WO2019235782A1 - 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도 - Google Patents

신규한 스트렙토코커스 수이스 박테리오파지 str-sup-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도 Download PDF

Info

Publication number
WO2019235782A1
WO2019235782A1 PCT/KR2019/006562 KR2019006562W WO2019235782A1 WO 2019235782 A1 WO2019235782 A1 WO 2019235782A1 KR 2019006562 W KR2019006562 W KR 2019006562W WO 2019235782 A1 WO2019235782 A1 WO 2019235782A1
Authority
WO
WIPO (PCT)
Prior art keywords
streptococcus suis
bacteriophage
sup
bacteria
str
Prior art date
Application number
PCT/KR2019/006562
Other languages
English (en)
French (fr)
Other versions
WO2019235782A8 (ko
Inventor
윤성준
전수연
권안성
이은지
강상현
Original Assignee
주식회사 인트론바이오테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트론바이오테크놀로지 filed Critical 주식회사 인트론바이오테크놀로지
Priority to CN201980037748.XA priority Critical patent/CN112437810A/zh
Priority to US15/734,587 priority patent/US20210163897A1/en
Publication of WO2019235782A1 publication Critical patent/WO2019235782A1/ko
Publication of WO2019235782A8 publication Critical patent/WO2019235782A8/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/40Viruses, e.g. bacteriophages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/30Feeding-stuffs specially adapted for particular animals for swines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10321Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10331Uses of virus other than therapeutic or vaccine, e.g. disinfectant
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10332Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10334Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/91Cell lines ; Processes using cell lines

Definitions

  • the present invention is to prevent and treat diseases caused by Streptococcus suis bacteria using a composition comprising the bacteriophage isolated from nature capable of killing Streptococcus suis bacteria and killing the Streptococcus suis bacteria and an active ingredient composition
  • the method relates to more specifically, the sipovirida bacteriophage Str-SUP-2 isolated from nature, which has the ability to kill Streptococcus suis bacteria and has a genome represented by SEQ ID NO: 1. No. KCTC 13515BP), and a method for preventing or treating diseases caused by Streptococcus suis bacteria using a composition comprising the bacteriophage as an active ingredient.
  • Streptococcus suis is a peanut-shaped Gram-positive bacterium, and Streptococcus suis is known to be one of the major infectious diseases that occurs worldwide. Streptococcus suis bacteria are classified into 29 serotypes according to capsular antigen (K), and serotypes of Streptococcus suis bacteria from around the world are found to be about 75% of the total. The distribution is large enough to occupy, and in most countries, serotype 2 is known to be the most isolated from diseased pigs.
  • K capsular antigen
  • Streptococcus suis is known as a major pathogen in pigs causing meningitis, sepsis, arthritis, endocarditis and vaginitis, and has been reported worldwide in Korea, North America and Europe. Therefore, there is an urgent need to develop a method that can be used to prevent infection of Streptococcus suis bacteria and further to treat infection.
  • Bacteriophages are tiny microorganisms that infect bacteria, often called phage. Bacteriophages have the ability to proliferate inside the cells of a bacterium after infection (infection), and destroy the cell wall of the host bacterium when progeny bacteriophages come out of the bacterium after proliferation.
  • the bacterial infection of bacteriophages is very specific, and the types of bacteriophages that can infect specific bacteria are limited.
  • certain bacteriophages can only infect certain categories of bacteria, thereby allowing certain bacteriophages to provide antimicrobial effects only to certain bacteria. Due to the bacterial specificity of the bacteriophage, the bacteriophage provides an antimicrobial effect only to the target bacteria and does not affect the flora or flora in the animal. Conventional antibiotics, which are commonly used to treat bacteria, have simultaneously affected several types of bacteria. This caused problems such as environmental pollution and disturbance of the normal flora of animals. In contrast, bacteriophage only works for certain bacteria, so the bacteriophage disruption does not occur in the body. Therefore, the use of bacteriophage is very safe compared to the use of antibiotics, and the likelihood of side effects caused by the use is relatively low.
  • Bacteriophage is a British bacteriologist Twort 1915 became discovered while conducting research on Staphylococcus aureus (Micrococcus) melting the colonies are transparent by any developer.
  • the French bacteriologist d'Herelle discovered that some of the filtrates of foreign patients had a function of dissolving Shigella dysenteriae , and through this study, they independently discovered bacteriophages and consumed them. In the sense, they named it bacteriophage. Since then, bacteriophages have been found for several pathogenic bacteria such as dysentery, typhoid, and cholera.
  • bacteriophages Because of its special ability to kill bacteria, bacteriophages have been expected to be an effective way to combat bacterial infections since their discovery and many studies have been conducted. However, after the discovery of penicillin by Fleming, with the widespread use of antibiotics, research on bacteriophages has been limited to some Eastern European countries and the Soviet Union. However, since 2000, the growth of antibiotic-resistant bacteria has led to the limitation of conventional antibiotics, and the development of antibiotics as alternatives has emerged, and bacteriophages are attracting attention as anti-bacterial agents.
  • bacteriophages have a very high specificity for bacteria. Due to the high specificity of the bacteriophage bacteria, the bacteriophage often exerts an antimicrobial effect against only some strains even if the bacteria belong to the same species. In addition, the antibacterial activity of the bacteriophages may be different depending on the target bacterial strain itself. For this reason, it is necessary to secure various kinds of useful bacteriophages in order to secure effective control methods for specific kinds of bacteria.
  • the present inventors have developed a composition that can be used to prevent and treat diseases caused by Streptococcus suis bacteria using bacteriophages isolated from nature capable of killing Streptococcus suis bacteria.
  • the bacteriophage suitable for this is isolated from nature, and the separated bacteriophages can be distinguished from other bacteriophages so as to be specified.
  • the composition After obtaining the sequence information of the genome, after developing a composition containing the bacteriophage as an active ingredient, the composition can be effectively used for the purpose of preventing and treating diseases caused by Streptococcus suis bacteria. This invention was completed by confirming. .
  • an object of the present invention is Siphoviridae bacteriophage Str-SUP- isolated from nature, which has the ability to specifically kill Streptococcus suis bacteria and has a genome represented by SEQ ID NO: 1. 2 (Accession No. KCTC 13515BP).
  • Another object of the present invention is a Streptococcus suis comprising an isolated bacteriophage Str-SUP-2 (Accession No. KCTC 13515BP) capable of infecting Streptococcus suis bacteria and killing the Streptococcus suis bacteria. It is to provide a composition that can be used for the purpose of preventing or treating diseases caused by bacteria.
  • Another object of the present invention is to isolate the Streptococcus sue bacteria containing the isolated bacteriophage Str-SUP-2 (Accession No. KCTC 13515BP) which can kill Streptococcus sui bacteria by infecting Streptococcus suis bacteria as an active ingredient. It is to provide a method for preventing and treating diseases caused by Streptococcus suis bacteria using a composition that can be used for the purpose of preventing and treating diseases caused by.
  • Still another object of the present invention is to provide a disinfectant used for the purpose of preventing and treating diseases caused by Streptococcus suis bacteria using the compositions.
  • Another object of the present invention to provide a negative additive for the purpose of providing a specification effect through the prevention and treatment of diseases caused by Streptococcus suis bacteria using the compositions.
  • Another object of the present invention to provide a feed additive for the purpose of providing a specification effect through the prevention and treatment of diseases caused by Streptococcus suis bacteria using the compositions.
  • the present invention is Sypovirida bacteriophage Str-SUP-2 (Accession No. KCTC 13515BP) isolated from nature, which has the ability to specifically kill Streptococcus suis bacteria and has a genome represented by SEQ ID NO: 1. ), And a method for preventing and treating diseases caused by Streptococcus suis bacteria using a composition comprising the same as an active ingredient.
  • Bacteriophage Str-SUP-2 was separated by the present inventors and deposited in April 24, 2018 at the Korea Institute of Biotechnology and Biotechnology Center (Accession No. KCTC 13515BP).
  • the present invention also provides a disinfectant, a negative additive and a feed additive comprising bacteriophage Str-SUP-2 as an active ingredient, which can be used to prevent and treat diseases caused by Streptococcus suis bacteria.
  • Bacteriophage Str-SUP-2 contained in the composition of the present invention effectively kills Streptococcus suis bacteria, and thus has an effect on prevention (infection prevention) or treatment (infection treatment) of diseases caused by Streptococcus suis bacteria. Therefore, the composition of the present invention can be used for the purpose of preventing and treating diseases caused by Streptococcus suis bacteria.
  • prevention refers to (i) preventing infection of Streptococcus suis bacteria; And (ii) inhibiting the development into diseases caused by Streptococcus suis bacteria infection.
  • treatment refers to (i) suppression of diseases caused by Streptococcus suis bacteria; And (ii) all acts to mitigate the pathological condition of the disease caused by Streptococcus suis.
  • the term “separation”, “separation”, or “separation” refers to the separation of bacteriophages from a natural state by using various experimental techniques and to distinguish the bacteriophages of the present invention from other bacteriophages.
  • the present invention also includes the propagation of the bacteriophage of the present invention to industrial use by biotechnology.
  • compositions of the present invention are conventionally used in the preparation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate , Microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like, but are not limited thereto. no.
  • the composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
  • the composition of the present invention includes bacteriophage Str-SUP-2 as an active ingredient.
  • the bacteriophage Str-SUP-2 included at this time is included as 1 ⁇ 10 1 pfu / ml to 1 ⁇ 10 30 pfu / ml or 1 ⁇ 10 1 pfu / g to 1 ⁇ 10 30 pfu / g, preferably 1 ⁇ 10 4 pfu / ml to 1 ⁇ 10 15 pfu / ml or 1 ⁇ 10 4 pfu / g to 1 ⁇ 10 15 pfu / g.
  • compositions of the present invention may be prepared in unit dose form by being formulated with pharmaceutically acceptable carriers and / or excipients, according to methods which may be readily practiced by those skilled in the art. It may also be prepared by incorporation into a multi-dose container.
  • the formulations here may be in the form of solutions, suspensions or emulsions in oils or aqueous media or in the form of extracts, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
  • the composition of the present invention may be implemented as a disinfectant, a negative additive and a feed additive, but not limited thereto.
  • Bacteriophages that can provide antimicrobial activity against other bacterial species can be added to the composition of the present invention in order to increase the efficiency in this application.
  • other types of bacteriophages having antimicrobial activity against Streptococcus suis bacteria may be added. Even bacteriophages having antimicrobial activity against Streptococcus suis bacteria are different from each other in terms of strength and antimicrobial range of antimicrobial activity, so a proper combination thereof can maximize the effect.
  • the method for preventing and treating diseases caused by Streptococcus suyce bacteria using the composition comprising bacteriophage Str-SUP-2 of the present invention is more effective than Streptococcus suis bacteria compared to conventional antibiotic-based methods. It can provide the advantage that the specificity for is very high. This means that it can be used for the purpose of preventing and treating diseases caused by Streptococcus suis bacteria without affecting other useful flora, meaning that the side effects of its use are very small. In general, the use of antibiotics, such as ordinary flora will also suffer damage, resulting in a decrease in the immunity of the animal, resulting in a variety of side effects.
  • the bacteriophage antimicrobial activity against individual bacterial strains in terms of the strength of the antimicrobial activity and the antimicrobial range [strains of several bacterial strains belonging to Streptococcus suis species] Range of activity.
  • bacteriophages can exert antimicrobial activity against some strains belonging to the same bacterial species. That is, even if they belong to the same bacterial species, there may be a difference in susceptibility to bacteriophages according to individual bacterial strains]. Therefore, the present invention provides a differential antimicrobial effect compared to other bacteriophages having antimicrobial activity against Streptococcus suis. Can be provided. This makes a big difference in the effectiveness of industrial sites.
  • FIG. 2 is a schematic diagram showing the genetic characteristics of the bacteriophage Str-SUP-2 compared with the genome sequence of the streptococcus bacteriophage phi5218 having relatively high genome sequence homology.
  • Figure 3 is an experimental result showing the killing ability against the Streptococcus Suis bacteria of the bacteriophage Str-SUP-2. Based on the center line of the plate medium, the left side only the buffer containing no bacteriophage Str-SUP-2 was dropped, and the right side was the liquid containing the bacteriophage Str-SUP-2. The transparent part on the right is the lysate plaque formed by the bacteria under test lysed by the action of bacteriophage Str-SUP-2.
  • T odd H ewitt B roth (THB) medium (heart infusion, 3.1 g / L; peptone, 20 g / L; dextrose) inoculated with Streptococcus suis bacteria at a 1 / 1,000 ratio , 2 g / L; sodium chloride, 2 g / L; disodium phosphate, 0.4 g / L; sodium carbonate, 2.5 g / L) were added together and then shaken at 37 ° C. for 3-4 hours. After incubation, the supernatant was recovered by centrifugation at 8,000 rpm for 20 minutes.
  • TTB H ewitt B roth
  • the recovered supernatants were inoculated with Streptococcus suis bacteria at a rate of 1 / 1,000 and then incubated again at 37 ° C. for 3-4 hours.
  • bacteriophage was included in the sample, this process was repeated five times in order to sufficiently increase the number of bacteriophages (Titer).
  • the culture was centrifuged at 8,000 rpm for 20 minutes. After centrifugation, the collected supernatant was filtered using a 0.45 ⁇ m filter. The usual spot assay using the filtrate thus obtained was carried out to determine whether there were bacteriophages capable of killing Streptococcus suis bacteria.
  • the drip experiment was conducted as follows. Streptococcus suis bacteria were inoculated in THB medium at 1 / 1,000 ratio and then shaken at 37 ° C. overnight. Thus prepared 3 ml of Streptococcus suis bacteria (OD 600 1.5) plated THA ( T odd H ewitt A gar) plate medium (heart infusion, 3.1 g / L; peptone, 20 g / L; dextrose, 2 g / L; sodium chloride, 2 g / L; disodium phosphate, 0.4 g / L; sodium carbonate, 2.5 g / L; agar, 15 g / L). The plated flat medium was left in a clean bench for about 30 minutes to allow the smear to dry.
  • Separation of pure bacteriophages was performed using a filtrate in which the presence of bacteriophages having killing ability against Streptococcus suis bacteria was confirmed. Separation of pure bacteriophage was carried out using a conventional Plaque assay. To explain this in detail, one of the lytic plaques formed in the lytic plaque assay was recovered using a sterilized tip, and then added to the culture solution of Streptococcus suis bacterium and cultured together at 37 ° C. for 4-5 hours. After incubation, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes.
  • a culture solution of Streptococcus suis bacterium was added to the obtained supernatant at a volume of 50/50 and then incubated at 37 ° C. for 4-5 hours. In order to increase the number of bacteriophages, this procedure was performed at least five times, and finally, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes. Using the obtained supernatant, lysis plate analysis was performed again. Since the separation of the pure bacteriophage is usually not achieved only once in the above process, the previous step was repeated again using the lysate formed. This process was repeated at least five times to obtain a solution containing pure bacteriophage.
  • Electron microscopic analysis was performed according to a conventional method. This is briefly described as follows. The solution containing the pure bacteriophage was buried in a copper grid and subjected to reverse staining and drying with 2% uranyl acetate, and then observed through a transmission electron microscope. Electron micrographs of purely isolated bacteriophages are shown in FIG. 1. Judging from the morphological features, the newly acquired bacteriophages could be found to belong to Siphoviridae bacteriophages.
  • the solution containing pure bacteriophage identified in this way was subjected to the following purification process.
  • a culture solution of Streptococcus suis was added at a volume of 1/50 of the total volume of the solution, followed by further incubation for 4-5 hours. After incubation, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes. This procedure was repeated a total of five times to obtain a solution containing a sufficient number of bacteriophages.
  • the supernatant obtained by the final centrifugation was filtered using a 0.45 ⁇ m filter, followed by a conventional polyethylene glycol (PEG) precipitation process.
  • PEG polyethylene glycol
  • bacteriophage precipitate was suspended in 5 ml of buffer (Buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0). This is called bacteriophage suspension or bacteriophage solution.
  • bacteriophage Str-SUP-2 Purified pure bacteriophage was secured through the above procedure, and the bacteriophage was named as bacteriophage Str-SUP-2, and was deposited on April 24, 2018 at the Korea Institute of Bioscience and Biotechnology Resource Center (Accession No. KCTC 13515BP). ).
  • Example 2 bacteriophage Str - SUP -2 genome isolation and genome sequence analysis
  • the genome of the bacteriophage Str-SUP-2 was isolated as follows. Bacteriophage suspension obtained in the same manner as in Example 1 was used for dielectric separation. First, in order to remove DNA and RNA of Streptococcus suis bacteria which may be included in the suspension, 200 U of each of DNase I and RNase A was added to 10 ml of bacteriophage suspension, and then left at 37 ° C. for 30 minutes. In order to remove the activity of DNase I and RNase A after 30 minutes of standing, 500 ⁇ l of 0.5 M ethylenediaminetetraacetic acid (EDTA) was added and allowed to stand for another 10 minutes. The mixture was allowed to stand at 65 ° C.
  • EDTA ethylenediaminetetraacetic acid
  • the genome thus obtained was subjected to next generation sequencing analysis using an illumina Mi-Seq instrument in Macrogen, and then obtained genome sequence information of the bacteriophage Str-SUP-2. Finally, the analyzed bacteriophage Str-SUP-2 genome has a size of 32,673 bp and the entire genome sequence is set forth in SEQ ID NO: 1.
  • the homology with previously known bacteriophage genome sequences was investigated using BLAST on the Web.
  • the genome sequence of the bacteriophage Str-SUP-2 has a relatively high homology with the sequence of the Streptococcus bacteriophage phi5218 (Genbank Accession No. KC348600.1).
  • the bacteriophage Str-SUP-2 has the morphological characteristics of the sipoviridae, while the streptococcus bacteriophage phi5218 has the morphological characteristics of the grape ribs, and there are obvious morphological differences.
  • the bacteriophage Str-SUP-2 was concluded to be a new bacteriophage different from the previously reported bacteriophages.
  • the different types of bacteriophages usually provide different levels of antimicrobial activity and antimicrobial activity that can provide. Therefore, bacteriophage Str-SUP-2 can provide different antimicrobial effects from other reported bacteriophages. there was.
  • the killing ability of the bacteriophage Str-SUP-2 against Streptococcus suis was investigated.
  • the killing ability was investigated in a manner to investigate the formation of transparent rings through the drip experiment shown in Example 1.
  • Streptococcus suis strains used for killing ability were received from the BRC or Korea Veterinary Gene Bank, or isolated by the inventors, and were identified as Streptococcus suis bacteria in a total of 10 weeks.
  • Bacteriophage Str-SUP-2 had a killing ability for a total of 8 weeks, including the KCTC 3557 strain among 10 weeks of the Streptococcus suis subject. Representative experimental results are shown in FIG. 3.
  • bacteriophage Str-SUP-2 Bode telra chevron chisep urticae (of Bordetella bronchiseptica ), Enterococcus faecalis , Enterococcus faecium ), Streptococcus mitis ), Streptococcus uberis and Pseudomonas aeruginosa aeruginosa ) was also tested, and as a result, bacteriophage Str-SUP-2 had no killing ability against these species.
  • the bacteriophage Str-SUP-2 has excellent killing ability against Streptococcus suis bacteria, and it can be confirmed that it can exert an antimicrobial effect against a number of Streptococcus suis strains. This means that the bacteriophage Str-SUP-2 can be used as an active ingredient of a composition for the purpose of preventing and treating diseases caused by Streptococcus suis.
  • Example 4 bacteriophage Str - SUP -2 Streptococcus Suis For fungal infection prevention Experimental Example
  • the bacteriophage Str-SUP-2 of the present invention not only inhibited the growth of Streptococcus suis bacteria but also had the ability to kill Streptococcus suis bacteria, and from this bacteriophage Str-SUP-2 It can be concluded that can be used as an active ingredient of the composition for the purpose of preventing diseases caused by Streptococcus suis bacteria.
  • Example 5 bacteriophage Str - SUP With -2 Streptococcus Suis Caused by bacteria Preventive Animal Testing for Diseases
  • Weaning piglets were used to investigate the prophylactic effects of diseases caused by Streptococcus suis bacteria of Bacteriophage Str-SUP-2. Ten 25-day-old weaning piglets were divided into two groups (five per group), and then separated and reared in experimental breeding piglets (1.1m ⁇ 1.0m) for 14 days. The surrounding environment was controlled under the thermal insulation facility, the temperature and humidity of the pig room were kept constant, and the floor of the pig room was cleaned daily. From the start of the test to the end of the test, pigs in the test group (feed administration group containing bacteriophage) were fed a feed containing 1 ⁇ 10 8 pfu / g of bacteriophage Str-SUP-2 according to the conventional feeding method.
  • pigs of the control group were fed with the same composition of the same composition without the bacteriophage Str-SUP-2 from the start of the test to the end of the test.
  • the following was added to feed twice a day to induce Streptococcus suis bacteria infection. From the day of feeding the feed containing Streptococcus sui bacteria (the seventh day from the start of the test), all test animals were examined for the detection of Streptococcus suis bacteria in nasal secretions.
  • the detection of Streptococcus suis bacteria in nasal secretions was performed as follows.
  • the nasal secretion sample was plated on a blood agar plate and incubated at 37 ° C. for 18-24 hours, and colonies presumed to be Streptococcus suis bacteria were selected from colonies formed.
  • the selected colonies were used as samples, respectively, to perform a Streptococcus suis bacterium specific polymerase chain reaction (Polymerase chain reaction; PCR) to confirm whether the colony was finally a Streptococcus suis bacterium.
  • the bacteria detection results are shown in Table 2.
  • Streptococcus suis bacteria detection result (average value) division Number of colonies of Streptococcus suis bacteria detected per plate D7 D8 D9 D10 D11 D12 D13 D14 Control group (feed administration without bacteriophage) 18 18 18 16 16 15 14 14 Test group (feed administration including bacteriophage) 14 10 6 3 2 0 0 0
  • Example 6 bacteriophage Str - SUP With -2 Streptococcus Suis For diseases caused by bacteria Treatment example
  • Streptococcus suis bacteria were incubated for 18 hours at 37 degrees using THB medium, and then only the cells were recovered and suspended in physiological saline (pH 7.2) to adjust the concentration of the cells to 10 9 cfu / ml. From the day after forced infection of Streptococcus suis bacteria, pigs in the test group (bacteriophage solution group) received 10 9 pfu of bacteriophage Str-SUP-2 twice daily, in the same manner as the administration of Streptococcus suis bacteria. Pigs in the control group (not administered bacteriophage solution) did not receive any treatment. Feed and negative feeds were the same in both control and test groups.
  • a feed additive was prepared to include 1 ⁇ 10 8 pfu of bacteriophage Str-SUP-2 per g of feed additive using the bacteriophage Str-SUP-2 solution.
  • the method of preparing a feed additive was prepared by adding maltodextrin to the bacteriophage solution (50%, w / v) and then freeze drying. Finally, it was ground to a fine powder form. The drying process in the manufacturing process may be substituted for reduced pressure drying, warming drying, room temperature drying.
  • the feed additive without bacteriophage also used the buffer used to prepare the bacteriophage solution (Buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0) instead of the bacteriophage solution. It was prepared by.
  • Each of the two feed additives thus prepared was mixed with 1,000-fold pig feed in a weight ratio to prepare the final two feeds.
  • Negative additives or disinfectants differed only in their application and the formulations were the same, so they were prepared in the same way.
  • a negative additive (or disinfectant) was prepared using bacteriophage Str-SUP-2 solution.
  • the method of preparing a negative additive (or disinfectant) is well mixed by adding the bacteriophage Str-SUP-2 solution to include 1 ⁇ 10 9 pfu of bacteriophage Str-SUP-2 per 1 ml of the buffer used to prepare the bacteriophage solution.
  • the buffer itself used in the preparation of the bacteriophage solution was used as it is.
  • the two negative additives thus prepared were diluted with 1,000 times water by volume and used as final negative or disinfectants.
  • Example 7 and Example 8 Using the feed, negative water and disinfectant prepared in Example 7 and Example 8 was investigated whether the specification results when breeding pigs.
  • the survey was carried out in the form of weight increase.
  • Each group was subdivided into 10 subgroups, and each subgroup was divided into small groups (small group-1) with bacteriophage Str-SUP-2 and small groups (small group-2) without bacteriophage.
  • Weaning pigs covered in this study were raised separately in each test subgroup. Each subgroup is divided and referred to as Table 4 below.
  • Example 7 In the case of feed feeding, the feed prepared in Example 7 was fed according to the conventional feed feeding method according to the classification of Table 4, and in the case of negative feeding, the negative produced in Example 8 was classified in Table 4 According to the normal drinking water supply method, the feed was performed, and in the case of disinfection treatment, it was carried out alternately with the existing disinfection three times a week. On the day of spraying the disinfectant of the present invention, disinfection using a conventional disinfectant was not performed. As a result of the test, the increase rate was significantly higher in the group to which the bacteriophage Str-SUP-2 was applied compared to the group to which the bacteriophage Str-SUP-2 was not applied (see Table 5).
  • Example 5 the isolation rate of Streptococcus sui bacteria was also examined in the nasal secretions of test animals, but the Streptococcus suis bacteria were detected in the nasal secretions of some animals in the group that did not apply the bacteriophage Str-SUP-2. It became. On the other hand, all animals in the group to which the bacteriophage Str-SUP-2 was applied did not detect Streptococcus suis.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Virology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Food Science & Technology (AREA)
  • Animal Husbandry (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Birds (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)

Abstract

본 발명은 스트렙토코커스 수이스 균을 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 시포비리대 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP), 및 이를 유효성분으로 포함하는 조성물을 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법에 관한 것이다.

Description

신규한 스트렙토코커스 수이스 박테리오파지 STR-SUP-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
본 발명은 스트렙토코커스 수이스 균에 감염하여 스트렙토코커스 수이스 균을 사멸시킬 수 있는 자연으로부터 분리한 박테리오파지 및 이를 유효성분으로 포함한 조성물을 이용한 스트렙토코커스 수이스 균에 의해서 유발되는 질환을 예방 및 치료하는 방법에 관한 것으로, 더욱 상세하게는 스트렙토코커스 수이스 균을 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 시포비리대 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP), 및 상기 박테리오파지를 유효성분으로 포함하는 조성물을 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환의 예방 또는 치료하는 방법에 관한 것이다.
스트렙토코커스 수이스 균은 땅콩 모양(Peanut-shaped)의 그람 양성 세균이며, 스트렙토코커스 수이스 균 감염은 전 세계적으로 발생하는 중요한 인수공통전염병의 하나로 알려져 있다. 스트렙토코커스 수이스 균은 협막항원(Capsular, K)에 따라 29종의 혈청형으로 구분되며, 세계 각국의 스트렙토코커스 수이스 균의 혈청형 보고를 살펴보면 혈청형 1∼9까지가 전체의 약 75%를 차지할 정도로 많은 분포를 보이고 있고, 대부분의 나라에서는 혈청형 2가 질병에 이환된 돼지로부터 가장 많이 분리되고 있다고 알려져 있다.
한편, 스트렙토코커스 수이스 균에 감염된 돼지는 식욕부진, 우울, 발진, 발열, 마비 증상들을 주로 보이며, 특히 비육돈에서는 폐렴 등의 호흡기 감염으로 인해 양돈산업에 심각한 경제적 손실이 야기되기도 한다. 또한 스트렙토코커스 수이스 균은 돼지에 있어 뇌막염, 패혈증, 관절염, 심내막염 및 질염 등을 유발하는 주요 병원체로 알려져 있으며, 우리나라를 포함하여 북미, 유럽 등 전 세계적으로 발병이 보고된 바 있다. 따라서 스트렙토코커스 수이스 균 감염을 예방하고 나아가 감염 처치에까지 활용될 수 있는 방안의 개발이 절실한 실정이다.
스트렙토코커스 수이스 균에 의해 유발되는 질환의 예방이나 치료 목적으로 다양한 항생제들이 사용되어 왔으나 최근 이들 항생제들에 대한 내성균의 발생이 증가함에 따라 항생제 외의 다른 방안의 확보가 시급한 실정이다.
최근 세균성 감염질환의 대처 방안으로 박테리오파지(Bacteriophage)의 활용이 크게 주목을 받고 있다. 특히 항생제 내성균에 대한 우수한 항균력 때문에 더욱 큰 관심을 받고 있다. 박테리오파지는 세균에 감염하는 아주 작은 미생물로서 보통 파지(Phage)라고 줄여서 부르기도 한다. 박테리오파지는 세균에 감염(Infection)한 후에 세균의 세포 내부에서 증식을 하고, 증식 후 자손 박테리오파지들이 세균 밖으로 나올 때 숙주인 세균의 세포벽을 파괴하는 방식으로 세균을 사멸시키는 능력을 갖고 있다. 박테리오파지의 세균 감염 방식은 매우 특이성이 높아서 특정 세균에 감염할 수 있는 박테리오파지의 종류는 일부로 한정된다. 즉, 특정 박테리오파지는 특정 범주의 세균에만 감염할 수 있고 이로 인하여 특정 박테리오파지는 특정 세균에 대해서만 항균효과를 제공할 수 있다. 이러한 박테리오파지의 세균 특이성으로 인하여 박테리오파지는 대상으로 하는 세균에 대해서만 항균효과를 제공하고 환경이나 동물 내의 상재균들에는 영향을 초래하지 않는다. 통상적으로 세균 처치에 널리 활용되던 기존의 항생제들은 여러 종류의 세균들에 대하여 동시에 영향을 끼쳤다. 이로 인하여 환경오염이나 동물의 정상 세균총 교란 등의 문제를 초래하였다. 이와는 달리 박테리오파지는 특정 세균에 대해서만 작동하므로 박테리오파지 사용에 의해서 체내 정상균총 교란 등이 발생하지 않는다. 따라서 박테리오파지 사용이 항생제 사용에 비교하여 매우 안전하다고 할 수 있고, 그 만큼 사용에 의한 부작용 초래 가능성이 상대적으로 크게 낮다.
박테리오파지는 1915년 영국의 세균학자 Twort가 포도상구균( Micrococcus) 집락이 어떤 것에 의해 투명하게 녹는 현상에 대한 연구를 수행하면서 발견되었다. 또한, 1917년에는 프랑스의 세균학자 d'Herelle이 이질환자 변의 여과액 중에 적리균( Shigella dysenteriae)을 녹이는 작용을 가진 것이 있다는 것을 발견하고 이에 대한 연구를 통해 독립적으로 박테리오파지를 발견하였으며, 세균을 잡아먹는다는 뜻에서 박테리오파지라고 명명하였다. 이후 이질균, 장티푸스균, 콜레라균 등 여러 병원성 세균에 대한 박테리오파지가 계속적으로 발견되었다.
세균을 사멸시킬 수 있는 특별한 능력으로 인하여 박테리오파지는 발견 이후부터 세균 감염에 대응하는 효과적 방안으로 기대를 모았으며 관련하여 많은 연구들이 있었다. 그러나 Fleming에 의해 페니실린이 발견된 이후, 항생제의 보급이 일반화되면서 박테리오파지에 대한 연구는 일부 동유럽 국가들 및 구소련에 한정되어서만 명맥이 유지되었다. 그런데 2000년 이후에 항생제 내성균의 발생 증가로 인하여 기존 항생제의 한계성이 나타나고, 기존 항생제의 대체 물질로의 개발 가능성이 부각되면서 다시 박테리오파지가 항-세균제로 주목을 받고 있다.
앞에서 설명했듯이 박테리오파지는 세균에 대한 특이성이 매우 높다. 이러한 박테리오파지의 세균에 대한 높은 특이성으로 인하여 박테리오파지는 동일 종(Species)에 속하는 세균들이라 할지라도 그 일부 주(Strain)에 대해서만 항균효과를 발휘하는 경우가 많다. 또한 대상 세균 주에 따라 발휘되는 박테리오파지의 항균력 세기 자체도 다를 수 있다. 이러한 이유로 특정 종류의 세균에 대하여 효과적 제어법을 확보하려면 다양한 종류의 유용 박테리오파지들의 확보가 필요하다. 스트렙토코커스 수이스 균에 대응하여 효과적인 박테리오파지 활용법을 개발하기 위해서도 당연히 스트렙토코커스 수이스 균에 대하여 항균효과를 제공할 수 있는 여러 종류의 다양한 박테리오파지들의 확보가 필요하고, 더 나아가 확보한 다양한 유용 박테리오파지들 중에서 항균력의 세기나 항균범위 측면에서 비교우위에 있는 박테리오파지의 선발 활용도 필요하다.
이에, 본 발명자들은 스트렙토코커스 수이스 균을 사멸시킬 수 있는 자연으로부터 분리된 박테리오파지를 이용하여 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 데에 활용될 수 있는 조성물을 개발하고, 또 이 조성물을 이용하여 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법을 개발하고자 노력한 끝에, 이에 적합한 박테리오파지를 자연으로부터 분리하고, 이 분리된 박테리오파지를 타 박테리오파지와 구별하여 특정 지을 수 있도록 유전체(Genome)의 서열 정보를 확보한 후에 상기 박테리오파지를 유효성분으로 한 조성물을 개발한 다음에 이 조성물이 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 효과적으로 활용될 수 있음을 확인함으로써 본 발명을 완성하였다.
따라서 본 발명의 목적은 스트렙토코커스 수이스 균을 특이적으로 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 시포비리대( Siphoviridae) 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP)를 제공하는 것이다.
또한, 본 발명의 또 다른 목적은 스트렙토코커스 수이스 균에 감염하여 스트렙토코커스 수이스 균을 사멸시킬 수 있는 분리 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP)를 유효성분으로 포함하는 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 또는 치료하는 목적으로 활용 가능한 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 스트렙토코커스 수이스 균에 감염하여 스트렙토코커스 수이스 균을 사멸시킬 수 있는 분리 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP)를 유효성분으로 포함하는 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 활용 가능한 조성물을 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 사용되는 소독제를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환의 예방 및 치료를 통한 사양 효과 제공 목적의 음수첨가제를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환의 예방 및 치료를 통한 사양 효과 제공 목적의 사료첨가제를 제공하는 것이다.
본 발명은 스트렙토코커스 수이스 균을 특이적으로 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 시포비리대 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP), 및 이를 유효성분으로 포함하는 조성물을 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법을 제공한다.
박테리오파지 Str-SUP-2는 본 발명자들에 의해 분리된 후에 2018년 4월 24일자로 한국생명공학연구원 생물자원센터에 기탁되었다(수탁번호 KCTC 13515BP).
또한, 본 발명은 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 데에 활용될 수 있는 박테리오파지 Str-SUP-2를 유효성분으로 포함하는 소독제, 음수첨가제 및 사료첨가제를 제공한다.
본 발명의 조성물에 포함되는 박테리오파지 Str-SUP-2는 스트렙토코커스 수이스 균을 효과적으로 사멸시키므로 스트렙토코커스 수이스 균에 의해 유발되는 질환의 예방(감염 방지)이나 치료(감염 처치)에 효과를 나타낸다. 따라서 본 발명의 조성물은 스트렙토코커스 수이스 균에 의해 유발되는 질환에 대한 예방 및 치료 목적으로 활용될 수 있다.
본 명세서에서 사용된 “방지” 또는 “예방”이라는 용어는 (i) 스트렙토코커스 수이스 균의 감염 방지; 및 (ii) 스트렙토코커스 수이스 균 감염에 의한 질병으로의 발전을 억제하는 것을 의미한다.
본 명세서에서 사용된 “처치” 또는 “치료”라는 용어는 (i) 스트렙토코커스 수이스 균에 의해 유발된 질환의 억제; 및 (ii) 스트렙토코커스 수이스 균에 의해 유발된 질환의 병적상태를 경감시키는 모든 행위를 의미한다.
본 명세서의 “분리”, “분리한” 또는 “분리된”은 자연 상태로부터 여러 실험 기법을 활용하여 박테리오파지를 분리하는 것과 타 박테리오파지와 구별하여 본 발명의 박테리오파지를 특정 지을 수 있는 특징을 확보하는 일을 지칭하며, 이에 더하여 생물공학기술로 본 발명의 박테리오파지를 산업적으로 활용할 수 있게끔 증식시키는 것도 포함한다.
본 발명의 조성물에 포함되는 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
본 발명의 조성물에는 박테리오파지 Str-SUP-2가 유효성분으로 포함된다. 이때 포함되는 박테리오파지 Str-SUP-2는 1× 10 1 pfu/ml 내지 1× 10 30 pfu/ml 또는 1× 10 1 pfu/g 내지 1× 10 30 pfu/g로 포함되며, 바람직하게는 1× 10 4 pfu/ml 내지 1× 10 15 pfu/ml 또는 1× 10 4 pfu/g 내지 1× 10 15 pfu/g로 포함된다.
본 발명의 조성물은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수도 있다. 이때 제형은 오일 또는 수성 매질 중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캡슐제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수도 있다.
본 발명의 조성물은 활용 방식에 따라, 이에 국한되지 않지만 소독제, 음수첨가제 및 사료첨가제로 구현될 수 있다. 이러한 활용 목적에서의 효율성을 높이기 위하여 다른 세균종에 대하여 항균활성을 제공할 수 있는 박테리오파지들이 본 발명의 조성물에 추가될 수 있다. 또한, 스트렙토코커스 수이스 균에 대하여 항균활성을 갖는 다른 종류의 박테리오파지들도 추가될 수 있다. 스트렙토코커스 수이스 균에 대하여 항균활성을 갖는 박테리오파지라 하더라도 항균력의 세기나 항균범위 측면에서 서로 간에 차이가 있으므로 이들의 적절한 조합은 그 효과를 극대화 할 수 있다.
본 발명의 박테리오파지 Str-SUP-2를 유효성분으로 포함하는 조성물을 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법은 기존의 항생제 등에 기반을 둔 방식에 비하여 스트렙토코커스 수이스 균에 대한 특이성이 매우 높다는 장점을 제공할 수 있다. 이는 다른 유용한 상재균에는 영향을 주지 않으면서도 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 목적으로 사용할 수 있음을 의미하며, 이의 사용에 따른 부작용이 매우 적다는 것을 의미한다. 통상적으로 항생제 등을 사용하면 일반 상재균들도 피해를 함께 입게 되어 결과적으로 동물의 면역력 저하 등을 초래시켜 사용에 따른 다양한 부작용이 나타난다. 한편, 박테리오파지는 항균활성을 발휘할 수 있는 세균종이 같다 하더라도 항균효과 발휘에 있어 항균력의 세기나 항균범위[스트렙토코커스 수이스 균종에 속하는 여러 세균 주(Strain)의 측면에서 개별 세균 주에 대하여 박테리오파지의 항균활성이 발휘되는 범위. 통상적으로 박테리오파지는 같은 세균 종(Species)에 속하는 일부 세균 주(Strain)에 대하여 항균활성을 발휘할 수 있음. 즉, 같은 세균 종에 속한다 하더라도 개별 세균 주에 따라 박테리오파지에 대한 감수성에서 차이가 있을 수 있음] 측면에서 차이가 있으므로 본 발명은 스트렙토코커스 수이스 균에 대한 항균력을 갖는 타 박테리오파지에 비교하여 차별적 항균효과를 제공할 수 있다. 이는 산업현장 활용 시에 그 효과에 있어 큰 차이를 제공한다.
도 1은 박테리오파지 Str-SUP-2의 전자현미경 사진이다.
도 2는 박테리오파지 Str-SUP-2와 유전체 서열 상동성이 비교적 높은 스트렙토코커스 박테리오파지 phi5218의 유전체 서열을 비교하여 유전적 특성 차이를 보여주는 모식도이다.
도 3은 박테리오파지 Str-SUP-2의 스트렙토코커스 수이스 균에 대한 사멸능을 보여주는 실험 결과이다. 평판배지의 가운데 선을 기준으로 왼쪽은 박테리오파지 Str-SUP-2가 포함되지 않은 완충액(Buffer)만을 점적한 것이고, 오른쪽은 박테리오파지 Str-SUP-2가 포함된 액을 점적한 것이다. 오른쪽에서 관찰되는 투명한 부분은 시험대상 세균이 박테리오파지 Str-SUP-2의 작용에 의하여 용균되어 결과적으로 형성된 용균반이다.
이하, 실시예에 의거하여 본 발명을 보다 구체적으로 설명하지만, 이들 실시예는 본 발명의 예시일 뿐이며 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 스트렙토코커스 수이스 균을 사멸시킬 수 있는 박테리오파지의 분리
스트렙토코커스 수이스 균을 사멸시킬 수 있는 박테리오파지의 분리에는 자연 환경으로부터 확보된 시료들을 이용하였다. 한편, 박테리오파지 분리에 사용된 스트렙토코커스 수이스 균은 생물자원센터로부터 분양받아 사용하였다(분양번호 KCTC 3557).
박테리오파지 분리 과정을 상세히 설명하면, 스트렙토코커스 수이스 균을 1/1,000 비율로 접종한 THB( Todd Hewitt Broth) 배지(하트 인퓨전, 3.1 g/L; 펩톤, 20 g/L; 덱스트로오스, 2 g/L; 염화나트륨, 2 g/L; 디소듐포스페이트, 0.4 g/L; 탄산나트륨, 2.5 g/L)에 수집된 시료를 함께 첨가한 다음 37℃에서 3-4시간동안 진탕배양 하였다. 배양 후, 8,000 rpm에서 20분간 원심분리하여 상등액을 회수하였다. 회수된 상등액에 스트렙토코커스 수이스 균을 1/1,000 비율로 접종한 다음 37℃에서 3-4시간 동안 또 다시 진탕배양 하였다. 박테리오파지가 시료에 포함되어 있었을 경우에는 박테리오파지의 수(Titer)가 충분히 증가될 수 있도록 이러한 과정을 총 5회 반복 실시하였다. 5회 반복 실시 후에 배양액을 8,000 rpm에서 20분간 원심분리 하였다. 원심분리 후, 회수된 상등액에 대하여 0.45 μm의 필터를 이용하여 여과를 실시해 주었다. 이렇게 하여 얻어진 여과액을 사용한 통상의 점적 실험(Spot assay)을 통하여 스트렙토코커스 수이스 균을 사멸시킬 수 있는 박테리오파지가 있는지를 조사하였다.
상기 점적 실험은 다음과 같이 실시되었다. THB 배지에 스트렙토코커스 수이스 균을 1/1,000 비율로 접종한 다음 37℃에서 한밤동안 진탕배양 하였다. 이렇게 하여 준비된 스트렙토코커스 수이스 균의 배양액 3 ml(OD 600이 1.5)을 THA( Todd Hewitt Agar) 평판배지(하트 인퓨전, 3.1 g/L; 펩톤, 20 g/L; 덱스트로오스, 2 g/L; 염화나트륨, 2 g/L; 디소듐포스페이트, 0.4 g/L; 탄산나트륨, 2.5 g/L; 아가, 15 g/L)에 도말(Spreading)하였다. 도말한 평판배지를 클린벤치(Clean bench)에서 약 30분 정도 방치하여 도말액이 건조되게 하였다. 건조 후 앞에서 준비한 여과액 10 μl를 스트렙토코커스 수이스 균이 도말된 평판배지 위에 점적하였다. 이를 30분 정도 방치하여 건조시켰다. 건조 후 점적한 평판배지를 37℃에서 하루 동안 정치 배양한 다음 여과액이 떨어진 위치에 투명환(Clear zone)이 생성되는가를 조사하였다. 투명환이 생성되는 여과액의 경우가 스트렙토코커스 수이스 균을 사멸 시킬 수 있는 박테리오파지가 포함되어 있다고 판단할 수 있다. 이러한 조사를 통하여 스트렙토코커스 수이스 균에 대한 사멸능을 가진 박테리오파지를 포함한 여과액을 확보할 수 있었다.
스트렙토코커스 수이스 균에 대한 사멸능을 가진 박테리오파지의 존재가 확인된 여과액을 이용하여 순수 박테리오파지의 분리를 실시하였다. 순수 박테리오파지의 분리에는 통상의 용균반 분석(Plaque assay)을 이용하였다. 이를 자세히 설명하면, 용균반 분석에서 형성된 용균반 하나를 멸균된 팁을 이용하여 회수한 다음에 이를 스트렙토코커스 수이스 균의 배양액에 첨가해 주어 4-5시간 동안 37℃에서 함께 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 얻어진 상등액에 50분의 1의 부피로 스트렙토코커스 수이스 균의 배양액을 첨가해 준 다음에 다시 37℃에서 4-5시간 동안 배양해 주었다. 박테리오파지의 수를 증가시키기 위하여 이러한 과정을 최소 5회 이상 실시한 다음에 최종적으로 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 얻어진 상등액을 사용하여 다시 용균반 분석을 실시하였다. 통상 순수 박테리오파지의 분리가 상기 과정의 1회만으로는 달성되지 않기 때문에 이때 형성된 용균반을 이용하여 앞 단계를 전체적으로 다시 반복하였다. 이와 같은 과정을 최소 5회 이상 반복 실시하여 순수한 박테리오파지를 포함한 용액을 확보하였다. 통상적으로 순수 박테리오파지의 분리는 형성된 용균반의 크기 및 모양이 모두 유사하게 될 때까지 반복 수행하였다. 그리고 최종적으로는 전자현미경 분석을 통하여 박테리오파지의 순수 분리 여부를 확인하였다. 전자현미경 분석에서 순수 분리가 확인될 때까지 앞에 설명한 과정을 반복하였다. 전자현미경 분석은 통상의 방법에 따라 실시하였다. 이를 간단히 설명하면 다음과 같다. 순수한 박테리오파지를 포함한 용액을 구리 격자(Copper grid)에 묻히고 2% 우라닐 아세테이트(Uranyl acetate)로 역염색법(Negative staining)과 건조를 수행한 후에 투과전자현미경을 통하여 그 형태를 관찰하였다. 순수 분리한 박테리오파지의 전자현미경 사진이 도 1에 제시되어 있다. 형태적 특징으로 판단할 때, 신규 확보된 박테리오파지는 시포비리대( Siphoviridae) 박테리오파지에 속함을 확인할 수 있었다.
이런 방식으로 확인된 순수 박테리오파지를 포함한 용액은 다음의 정제 과정을 거쳤다. 순수 박테리오파지를 포함한 용액에 용액 전체 부피의 50분의 1의 부피로 스트렙토코커스 수이스 균의 배양액을 첨가해 준 다음에 다시 4-5시간 동안 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 충분한 수의 박테리오파지가 포함된 액을 얻기 위해 이러한 과정을 총 5회 반복하였다. 최종 원심분리로 얻어진 상등액을 0.45 μm의 필터를 이용하여 여과한 다음에 통상의 폴리에틸렌 글리콜(Polyethylene Glycol; PEG) 침전 과정을 실시하였다. 구체적으로, 여과액 100 ml에 10% PEG 8000/0.5 M NaCl이 되게 PEG와 NaCl을 첨가한 다음에 4℃에서 2-3시간 동안 정치한 후, 8,000 rpm에서 30분간 원심분리하여 박테리오파지 침전물을 얻었다. 이렇게 얻어진 박테리오파지 침전물을 완충액(Buffer; 10 mM Tris-HCl, 10 mM MgSO 4, 0.1% Gelatin, pH 8.0) 5 ml로 부유시켰다. 이를 박테리오파지 부유액 또는 박테리오파지 액이라 지칭한다.
상기 과정을 통하여 정제된 순수 박테리오파지를 확보할 수 있었고, 이 박테리오파지를 박테리오파지 Str-SUP-2로 명명한 뒤, 2018년 4월 24일자로 한국생명공학연구원 생물자원센터에 기탁하였다(수탁번호 KCTC 13515BP).
실시예 2: 박테리오파지 Str - SUP -2의 유전체 분리 및 유전체 서열 분석
박테리오파지 Str-SUP-2의 유전체를 다음과 같이 분리하였다. 유전체 분리에는 실시예 1에서와 같은 방법으로 얻어진 박테리오파지 부유액을 이용하였다. 먼저 부유액에 포함되어 있을 수 있는 스트렙토코커스 수이스 균의 DNA와 RNA를 제거하기 위해, 박테리오파지 부유액 10 ml에 DNase I과 RNase A를 각각 200 U씩 첨가한 다음에 37℃에서 30분간 방치하였다. 30분 방치 후에 DNase I과 RNase A의 활성을 제거하기 위해, 0.5 M 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic acid; EDTA) 500 μl를 첨가한 다음에 다시 10분간 정치시켰다. 그리고 이를 추가로 10분간 65℃에 정치시킨 다음에 박테리오파지 외벽을 와해시키기 위해 proteinase K(20 ㎎/ml) 100 μl를 첨가한 후에 37℃에서 20분간 반응시켰다. 그 후 10% 도데실 황산 나트륨염(Sodium dodecyl sulfate; SDS) 500 μl를 첨가한 다음에 다시 65℃에서 1시간 동안 반응시켰다. 1시간 반응 후, 이 반응액에 25:24:1의 구성비를 갖는 페놀(Phenol) : 클로로포름(Chloroform) : 이소아밀알코올(Isoamylalcohol)의 혼합액 10 ml을 첨가해 준 후 잘 섞어 주었다. 그리고는 이것을 13,000 rpm에서 15분간 원심분리하여 층이 분리되게 한 다음에 분리된 층들 중에서 위층을 취하여 여기에 1.5 부피비의 아이소프로필 알코올(Isopropyl alcohol)을 첨가한 다음에 13,000 rpm에서 10분간 원심분리하여 유전체를 침전시켰다. 침전물을 회수한 후 침전물에 70% 에탄올(Ethanol)을 첨가한 다음에 다시 13,000 rpm에서 10분간 원심분리하여 침전물의 세척을 실시하였다. 세척된 침전물을 회수하고 진공 건조 시킨 다음에 이를 100 μl의 물에 녹였다. 상기 과정을 반복하여 박테리오파지 Str-SUP-2의 유전체를 다량 확보하였다.
이렇게 얻어진 유전체는 마크로젠에서 illumina Mi-Seq 기기를 이용하여 차세대염기서열 분석(Next generation sequencing analysis)을 수행한 다음 박테리오파지 Str-SUP-2의 유전체 서열 정보를 확보하였다. 최종적으로 분석된 박테리오파지 Str-SUP-2 유전체는 32,673 bp의 크기를 가지며, 전체 유전체 서열은 서열번호 1로 제시되어 있다.
확보된 박테리오파지 Str-SUP-2의 유전체 서열 정보를 기반으로 Web상의 BLAST를 이용하여 기존에 알려진 박테리오파지 유전체 서열과의 상동성(Similarity)을 조사해 보았다. BLAST 조사 결과, 박테리오파지 Str-SUP-2의 유전체 서열은 스트렙토코커스 박테리오파지 phi5218의 서열(Genbank Accession No. KC348600.1)과 비교적 높은 상동성을 가지고 있는 것으로 확인되었다. 그러나 박테리오파지 Str-SUP-2는 시포비리대의 형태학적 특징을 가짐에 반하여 스트렙토코커스 박테리오파지 phi5218은 포도비리대의 형태학적 특징을 가지고 있어 분명한 형태학적 차이를 갖고 있으며, 이에 더하여 박테리오파지 Str-SUP-2 유전체 상의 개방형해독틀(Open Reading Frame, ORF)의 개수는 59개임에 반하여, 스트렙토코커스 박테리오파지 phi5218은 64개의 개방형해독틀을 가지고 있어 두 박테리오파지는 분명한 유전적 차이도 갖고 있다고 판단할 수 있었다. 이러한 두 박테리오파지 간의 형태학적 및 유전적 특성 차이는 두 박테리오파지 간에 다양하게 표출되는 여러 특성의 외형적 및 기능적 차이가 있음을 나타낸다 할 수 있다. 더 나아가 이러한 두 박테리오파지 간의 차이는 두 박테리오파지의 산업적 활용 시의 차이가 있음도 나타낸다. 한편, 두 박테리오파지의 유전체 서열을 비교하여 유전적 특성 차이를 보여주는 모식도가 도 2에 제시되어 있다.
이러한 사실에 근거하여 박테리오파지 Str-SUP-2는 기존 보고된 박테리오파지들과는 다른 신규한 박테리오파지라 결론지을 수 있었다. 이러한 사실과 함께 통상적으로 박테리오파지의 종류가 다르면 제공할 수 있는 항균력의 세기 및 항균범위가 다르다는 사실로부터 박테리오파지 Str-SUP-2는 기존에 보고된 다른 박테리오파지들과는 다른 항균효과를 제공해 줄 수 있다고 판단할 수 있었다.
실시예 3: 박테리오파지 Str - SUP -2의 스트렙토코커스 수이스 균에 대한 사멸능 조사
분리된 박테리오파지 Str-SUP-2의 스트렙토코커스 수이스 균에 대한 사멸능을 조사하였다. 사멸능 조사는 실시예 1에서 제시한 점적 실험을 통하여 투명환 생성 여부를 조사하는 방식으로 수행하였다. 사멸능 조사에 사용되어진 스트렙토코커스 수이스 균주들은 생물자원센터 또는 한국수의유전자원은행으로부터 분양을 받거나 본 발명자들에 의해 분리되어 스트렙토코커스 수이스 균으로 동정된 것들로 총 10주였다. 박테리오파지 Str-SUP-2는 실험에 대상이 된 스트렙토코커스 수이스 10주 중에 KCTC 3557 균주를 포함하여 총 8주에 대하여 사멸능을 갖고 있었다. 대표적 실험 결과가 도 3에 제시되어 있다. 한편, 박테리오파지 Str-SUP-2의 보데텔라 브론치셉티카( Bordetella bronchiseptica), 엔테로코커스 패칼리스( Enterococcus faecalis), 엔테로코커스 패슘( Enterococcus faecium), 스트렙토코커스 미티스( Streptococcus mitis), 스트렙토코커스 우베리스( Streptococcus uberis) 및 슈도모나스 애루기노사( Pseudomonas aeruginosa)에 대한 사멸능 조사도 실시하였는데, 결과로 박테리오파지 Str-SUP-2는 이들 균종들에 대해서는 사멸능을 갖고 있지 않았다.
이상의 결과로 박테리오파지 Str-SUP-2는 스트렙토코커스 수이스 균에 대하여 우수한 사멸능을 가지며, 다수의 스트렙토코커스 수이스 균주들에 대하여 항균 효과를 발휘할 수 있음을 확인할 수 있었다. 이는 박테리오파지 Str-SUP-2가 스트렙토코커스 수이스 균에 의해 유발되는 질환에 대한 예방 및 치료 목적의 조성물의 유효성분으로 활용 가능함을 의미한다.
실시예 4: 박테리오파지 Str - SUP -2의 스트렙토코커스 수이스 균 감염 예방에 대한 실험예
9 ml의 THB 배지를 담은 하나의 튜브에 1× 10 8 pfu/ml 수준의 박테리오파지 Str-SUP-2 액 100 μl를 넣어주고, 다른 하나의 9 ml의 THB 배지를 담은 튜브에는 동량의 THB 배지만을 추가로 첨가하였다. 그 다음에 각 튜브에 600 nm에서 흡광도가 약 0.5 정도가 되도록 스트렙토코커스 수이스 균의 배양액을 넣어 주었다. 스트렙토코커스 수이스 균을 첨가한 후 튜브들을 37℃의 배양기에 옮겨 진탕배양하면서 스트렙토코커스 수이스 균의 성장 상태를 관찰하였다. 표 1에 제시된 바와 같이, 박테리오파지 Str-SUP-2 액을 첨가해 준 튜브에서는 스트렙토코커스 수이스 균의 성장 억제가 관찰된 반면에 박테리오파지 액을 첨가하지 않은 튜브에서는 스트렙토코커스 수이스 균의 성장 억제가 관찰되지 않았다.
스트렙토코커스 수이스 균의 성장 억제
구분 OD 600 흡광도 값
배양 0분 배양후 60분 배양후 120분
박테리오파지 액 미첨가 0.504 0.857 1.392
박테리오파지 액 첨가 0.504 0.286 0.128
이 결과로부터 본 발명의 박테리오파지 Str-SUP-2가 스트렙토코커스 수이스 균의 성장을 저해할 뿐만 아니라 스트렙토코커스 수이스 균의 사멸까지 시키는 능력이 있음을 확인할 수 있었고, 이로부터 박테리오파지 Str-SUP-2가 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방하는 목적의 조성물의 유효성분으로 활용될 수 있다고 결론지을 수 있었다.
실시예 5: 박테리오파지 Str - SUP -2를 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환에 대한 예방 동물시험
이유자돈을 이용하여 박테리오파지 Str-SUP-2의 스트렙토코커스 수이스 균에 의해 유발되는 질환에 대한 예방 효과를 조사하였다. 생후 25일령의 이유자돈 10마리를 총 2 그룹(그룹 당 5마리)으로 나눈 후 실험사육돈방(1.1m × 1.0m)에 분리 사육하면서 14일간 시험을 실시하였다. 보온시설 하에 주위환경을 통제하였고 돈방의 온도와 습도는 일정하게 유지시켰으며 돈방 바닥의 청소를 매일 실시하였다. 시험 개시일로부터 시험 종료일까지 시험군(박테리오파지 포함 사료 투여군)의 돼지들에게는 1× 10 8 pfu/g의 박테리오파지 Str-SUP-2를 포함하고 있는 사료를 통상적인 사료 급이 방식에 따라 급이하였다. 반면에 대조군(박테리오파지 미포함 사료 투여군)의 돼지들에게는 시험 개시일로부터 시험 종료일까지 박테리오파지 Str-SUP-2가 포함되지 않은 동일 조성의 사료를 동일한 방식으로 급이하였다. 시험개시일로부터 7일째가 되는 날부터 2일간에 걸쳐 시험군(박테리오파지 포함 사료 투여군) 및 대조군(박테리오파지 미포함 사료 투여군)의 돼지들 모두에게 1× 10 8 cfu/g 수준으로 스트렙토코커스 수이스 균을 급이하는 사료에 추가 포함시켜 하루 2회씩 급이하여 스트렙토코커스 수이스 균 감염을 유도하였다. 스트렙토코커스 수이스 균을 포함하고 있는 사료 급이 시행일(시험개시일로부터 7일째가 되는 날)부터 매일 모든 시험동물들을 대상으로 코 분비물에서의 스트렙토코커스 수이스 균 검출 정도를 조사하였다.
코 분비물(비강 내부 면봉 채취물; nasal swab)에서의 스트렙토코커스 수이스 균 검출 조사는 다음과 같이 수행하였다. 코 분비물 시료를 혈액 아가 플레이트(Blood agar plate)에 도말한 후에 37℃에서 18-24시간 동안 배양한 다음에 형성된 콜로니(Colony) 중에 스트렙토코커스 수이스 균으로 추정되는 콜로니를 선별하였다. 이렇게 선별된 콜로니들을 각각 시료로 하여 스트렙토코커스 수이스 균 특이 중합효소연쇄반응(Polymerase chain reaction; PCR)을 수행하여 최종적으로 해당 콜로니가 스트렙토코커스 수이스 균인지를 확인하였다. 균 검출 결과는 표 2와 같았다.
스트렙토코커스 수이스 균 검출 결과(평균치)
구분 평판배지 접시 당 검출된 스트렙토코커스 수이스 균의 콜로니 수
D7 D8 D9 D10 D11 D12 D13 D14
대조군(박테리오파지 미포함 사료 투여) 18 18 18 16 16 15 14 14
시험군(박테리오파지 포함 사료 투여) 14 10 6 3 2 0 0 0
이 결과로부터 본 발명의 박테리오파지 Str-SUP-2가 스트렙토코커스 수이스 균에 의해 유발되는 질환의 예방에 매우 효과적이라는 것을 확인할 수 있었다.
실시예 6: 박테리오파지 Str - SUP -2를 이용한 스트렙토코커스 수이스 균에 의해 유발되는 질환에 대한 치료예
박테리오파지 Str-SUP-2의 스트렙토코커스 수이스 균에 의해 유발되는 질환에 대한 치료 효과를 조사해 보았다. 생후 25일령의 이유자돈 8마리를 총 2 그룹으로 나눈 후 실험사육돈방(1.1m × 1.0m)에 분리 사육하면서 14일간 시험을 실시하였다. 보온시설 하에 주위환경을 통제하였고 돈방의 온도와 습도는 일정하게 유지시켰으며 돈방 바닥의 청소를 매일 실시하였다. 시험 개시일로부터 4일째 되는 날에 모든 돼지들에게 스트렙토코커스 수이스 균액(10 9 cfu/ml) 5 ml을 비강에 분무 투여하였다. 비강 투여에 사용한 스트렙토코커스 수이스 균액은 다음과 같이 준비하였다. 스트렙토코커스 수이스 균을 THB 배지를 이용하여 37도에서 18시간 배양한 후 균체만을 회수한 다음에 이를 생리식염수(pH 7.2)로 현탁하여 균체의 농도가 10 9 cfu/ml가 되게끔 조정하였다. 스트렙토코커스 수이스 균 강제감염 다음날부터 시험군(박테리오파지 액 투여군)의 돼지들에게는 매일 2회씩 10 9 pfu의 박테리오파지 Str-SUP-2를 스트렙토코커스 수이스 균액 투여와 같은 방식으로 비강 투여 하였다. 대조군(박테리오파지 액 미투여군)의 돼지들은 어떠한 처치도 하지 않았다. 사료와 음수는 대조군과 시험군 모두 동일하게 급이하였다. 스트렙토코커스 수이스 균의 강제감염 후부터 3일째가 되는 날(시험개시일로부터 7일째가 되는 날)부터는 매일 모든 시험동물들을 대상으로 스트렙토코커스 수이스 균에 의해 유발되는 위축성 비염의 발생 상태를 조사하였다. 스트렙토코커스 수이스 균에 의해 유발되는 위축성 비염에 대한 조사는 비강 분비물의 양을 조사하는 방식으로 실시하였다. 비강 분비물의 양은 시험자의 관찰에 따라 정상 수준을 '0', 다소 많은 경우를 '1', 심한 경우를 '2'로 지표화하여 나타내었다. 그 결과는 표 3과 같았다.
비강 분비물 조사 결과(평균치)
날짜 D7 D8 D9 D10 D11 D12 D13 D14
대조군(박테리오파지 미투여) 0.5 0.5 0.75 1.0 1.5 1.5 1.5 1.75
시험군(박테리오파지 투여) 0.25 0.25 0 0 0 0 0 0
이 결과로부터 본 발명의 박테리오파지 Str-SUP-2가 스트렙토코커스 수이스 균에 의해 유발되는 질환의 치료에도 매우 효과적이라는 것을 확인할 수 있었다.
실시예 7: 사료첨가제 및 사료의 제조
박테리오파지 Str-SUP-2 액을 이용하여 사료첨가제 1 g당 1× 10 8 pfu의 박테리오파지 Str-SUP-2가 포함되도록 사료첨가제를 제조하였다. 사료첨가제의 제조 방법은 박테리오파지 액에 말토덱스트린을 첨가(50%, w/v)한 다음에 동결 건조시켜 제조하였다. 최종적으로 고운 가루형태로 분쇄하였다. 상기 제조과정 중의 건조 과정에는 감압 건조, 가온 건조, 상온 건조도 대체 가능하다. 대조 실험을 위해, 박테리오파지가 포함되지 않은 사료첨가제도 박테리오파지 액 대신에 박테리오파지 액의 제조 시에 사용한 완충액(Buffer; 10 mM Tris-HCl, 10 mM MgSO 4, 0.1% Gelatin, pH 8.0)을 사용하는 방식으로 제조하였다.
이렇게 제조된 2종의 사료첨가제 각각을 중량비로 1,000배의 양돈용 사료와 혼합하여 최종 2종의 사료를 제조하였다.
실시예 8: 음수첨가제 및 소독제의 제조
음수첨가제나 소독제는 그 활용에서만 차이가 나고 제형은 동일하므로 같은 방식으로 제조하였다. 박테리오파지 Str-SUP-2 액을 이용하여 음수첨가제(또는 소독제)를 제조하였다. 음수첨가제(또는 소독제)의 제조 방법은 박테리오파지 액 제조 시에 사용하는 완충액 1 ml당 1× 10 9 pfu의 박테리오파지 Str-SUP-2가 포함되도록 상기 박테리오파지 Str-SUP-2 액을 첨가하여 잘 혼합해 주는 방식으로 제조하였다. 대조 실험을 위해, 박테리오파지가 포함되지 않은 음수첨가제(또는 소독제)로는 박테리오파지 액의 제조 시에 사용한 완충액 자체를 그대로 사용하였다.
이렇게 제조된 2종의 음수첨가제(또는 소독제)는 부피비로 1,000배의 물로 희석하여 최종적인 음수 또는 소독제로 사용하였다.
실시예 9: 돼지 사육에서의 사양 효과 확인
실시예 7 및 실시예 8에서 제조한 사료, 음수 및 소독제를 이용하여 돼지 사육 시의 사양 결과 개선 여부에 대하여 조사해 보았다. 특히 본 조사는 증체 정도 조사 방식으로 실시되었다. 총 60 마리의 25일령 이유자돈을 한 군당 20 마리씩으로 총 3개 그룹(사료로 급이한 그룹-A; 음수로 공급한 그룹-B; 소독 처리한 그룹-C)으로 나누어 4주간 시험을 실시하였다. 각 그룹은 다시 10마리로 구성되는 소그룹으로 나누어지며 각 소그룹은 박테리오파지 Str-SUP-2가 적용된 소그룹(소그룹-①) 및 박테리오파지가 적용되지 않은 소그룹(소그룹-②)으로 나누었다. 본 시험에 대상이 된 이유자돈들은 각 시험 소그룹 별로 분리되어 사육되었다. 각 소그룹은 다음의 표 4와 같이 구분되고 지칭되었다.
돼지 사양 시험에서의 소그룹 구분 및 표시
적용 소그룹 구분 및 표시
박테리오파지 Str-SUP-2 적용 박테리오파지가 적용되지 않음
사료로 급이한 그룹 A-① A-②
음수로 공급한 그룹 B-① B-②
소독 처리한 그룹 C-① C-②
사료 급이의 경우에는 실시예 7에서 제조한 사료를 표 4의 구분에 따라 통상적인 사료 급이 방식을 따라 급이 하였고, 음수 급이의 경우에는 실시예 8에서 제조한 음수를 표 4의 구분에 따라 통상적인 음수 급이 방식에 따라 급이 하였으며, 소독 처리의 경우에는 일주일에 3회씩 기존 소독과 번갈아 가면서 실시하였다. 본 발명의 소독제를 분무하는 날은 통상의 소독제를 이용한 소독은 실시하지 않았다. 시험 결과, 박테리오파지 Str-SUP-2를 적용한 그룹이 박테리오파지 Str-SUP-2를 적용하지 않은 그룹에 대비하여 증체 정도가 유의적으로 우수하였다(표 5 참조). 참고로, 실시예 5에서와 같이 시험동물들의 코 분비물에서 스트렙토코커스 수이스 균 분리율도 조사하였는데, 박테리오파지 Str-SUP-2를 적용하지 않은 그룹의 일부 동물들의 비강 분비물에서는 스트렙토코커스 수이스 균이 검출되었다. 반면에 박테리오파지 Str-SUP-2를 적용한 그룹의 모든 동물들에서는 시험기간 동안 스트렙토코커스 수이스 균이 검출되지 않았다.
돼지 사양 시험 결과
그룹 증체 정도(%) 참고사항
A-① 110
A-② 100 - 본 그룹의 평균 증체 정도를 기준(100%)으로 하였음- 일부 개체에서 스트렙토코커스 수이스 균이 발견되었음
B-① 107
B-② 99 - 일부 개체에서 스트렙토코커스 수이스 균이 발견되었음
C-① 106
C-② 98 - 일부 개체에서 스트렙토코커스 수이스 균이 발견되었음
이상의 결과로 본 발명에 따라 제조된 사료 및 음수의 급이와 본 발명에 따른 소독제의 처리가 돼지 사육에서의 사양 결과 개선에 효과가 있음을 확인할 수 있었다. 이로부터 본 발명의 조성물의 적용이 돼지의 사양 결과 개선에 효과적이라는 결론을 내릴 수 있었다.
이상의 결과로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
[수탁번호]
기탁기관명: KCTC
수탁번호: KCTC 13515BP
수탁일자: 20180424
Figure PCTKR2019006562-appb-img-000001

Claims (7)

  1. 스트렙토코커스 수이스 균을 사멸시킬 수 있는 능력을 갖고 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는, 자연으로부터 분리된 시포비리대 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP).
  2. 제1항의 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP)를 유효성분으로 포함하는, 스트렙토코커스 수이스 균에 의해 유발되는 질환 예방용 및 치료용 조성물.
  3. 제2항에 있어서, 상기 조성물은 사료첨가제, 음수첨가제 또는 소독제 제조 용도로 사용되는 것을 특징으로 하는, 스트렙토코커스 수이스 균에 의해 유발되는 질환 예방용 및 치료용 조성물.
  4. 제2항에 의한 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP)를 유효성분으로 포함하는 조성물을 환경에 분사하는 단계를 포함하는, 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법.
  5. 제4항에 있어서, 상기 조성물이 소독제 형태인 것을 특징으로 하는, 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법.
  6. 제2항에 의한 박테리오파지 Str-SUP-2(수탁번호 KCTC 13515BP)를 유효성분으로 포함하는 조성물을 사람을 제외한 동물에 투여하는 단계를 포함하는, 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법.
  7. 제6항에 있어서, 상기 조성물이 음수첨가제 또는 사료첨가제인 것을 특징으로 하는, 스트렙토코커스 수이스 균에 의해 유발되는 질환을 예방 및 치료하는 방법.
PCT/KR2019/006562 2018-06-04 2019-05-31 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도 WO2019235782A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980037748.XA CN112437810A (zh) 2018-06-04 2019-05-31 新型猪链球菌噬菌体str-sup-2及其在抑制猪链球菌细菌增殖方面的用途
US15/734,587 US20210163897A1 (en) 2018-06-04 2019-05-31 Novel streptococcus suis bacteriophage str-sup-2, and use thereof for inhibiting proliferation of streptococcus suis strains

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020180064064A KR102073088B1 (ko) 2018-06-04 2018-06-04 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
KR10-2018-0064064 2018-06-04

Publications (2)

Publication Number Publication Date
WO2019235782A1 true WO2019235782A1 (ko) 2019-12-12
WO2019235782A8 WO2019235782A8 (ko) 2020-07-23

Family

ID=68770523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/006562 WO2019235782A1 (ko) 2018-06-04 2019-05-31 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도

Country Status (4)

Country Link
US (1) US20210163897A1 (ko)
KR (1) KR102073088B1 (ko)
CN (1) CN112437810A (ko)
WO (1) WO2019235782A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102073094B1 (ko) * 2018-06-04 2020-02-04 (주)인트론바이오테크놀로지 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-3 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
KR102073088B1 (ko) * 2018-06-04 2020-02-04 (주)인트론바이오테크놀로지 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
KR102073086B1 (ko) * 2018-06-04 2020-02-04 (주)인트론바이오테크놀로지 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-1 및 이의 스트렙토코커스 수이스 균 증식 억제 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021041B1 (ko) * 2008-06-09 2011-03-15 주식회사 인트론바이오테크놀로지 유효성분으로 박테리오파지를 포함하는 선박 평형수 처리용조성물 및 이를 이용한 선박 평형수에 존재하는박테리아의 생물학적 제거 방법
US20140072549A1 (en) * 2011-04-21 2014-03-13 Vincent A. Fischetti Streptococcus bacteriophage lysins for detection and treatment of gram positive bacteria

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006063176A2 (en) * 2004-12-06 2006-06-15 The Government Of The Usa As Representedtd By The Secretary Of The Dept Of Health And Human Services Inhibition of biofilm formation using bacteriophage
EP2108656A1 (en) * 2008-03-19 2009-10-14 Beninati, Concetta Antigenic protein fragments of streptococcus pneumoniae
CN102198265B (zh) * 2011-03-22 2013-08-28 上海交通大学 应用噬菌体裂解酶降解猪链球菌生物被膜的方法
EP2699689A4 (en) * 2011-04-21 2014-12-17 Univ Utrecht Holding Bv LYSINES OF BACTERIOPHAGES OF STREPTOCOCCUS FOR THE TREATMENT OF GRAM POSITIVE BACTERIA IN PET ANIMALS AND IN LIVESTOCK
KR101649849B1 (ko) * 2014-12-29 2016-08-22 주식회사 인트론바이오테크놀로지 신규한 클로스트리디움 퍼프린젠스 박테리오파지 Clo-PEP-1 및 이의 클로스트리디움 퍼프린젠스 증식 억제 용도
KR101723466B1 (ko) * 2015-10-08 2017-04-06 주식회사 인트론바이오테크놀로지 신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도
CN105695440B (zh) * 2016-01-14 2019-12-31 江苏大学 一种抑菌活性增强的猪链球菌噬菌体裂解酶及其制备方法
KR102073094B1 (ko) * 2018-06-04 2020-02-04 (주)인트론바이오테크놀로지 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-3 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
KR102073088B1 (ko) * 2018-06-04 2020-02-04 (주)인트론바이오테크놀로지 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101021041B1 (ko) * 2008-06-09 2011-03-15 주식회사 인트론바이오테크놀로지 유효성분으로 박테리오파지를 포함하는 선박 평형수 처리용조성물 및 이를 이용한 선박 평형수에 존재하는박테리아의 생물학적 제거 방법
US20140072549A1 (en) * 2011-04-21 2014-03-13 Vincent A. Fischetti Streptococcus bacteriophage lysins for detection and treatment of gram positive bacteria

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GILMER, DANIEL B. ET AL.: "The phage lysin PlySs2 decolonizes Streptococcus suis from murine intranasal mucosa", PLOS. ONE, vol. 12, no. 1, 3 January 2017 (2017-01-03), pages e0169180, XP055661259 *
TANG, FANG ET AL.: "Comparative genomic analysis of twelve Streptococcus suis (pro) phages", GENOMICS, vol. 101, 2013, pages 336 - 344, XP028543317 *
ZHANG, HANG ET AL.: "A novel prophage lysin Ply5218 with extended lytic activity and stability against Streptococcus suis infection", FEMS MICROBIOLOGY LETTERS, vol. 363, no. 18, 2016, pages 1 - 6, XP055661252 *

Also Published As

Publication number Publication date
US20210163897A1 (en) 2021-06-03
WO2019235782A8 (ko) 2020-07-23
KR102073088B1 (ko) 2020-02-04
CN112437810A (zh) 2021-03-02
KR20190138027A (ko) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2016108536A1 (ko) 신규한 클로스트리디움 퍼프린젠스 박테리오파지 Clo-PEP-1 및 이의 클로스트리디움 퍼프린젠스 증식 억제 용도
WO2017111306A1 (ko) 신규한 파스튜렐라 멀토시다 박테리오파지 Pas-MUP-1 및 이의 파스튜렐라 멀토시다 균 증식 억제 용도
WO2016108540A1 (ko) 신규한 장병원성 대장균 박테리오파지 Esc-CHP-2 및 이의 장병원성 대장균 증식 억제 용도
WO2016108541A1 (ko) 신규한 시가독소생산 F18형 대장균 박테리오파지 Esc-COP-1 및 이의 시가독소생산 F18형 대장균 증식 억제 용도
WO2018101594A1 (ko) 대장균 박테리오파지 Esc-COP-7 및 이의 병원성 대장균 증식 억제 용도
WO2016108538A1 (ko) 신규한 장출혈성 대장균 박테리오파지 Esc-CHP-1 및 이의 장출혈성 대장균 증식 억제 용도
WO2016108542A1 (ko) 신규한 장침입성 대장균 박테리오파지 Esc-COP-4 및 이의 장침입성 대장균 증식 억제 용도
WO2018155814A1 (ko) 신규한 클로스트리디움 퍼프린젠스 박테리오파지 Clo-PEP-2 및 이의 클로스트리디움 퍼프린젠스 균 증식 억제 용도
WO2016114517A1 (ko) 신규한 락토코커스 가르비에 박테리오파지 Lac-GAP-1 및 이의 락토코커스 가르비에 균 증식 억제 용도
WO2018155812A1 (ko) 신규한 엔테로코쿠스 패슘 박테리오파지 Ent-FAP-4 및 이의 엔테로코쿠스 패슘 증식 억제 용도
WO2020013451A1 (ko) 대장균 박테리오파지 esc-cop-14 및 이의 병원성 대장균 증식 억제 용도
WO2016126009A1 (ko) 신규한 에드와드시엘라 타르다 박테리오파지 EdW-TAP-1 및 이의 에드와드시엘라 타르다 균 증식 억제 용도
WO2017217726A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-5 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2019235782A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2019235781A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-1 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2018151417A1 (ko) 신규한 녹농균 박테리오파지 Pse-AEP-4 및 이의 녹농균 증식 억제 용도
WO2018151416A1 (ko) 신규한 녹농균 박테리오파지 Pse-AEP-3 및 이의 녹농균 증식 억제 용도
WO2017073916A1 (ko) 신규한 에로모나스 살모니시다 박테리오파지 Aer-SAP-1 및 이의 에로모나스 살모니시다 균 증식 억제 용도
WO2019235783A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-3 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2018208001A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-7 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2018236085A1 (ko) 신규한 에로모나스 하이드로필라 박테리오파지 Aer-HYP-1 및 이의 에로모나스 하이드로필라 균 증식 억제 용도
WO2013035906A1 (ko) 살모넬라 티피무륨 감염을 방지 및 처치하는 방법
WO2019164194A1 (ko) 신규한 살모넬라 하이델베르그 박테리오파지 sal-hep-1 및 이의 살모넬라 하이델베르그 균 증식 억제 용도
WO2019164195A1 (ko) 신규한 에로모나스 하이드로필라 박테리오파지 aer-hyp-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도
WO2018101595A2 (ko) 대장균 박테리오파지 Esc-COP-9 및 이의 병원성 대장균 증식 억제 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19814829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19814829

Country of ref document: EP

Kind code of ref document: A1