WO2019164195A1 - 신규한 에로모나스 하이드로필라 박테리오파지 aer-hyp-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도 - Google Patents

신규한 에로모나스 하이드로필라 박테리오파지 aer-hyp-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도 Download PDF

Info

Publication number
WO2019164195A1
WO2019164195A1 PCT/KR2019/001901 KR2019001901W WO2019164195A1 WO 2019164195 A1 WO2019164195 A1 WO 2019164195A1 KR 2019001901 W KR2019001901 W KR 2019001901W WO 2019164195 A1 WO2019164195 A1 WO 2019164195A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteriophage
hyp
hydrophila
bacteria
aer
Prior art date
Application number
PCT/KR2019/001901
Other languages
English (en)
French (fr)
Inventor
윤성준
전수연
권안성
정지인
강상현
Original Assignee
주식회사 인트론바이오테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트론바이오테크놀로지 filed Critical 주식회사 인트론바이오테크놀로지
Priority to US16/970,052 priority Critical patent/US11844818B2/en
Priority to CN201980012621.2A priority patent/CN111742046A/zh
Publication of WO2019164195A1 publication Critical patent/WO2019164195A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10111Myoviridae
    • C12N2795/10121Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10111Myoviridae
    • C12N2795/10132Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent

Definitions

  • the present invention is to prevent and treat diseases caused by the bacteriophage isolated from nature capable of killing the E. monas hydrophila and the composition comprising the composition containing the same as an active ingredient.
  • the method relates to more specifically, a myobacterial bacteriophage Aer-HYP-3 isolated from nature characterized by having the genome represented by SEQ ID NO: 1 having the ability to kill the E. monas hydrophila bacteria. No. KCTC 13479BP), and a method for preventing and treating diseases caused by E. monas hydrophila using the composition comprising the bacteriophage as an active ingredient.
  • Genus belonging to gamma-proteobacteria, is a widely distributed bacterium in the world, common in soil and water, and some of these are opportunistic pathogens that can cause disease in humans.
  • This bacterium can be divided into two groups: non-motor Eromonas and mot.
  • Aeromonas hydrophila is a representative motile eromonas species known to cause acute, chronic and latent infections through oral or transdermal infections of freshwater fish, amphibians, reptiles and humans.
  • the serotypes of the E are widely distributed bacterium in the world, common in soil and water, and some of these are opportunistic pathogens that can cause disease in humans.
  • This bacterium can be divided into two groups: non-motor Eromonas and mot.
  • Aeromonas hydrophila is a representative motile eromonas species known to cause acute, chronic and latent infections through oral or transdermal infections of freshwater fish, amphibians, reptile
  • monas hydrophila strain include heat stable cell antigens (Thermo-stable, O antigen), heat labile capsular antigens (Thermo-labile, K antigen), and flagella antigens (Flagella, H antigen). It is known that most of the pathogenic Eromonas hydrophila bacteria known to date have a heat stable cell antigen.
  • Bacteriophages are tiny microorganisms that infect bacteria, often called phage. Bacteriophages have the ability to proliferate inside the cells of a bacterium after infection (infection), and destroy the cell wall of the host bacterium when progeny bacteriophages come out of the bacterium after proliferation.
  • the bacterial infection of bacteriophages is very specific, and the types of bacteriophages that can infect specific bacteria are limited.
  • certain bacteriophages can only infect certain categories of bacteria, thereby allowing certain bacteriophages to provide antimicrobial effects only to certain bacteria. Due to the bacterial specificity of the bacteriophage, the bacteriophage provides an antimicrobial effect only to the target bacteria and does not affect the flora or flora in the animal. Conventional antibiotics, which are commonly used to treat bacteria, have simultaneously affected several types of bacteria. This caused problems such as environmental pollution and disturbance of the normal flora of animals. In contrast, bacteriophage only works for certain bacteria, so the bacteriophage disruption does not occur in the body. Therefore, the use of bacteriophage is very safe compared to the use of antibiotics, and the likelihood of side effects caused by the use is relatively low.
  • Bacteriophage is a British bacteriologist Twort 1915 became discovered while conducting research on Staphylococcus aureus (Micrococcus) melting the colonies are transparent by any developer.
  • French bacteriologist d'Herelle discovered that some of the filtrates of ill feces dissolve Shigella dysenteriae and found that they independently discovered bacteriophages. In the sense, they named it bacteriophage. Since then, bacteriophages have been found for several pathogenic bacteria such as dysentery, typhoid, and cholera.
  • bacteriophages Because of its special ability to kill bacteria, bacteriophages have been expected to be an effective way to combat bacterial infections since their discovery and many studies have been conducted. However, after the discovery of penicillin by Fleming, with the widespread use of antibiotics, research on bacteriophages has been limited to some Eastern European countries and the Soviet Union. However, since 2000, the growth of antibiotic-resistant bacteria has led to the limitation of conventional antibiotics, and the development of antibiotics as alternatives has emerged, and bacteriophages are attracting attention as anti-bacterial agents.
  • bacteriophages have a very high specificity for bacteria. Due to the high specificity of the bacteriophage bacteria, the bacteriophage often exerts an antimicrobial effect against only some strains even if the bacteria belong to the same species. In addition, the antibacterial activity of the bacteriophages may be different depending on the target bacterial strain itself. For this reason, it is necessary to secure various kinds of useful bacteriophages in order to secure effective control methods for specific kinds of bacteria.
  • the present inventors have developed a composition that can be used to prevent or treat diseases caused by the E. monas hydrophila, using bacteriophages isolated from nature capable of killing the E. monas hydrophila, and After trying to develop a method for the prevention and treatment of diseases caused by E. monas hydrophila, the bacteriophage suitable for this is isolated from nature, and the separated bacteriophage can be distinguished from other bacteriophages so as to be specified. After obtaining the sequence information of the genome, after developing a composition using the bacteriophage as an active ingredient, the composition can be effectively used for the purpose of preventing and treating diseases caused by the E. hydromonas bacteria. By identifying the present invention Completed.
  • an object of the present invention is Myoviridae bacteriophage Aer-HYP- isolated from nature, characterized by having the ability to specifically kill the E. monas hydrophila and having the genome represented by SEQ ID NO: 1. 3 (Accession No. KCTC 13479BP).
  • Another object of the present invention Eromonas hydrophila comprising an isolated bacteriophage Aer-HYP-3 (Accession No. KCTC 13479BP) capable of infecting the Eromonas hydrophila bacteria to kill the Eromonas hydrophila bacteria as an active ingredient. It is to provide a composition that can be used for the purpose of preventing and treating diseases caused by bacteria.
  • Still another object of the present invention is to isolate the bacteriophage Aer-HYP-3 (Accession No. KCTC 13479BP) which can infect the E. monas hydrophile and kill the E. monas hydrophyla, as an active ingredient. It is to provide a method for preventing and treating diseases caused by Eromonas hydrophila using a composition that can be used for the purpose of preventing and treating diseases caused by.
  • Still another object of the present invention is to provide a bathing agent used for the purpose of preventing and treating diseases caused by Eromonas hydrophila bacteria using the compositions.
  • Another object of the present invention to provide a feed additive for the purpose of providing a specification effect through the prevention and treatment of diseases caused by Eromonas hydrophila using the compositions.
  • the present invention is Myobiridae bacteriophage Aer-HYP-3 (Accession No. KCTC 13479BP) isolated from nature, characterized by having the ability to specifically kill the E. monas hydrophila and having the genome represented by SEQ ID NO: 1. ), And a method for preventing and treating a disease caused by Eromonas hydrophila using the composition comprising the same as an active ingredient.
  • the bacteriophage Aer-HYP-3 was separated by the inventors and deposited in the Korea Institute of Biotechnology and Biotechnology Center on February 7, 2018 (Accession No. KCTC 13479BP).
  • the present invention provides a bath and feed additive comprising bacteriophage Aer-HYP-3 as an active ingredient that can be used to prevent and treat diseases caused by Eromonas hydrophila.
  • Bacteriophage Aer-HYP-3 contained in the composition of the present invention effectively kills the E. monomonas hydrophila, and thus has an effect on the prevention (infection prevention) and treatment (infection treatment) of diseases caused by the E. monas hydrophila. Therefore, the composition of the present invention can be used for the purpose of prevention and treatment of diseases caused by Eromonas hydrophila.
  • prevention refers to (i) prevention of infection of the E. monas hydrophile; And (ii) inhibiting the development of the disease caused by the E. monas hydrophila infection.
  • treatment refers to (i) suppression of a disease caused by the E. hydromonas bacteria; And (ii) all acts of alleviating the pathological condition of the disease caused by E. hydromonas bacteria.
  • the term “separation”, “separation”, or “separation” refers to the separation of bacteriophages from a natural state by using various experimental techniques and to distinguish the bacteriophages of the present invention from other bacteriophages.
  • the present invention also includes the propagation of the bacteriophage of the present invention to industrial use by biotechnology.
  • compositions of the present invention are those commonly used in the formulation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate , Microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like, but are not limited thereto. no.
  • the composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
  • the composition of the present invention includes bacteriophage Aer-HYP-3 as an active ingredient.
  • the bacteriophage Aer-HYP-3 included at this time includes 1 ⁇ 10 1 pfu / ml to 1 ⁇ 10 30 pfu / ml or 1 ⁇ 10 1 pfu / g to 1 ⁇ 10 30 pfu / g, preferably 1 ⁇ . 10 4 pfu / ml to 1 ⁇ 10 15 pfu / ml or 1 ⁇ 10 4 pfu / g to 1 ⁇ 10 15 pfu / g.
  • compositions of the present invention may be prepared in unit dosage form by being formulated with pharmaceutically acceptable carriers and / or excipients, according to methods which may be readily practiced by those skilled in the art. It may also be prepared by incorporation into a multi-dose container.
  • the formulations here may be in the form of solutions, suspensions or emulsions in oils or aqueous media or in the form of extracts, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
  • the composition of the present invention may be embodied as a bath and feed additive, but not limited thereto, depending on the mode of application.
  • Bacteriophages that can provide antimicrobial activity against other bacterial species can be added to the composition of the present invention in order to increase the efficiency in this application.
  • other types of bacteriophages having antimicrobial activity against the E. hydromonas bacteria may be added. Even bacteriophages that have antimicrobial activity against the E. hydrophila bacteria can be maximized because they differ from each other in terms of strength and antimicrobial range of antimicrobial activity.
  • This can provide the advantage that the specificity for is very high. This means that it can be used for the purpose of preventing and treating diseases caused by E. monas hydrophila without affecting other useful floras, which means that there are very few side effects.
  • the use of antibiotics, such as ordinary flora will also suffer damage, resulting in a decrease in the immunity of the animal, resulting in a variety of side effects.
  • the antibacterial activity of the bacteriophage against individual bacterial strains in terms of the strength of the antimicrobial activity and the antimicrobial range [strains of several bacterial strains belonging to the E.P. Range of activity.
  • bacteriophages can exert antimicrobial activity against some strains belonging to the same bacterial species. That is, even if they belong to the same bacterial species, there may be a difference in susceptibility to bacteriophages according to individual bacterial strains].
  • the present invention provides a differential antimicrobial effect compared to other bacteriophages having antimicrobial activity against E. monas hydrophila. Can be provided. This makes a big difference in the effectiveness of industrial sites.
  • 1 is an electron micrograph of the bacteriophage Aer-HYP-3.
  • Figure 2 is an experimental result showing the killing ability of the bacteriophage Aer-HYP-3 against the E. monas hydrophila. Based on the middle line of the plate medium, the left side is only the buffer containing no bacteriophage Aer-HYP-3, and the right side is the liquid containing the bacteriophage Aer-HYP-3. The transparent part on the right is the lysate plaque formed by the bacteria under test lysed by the action of bacteriophage Aer-HYP-3.
  • erotic Pseudomonas dihydro pillar bacteria to 1 / 1,000 of the TSB (T ryptic S oy B roth) inoculated at a rate medium (Casein Digest, 17 g / L; Soy bean Digest, 3 g / L; deck
  • a rate medium Casein Digest, 17 g / L; Soy bean Digest, 3 g / L; deck
  • STROS 2.5 g / L; NaCl, 5 g / L; dipotassium phosphate, 2.5 g / L
  • the supernatant was recovered by centrifugation at 8,000 rpm for 20 minutes.
  • the recovered supernatants were inoculated with 1 / 1,000 of E. monophyllus hydrophiles, and then shaken again at 25 ° C. for 3-4 hours.
  • bacteriophage was included in the sample, this process was repeated five times in order to sufficiently increase the number of bacteriophages (Titer). After five repetitions, the culture was centrifuged at 8,000 rpm for 20 minutes. After centrifugation, the collected supernatant was filtered using a 0.45 ⁇ m filter. The conventional spot assay using the filtrate thus obtained was carried out to determine whether there were bacteriophages capable of killing the E. hydromonas bacteria.
  • the drip experiment was conducted as follows. Inoculated with the 1 / 1,000 ratio of the E. monas hydrophila in TSB medium and then cultured with shaking at 25 °C overnight. Thus prepared erotic Pseudomonas dihydro culture of pillars fungus 3 ml (OD 600 of 1.5) for TSA (T ryptic S oy A gar) plate medium (Casein Digest, 15 g / L; Soy bean digest, 5 g / L; NaCl, 5 g / L; agar, 15 g / L). The plated flat medium was left in a clean bench for about 30 minutes to allow the smear to dry.
  • TSA T ryptic S oy A gar
  • Separation of pure bacteriophages was carried out using a filtrate in which the presence of bacteriophages having killing ability against the E. monas hydrophila bacteria was confirmed. Separation of pure bacteriophage was carried out using a conventional Plaque assay. To explain this in detail, one of the lytic plaques formed in the lytic plaque assay was recovered using a sterilized tip, and then added to the culture solution of Eromonas hydrophila, followed by incubation at 25 ° C. for 4-5 hours. After incubation, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes.
  • a culture solution of the bacterium hydromonas was added at a volume of 50/50, and then incubated at 25 ° C for 4-5 hours. In order to increase the number of bacteriophages, this procedure was performed at least five times, and finally, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes. Using the obtained supernatant, lysis plate analysis was performed again. Since the separation of the pure bacteriophage is usually not achieved only once in the above process, the previous step was repeated again using the lysate formed. This process was repeated at least five times to obtain a solution containing pure bacteriophage.
  • Electron microscopic analysis was performed according to a conventional method. This is briefly described as follows. The solution containing the pure bacteriophage was buried in a copper grid, subjected to reverse staining and drying with 2% uranyl acetate, and its shape was observed through a transmission electron microscope. Electron micrographs of purely isolated bacteriophages are shown in FIG. 1. Judging from the morphological features, it was confirmed that the newly acquired bacteriophages belong to the Myoviridae bacteriophages.
  • the solution containing pure bacteriophage identified in this way was subjected to the following purification process.
  • a culture solution of the Eromonas hydrophila in a volume of 1/50 of the total volume of the solution and then incubated again for 4-5 hours. After incubation, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes. This procedure was repeated a total of five times to obtain a solution containing a sufficient number of bacteriophages.
  • the supernatant obtained by the final centrifugation was filtered using a 0.45 ⁇ m filter, followed by a conventional polyethylene glycol (PEG) precipitation process.
  • PEG polyethylene glycol
  • bacteriophage precipitate was suspended in 5 ml of buffer (Buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0). This is called bacteriophage suspension or bacteriophage solution.
  • bacteriophage Aer-HYP-3 Purified pure bacteriophage was obtained through the above process, and the bacteriophage was named as bacteriophage Aer-HYP-3, and was deposited on February 7, 2018 at the Korea Institute of Biotechnology and Biotechnology Center (Accession No. KCTC 13479BP). ).
  • Example 2 bacteriophage Aer - HYP -3 genome isolation and genome sequence analysis
  • the genome of the bacteriophage Aer-HYP-3 was isolated as follows. Bacteriophage suspension obtained in the same manner as in Example 1 was used for dielectric separation. First, in order to remove DNA and RNA of the E. monas hydrophila, which may be contained in the suspension, 200 U of each of DNase I and RNase A was added to 10 ml of the bacteriophage suspension, followed by standing at 37 ° C. for 30 minutes. In order to remove the activity of DNase I and RNase A after 30 minutes of standing, 500 ⁇ l of 0.5 M ethylenediaminetetraacetic acid (EDTA) was added and allowed to stand for another 10 minutes. In addition, the mixture was allowed to stand at 65 ° C.
  • EDTA ethylenediaminetetraacetic acid
  • Ratio of isopropyl alcohol was added thereto, and then centrifuged at 13,000 rpm for 10 minutes. The dielectric was precipitated. After the precipitate was recovered, 70% ethanol (Ethanol) was added to the precipitate, followed by centrifugation at 13,000 rpm for 10 minutes to wash the precipitate. The washed precipitate was recovered and dried in vacuo and then dissolved in 100 ⁇ l of water. The process was repeated to secure a large amount of the genome of the bacteriophage Aer-HYP-3.
  • the genome thus obtained was subjected to next generation sequencing analysis using an illumina Mi-Seq instrument in Macrogen, and then obtained genome sequence information of bacteriophage Aer-HYP-3. Finally, the analyzed bacteriophage Aer-HYP-3 genome has a size of 54,451 bp and the entire genome sequence is set forth in SEQ ID NO: 1.
  • the bacteriophage Aer-HYP-3 was concluded to be a new bacteriophage different from the previously reported bacteriophages.
  • the different types of bacteriophages usually provide different levels of antimicrobial activity and antimicrobial activity, and thus, bacteriophage Aer-HYP-3 can provide different antimicrobial effects from other reported bacteriophages. there was.
  • Example 3 bacteriophage Aer - HYP -3 Erotica Hydro Pillar against fungi Death Research
  • the killing ability of the isolated bacteriophage Aer-HYP-3 against the E. monas hydrophila was investigated.
  • the killing ability was investigated in a manner to investigate the formation of transparent rings through the drip experiment shown in Example 1.
  • the eromonas hydrophila strains used for the killing ability investigation were separated by the present inventors and were identified as the eromonas hydrophila bacteria in a total of 15 weeks.
  • Bacteriophage Aer-HYP-3 had the ability to kill for a total of 13 weeks out of 15 weeks of the test subjects. Representative experimental results are shown in FIG. 2.
  • bacteriophage Aer-HYP-3 tarda Vibrio Anguilla Room ( Vibrio anguillarum ), Vibrio ichthyoenteri ), Lactococcus garvieae , Streptococcus parauberis ), Streptococcus iniae ), and Aeromonas salmonicida ( Aero- monas salmonicida ) was also investigated, as a result, bacteriophage Aer-HYP-3 did not have the ability to kill these species.
  • the bacteriophage Aer-HYP-3 has an excellent killing ability against the E. monas hydrophila, and it can be confirmed that the bacteriophage Aer-HYP-3 can exhibit an antimicrobial effect against a number of eromonas hydrophila strains. This means that bacteriophage Aer-HYP-3 can be used as an active ingredient of the composition for the purpose of preventing and treating diseases caused by Eromonas hydrophila.
  • Example 4 bacteriophage Aer - HYP -3 Erotica Hydro Pillar For fungal infection prevention Experimental Example
  • the bacteriophage Aer-HYP-3 of the present invention not only inhibits the growth of the E. monophyllus hydrophila but also has the ability to kill the E. monophyllus hydrophila, and from this the bacteriophage Aer-HYP-3 It can be concluded that this can be used as an active ingredient of the composition for the purpose of preventing diseases caused by E. hydromonas hydrophile.
  • Example 5 bacteriophage Aer - HYP With -3 Erotica Hydro Pillar Caused by bacteria Preventive Animal Testing for Diseases
  • Twenty rainbow trout (average body weight: 22.8 g, average body length: 14.9 cm) were divided into two groups and then separated and bred in a water tank for 14 days. The environment of the bath was controlled and the temperature of the laboratory containing the bath was kept constant.
  • Rainbow trout from the experimental group (bacteriophage administration group) were fed feed containing 1 ⁇ 10 8 pfu / g of bacteriophage Aer-HYP-3 from the start of the experiment to the normal feeding regime.
  • rainbow trout from the control group (not administered bacteriophage) were fed with the same composition in the same manner without the bacteriophage Aer-HYP-3.
  • Eromonas hydrophila infection was induced twice a day by incorporating eromonas hydrophila into feeds fed at a level of 1 ⁇ 10 8 cfu / g for 2 days from the day of the test. From the 9th day from the start of the test, all the test animals were examined for the incidence of intestinal disease every day. Investigation of the incidence of intestinal disease was performed by measuring the size of the ulcer on the body surface. Ulcer size measurements in the body surface are commonly used Ulcer size (US) score ⁇ normal (no ulcer): 0, mild ulcer (ulcer size: less than 0.5 cm): 1, strong ulcer (ulcer size: 0.5 cm or more): 2 ⁇ It was carried out in a manner to measure. The results were shown in Table 2.
  • US Ulcer size
  • Body surface ulcer size measurement result (average value) US score (mean) date D9 D10 D11 D12 D13 D14 Control group (not administered bacteriophage) 0.35 0.50 0.55 0.55 0.65 0.75 Experimental group (bacteriophage administration) 0.15 0.05 0 0 0 0 0
  • the bacteriophage Aer-HYP-3 of the present invention is very effective in the prevention of diseases caused by the E. monas hydrophila.
  • Example 6 bacteriophage Aer - HYP With -3 Erotica Hydro Pillar For diseases caused by bacteria Treatment example
  • a three-day erotic Monastir Hydro Pillar (day 8 days from the test date) bacteria goes into effect next contaminated feed grade from group (bacteriophage group) of the rainbow trout have included a bacteriophage Aer-HYP-3 (1 ⁇ 10 8 pfu / g) was fed according to the conventional feeding method.
  • rainbow trout from the control group (no bacteriophage group) were fed in the same manner to feeds of the same composition without bacteriophage Aer-HYP-3.
  • Body surface ulcer size measurement result (average value) US score (mean) date D8 D9 D10 D11 D12 D13 D14 Control group (not administered bacteriophage) 0.85 1.05 1.30 1.55 1.60 1.60 1.70 Experimental group (bacteriophage administration) 0.95 0.80 0.40 0.30 0.25 0.15 0.10
  • the bacteriophage Aer-HYP-3 of the present invention is very effective in the treatment of diseases caused by the E. monas hydrophila.
  • a feed additive was prepared using bacteriophage Aer-HYP-3 solution to contain 1 ⁇ 10 8 pfu of bacteriophage Aer-HYP-3 per g of feed additive.
  • the method of preparing a feed additive was prepared by adding maltodextrin to the bacteriophage solution (50%, w / v) and then freeze drying. Finally, it was ground to a fine powder form. The drying process in the manufacturing process may be substituted for reduced pressure drying, warming drying, room temperature drying.
  • the feed additive without bacteriophage also used the buffer used to prepare the bacteriophage solution (Buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0) instead of the bacteriophage solution. It was prepared by.
  • Each of the two feed additives thus prepared was mixed with 250 times the fish feed for fish in a weight ratio to prepare the final two feeds.
  • the bath was prepared as follows.
  • the bacteriophage Aer-HYP-3 was prepared using a bacteriophage Aer-HYP-3 solution to contain 1 ⁇ 10 8 pfu of bacteriophage Aer-HYP-3 per ml of the bathing agent.
  • the method for preparing the bath detergent is prepared by adding the above-mentioned bacteriophage Aer-HYP-3 solution so that 1 ⁇ 10 8 pfu of the bacteriophage Aer-HYP-3 solution is contained per 1 ml of the buffer used to prepare the bacteriophage solution. It was.
  • the buffer itself used in the preparation of the bacteriophage solution was used as it is.
  • the two types of baths thus prepared were diluted with 1,000 times water by volume and used as the final bath.
  • Example 7 and Example 8 Using the feed prepared in Example 7 and Example 8, and a bath-detergent was investigated to improve the specification results when breeding rainbow trout.
  • the survey was conducted in terms of mortality.
  • a total of 200 rainbow trout were divided into two groups (group-A fed; group-B treated with a bath) for 4 weeks. Each group was divided into 50 subgroups, and each subgroup was divided into a small group (small group-1) to which bacteriophage Aer-HYP-3 was applied and a small group (small group-2) to which no bacteriophage was applied.
  • the rainbow trout for this study were five-week-old rainbow trout (average weight: 23.2 g, average length: 15.4 cm), and rainbow trout from each of the test subgroups were raised in separate tanks at regular intervals. Each subgroup is divided and referred to as Table 4 below.
  • Example 7 In the case of feed feeding, the feed prepared in Example 7 was fed according to the conventional feed feeding method according to the classification of Table 4, and in the case of the treatment of the bath preparation, it was prepared according to the preparation method of the bath preparation described in Example 8. One bath was treated according to the conventional bath treatment method of dipping the fish in a diluent of the bath according to the classification of Table 4. The results were shown in Table 5.
  • Mortality at Rainbow Trout Specimen Testing group Number of dead individuals / Number of test subjects % Mortality A-1 4/50 8.0 A-2 10/50 20.0 B-1 6/50 12.0 B-2 17/50 34.0

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Virology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Biochemistry (AREA)
  • Mycology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 에로모나스 하이드로필라 균을 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 미오비리대 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP), 및 이를 유효성분으로 포함하는 조성물을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법에 관한 것이다.

Description

신규한 에로모나스 하이드로필라 박테리오파지 AER-HYP-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도
본 발명은 에로모나스 하이드로필라 균에 감염하여 에로모나스 하이드로필라 균을 사멸시킬 수 있는 자연으로부터 분리한 박테리오파지 및 이를 유효성분으로 포함한 조성물을 이용한 에로모나스 하이드로필라 균에 의해서 유발되는 질환을 예방 및 치료하는 방법에 관한 것으로, 더욱 상세하게는 에로모나스 하이드로필라 균을 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 미오비리대 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP), 및 상기 박테리오파지를 유효성분으로 포함하는 조성물을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환의 예방 및 치료하는 방법에 관한 것이다.
감마-프로테오박테리아에 속하는 에로모나스 속(Genus)은 전 세계에 널리 분포되어 있는 세균으로서 토양과 수중에서 흔히 볼 수 있으며, 이들 중 일부는 기회 병원성 균으로 사람에게 질병을 일으킬 수도 있다. 이 세균은 크게 비운동성 에로모나스 속 균과 운동성 에로모나스 속 균으로 나눌 수 있는데 에로모나스 하이드로필라( Aeromonas hydrophila) 균은 대표적인 운동성 에로모나스 속 균으로 담수성 어류, 양서류, 파충류 및 사람에게 경구 또는 경피감염을 통해 급성, 만성 및 잠복 감염을 일으킨다고 알려져 있다. 에로모나스 하이드로필라 균의 항원형(Serotype)으로는 열 안정성 균체항원(Thermo-stable, O antigen), 열 불안정 협막항원(Thermo-labile, K antigen), 및 편모항원(Flagella, H antigen)이 있는 것으로 알려져 있으며, 현재까지 알려진 병원성 에로모나스 하이드로필라 균의 대부분은 열 안정성 균체항원을 갖고 있는 것으로 알려져 있다.
에로모나스 하이드로필라 균은 어류에 있어서 온도, 밀집사육 및 수중의 유기물 등의 여러 가지 환경적인 요인에 의한 스트레스와 상처, 기생충 감염 및 다른 병원체에 의하여 영향을 받은 부위에 최종적으로 감염하여 전신성 급성 출혈성 패혈증(Acute hemorrhagic septicemia)을 일으키며, 특히 높은 온도에서 에로모나스 하이드로필라 균에 감염되는 경우 어린 연어류에서는 대규모 폐사를 보이고, 블랙배스(Black bass)에서는 홍점병(Red spot disease)을 보이며, 금붕어에서는 이차적으로 피부에 감염하여 절창병(Furunculosis) 소견을 보인다는 보고도 있다. 또한, 온수성 양식어에서는 에로모나스 하이드로필라 균 감염에 의한 높은 폐사율로 인하여 심한 경제적 손실이 야기되는 것으로도 알려져 있다. 따라서 에로모나스 하이드로필라 균 감염을 예방하고 나아가 감염 처치에까지 활용될 수 있는 방안의 개발이 절실한 실정이다.
에로모나스 하이드로필라 균에 의해 유발되는 질환의 예방이나 치료 목적으로 다양한 항생제들이 사용되어 왔으나 최근 이들 항생제들에 대한 내성균의 발생이 증가함에 따라 항생제 외의 다른 방안의 확보가 시급한 실정이다.
최근 세균성 감염질환의 대처 방안으로 박테리오파지(Bacteriophage)의 활용이 크게 주목을 받고 있다. 특히 항생제 내성균에 대한 우수한 항균력 때문에 더욱 큰 관심을 받고 있다. 박테리오파지는 세균에 감염하는 아주 작은 미생물로서 보통 파지(Phage)라고 줄여서 부르기도 한다. 박테리오파지는 세균에 감염(Infection)한 후에 세균의 세포 내부에서 증식을 하고, 증식 후 자손 박테리오파지들이 세균 밖으로 나올 때 숙주인 세균의 세포벽을 파괴하는 방식으로 세균을 사멸시키는 능력을 갖고 있다. 박테리오파지의 세균 감염 방식은 매우 특이성이 높아서 특정 세균에 감염할 수 있는 박테리오파지의 종류는 일부로 한정된다. 즉, 특정 박테리오파지는 특정 범주의 세균에만 감염할 수 있고 이로 인하여 특정 박테리오파지는 특정 세균에 대해서만 항균효과를 제공할 수 있다. 이러한 박테리오파지의 세균 특이성으로 인하여 박테리오파지는 대상으로 하는 세균에 대해서만 항균효과를 제공하고 환경이나 동물 내의 상재균들에는 영향을 초래하지 않는다. 통상적으로 세균 처치에 널리 활용되던 기존의 항생제들은 여러 종류의 세균들에 대하여 동시에 영향을 끼쳤다. 이로 인하여 환경오염이나 동물의 정상 세균총 교란 등의 문제를 초래하였다. 이와는 달리 박테리오파지는 특정 세균에 대해서만 작동하므로 박테리오파지 사용에 의해서 체내 정상균총 교란 등이 발생하지 않는다. 따라서 박테리오파지 사용이 항생제 사용에 비교하여 매우 안전하다고 할 수 있고, 그 만큼 사용에 의한 부작용 초래 가능성이 상대적으로 크게 낮다.
박테리오파지는 1915년 영국의 세균학자 Twort가 포도상구균( Micrococcus) 집락이 어떤 것에 의해 투명하게 녹는 현상에 대한 연구를 수행하면서 발견되었다. 또한, 1917년에는 프랑스의 세균학자 d'Herelle이 이질환자 변의 여과액 중에 적리균( Shigella dysenteriae)을 녹이는 작용을 가진 것이 있다는 것을 발견하고 이에 대한 연구를 통해 독립적으로 박테리오파지를 발견하였으며, 세균을 잡아먹는다는 뜻에서 박테리오파지라고 명명하였다. 이후 이질균, 장티푸스균, 콜레라균 등 여러 병원성 세균에 대한 박테리오파지가 계속적으로 발견되었다.
세균을 사멸시킬 수 있는 특별한 능력으로 인하여 박테리오파지는 발견 이후부터 세균 감염에 대응하는 효과적 방안으로 기대를 모았으며 관련하여 많은 연구들이 있었다. 그러나 Fleming에 의해 페니실린이 발견된 이후, 항생제의 보급이 일반화되면서 박테리오파지에 대한 연구는 일부 동유럽 국가들 및 구소련에 한정되어서만 명맥이 유지되었다. 그런데 2000년 이후에 항생제 내성균의 발생 증가로 인하여 기존 항생제의 한계성이 나타나고, 기존 항생제의 대체 물질로의 개발 가능성이 부각되면서 다시 박테리오파지가 항-세균제로 주목을 받고 있다.
앞에서 설명했듯이 박테리오파지는 세균에 대한 특이성이 매우 높다. 이러한 박테리오파지의 세균에 대한 높은 특이성으로 인하여 박테리오파지는 동일 종(Species)에 속하는 세균들이라 할지라도 그 일부 주(Strain)에 대해서만 항균효과를 발휘하는 경우가 많다. 또한 대상 세균 주에 따라 발휘되는 박테리오파지의 항균력 세기 자체도 다를 수 있다. 이러한 이유로 특정 종류의 세균에 대하여 효과적 제어법을 확보하려면 다양한 종류의 유용 박테리오파지들의 확보가 필요하다. 에로모나스 하이드로필라 균에 대응하여 효과적인 박테리오파지 활용법을 개발하기 위해서도 당연히 에로모나스 하이드로필라 균에 대하여 항균효과를 제공할 수 있는 여러 종류의 다양한 박테리오파지들의 확보가 필요하고, 더 나아가 확보한 다양한 유용 박테리오파지들 중에서 항균력의 세기나 항균범위 측면에서 비교우위에 있는 박테리오파지의 선발 활용도 필요하다.
이에, 본 발명자들은 에로모나스 하이드로필라 균을 사멸시킬 수 있는 자연으로부터 분리된 박테리오파지를 이용하여 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 또는 치료하는 데에 활용될 수 있는 조성물을 개발하고, 또 이 조성물을 이용하여 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법을 개발하고자 노력한 끝에, 이에 적합한 박테리오파지를 자연으로부터 분리하고, 이 분리된 박테리오파지를 타 박테리오파지와 구별하여 특정 지을 수 있도록 유전체(Genome)의 서열 정보를 확보한 후에 상기 박테리오파지를 유효성분으로 한 조성물을 개발한 다음에 이 조성물이 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 효과적으로 활용될 수 있음을 확인함으로써 본 발명을 완성하였다.
따라서 본 발명의 목적은 에로모나스 하이드로필라 균을 특이적으로 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 미오비리대( Myoviridae) 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP)을 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 에로모나스 하이드로필라 균에 감염하여 에로모나스 하이드로필라 균을 사멸시킬 수 있는 분리 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP)을 유효성분으로 포함하는 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 활용 가능한 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 에로모나스 하이드로필라 균에 감염하여 에로모나스 하이드로필라 균을 사멸시킬 수 있는 분리 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP)을 유효성분으로 포함하는 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 활용 가능한 조성물을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 사용되는 약욕제를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환의 예방 및 치료를 통한 사양 효과 제공 목적의 사료첨가제를 제공하는 것이다.
본 발명은 에로모나스 하이드로필라 균을 특이적으로 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 미오비리대 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP), 및 이를 유효성분으로 포함하는 조성물을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법을 제공한다.
박테리오파지 Aer-HYP-3은 본 발명자들에 의해 분리된 후에 2018년 2월 7일자로 한국생명공학연구원 생물자원센터에 기탁되었다(수탁번호 KCTC 13479BP).
또한, 본 발명은 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 데에 활용될 수 있는 박테리오파지 Aer-HYP-3을 유효성분으로 포함하는 약욕제 및 사료첨가제를 제공한다.
본 발명의 조성물에 포함되는 박테리오파지 Aer-HYP-3은 에로모나스 하이드로필라 균을 효과적으로 사멸시키므로 에로모나스 하이드로필라 균에 의해 유발되는 질환의 예방(감염 방지) 및 치료(감염 처치)에 효과를 나타낸다. 따라서 본 발명의 조성물은 에로모나스 하이드로필라 균에 의해 유발되는 질환에 대한 예방 및 치료 목적으로 활용될 수 있다.
본 명세서에서 사용된 “방지” 또는 “예방”이라는 용어는 (i) 에로모나스 하이드로필라 균의 감염 방지; 및 (ii) 에로모나스 하이드로필라 균 감염에 의한 질병으로의 발전을 억제하는 것을 의미한다.
본 명세서에서 사용된 “처치” 또는 “치료”라는 용어는 (i) 에로모나스 하이드로필라 균에 의해 유발된 질환의 억제; 및 (ii) 에로모나스 하이드로필라 균에 의해 유발된 질환의 병적상태를 경감시키는 모든 행위를 의미한다.
본 명세서의 “분리”, “분리한” 또는 “분리된”은 자연 상태로부터 여러 실험 기법을 활용하여 박테리오파지를 분리하는 것과 타 박테리오파지와 구별하여 본 발명의 박테리오파지를 특정 지을 수 있는 특징을 확보하는 일을 지칭하며, 이에 더하여 생물공학기술로 본 발명의 박테리오파지를 산업적으로 활용할 수 있게끔 증식시키는 것도 포함한다.
본 발명의 조성물에 포함되는 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
본 발명의 조성물에는 박테리오파지 Aer-HYP-3이 유효성분으로 포함된다. 이때 포함되는 박테리오파지 Aer-HYP-3은 1× 10 1 pfu/㎖ 내지 1× 10 30 pfu/㎖ 또는 1× 10 1 pfu/g 내지 1× 10 30 pfu/g로 포함되며, 바람직하게는 1× 10 4 pfu/㎖ 내지 1× 10 15 pfu/㎖ 또는 1× 10 4 pfu/g 내지 1× 10 15 pfu/g로 포함된다.
본 발명의 조성물은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수도 있다. 이때 제형은 오일 또는 수성 매질 중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캡슐제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수도 있다.
본 발명의 조성물은 활용 방식에 따라, 이에 국한되지 않지만 약욕제 및 사료첨가제로 구현될 수 있다. 이러한 활용 목적에서의 효율성을 높이기 위하여 다른 세균종에 대하여 항균활성을 제공할 수 있는 박테리오파지들이 본 발명의 조성물에 추가될 수 있다. 또한, 에로모나스 하이드로필라 균에 대하여 항균활성을 갖는 다른 종류의 박테리오파지들도 추가될 수 있다. 에로모나스 하이드로필라 균에 대하여 항균활성을 갖는 박테리오파지라 하더라도 항균력의 세기나 항균범위 측면에서 서로 간에 차이가 있으므로 이들의 적절한 조합은 그 효과를 극대화 할 수 있다.
본 발명의 박테리오파지 Aer-HYP-3을 유효성분으로 포함하는 조성물을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법은 기존의 항생제 등에 기반을 둔 방식에 비하여 에로모나스 하이드로필라 균에 대한 특이성이 매우 높다는 장점을 제공할 수 있다. 이는 다른 유용한 상재균에는 영향을 주지 않으면서도 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 사용할 수 있음을 의미하며, 이의 사용에 따른 부작용이 매우 적다는 것을 의미한다. 통상적으로 항생제 등을 사용하면 일반 상재균들도 피해를 함께 입게 되어 결과적으로 동물의 면역력 저하 등을 초래시켜 사용에 따른 다양한 부작용이 나타난다. 한편, 박테리오파지는 항균활성을 발휘할 수 있는 세균 종이 같다 하더라도 항균효과 발휘에 있어 항균력의 세기나 항균범위[에로모나스 하이드로필라 균종에 속하는 여러 세균 주(Strain)의 측면에서 개별 세균 주에 대하여 박테리오파지의 항균활성이 발휘되는 범위. 통상적으로 박테리오파지는 같은 세균 종(Species)에 속하는 일부 세균 주(Strain)에 대하여 항균활성을 발휘할 수 있음. 즉, 같은 세균 종에 속한다 하더라도 개별 세균 주에 따라 박테리오파지에 대한 감수성에서 차이가 있을 수 있음] 측면에서 차이가 있으므로 본 발명은 에로모나스 하이드로필라 균에 대한 항균력을 갖는 타 박테리오파지에 비교하여 차별적 항균효과를 제공할 수 있다. 이는 산업현장 활용 시에 그 효과에 있어 큰 차이를 제공한다.
도 1은 박테리오파지 Aer-HYP-3의 전자현미경 사진이다.
도 2는 박테리오파지 Aer-HYP-3의 에로모나스 하이드로필라 균에 대한 사멸능을 보여주는 실험 결과이다. 평판배지의 가운데 선을 기준으로 왼쪽은 박테리오파지 Aer-HYP-3이 포함되지 않은 완충액(Buffer)만을 점적한 것이고, 오른쪽은 박테리오파지 Aer-HYP-3이 포함된 액을 점적한 것이다. 오른쪽에서 관찰되는 투명한 부분은 시험대상 세균이 박테리오파지 Aer-HYP-3의 작용에 의하여 용균되어 결과적으로 형성된 용균반이다.
이하, 실시예에 의거하여 본 발명을 보다 구체적으로 설명하지만, 이들 실시예는 본 발명의 예시일 뿐이며 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 에로모나스 하이드로필라 균을 사멸시킬 수 있는 박테리오파지의 분리
에로모나스 하이드로필라 균을 사멸시킬 수 있는 박테리오파지의 선별에는 자연 환경으로부터 확보된 시료들을 이용하였다. 한편, 박테리오파지 분리에 사용된 에로모나스 하이드로필라 균은 본 발명자들에 의해 미리 분리되어 에로모나스 하이드로필라 균으로 동정(Identification)된 것이다.
박테리오파지 분리 과정을 상세히 설명하면, 에로모나스 하이드로필라 균을 1/1,000 비율로 접종한 TSB( Tryptic Soy Broth) 배지(카제인 다이제스트, 17 g/L; 소이빈 다이제스트, 3 g/L; 덱스트로스, 2.5 g/L; NaCl, 5 g/L; 디포타슘 포스페이트, 2.5 g/L)에 수집된 시료를 함께 첨가한 다음 25℃에서 3-4시간동안 진탕배양 하였다. 배양 후, 8,000 rpm에서 20분간 원심분리하여 상등액을 회수하였다. 회수된 상등액에 에로모나스 하이드로필라 균을 1/1,000 비율로 접종한 다음 25℃에서 3-4시간 동안 또 다시 진탕배양 하였다. 박테리오파지가 시료에 포함되어 있었을 경우에는 박테리오파지의 수(Titer)가 충분히 증가될 수 있도록 이러한 과정을 총 5회 반복 실시하였다. 5회 반복 실시 후에 배양액을 8,000 rpm에서 20분간 원심분리 하였다. 원심분리 후, 회수된 상등액에 대하여 0.45 μm의 필터를 이용하여 여과를 실시해 주었다. 이렇게 하여 얻어진 여과액을 사용한 통상의 점적 실험(Spot assay)을 통하여 에로모나스 하이드로필라 균을 사멸시킬 수 있는 박테리오파지가 있는지를 조사하였다.
상기 점적 실험은 다음과 같이 실시되었다. TSB 배지에 에로모나스 하이드로필라 균을 1/1,000 비율로 접종한 다음 25℃에서 한밤동안 진탕배양 하였다. 이렇게 하여 준비된 에로모나스 하이드로필라 균의 배양액 3 ㎖(OD 600이 1.5)을 TSA( Tryptic Soy Agar) 평판배지(카제인 다이제스트, 15 g/L; 소이빈 다이제스트, 5 g/L; NaCl, 5 g/L; 아가, 15 g/L)에 도말(Spreading)하였다. 도말한 평판 배지를 클린벤치(Clean bench)에서 약 30분 정도 방치하여 도말액이 건조되게 하였다. 건조 후 앞에서 준비한 여과액 10 μl를 에로모나스 하이드로필라 균이 도말된 평판 배지 위에 점적하였다. 이를 30분 정도 방치하여 건조시켰다. 건조 후 점적한 평판 배지를 25℃에서 하루 동안 정치 배양한 다음 여과액이 떨어진 위치에 투명환(Clear zone)이 생성되는가를 조사하였다. 투명환이 생성되는 여과액의 경우가 에로모나스 하이드로필라 균을 사멸 시킬 수 있는 박테리오파지가 포함되어 있다고 판단할 수 있다. 이러한 조사를 통하여 에로모나스 하이드로필라 균에 대한 사멸능을 가진 박테리오파지를 포함한 여과액을 확보할 수 있었다.
에로모나스 하이드로필라 균에 대한 사멸능을 가진 박테리오파지의 존재가 확인된 여과액을 이용하여 순수 박테리오파지의 분리를 실시하였다. 순수 박테리오파지의 분리에는 통상의 용균반 분석(Plaque assay)을 이용하였다. 이를 자세히 설명하면, 용균반 분석에서 형성된 용균반 하나를 멸균된 팁을 이용하여 회수한 다음에 이를 에로모나스 하이드로필라 균의 배양액에 첨가해 주어 4-5시간 동안 25℃에서 함께 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 얻어진 상등액에 50분의 1의 부피로 에로모나스 하이드로필라 균의 배양액을 첨가해 준 다음에 다시 25℃에서 4-5시간 동안 배양해 주었다. 박테리오파지의 수를 증가시키기 위하여 이러한 과정을 최소 5회 이상 실시한 다음에 최종적으로 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 얻어진 상등액을 사용하여 다시 용균반 분석을 실시하였다. 통상 순수 박테리오파지의 분리가 상기 과정의 1회만으로는 달성되지 않기 때문에 이때 형성된 용균반을 이용하여 앞 단계를 전체적으로 다시 반복하였다. 이와 같은 과정을 최소 5회 이상 반복 실시하여 순수한 박테리오파지를 포함한 용액을 확보하였다. 통상적으로 순수 박테리오파지의 분리는 형성된 용균반의 크기 및 모양이 모두 유사하게 될 때까지 반복 수행하였다. 그리고 최종적으로는 전자현미경 분석을 통하여 박테리오파지의 순수 분리 여부를 확인하였다. 전자현미경 분석에서 순수 분리가 확인될 때까지 앞에 설명한 과정을 반복하였다. 전자현미경 분석은 통상의 방법에 따라 실시하였다. 이를 간단히 설명하면 다음과 같다. 순수한 박테리오파지를 포함한 용액을 구리 격자(Copper grid)에 묻히고 2% 우라닐 아세테이트(Uranyl acetate)로 역염색법(Negative staining)과 건조를 수행한 후에 투과전자현미경을 통하여 그 형태를 관찰하였다. 순수 분리한 박테리오파지의 전자현미경 사진이 도 1에 제시되어 있다. 형태적 특징으로 판단할 때, 신규 확보된 박테리오파지는 미오비리대( Myoviridae) 박테리오파지에 속함을 확인할 수 있었다.
이런 방식으로 확인된 순수 박테리오파지를 포함한 용액은 다음의 정제 과정을 거쳤다. 순수 박테리오파지를 포함한 용액에 용액 전체 부피의 50분의 1의 부피로 에로모나스 하이드로필라 균의 배양액을 첨가해 준 다음에 다시 4-5시간 동안 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 충분한 수의 박테리오파지가 포함된 액을 얻기 위해 이러한 과정을 총 5회 반복하였다. 최종 원심분리로 얻어진 상등액을 0.45 μm의 필터를 이용하여 여과한 다음에 통상의 폴리에틸렌 글리콜(Polyethylene Glycol; PEG) 침전 과정을 실시하였다. 구체적으로, 여과액 100 ㎖에 10% PEG 8000/0.5 M NaCl이 되게 PEG와 NaCl을 첨가한 다음에 4℃에서 2-3시간 동안 정치한 후, 8,000 rpm에서 30분간 원심분리하여 박테리오파지 침전물을 얻었다. 이렇게 얻어진 박테리오파지 침전물을 완충액(Buffer; 10 mM Tris-HCl, 10 mM MgSO 4, 0.1% Gelatin, pH 8.0) 5 ㎖로 부유시켰다. 이를 박테리오파지 부유액 또는 박테리오파지 액이라 지칭한다.
상기 과정을 통하여 정제된 순수 박테리오파지를 확보할 수 있었고, 이 박테리오파지를 박테리오파지 Aer-HYP-3으로 명명한 뒤, 2018년 2월 7일자로 한국생명공학연구원 생물자원센터에 기탁하였다(수탁번호 KCTC 13479BP).
실시예 2: 박테리오파지 Aer - HYP -3의 유전체 분리 및 유전체 서열 분석
박테리오파지 Aer-HYP-3의 유전체를 다음과 같이 분리하였다. 유전체 분리에는 실시예 1에서와 같은 방법으로 얻어진 박테리오파지 부유액을 이용하였다. 먼저 부유액에 포함되어 있을 수 있는 에로모나스 하이드로필라 균의 DNA와 RNA를 제거하기 위해, 박테리오파지 부유액 10 ㎖에 DNase I과 RNase A를 각각 200 U씩 첨가한 다음에 37℃에서 30분간 방치하였다. 30분 방치 후에 DNase I과 RNase A의 활성을 제거하기 위해, 0.5 M 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic acid; EDTA) 500 μl를 첨가한 다음에 다시 10분간 정치시켰다. 그리고 이를 추가로 10분간 65℃에 정치시킨 다음에 박테리오파지 외벽을 와해시키기 위해 proteinase K(20 ㎎/㎖) 100 μl를 첨가한 후에 37℃에서 20분간 반응시켰다. 그 후 10% 도데실 황산 나트륨염(Sodium dodecyl sulfate;SDS) 500 μl를 첨가한 다음에 다시 65℃에서 1시간 동안 반응시켰다. 1시간 반응 후, 이 반응액에 25:24:1의 구성비를 갖는 페놀(Phenol) : 클로로포름(Chloroform) : 이소아밀알코올(Isoamylalcohol)의 혼합액 10 ㎖을 첨가해 준 후 잘 섞어 주었다. 그리고는 이것을 13,000 rpm에서 15분간 원심분리하여 층이 분리되게 한 다음에 분리된 층들 중에서 위층을 취하여 여기에 1.5 부피비의 아이소프로필 알코올(Isopropyl alcohol)을 첨가한 다음에 13,000 rpm에서 10분간 원심분리하여 유전체를 침전시켰다. 침전물을 회수한 후 침전물에 70% 에탄올(Ethanol)을 첨가한 다음에 다시 13,000 rpm에서 10분간 원심분리하여 침전물의 세척을 실시하였다. 세척된 침전물을 회수하고 진공 건조 시킨 다음에 이를 100 μl의 물에 녹였다. 상기 과정을 반복하여 박테리오파지 Aer-HYP-3의 유전체를 다량 확보하였다.
이렇게 얻어진 유전체는 마크로젠에서 illumina Mi-Seq 기기를 이용하여 차세대염기서열 분석(Next generation sequencing analysis)을 수행한 다음 박테리오파지 Aer-HYP-3의 유전체 서열 정보를 확보하였다. 최종적으로 분석된 박테리오파지 Aer-HYP-3 유전체는 54,451 bp의 크기를 가지며, 전체 유전체 서열은 서열번호 1로 제시되어 있다.
확보된 박테리오파지 Aer-HYP-3의 유전체 서열을 기반으로 Web상의 BLAST를 이용하여 기존에 알려진 박테리오파지 유전체 서열과의 상동성(Similarity)을 조사해 보았다. BLAST 조사 결과, 박테리오파지 Aer-HYP-3의 유전체 서열은 에로모나스 박테리오파지 pAh6-C의 서열(Genbank Accession No. KJ858521.1)과 비교적 높은 상동성을 가지고 있는 것으로 확인되었다(Query coverage/identity: 93%/97%). 그러나 박테리오파지 Aer-HYP-3 유전체 상의 개방형해독틀(Open Reading Frame, ORF)의 개수가 75개임에 반하여 에로모나스 박테리오파지 pAH6-C는 86개를 가지고 있어 서로 상이한 박테리오파지임을 확인할 수 있었다.
이러한 사실에 근거하여 박테리오파지 Aer-HYP-3은 기존 보고된 박테리오파지들과는 다른 신규한 박테리오파지라 결론지을 수 있었다. 이러한 사실과 함께 통상적으로 박테리오파지의 종류가 다르면 제공할 수 있는 항균력의 세기 및 항균범위가 다르다는 사실로부터 박테리오파지 Aer-HYP-3은 기존에 보고된 다른 박테리오파지들과는 다른 항균효과를 제공해 줄 수 있다고 판단할 수 있었다.
실시예 3: 박테리오파지 Aer - HYP -3의 에로모나스 하이드로필라 균에 대한 사멸능 조사
분리된 박테리오파지 Aer-HYP-3의 에로모나스 하이드로필라 균에 대한 사멸능을 조사하였다. 사멸능 조사는 실시예 1에서 제시한 점적 실험을 통하여 투명환 생성 여부를 조사하는 방식으로 수행하였다. 사멸능 조사에 사용되어진 에로모나스 하이드로필라 균주들은 본 발명자들에 의해 분리되어 에로모나스 하이드로필라 균으로 동정된 것들로 총 15주였다. 박테리오파지 Aer-HYP-3은 실험에 대상이 된 에로모나스 하이드로필라 15주 중에 총 13주에 대하여 사멸능을 갖고 있었다. 대표적 실험 결과가 도 2에 제시되어 있다. 한편, 박테리오파지 Aer-HYP-3의 에드워드시엘라 타르다( Edwardsiella tarda), 비브리오 안길라룸( Vibrio anguillarum), 비브리오 익티오엔테리( Vibrio ichthyoenteri), 락토코커스 가르비에( Lactococcus garvieae), 스트렙토코커스 파라우베리스( Streptococcus parauberis), 스트렙토코커스 이니에( Streptococcus iniae), 및 에로모나스 살모니시다( Aeromonas salmonicida)에 대한 사멸능 조사도 실시하였는데, 결과로 박테리오파지 Aer-HYP-3은 이들 균종들에 대해서는 사멸능을 갖고 있지 않았다.
이상의 결과로 박테리오파지 Aer-HYP-3은 에로모나스 하이드로필라 균에 대하여 우수한 사멸능을 가지며, 다수의 에로모나스 하이드로필라 균주들에 대하여 항균 효과를 발휘할 수 있음을 확인할 수 있었다. 이는 박테리오파지 Aer-HYP-3이 에로모나스 하이드로필라 균에 의해 유발되는 질환에 대한 예방 및 치료 목적의 조성물의 유효성분으로 활용 가능함을 의미한다.
실시예 4: 박테리오파지 Aer - HYP -3의 에로모나스 하이드로필라 균 감염 예방에 대한 실험예
9 ㎖의 TSB 배지를 담은 하나의 튜브에 1× 10 8 pfu/㎖ 수준의 박테리오파지 Aer-HYP-3 액 100 μl를 넣어주고, 다른 하나의 9 ㎖의 TSB 배지를 담은 튜브에는 동량의 TSB 배지만을 추가로 첨가하였다. 그 다음에 각 튜브에 600 nm에서 흡광도가 약 0.5 정도가 되도록 에로모나스 하이드로필라 균의 배양액을 넣어 주었다. 에로모나스 하이드로필라 균을 첨가한 후 튜브들을 25℃의 배양기에 옮겨 진탕배양하면서 에로모나스 하이드로필라 균의 성장 상태를 관찰하였다. 표 1에 제시된 바와 같이, 박테리오파지 Aer-HYP-3 액을 첨가해 준 튜브에서는 에로모나스 하이드로필라 균의 성장 억제가 관찰된 반면에 박테리오파지 액을 첨가하지 않은 튜브에서는 에로모나스 하이드로필라 균의 성장 억제가 관찰되지 않았다.
에로모나스 하이드로필라 균의 성장 억제
구분 OD 600 흡광도 값
배양 0분 배양후 60분 배양후 120분
박테리오파지 액 미첨가 0.49 1.06 1.57
박테리오파지 액 첨가 0.49 0.27 0.16
이 결과로부터 본 발명의 박테리오파지 Aer-HYP-3이 에로모나스 하이드로필라 균의 성장을 저해할 뿐만 아니라 에로모나스 하이드로필라 균의 사멸까지 시키는 능력이 있음을 확인할 수 있었고, 이로부터 박테리오파지 Aer-HYP-3이 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방하는 목적의 조성물의 유효성분으로 활용될 수 있다고 결론지을 수 있었다.
실시예 5: 박테리오파지 Aer - HYP -3을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환에 대한 예방 동물시험
무지개 송어(평균체중: 22.8 g, 평균체장: 14.9 cm) 20마리를 한 그룹으로 하여 총 두 그룹으로 나눈 후 수조에서 분리 사육하면서 14일간 실험을 실시하였다. 수조의 주위환경은 통제하였고, 수조가 있는 실험실의 온도는 일정하게 유지시켰다. 실험 개시일로부터 시험 전기간 동안에 걸쳐 실험군(박테리오파지 투여군)의 무지개 송어들에게는 1× 10 8 pfu/g의 박테리오파지 Aer-HYP-3을 포함하고 있는 사료를 통상적인 사료 급이 방식에 따라 급이하였다. 반면에 대조군(박테리오파지 미투여군)의 무지개 송어들에게는 박테리오파지 Aer-HYP-3이 포함되지 않은 동일 조성의 사료를 동일한 방식으로 급이하였다. 시험개시일로부터 7일째가 되는 날부터 2일간 1× 10 8 cfu/g 수준으로 에로모나스 하이드로필라 균을 급이하는 사료에 포함시켜 하루 2회씩 급이하여 에로모나스 하이드로필라 균 감염을 유도하였다. 시험 개시일로부터 9일째가 되는 날부터는 매일 모든 시험동물들을 대상으로 절창병 발생 상태를 조사하였다. 절창병 발생 상태 조사는 체표의 궤양 크기를 측정하는 방식으로 실시하였다. 체표의 궤양 크기 측정은 통상 사용되는 Ulcer size(US) score{정상(궤양 없음): 0, 약한 궤양(궤양 크기: 0.5 cm 미만): 1, 강한 궤양(궤양 크기: 0.5 cm 이상): 2}를 측정하는 방식으로 실시하였다. 그 결과는 표 2와 같았다.
체표 궤양 크기 측정 결과 (평균치)
US score(mean)
날짜 D9 D10 D11 D12 D13 D14
대조군(박테리오파지 미투여) 0.35 0.50 0.55 0.55 0.65 0.75
실험군(박테리오파지 투여) 0.15 0.05 0 0 0 0
이 결과로부터 본 발명의 박테리오파지 Aer-HYP-3이 에로모나스 하이드로필라 균에 의해 유발되는 질환의 예방에 매우 효과적이라는 것을 확인할 수 있었다.
실시예 6: 박테리오파지 Aer - HYP -3을 이용한 에로모나스 하이드로필라 균에 의해 유발되는 질환에 대한 치료예
박테리오파지 Aer-HYP-3의 에로모나스 하이드로필라 균에 의해 유발되는 질환에 대한 치료 효과를 조사해 보았다. 무지개 송어(평균체중: 23.2 g, 평균체장: 15.4 cm) 40마리를 한 그룹으로 하여 총 두 그룹으로 나눈 후 수조에서 분리 사육하면서 14일간 실험을 실시하였다. 수조의 주위환경은 통제하였고, 수조가 있는 실험실의 온도는 일정하게 유지시켰다. 실험 개시일로부터 5일째 되는 날부터 3일간 1× 10 8 cfu/g 수준으로 에로모나스 하이드로필라 균이 오염된 사료를 하루 2회씩 통상적인 사료 급이 방식으로 급이하였다. 에로모나스 하이드로필라 균이 오염된 사료 급이 마지막 날부터 절창병의 임상증상을 보이는 개체가 두 수조 모두에서 확인되었다. 3일간의 에로모나스 하이드로필라 균이 오염된 사료 급이 시행 다음날(시험 개시일로부터 8일째가 되는 날)부터 실험군(박테리오파지 투여군)의 무지개 송어들에게는 박테리오파지 Aer-HYP-3을 포함(1× 10 8 pfu/g)하고 있는 사료를 통상적인 사료 급이 방식에 따라 급이하였다. 반면에 대조군(박테리오파지 미투여군)의 무지개 송어들에게는 박테리오파지 Aer-HYP-3이 포함되지 않은 동일 조성의 사료를 동일한 방식으로 급이하였다. 에로모나스 하이드로필라 균을 3일간 강제감염 시키고 난 다음 날(시험 개시 8일째)부터는 매일 모든 시험동물들을 대상으로 절창병 발생 상태를 조사하였다. 에로모나스 하이드로필라 균에 의해 유발되는 절창병 발생 상태 조사는 실시예 5에서와 같이 체표의 궤양 크기를 측정하는 방식으로 실시하였다. 그 결과는 표 3과 같았다.
체표 궤양 크기 측정 결과 (평균치)
US score(mean)
날짜 D8 D9 D10 D11 D12 D13 D14
대조군(박테리오파지 미투여) 0.85 1.05 1.30 1.55 1.60 1.60 1.70
실험군(박테리오파지 투여) 0.95 0.80 0.40 0.30 0.25 0.15 0.10
이 결과로부터 본 발명의 박테리오파지 Aer-HYP-3이 에로모나스 하이드로필라 균에 의해 유발되는 질환의 치료에도 매우 효과적이라는 것을 확인할 수 있었다.
실시예 7: 사료첨가제 및 사료의 제조
박테리오파지 Aer-HYP-3 액을 이용하여 사료첨가제 1 g당 1× 10 8 pfu의 박테리오파지 Aer-HYP-3이 포함되도록 사료첨가제를 제조하였다. 사료첨가제의 제조 방법은 박테리오파지 액에 말토덱스트린을 첨가(50%, w/v)한 다음에 동결 건조시켜 제조하였다. 최종적으로 고운 가루형태로 분쇄하였다. 상기 제조과정 중의 건조 과정에는 감압 건조, 가온 건조, 상온 건조도 대체 가능하다. 대조 실험을 위해, 박테리오파지가 포함되지 않은 사료첨가제도 박테리오파지 액 대신에 박테리오파지 액의 제조 시에 사용한 완충액(Buffer; 10 mM Tris-HCl, 10 mM MgSO 4, 0.1% Gelatin, pH 8.0)을 사용하는 방식으로 제조하였다.
이렇게 제조된 2종의 사료첨가제 각각을 중량비로 250배의 양어용 생사료와 혼합하여 최종 2종의 사료를 제조하였다.
실시예 8: 약욕제의 제조
약욕제는 다음과 같이 제조하였다. 박테리오파지 Aer-HYP-3 액을 이용하여 약욕제 1 ㎖ 당 1× 10 8 pfu의 박테리오파지 Aer-HYP-3이 포함되도록 약욕제를 제조하였다. 약욕제의 제조 방법은 박테리오파지 액 제조 시에 사용하는 완충액 1 ㎖ 당 1× 10 8 pfu의 박테리오파지 Aer-HYP-3이 포함되도록 상기 박테리오파지 Aer-HYP-3 액을 첨가하여 잘 혼합해 주는 방식으로 제조하였다. 대조 실험을 위해, 박테리오파지가 포함되지 않은 약욕제로는 박테리오파지 액의 제조 시에 사용한 완충액 자체를 그대로 사용하였다.
이렇게 제조된 2종의 약욕제는 부피비로 1,000배의 물로 희석하여 최종적인 약욕제로 사용하였다.
실시예 9: 무지개 송어 사육에서의 사양 효과 확인
실시예 7 및 실시예 8에서 제조한 사료, 및 약욕제를 이용하여 무지개 송어 사육 시의 사양 결과 개선 여부에 대하여 조사해 보았다. 특히 본 조사는 폐사율 관점에서 실시되었다. 총 200 마리의 무지개 송어를 100 마리씩 한 그룹으로 총 2개 그룹(사료로 급이한 그룹-A; 약욕제로 처치한 그룹-B)으로 나누어 4주간 시험을 실시하였다. 각 그룹은 다시 50마리씩으로 구성되는 소그룹으로 나누어지며 각 소그룹은 박테리오파지 Aer-HYP-3이 적용된 소그룹(소그룹-①) 및 박테리오파지가 적용되지 않은 소그룹(소그룹-②)으로 나누었다. 본 시험에 대상이 된 무지개 송어는 5주령의 무지개 송어(평균체중: 23.2 g, 평균체장: 15.4 cm)였으며, 각 시험 소그룹의 무지개 송어는 일정 간격을 두고 위치한 격리된 각각의 수조에서 사육되었다. 각 소그룹은 다음의 표 4와 같이 구분되고 지칭되었다.
무지개 송어 사양 시험에서의 소그룹 구분 및 표시
적용 소그룹 구분 및 표시
박테리오파지 Aer-HYP-3 적용 박테리오파지가 적용되지 않음
사료로 급이한 그룹 A-① A-②
약욕제로 처치한 그룹 B-① B-②
사료 급이의 경우에는 실시예 7에서 제조한 사료를 표 4의 구분에 따라 통상적인 사료 급이 방식을 따라 급이 하였으며, 약욕제 처치의 경우에는 실시예 8에서 설명한 약욕제 제조 방식에 따라 제조한 약욕제를 표 4의 구분에 따라 약욕제의 희석액에 어체를 담그는 방식으로 실시하는 통상적인 약욕제 처치 방식에 따라 처치하였다. 그 결과는 표 5와 같았다.
무지개 송어 사양 시험에서의 폐사율
그룹 폐사개체수/시험개체수 폐사율(%)
A-① 4/50 8.0
A-② 10/50 20.0
B-① 6/50 12.0
B-② 17/50 34.0
이상의 결과로 본 발명에 따라 제조된 사료의 급이와 본 발명에 따른 약욕제의 처치가 무지개 송어 사육에서의 폐사율 감소에 효과가 있음을 확인할 수 있었다. 이로부터 본 발명의 조성물의 적용이 무지개 송어의 사양 결과 개선에 효과적이라는 결론을 내릴 수 있었다.
이상의 결과로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
기탁기관명: KCTC
수탁번호: KCTC 13479BP
수탁일자: 20180207
Figure PCTKR2019001901-appb-img-000001

Claims (7)

  1. 에로모나스 하이드로필라 균을 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는, 자연으로부터 분리된 미오비리대 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP).
  2. 제1항의 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP)을 유효성분으로 포함하는, 에로모나스 하이드로필라 균에 의해 유발되는 질환 예방용 및 치료용 조성물.
  3. 제2항에 있어서, 상기 조성물은 약욕제, 또는 사료첨가제 형태로 사용되는 것을 특징으로 하는, 에로모나스 하이드로필라 균에 의해 유발되는 질환 예방용 및 치료용 조성물.
  4. 제2항에 의한 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP)을 유효성분으로 포함하는 조성물에 사람을 제외한 동물을 담그는 처치를 실시하는 단계를 포함하는, 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법.
  5. 제4항에 있어서, 상기 조성물이 약욕제 형태인 것을 특징으로 하는, 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법.
  6. 제2항에 의한 박테리오파지 Aer-HYP-3(수탁번호 KCTC 13479BP)을 유효성분으로 포함하는 조성물을 사람을 제외한 동물에 투여하는 단계를 포함하는, 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법.
  7. 제6항에 있어서, 상기 조성물이 사료첨가제 형태인 것을 특징으로 하는, 에로모나스 하이드로필라 균에 의해 유발되는 질환을 예방 및 치료하는 방법.
PCT/KR2019/001901 2018-02-23 2019-02-18 신규한 에로모나스 하이드로필라 박테리오파지 aer-hyp-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도 WO2019164195A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/970,052 US11844818B2 (en) 2018-02-23 2019-02-18 Aeromonas hydrophila bacteriophage Aer-HYP-3 and use thereof for inhibiting growth of Aeromonas hydrophila bacteria
CN201980012621.2A CN111742046A (zh) 2018-02-23 2019-02-18 新型嗜水气单胞菌噬菌体Aer-HYP-3及其在抑制嗜水气单胞菌细菌生长方面的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0021756 2018-02-23
KR1020180021756A KR102012227B1 (ko) 2018-02-23 2018-02-23 신규한 에로모나스 하이드로필라 박테리오파지 Aer-HYP-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도

Publications (1)

Publication Number Publication Date
WO2019164195A1 true WO2019164195A1 (ko) 2019-08-29

Family

ID=67687795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001901 WO2019164195A1 (ko) 2018-02-23 2019-02-18 신규한 에로모나스 하이드로필라 박테리오파지 aer-hyp-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도

Country Status (4)

Country Link
US (1) US11844818B2 (ko)
KR (1) KR102012227B1 (ko)
CN (1) CN111742046A (ko)
WO (1) WO2019164195A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112538463B (zh) * 2020-12-29 2022-02-08 菲吉乐科(南京)生物科技有限公司 一种新型嗜水气单胞菌噬菌体及其组合物、试剂盒和应用
CN114891754B (zh) * 2022-04-12 2023-11-17 集美大学 一株鱼类致病气单胞菌噬菌体φA008及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000107A (ko) * 2012-06-22 2014-01-02 주식회사 씨티씨바이오 신규한 박테리오파지 및 이의 아에로모나스 히드로필라 증식 억제 용도
KR101723827B1 (ko) * 2015-10-28 2017-04-06 주식회사 인트론바이오테크놀로지 신규한 에로모나스 살모니시다 박테리오파지 Aer-SAP-1 및 이의 에로모나스 살모니시다 균 증식 억제 용도

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9504721B2 (en) 2012-06-04 2016-11-29 Ctc Bio, Inc. Bacteriophage and its use for preventing proliferation of pathogenic bacteria
KR101329639B1 (ko) * 2012-06-04 2013-11-14 주식회사 씨티씨바이오 신규한 파지 asp-1 및 이의 아에로모나스 살모니시다 증식 억제 용도
KR101676621B1 (ko) * 2015-01-16 2016-11-16 주식회사 인트론바이오테크놀로지 신규한 락토코커스 가르비에 박테리오파지 Lac-GAP-1 및 이의 락토코커스 가르비에 균 증식 억제 용도

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140000107A (ko) * 2012-06-22 2014-01-02 주식회사 씨티씨바이오 신규한 박테리오파지 및 이의 아에로모나스 히드로필라 증식 억제 용도
KR101723827B1 (ko) * 2015-10-28 2017-04-06 주식회사 인트론바이오테크놀로지 신규한 에로모나스 살모니시다 박테리오파지 Aer-SAP-1 및 이의 에로모나스 살모니시다 균 증식 억제 용도

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
EASWARAN, M: "Characterization of bacteriophage pAh-1 and its protective effects on experimental infection of Aeromonas hydrophila in Zebrafish (Danio rerio", JOURNAL OF FISH DISEASES, vol. 4 0, no. 6, June 2017 (2017-06-01), pages 841 - 846, XP055567144, doi:10.1111/jfd.12536 *
JUN, J. W.: "Protective effects of the Aeromonas phages pAh1-C and pAh6-C against mass mortality of the cyprinid loach (Misgurnus anguillicaudatus) caused by Aeromonas hydrophila", AQUACULTURE, vol. 416-417, 2 October 2013 (2013-10-02) - 5 December 2013 (2013-12-05), pages 289 - 295, XP055632886 *
PARK, S. H.: "Isolation and characterization of Bacteriophage Specific for Aeromonas hydrophila", SCHOOL OF FOOD SCIENCE & BIOTECHNOLOGY, MAJOR IN FOOD BIOTECHNOLOGY THE GRADUATE SCHOOL, 2016, pages 1 - 3 7 *

Also Published As

Publication number Publication date
CN111742046A (zh) 2020-10-02
US11844818B2 (en) 2023-12-19
KR102012227B1 (ko) 2019-08-21
US20210085733A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
WO2016108536A1 (ko) 신규한 클로스트리디움 퍼프린젠스 박테리오파지 Clo-PEP-1 및 이의 클로스트리디움 퍼프린젠스 증식 억제 용도
WO2016108540A1 (ko) 신규한 장병원성 대장균 박테리오파지 Esc-CHP-2 및 이의 장병원성 대장균 증식 억제 용도
WO2016108538A1 (ko) 신규한 장출혈성 대장균 박테리오파지 Esc-CHP-1 및 이의 장출혈성 대장균 증식 억제 용도
WO2016108541A1 (ko) 신규한 시가독소생산 F18형 대장균 박테리오파지 Esc-COP-1 및 이의 시가독소생산 F18형 대장균 증식 억제 용도
WO2017111306A1 (ko) 신규한 파스튜렐라 멀토시다 박테리오파지 Pas-MUP-1 및 이의 파스튜렐라 멀토시다 균 증식 억제 용도
WO2018101594A1 (ko) 대장균 박테리오파지 Esc-COP-7 및 이의 병원성 대장균 증식 억제 용도
WO2016114517A1 (ko) 신규한 락토코커스 가르비에 박테리오파지 Lac-GAP-1 및 이의 락토코커스 가르비에 균 증식 억제 용도
WO2016108542A1 (ko) 신규한 장침입성 대장균 박테리오파지 Esc-COP-4 및 이의 장침입성 대장균 증식 억제 용도
WO2017217726A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-5 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2016126009A1 (ko) 신규한 에드와드시엘라 타르다 박테리오파지 EdW-TAP-1 및 이의 에드와드시엘라 타르다 균 증식 억제 용도
WO2018155814A1 (ko) 신규한 클로스트리디움 퍼프린젠스 박테리오파지 Clo-PEP-2 및 이의 클로스트리디움 퍼프린젠스 균 증식 억제 용도
WO2018155812A1 (ko) 신규한 엔테로코쿠스 패슘 박테리오파지 Ent-FAP-4 및 이의 엔테로코쿠스 패슘 증식 억제 용도
WO2020013451A1 (ko) 대장균 박테리오파지 esc-cop-14 및 이의 병원성 대장균 증식 억제 용도
WO2017073916A1 (ko) 신규한 에로모나스 살모니시다 박테리오파지 Aer-SAP-1 및 이의 에로모나스 살모니시다 균 증식 억제 용도
WO2017111305A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-2 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2017111304A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2018151417A1 (ko) 신규한 녹농균 박테리오파지 Pse-AEP-4 및 이의 녹농균 증식 억제 용도
WO2018151416A1 (ko) 신규한 녹농균 박테리오파지 Pse-AEP-3 및 이의 녹농균 증식 억제 용도
WO2019235782A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2019235781A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-1 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2018208001A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-7 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2019164195A1 (ko) 신규한 에로모나스 하이드로필라 박테리오파지 aer-hyp-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도
WO2018236085A1 (ko) 신규한 에로모나스 하이드로필라 박테리오파지 Aer-HYP-1 및 이의 에로모나스 하이드로필라 균 증식 억제 용도
WO2013035906A1 (ko) 살모넬라 티피무륨 감염을 방지 및 처치하는 방법
WO2019164194A1 (ko) 신규한 살모넬라 하이델베르그 박테리오파지 sal-hep-1 및 이의 살모넬라 하이델베르그 균 증식 억제 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756619

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19756619

Country of ref document: EP

Kind code of ref document: A1