明は、部品をピックアップし、所定の移動先に搬送する部品搬送技術全般、ならびに部品搬送技術を用いて部品を搬送して基板に搭載する部品実装技術に適用することができる。 The present invention can be applied to general component conveying technology for picking up a component and conveying it to a predetermined destination, and component mounting technology for conveying a component using the component conveying technology and mounting it on a substrate.
 3…部品供給部
 4A,4B…実装部
 5…部品認識カメラ(撮像部)
 10…部品実装装置
 42…実装ヘッド
 421…ノズル
 100…制御部
 111…外形情報取得部
 112…検査領域特定部
 113…部品検査部
 B…基板
 I1…部品画像
 K,KC1~KC4,KE1~KE4…検査領域
 Lx…X方向距離
 Ly…Y方向距離
 W…ウエハ
 Wp…部品
3 ... Component supply unit 4A, 4B ... Mounting unit 5 ... Component recognition camera (imaging unit)
DESCRIPTION OF SYMBOLS 10 ... Component mounting apparatus 42 ... Mounting head 421 ... Nozzle 100 ... Control part 111 ... External shape information acquisition part 112 ... Inspection area specific | specification part 113 ... Component inspection part B ... Board | substrate I1 ... Component image K, KC1-KC4, KE1-KE4 ... Inspection area Lx ... Distance in X direction Ly ... Distance in Y direction W ... Wafer Wp ... Parts

Claims (9)

  1.  部品供給部から供給される部品を受け取って保持するノズルと、前記ノズルにより保持された前記部品を撮像する撮像部と、前記部品を保持した前記ノズルを前記部品供給部から移動させるノズル駆動部とを有し、前記撮像部により撮像された部品画像に基づいて前記ノズルの移動先を補正した後で補正された移動先に前記ノズルを前記ノズル駆動部により移動させて前記部品を搬送する部品搬送装置であって、
     前記部品画像に基づいて前記部品の外形情報を取得する外形情報取得部と、
     前記外形情報から前記部品の検査領域を特定する検査領域特定部と、
     前記検査領域で前記部品の異常が発生しているか否かを検査する部品検査部とを備え、
     前記移動先の補正と前記補正された移動先への前記ノズルの移動とのうちの少なくとも一方と並行して前記部品の検査を行うことを特徴とする部品搬送装置。
    A nozzle that receives and holds a component supplied from a component supply unit, an imaging unit that images the component held by the nozzle, and a nozzle drive unit that moves the nozzle holding the component from the component supply unit Component transport that moves the nozzle to the corrected destination after correcting the nozzle destination based on the component image captured by the imaging unit and transports the component A device,
    An external shape information acquisition unit for acquiring external information of the component based on the component image;
    An inspection area specifying unit for specifying an inspection area of the component from the outer shape information;
    A component inspection unit for inspecting whether or not an abnormality of the component has occurred in the inspection region;
    The component conveying apparatus, wherein the component is inspected in parallel with at least one of the correction of the movement destination and the movement of the nozzle to the corrected movement destination.
  2.  請求項1に記載の部品搬送装置であって、
     前記外形情報取得部は互いに異なる複数の外形情報を取得可能となっている部品搬送装置。
    The component conveying apparatus according to claim 1,
    The external shape information acquisition unit is a component conveying device capable of acquiring a plurality of different external shape information.
  3.  請求項2に記載の部品搬送装置であって、
     前記部品が平面視でN(ただし、Nは3以上の自然数)角形状を有しているとき、
     前記外形情報取得部は、前記外形情報として、前記部品の平面視における外形中心座標と、前記部品に含まれる複数の角部うちの一の角部座標とを取得可能となっている部品搬送装置。
    The component conveying device according to claim 2,
    When the part has an N shape (where N is a natural number of 3 or more) in a plan view,
    The outer shape information acquisition unit can acquire, as the outer shape information, outer shape center coordinates in a plan view of the component and one corner coordinate of a plurality of corner portions included in the component. .
  4.  請求項3に記載の部品搬送装置であって、
     前記外形情報取得部は、前記N角形状の部品の平面視におけるN個の辺部またはN個の角部から前記外形中心座標を取得する部品搬送装置。
    The component conveying device according to claim 3,
    The outline information acquisition unit is a component conveying apparatus that acquires the outline center coordinates from N sides or N corners in plan view of the N-shaped part.
  5.  請求項3または4に記載の部品搬送装置であって、
     前記部品の検査領域が複数個存在するとき、
     前記外形情報取得部は、前記検査領域毎に前記外形情報として前記外形中心座標および前記角部座標からいずれか一方を選択し、
     前記検査領域特定部は前記外形情報取得部により選択された前記外形情報に基づいて前記検査領域を特定する部品搬送装置。
    It is a component conveying apparatus of Claim 3 or 4,
    When there are a plurality of inspection areas of the part,
    The outline information acquisition unit selects one of the outline center coordinates and the corner coordinates as the outline information for each inspection region,
    The inspection area specifying unit specifies the inspection area based on the outline information selected by the outline information acquisition unit.
  6.  請求項1ないし5のいずれか一項に記載の部品搬送装置であって、
     前記部品は、ダイシングにより複数のダイに分割されたウエハから前記部品供給部により供給される前記ダイである部品搬送装置。
    The component conveying device according to any one of claims 1 to 5,
    The component transport apparatus, wherein the component is the die that is supplied by the component supply unit from a wafer divided into a plurality of dies by dicing.
  7.  請求項1ないし5のいずれか一項に記載の部品搬送装置であって、
     前記部品は、複数の収納部品を収納する部品収納体から前記部品供給部により供給される前記収納部品である部品搬送装置。
    The component conveying device according to any one of claims 1 to 5,
    The component is a component transport device that is the storage component supplied by the component supply unit from a component storage body that stores a plurality of storage components.
  8.  部品をノズルにより受け取って保持する部品保持工程と、
     前記ノズルにより保持された前記部品を撮像する撮像工程と、
     前記撮像工程の実行により取得された部品画像に基づいて前記ノズルの移動先を補正する移動先補正工程と、
     前記部品を保持した前記ノズルを前記補正された移動先に移動させるノズル移動工程と、
     前記部品画像に基づいて前記部品の外形情報を取得する外形情報取得工程と、
     前記外形情報から前記部品の検査領域を特定する検査領域特定工程と、
     前記移動先補正工程と前記ノズル移動工程とのうちの少なくとも一方と並行して、前記検査領域で前記部品の異常が発生しているか否かを検査する検査工程と
    を備えることを特徴とする部品搬送方法。
    A component holding step for receiving and holding the component by the nozzle;
    An imaging step of imaging the component held by the nozzle;
    A movement destination correction step of correcting the movement destination of the nozzle based on the component image acquired by the execution of the imaging step;
    A nozzle moving step of moving the nozzle holding the component to the corrected destination;
    An outline information acquisition step of acquiring outline information of the part based on the part image;
    An inspection area specifying step for specifying an inspection area of the component from the outer shape information;
    A component comprising: an inspection step for inspecting whether or not an abnormality of the component has occurred in the inspection region in parallel with at least one of the movement destination correction step and the nozzle movement step. Transport method.
  9.  部品を供給する部品供給部と、
     請求項1ないし7のいずれか一項に記載の部品搬送装置と、
     前記部品検査部により前記部品の異常が発生していないと判定されたときには前記移動先に移動してきた前記ノズルにより前記部品を基板に搭載する一方、前記部品の異常が発生していると判定されたときには前記部品の前記基板への搭載を中止する制御部と
    を備えることを特徴とする部品実装装置。
    A component supply unit for supplying components;
    The component conveying device according to any one of claims 1 to 7,
    When it is determined by the component inspection unit that no abnormality of the component has occurred, it is determined that an abnormality of the component has occurred while the component is mounted on the board by the nozzle that has moved to the destination. And a controller for stopping the mounting of the component on the substrate.
PCT/JP2018/007169 2018-02-27 2018-02-27 Component conveying apparatus, component conveying method and component mounting apparatus WO2019167110A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880086938.6A CN111742625B (en) 2018-02-27 2018-02-27 Component transfer apparatus, component transfer method, and component mounting apparatus
PCT/JP2018/007169 WO2019167110A1 (en) 2018-02-27 2018-02-27 Component conveying apparatus, component conveying method and component mounting apparatus
JP2020503117A JP6884494B2 (en) 2018-02-27 2018-02-27 Parts transfer device, parts transfer method and component mounting device
KR1020207016615A KR102387058B1 (en) 2018-02-27 2018-02-27 Parts conveying apparatus, component conveying method and component mounting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/007169 WO2019167110A1 (en) 2018-02-27 2018-02-27 Component conveying apparatus, component conveying method and component mounting apparatus

Publications (1)

Publication Number Publication Date
WO2019167110A1 true WO2019167110A1 (en) 2019-09-06

Family

ID=67805246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007169 WO2019167110A1 (en) 2018-02-27 2018-02-27 Component conveying apparatus, component conveying method and component mounting apparatus

Country Status (4)

Country Link
JP (1) JP6884494B2 (en)
KR (1) KR102387058B1 (en)
CN (1) CN111742625B (en)
WO (1) WO2019167110A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233746A (en) * 1986-04-04 1987-10-14 Yasuda Denken Kk Checker for chip mounted board
JPH03189772A (en) * 1989-12-19 1991-08-19 Matsushita Electric Ind Co Ltd Appearance inspecting device for mounted board
JP2006073814A (en) * 2004-09-02 2006-03-16 Shibaura Mechatronics Corp Equipment and method for mounting semiconductor chip
JP2008211236A (en) * 2008-04-17 2008-09-11 Juki Corp Component mounting apparatus
WO2015019487A1 (en) * 2013-08-09 2015-02-12 富士機械製造株式会社 Mounting device and part detection method
WO2017068638A1 (en) * 2015-10-20 2017-04-27 富士機械製造株式会社 Image processing apparatus and parts mounter
WO2017187527A1 (en) * 2016-04-26 2017-11-02 富士機械製造株式会社 Substrate work machine
JP2017224779A (en) * 2016-06-17 2017-12-21 富士機械製造株式会社 Mounting related apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787143A (en) * 1985-12-04 1988-11-29 Tdk Corporation Method for detecting and correcting failure in mounting of electronic parts on substrate and apparatus therefor
JP2004281958A (en) * 2003-03-19 2004-10-07 Juki Corp Component mounting method and device
JP2012199321A (en) 2011-03-18 2012-10-18 Hitachi High-Tech Instruments Co Ltd Chip sorter and chip transfer method
JP6302527B2 (en) 2016-10-11 2018-03-28 ヤマハ発動機株式会社 Component mounting equipment

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62233746A (en) * 1986-04-04 1987-10-14 Yasuda Denken Kk Checker for chip mounted board
JPH03189772A (en) * 1989-12-19 1991-08-19 Matsushita Electric Ind Co Ltd Appearance inspecting device for mounted board
JP2006073814A (en) * 2004-09-02 2006-03-16 Shibaura Mechatronics Corp Equipment and method for mounting semiconductor chip
JP2008211236A (en) * 2008-04-17 2008-09-11 Juki Corp Component mounting apparatus
WO2015019487A1 (en) * 2013-08-09 2015-02-12 富士機械製造株式会社 Mounting device and part detection method
WO2017068638A1 (en) * 2015-10-20 2017-04-27 富士機械製造株式会社 Image processing apparatus and parts mounter
WO2017187527A1 (en) * 2016-04-26 2017-11-02 富士機械製造株式会社 Substrate work machine
JP2017224779A (en) * 2016-06-17 2017-12-21 富士機械製造株式会社 Mounting related apparatus

Also Published As

Publication number Publication date
CN111742625A (en) 2020-10-02
JPWO2019167110A1 (en) 2020-12-03
KR102387058B1 (en) 2022-04-15
KR20200086331A (en) 2020-07-16
CN111742625B (en) 2021-06-18
JP6884494B2 (en) 2021-06-09

Similar Documents

Publication Publication Date Title
KR101449247B1 (en) Die bonder and method of position recognition of die
CN108352308B (en) Wafer picking device
JP6411028B2 (en) Management device
KR101908734B1 (en) Component mounting device, information processing device, information processing method, and substrate manufacturing method
JP4629584B2 (en) Mounting system and electronic component mounting method
CN108364880B (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP2013024829A (en) Electronic component carrying device and electronic component carrying method
WO2015083414A1 (en) Electronic component transport apparatus
JP2012116529A (en) Position correction device, electric component storage device, and electric component inspection device
JP5420483B2 (en) Component conveying method, component conveying apparatus and component mounting apparatus
CN110729210A (en) Semiconductor manufacturing apparatus and method for manufacturing semiconductor device
JP5783652B2 (en) Attitude correction device and electrical component inspection device
JPWO2016117016A1 (en) Inspection support device
JP4896855B2 (en) Component mounting system
WO2019167110A1 (en) Component conveying apparatus, component conveying method and component mounting apparatus
JP2007287838A (en) Parts transfer device, mounting machine, and parts transfer device for parts inspection machine
JP4712766B2 (en) Parts transfer device
JPS62262438A (en) Wafer processing device
JP5561731B2 (en) ELECTRIC TEST UNIT AND ELECTRIC COMPONENT INSPECTION DEVICE HAVING THE SAME
JPWO2018105032A1 (en) Die parts feeder
JP4119137B2 (en) Parts testing equipment
JP2009010176A5 (en)
CN110391153B (en) Inspection apparatus for semiconductor process and semiconductor process device
KR101454666B1 (en) Semiconductor vision inspection apparatus and semiconductor inspection system having the same
WO2019058475A1 (en) Shape data analogy determination device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908029

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020503117

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207016615

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908029

Country of ref document: EP

Kind code of ref document: A1