WO2017111304A1 - 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도 - Google Patents

신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도 Download PDF

Info

Publication number
WO2017111304A1
WO2017111304A1 PCT/KR2016/012904 KR2016012904W WO2017111304A1 WO 2017111304 A1 WO2017111304 A1 WO 2017111304A1 KR 2016012904 W KR2016012904 W KR 2016012904W WO 2017111304 A1 WO2017111304 A1 WO 2017111304A1
Authority
WO
WIPO (PCT)
Prior art keywords
bacteria
bacteriophage
vibrio
pap
vib
Prior art date
Application number
PCT/KR2016/012904
Other languages
English (en)
French (fr)
Inventor
윤성준
전수연
권안성
황순혜
강상현
Original Assignee
주식회사 인트론바이오테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트론바이오테크놀로지 filed Critical 주식회사 인트론바이오테크놀로지
Priority to US16/064,698 priority Critical patent/US10751377B2/en
Priority to CN201680075421.8A priority patent/CN108699533B/zh
Publication of WO2017111304A1 publication Critical patent/WO2017111304A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/195Antibiotics
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10211Podoviridae
    • C12N2795/10221Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10211Podoviridae
    • C12N2795/10232Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention prevents the infection of Vibrio parahemoliticus bacteria using a composition comprising the bacteriophage isolated from nature capable of killing Vibrio parahemoliticus bacteria and killing Vibrio parahaemolyticus bacteria and the active ingredient. And it relates to a method of treatment, more specifically grape viridae isolated from nature, characterized in that having a genome represented by SEQ ID NO: 1 having the ability to specifically kill Vibrio parahemolyticus bacteria A bacteriophage Vib-PAP-1 (Accession No. KCTC 12817BP), and a method for preventing and post-infection treatment of Vibrio parahemoliticus bacteria using the composition comprising the bacteriophage as an active ingredient.
  • Vibrio parahaemolyticus a genus of Vibrio , is a Gram-negative bacillus that causes acute food poisoning and enteritis in the human body and vibriosis in fish. Symptoms of Vibrio infection in fish are varied, including blackening, skin ulcers, and sometimes redness and redness of the fins. In addition, liver bleeding or congestion may be observed.
  • Vibrio disease of fish caused by Vibrio parahemoliticus infection has a high incidence and high economic damage. Therefore, the development of a plan that can be used to prevent Vibrio parahemoliticus infection and further treat the infection It is a desperate situation.
  • antibiotics which are excessive antimicrobial chemotherapeutic agents, are used as a method for treating bacterial diseases.
  • bacteria that are resistant to various drugs are frequently generated, causing considerable economic losses to fish farms. .
  • excessive use of these antibiotics may threaten public health and, consequently, reduce the consumer sentiment of farmed fish, leading to a decline in overall fisheries competitiveness. Therefore, development of methods other than antibiotics that can prevent fish diseases caused by bacteria and effectively treat their infections is urgently needed.
  • the safety of aquatic products as foods has become a major social concern in recent years, it is more preferable if the method is environmentally friendly.
  • Bacteriophages are tiny microorganisms that infect bacteria, often called phage. Bacteriophages have the ability to infect bacteria and multiply inside bacterial cells, and kill off bacteria by destroying the cell wall of the host bacteria when the progeny bacteriophages come out of the bacteria. Bacteriophage bacterial infections are highly specific, so there are only a few types of bacteriophages that can infect certain bacteria.
  • certain bacteriophages can infect only a specific category of bacteria, so that certain bacteriophages kill only certain bacteria and do not affect other bacteria.
  • the bacterial specificity of these bacteriophages provides antimicrobial effects only to the target bacteria and does not affect the environment or flora in fish.
  • Conventional antibiotics usually affect several kinds of bacteria at the same time.
  • bacteriophage only works for certain bacteria, normal bacterium total disturbance does not occur by using the bacteriophage. Therefore, its use is very safe compared to the use of antibiotics, and the likelihood of side effects is relatively low.
  • Bacteriophage is a British bacteriologist Twort 1915 became discovered while conducting research on Staphylococcus aureus (Micrococcus) melting the colonies are transparent by any developer.
  • French bacteriologist d'Herelle discovered that some of the filtrates of ill feces dissolve Shigella dysenteriae . In the sense, they named it bacteriophage. Since then, bacteriophages have been found for many pathogenic bacteria such as dysentery, typhoid, and cholera.
  • bacteriophages Because of its special ability to kill bacteria, bacteriophages have been expected to be an effective way to combat bacterial infections since their discovery and many studies have been done. However, after the discovery of penicillin by Fleming, with the widespread use of antibiotics, research on bacteriophages has been limited to some Eastern European countries and the Soviet Union. However, since 2000, due to the increase of antibiotic-resistant bacteria, the limit of existing antibiotics appears, and as the possibility of developing an alternative to the existing antibiotics is highlighted, bacteriophage is attracting attention as an anti-bacterial agent. In particular, with the recent tightening of government-wide regulations on the use of antibiotics, interest in bacteriophages is increasing and industrial use cases are increasing.
  • bacteriophages have a very high specificity for bacteria. Due to this specificity, bacteriophages often exert an antimicrobial effect on only some strains, even if they belong to the same type of bacteria. In addition, the antibacterial activity of the bacteriophages may be different depending on the target bacterial strain itself. For this reason, it is necessary to secure various kinds of useful bacteriophages in order to secure effective control methods for specific kinds of bacteria. In order to develop effective bacteriophage in response to Vibrio parahemolyticus bacteria, of course, it is necessary to secure various useful bacteriophages (a variety of bacteriophages that can provide antimicrobial effects against Vibrio parahemolyticus bacteria). Furthermore, among the various useful bacteriophages obtained, it is also necessary to select bacteriophages that are comparatively superior in terms of their strength and antimicrobial range.
  • the present inventors have developed a composition that can be used to prevent or treat the infection of Vibrio parahemolyticus bacteria by using bacteriophages isolated from nature capable of selectively killing Vibrio parahemolyticus bacteria.
  • suitable bacteriophages can be isolated from nature, and the separated bacteriophages can be distinguished from other bacteriophages.
  • an object of the present invention is a Podoviridae bacteriophage Vib- isolated from nature, characterized by having a genome represented by SEQ ID NO: 1 having the ability to specifically kill Vibrio parahemolyticus bacteria.
  • PAP-1 accesion No. KCTC 12817BP.
  • Another object of the present invention is to isolate the Vibrio parahemoliticus bacteria including Vib-PAP-1 as an active ingredient, which can infect Vibrio parahemoliticus bacteria and kill Vibrio parahemoliticus bacteria. It is to provide a composition that can be utilized to prevent infection and a method for preventing infection of Vibrio parahemoliticus bacteria using the composition.
  • Another object of the present invention is to isolate the Vibrio parahemoliticus bacteria including Vib-PAP-1 as an active ingredient, which can infect Vibrio parahemoliticus bacteria and kill Vibrio parahemoliticus bacteria.
  • the present invention provides a composition that can be used to treat an infection and a method for treating infection of Vibrio parahemolyticus bacteria using the composition.
  • Still another object of the present invention is to provide a medicament agent for the purpose of preventing and treating Vibrio parahemolyticus bacteria infection using the compositions.
  • Another object of the present invention is to provide a feed additive for the purpose of providing a specification effect through the prevention and treatment of Vibrio parahemolyticus bacteria infection using the compositions.
  • the present invention is characterized by having a genome represented by SEQ ID NO: 1 having the ability to specifically kill Vibrio parahemolyticus bacteria, grape viridae bacteriophage Vib-PAP-1 (Accession No. KCTC 12817BP), and a method for preventing and treating infection of Vibrio parahemoliticus bacteria using the composition comprising the same as an active ingredient.
  • Bacteriophage Vib-PAP-1 was isolated by the inventors and deposited in the Korea Institute of Bioscience and Biotechnology Microbial Resource Center on May 20, 2015 (Accession No. KCTC 12817BP).
  • the present invention also provides a bath and feed additive comprising bacteriophage Vib-PAP-1 as an active ingredient, which can be used to prevent or treat the infection of Vibrio parahemolyticus bacteria.
  • Bacteriophage Vib-PAP-1 included in the composition of the present invention effectively kills Vibrio parahemolyticus bacteria, thereby preventing (infecting) or treating (infectious treatment) diseases caused by Vibrio parahemolyticus bacteria. Effect. Therefore, the composition of the present invention may be used for the purpose of prevention and treatment of Vibrio disease, which is a representative disease caused by Vibrio parahemolyticus bacteria, but is not limited thereto.
  • prevention refers to (i) prevention of Vibrio parahemolyticus bacterial infection; And (ii) inhibiting the development into a disease caused by Vibrio parahemolyticus bacteria infection.
  • treatment refers to (i) suppression of a disease caused by Vibrio parahemolyticus bacteria; And (ii) all actions to alleviate the pathological condition of the disease caused by Vibrio parahemolyticus bacteria.
  • isolated refers to the separation of bacteriophages from the natural state using various experimental techniques, and to securing specific characteristics that can be distinguished from other bacteriophages. This includes growing the bacteriophages for industrial use.
  • compositions of the present invention are those commonly used in the preparation, such as lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate, Microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil, and the like, but are not limited to these. .
  • the composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
  • the composition of the present invention contains bacteriophage Vib-PAP-1 as an active ingredient.
  • the bacteriophage Vib-PAP-1 included at this time includes 1 ⁇ 10 1 pfu / ml to 1 ⁇ 10 30 pfu / ml or 1 ⁇ 10 1 pfu / g to 1 ⁇ 10 30 pfu / g, preferably 1 ⁇ . 10 4 pfu / ml to 1 ⁇ 10 15 pfu / ml or 1 ⁇ 10 4 pfu / g to 1 ⁇ 10 15 pfu / g.
  • compositions of the present invention may be prepared in unit dosage form by being formulated with pharmaceutically acceptable carriers and / or excipients, according to methods which may be readily practiced by those skilled in the art. It may also be prepared by incorporation into a multi-dose container.
  • the formulations here may be in the form of solutions, suspensions or emulsions in oils or aqueous media or in the form of extracts, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
  • composition of the present invention may be implemented as a bath and feed additives.
  • Bacteriophages that can provide antimicrobial activity against other bacterial species can be added to the composition of the present invention in order to increase the efficiency in this application.
  • other kinds of bacteriophages having antimicrobial activity against Vibrio parahemolyticus bacteria may be added. Although bacteriophages that have antimicrobial activity against Vibrio parahemolyticus bacteria differ in terms of strength and antimicrobial range of antimicrobial activity, an appropriate combination of these may maximize the effect.
  • Vibrio parahemolyticus infection prevention and treatment method using the composition comprising the bacteriophage Vib-PAP-1 of the present invention as an active ingredient Vibrio parahemoly compared to the method based on chemicals such as antibiotics It can provide the advantage that the specificity to the typhoid bacteria is very high. This means that it can be used for the purpose of preventing or treating the infection of Vibrio parahemoliticus bacteria without affecting other useful flora, and the side effects of its use are very small. In general, the use of chemicals, such as antibiotics will also damage the common flora bacteria, resulting in a decrease in the immunity of animals, resulting in various side effects.
  • the present invention can also provide the advantage of being very natural because it is used as an active ingredient of the composition to separate the bacteriophage already present in nature.
  • Bacteriophage on the other hand, even if the same bacterial species that can exhibit antimicrobial activity, the bacteriophage against the individual bacterial strain in terms of the strength of the antimicrobial activity and the antimicrobial range [Strains belonging to the Vibrio parahemolyticus bacteria] Range of antibacterial activity of the.
  • bacteriophages can exert antimicrobial activity against some strains belonging to the same bacterial species. That is, even if they belong to the same bacterial species, there may be a difference in susceptibility to bacteriophages according to individual bacterial strains]. Therefore, the present invention is different from other bacteriophages having antibacterial activity against Vibrio parahemolyticus bacteria. It can provide an antimicrobial effect. This makes a big difference in the effectiveness of industrial sites.
  • 1 is an electron micrograph of the bacteriophage Vib-PAP-1.
  • Figure 2 is an experimental result showing the killing ability against Vibrio parahemolyticus bacteria of bacteriophage Vib-PAP-1.
  • the transparent part is the lysate plaque formed by lysis of the bacteria under test.
  • Example 1 vibrio Parahemoliticus Isolation of Bacteriophage Can Kill Bacteria
  • Vibrio parahemoliticus bacteria used for bacteriophage separation were distributed from the Korea Institute of Biotechnology and Microbial Resource Center (preparation number KCTC 2729).
  • LB Lia-Bertani
  • tryptone 10 g / L
  • yeast extract 5 g / L
  • sodium chloride inoculated with Vibrio parahemolyticus bacteria at a ratio of 1 / 1,000
  • the collected samples were added together at 10 g / L and then shaken at 37 ° C. for 3-4 hours. After incubation, the supernatant was recovered by centrifugation at 8,000 rpm for 20 minutes. The recovered supernatants were inoculated with Vibrio parahemolyticus bacteria at a rate of 1 / 1,000 and then incubated again at 37 ° C. for 3-4 hours.
  • the process was repeated five times in order to increase the number of bacteriophages (Titer). After five repetitions, the culture was centrifuged at 8,000 rpm for 20 minutes. After centrifugation, the recovered supernatant was filtered using a 0.45 ⁇ m filter. It was examined whether there was a bacteriophage capable of killing Vibrio parahemolyticus bacteria through a conventional spot assay using the obtained filtrate.
  • Vibrio parahemolyticus bacteria were inoculated in LB medium at a rate of 1 / 1,000 and then shaken at 37 ° C. for one night.
  • 3 ml (OD 600 of 1.5) of Vibrio parahemolyticus bacterium prepared in this way was transferred to Luria-Bertani Agar (LA) plate medium (tryptone, 10 g / L; yeast extract, 5 g / L; sodium chloride, 10 g / L; agar, 15 g / L).
  • LA Luria-Bertani Agar
  • the plated flat medium was left in a clean bench for about 30 minutes to allow the smear to dry.
  • the filtrate in which the transparent ring is formed contains bacteriophages capable of killing Vibrio parahemolyticus bacteria. Through this investigation, it was possible to obtain a filtrate including bacteriophages having a killing ability against Vibrio parahemolyticus bacteria.
  • Separation of pure bacteriophages was carried out using a filtrate in which the presence of bacteriophages having killing ability against Vibrio parahemolyticus bacteria was confirmed. Separation of pure bacteriophage was carried out using a conventional Plaque assay. To explain this in detail, one of the lysates formed in the lytic plaque assay was recovered using a sterile tip and then added to the Vibrio parahemolyticus bacteria culture medium and incubated together at 37 ° C. for 4-5 hours. After incubation, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes.
  • Vibrio parahemolyticus bacteria culture medium was added to the obtained supernatant at a volume of 50/50, and then incubated at 37 ° C for 4-5 hours. In order to increase the number of bacteriophages, this procedure was performed at least five times, and finally, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes. Using the obtained supernatant, lysis plate analysis was performed again. Since the separation of the pure bacteriophage is not usually achieved by only one time of the above process, the previous step was repeated again using the lysate plate formed during the first pure separation process. This procedure was carried out at least five times to obtain a solution containing pure bacteriophage.
  • Electron microscopic analysis was performed according to a conventional method. This is briefly described as follows. The solution containing pure bacteriophage was buried in a copper grid, subjected to reverse staining and drying with 2% uranyl acetate, and its shape was observed through a transmission electron microscope. Electron micrographs of purely isolated bacteriophages are shown in FIG. 1. The newly acquired bacteriophages could be identified as belonging to the Podoviridae bacteriophage.
  • the solution containing pure bacteriophage identified in this way was subjected to the following purification process. Vibrio parahemolyticus bacteria were added to a volume of 1/50 of the total volume of the solution including the pure bacteriophage, and then incubated again for 4-5 hours. After incubation, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes. This procedure was repeated a total of five times to obtain a solution containing a sufficient number of bacteriophages. The supernatant obtained by the final centrifugation was filtered using a 0.45 ⁇ m filter followed by a conventional polyethylene glycol (PEG) precipitation process.
  • PEG polyethylene glycol
  • PEG and NaCl were added to 100 ml of the filtrate to be 10% PEG 8000 / 0.5 M NaCl, and then allowed to stand at 4 ° C. for 2-3 hours, followed by centrifugation at 8,000 rpm for 30 minutes to obtain a bacteriophage precipitate.
  • the bacteriophage precipitate thus obtained was suspended in 5 ml of buffer (Buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0). This is called bacteriophage suspension or bacteriophage solution.
  • Example 2 bacteriophage Vib - PAP -1 genome isolation and sequencing
  • the genome of bacteriophage Vib-PAP-1 was isolated as follows. Bacteriophage suspension obtained in the same manner as in Example 1 was used for dielectric separation. First, in order to remove DNA and RNA of Vibrio parahemolyticus bacteria which may be contained in the suspension, 200 U of each of DNase I and RNase A was added to 10 ml of the bacteriophage suspension, followed by standing at 37 ° C for 30 minutes. In order to remove the activity of DNase I and RNase A after 30 minutes, 500 ⁇ l of 0.5 M ethylenediaminetetraacetic acid (EDTA) was added and allowed to stand for 10 minutes. The mixture was left at 65 ° C.
  • EDTA ethylenediaminetetraacetic acid
  • the bacteriophage Vib-PAP-1 genome thus obtained was subjected to next generation sequencing analysis using a Roche 454 GS Junior instrument. Finally, the analyzed bacteriophage Vib-PAP-1 genome has a size of 42,808 bp and the entire genome sequence is set forth in SEQ ID NO: 1.
  • the bacteriophage Vib-PAP-1 had a circular genome
  • the Vibrio bacteriophage VP93 had a linear genome and thus could be judged to be different bacteriophages.
  • NEBcutter V2.0 http://nc2.neb.com/NEBcutter2/index.php
  • the restriction enzymes capable of single cutting the genome of bacteriophage Vib-PAP-1 AvaI, AvrII, BmtI, BseRI, BsoBI, BssHII, BstNI, BstZ17I, MscI, NheI, NruI, PspGI) , PvuII, SalI, XbaI
  • the restriction enzymes capable of single cleavage of the genome of Vibrio bacteriophage VP93 were identified as 10 (AvaI, AvrII, BmtI, BseRI, BsoBI, BssHII, BstNI, BstZ17I
  • bacteriophage Vib-PAP-1 could be considered as a novel bacteriophage that has not been reported previously. With this fact, it is judged that the bacteriophage Vib-PAP-1 can provide different antibacterial effects from other bacteriophages that have been reported from the fact that different kinds of bacteriophages have different strengths and antimicrobial ranges.
  • Example 3 bacteriophage Vib - PAP Vibrio of -1 Parahemoliticus Investigate killing ability
  • the killing ability of the isolated bacteriophage Vib-PAP-1 against Vibrio parahemolyticus was investigated.
  • the killing ability was investigated by the drop test in the same manner as in Example 1 to determine the production of transparent rings.
  • Vibrio parahemolyticus bacteria used for killing ability were identified by the present inventors and identified as Vibrio parahemoliticus bacteria in total for 17 weeks.
  • Bacteriophage Vib-PAP-1 had killing ability against 15 strains of Vibrio parahemoliticus bacteria. Representative experimental results are shown in FIG. 2.
  • the bacteriophage Vib-PAP-1 has a specific killing ability against Vibrio parahemolyticus bacteria, and it can be confirmed that the bacteriophage Vib-PAP-1 can exert an antimicrobial effect against a plurality of Vibrio parahemoliticus bacteria. This means that bacteriophage Vib-PAP-1 can be utilized as an active ingredient for the composition for preventing and treating infections of Vibrio parahemolyticus bacteria.
  • Example 4 bacteriophage Vib - PAP Vibrio of -1 Parahemoliticus For the prevention of bacterial infection Experimental Example
  • Vibrio parahemolyticus bacteria 100 ⁇ l of 1 ⁇ 10 8 pfu / ml bacteriophage Vib-PAP-1 solution was added to one tube containing 9 ml of LB medium, and the same amount (100 ⁇ l) was added to the other tube containing 9 ml of LB medium. Only LB medium of was further added. Then, the culture solution of Vibrio parahemolyticus bacteria was added to each tube so that the absorbance at about 600 nm was about 0.5. After the Vibrio parahemolyticus bacteria were added, the tubes were transferred to a 37 ° C. incubator and shaken to observe the growth state of the Vibrio parahemolyticus bacteria.
  • bacteriophage Vib-PAP-1 of the present invention inhibits the growth of Vibrio parahaemolyticus bacteria and inhibits infection as well as kills the bacteriophage Vib-PAP-1. It was concluded that it can be used as an effective composition for the purpose of preventing the infection of Vibrio parahemolyticus bacteria.
  • Example 5 bacteriophage Vib - PAP Vibrio with -1 Parahemoliticus Infection prevention animal experiment
  • the bass of the control group (non-bacterial phage administration group) was fed in the same manner to feed of the same composition without the bacteriophage Vib-PAP-1.
  • both the experimental and control groups were contaminated with Vibrio parahemolyticus at a level of 1 ⁇ 10 8 cfu / g. Feeding was repeated several times to induce the infection of Vibrio parahemoliticus bacteria. From the day after the induction of the infection of Vibrio parahemolyticus bacteria for 2 days (the 9th day from the start of the test), the feed for each group without Vibrio parahemolyticus contamination was again fed. Animals were examined for Vibrio disease incidence. Vibrio disease incidence was investigated by measuring body color blackening index. The body color blackening index was measured by measuring the dark coloration (DC) score (normal: 0, light blackening: 1, dark blackening: 2) which is commonly used.
  • DC dark coloration
  • Body color blackening index measurement results (average) date D9 D10 D11 D12 D13 D14 Control group (not administered bacteriophage) 0.68 0.68 0.72 0.84 1.04 1.08 Experimental group (bacteriophage administration) 0.12 0 0 0 0 0 0 0
  • the bacteriophage Vib-PAP-1 of the present invention is very effective for the prevention of infectious diseases caused by Vibrio parahemolyticus bacteria.
  • Body color blackening index measurement results (average) date D8 D9 D10 D11 D12 D13 D14 Control group (not administered bacteriophage) 0.97 1.03 1.10 1.17 1.17 1.23 1.27 Experimental group (bacteriophage administration) 1.00 0.93 0.87 0.77 0.43 0.20 0.13
  • the bacteriophage Vib-PAP-1 of the present invention is very effective in the treatment of infectious diseases caused by Vibrio parahemoliticus bacteria.
  • a feed additive was prepared using bacteriophage Vib-PAP-1 solution to contain 1 ⁇ 10 8 pfu of bacteriophage Vib-PAP-1 per g of feed additive.
  • the method of preparing a feed additive was prepared by adding maltodextrin to the bacteriophage solution (50%, w / v) and then lyophilizing. Finally, it was ground to a fine powder form.
  • the drying process in the manufacturing process may be replaced by reduced pressure drying, warming drying, room temperature drying.
  • a feed additive without bacteriophage was used in place of the bacteriophage solution, using the buffer used to prepare the bacteriophage solution (Buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0). It was prepared by.
  • Each of the two feed additives thus prepared was mixed with 250 times the fish feed for fish in a weight ratio to prepare the final two feeds.
  • the bacteriophage Vib-PAP-1 was prepared using a bacteriophage Vib-PAP-1 solution to contain 1 ⁇ 10 8 pfu of bacteriophage Vib-PAP-1 per ml of the bathing agent.
  • the method for preparing a bath detergent is prepared by adding the above-mentioned bacteriophage Vib-PAP-1 solution to include 1 ⁇ 10 8 pfu of bacteriophage Vib-PAP-1 per 1 ml of buffer used to prepare the bacteriophage solution. It was.
  • the buffer itself used in the preparation of the bacteriophage solution was used as it is.
  • the two types of baths thus prepared were diluted with 1,000 times water by volume and used as the final bath.
  • Example 7 and Example 8 Using the feed prepared in Example 7 and Example 8 and the bath was investigated whether the improvement of the specification results when raising perch.
  • the survey was conducted in terms of mortality.
  • a total of 500 bass larvae (weight: 5-7 g, body length: 8-10 cm) are divided into two groups (group-A fed with feed and group-B treated with bath) The test was divided for 4 weeks.
  • Each group was further divided into 125 subgroups, and each subgroup was divided into a small group (small group-1) to which the bacteriophage Vib-PAP-1 was applied and a small group (small group-2) to which the bacteriophage was not applied.
  • Perch from each test subgroup was raised in each isolated tank located at regular intervals. Each subgroup is divided and referred to as Table 4 below.
  • the feed prepared according to the feed preparation method described in Example 7 was fed according to the conventional feed feeding method according to the classification of Table 4, and in the case of the treatment of the bathing agent, the bathing bath described in Example 8
  • the bath preparation prepared according to the preparation method was treated according to the conventional bath treatment method according to the classification of Table 4.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Microbiology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Virology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • General Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Birds (AREA)
  • Insects & Arthropods (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

본 발명은 비브리오 파라헤몰리티쿠스 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 포도비리대 박테리오파지 Vib-PAP-1(수탁번호 KCTC 12817BP), 및 이를 유효성분으로 포함하는 조성물을 이용한 비브리오 파라헤몰리티쿠스 균의 감염을 방지 및 처치하는 방법에 관한 것이다.

Description

신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
본 발명은 비브리오 파라헤몰리티쿠스 균에 감염하여 비브리오 파라헤몰리티쿠스 균을 사멸시킬 수 있는 자연으로부터 분리한 박테리오파지 및 이를 유효성분으로 포함한 조성물을 이용한 비브리오 파라헤몰리티쿠스 균의 감염을 방지 및 처치하는 방법에 관한 것으로, 더욱 상세하게는 비브리오 파라헤몰리티쿠스 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 포도비리대 박테리오파지 Vib-PAP-1(수탁번호 KCTC 12817BP), 및 상기 박테리오파지를 유효성분으로 포함하는 조성물을 이용한 비브리오 파라헤몰리티쿠스 균의 감염 방지 및 감염 후 처치 방법에 관한 것이다.
비브리오 속(Genus)에 속하는 비브리오 파라헤몰리티쿠스(Vibrio parahaemolyticus) 균은 그람 음성 간균으로 인체에는 급성 식중독 및 장염을 일으키고 어류에는 비브리오병(Vibriosis)을 일으킨다. 어류에서의 비브리오병의 감염 증상은 매우 다양한데, 체색 흑화 증상을 보이기도 하고 체표 궤양(Skin ulcer)이 나타나기도 하며 때로는 지느러미의 발적 및 체표 발적 증상을 보이기도 한다. 또한 해부해 보면 간의 출혈이나 울혈이 관찰되기도 한다.
비브리오 파라헤몰리티쿠스 균 감염에 의한 어류의 비브리오병은 그 발병 빈도가 높고 이로 인한 경제적 피해가 크기 때문에 비브리오 파라헤몰리티쿠스 균 감염을 예방하고 나아가 감염 처치에까지 활용될 수 있는 방안의 개발이 절실한 실정이다.
어류 양식 산업은 부족한 식량자원을 손쉽게 얻을 수 있다는 점에서 해마다 급속한 성장을 거듭하고 있다. 어류 양식장에서는 세균성 질병의 치료 방법으로서 과다하게 항균 화학요법제인 항생제가 사용되고 있는데, 이러한 결과로 다양한 약제에 대한 내성을 지닌 균이 빈번하게 발생하고 있어서, 어류 양식 어가에 상당한 경제적 손실을 입히고 있는 실정이다. 또한, 이러한 항생제의 과다한 사용은 국민 건강을 위협하고 나아가서는 양식 어류의 소비 심리를 위축시켜서 전반적인 수산업의 경쟁력 저하를 야기할 수 있다. 따라서 세균에 의한 어류 질병을 방지할 수 있고 또한 이들의 감염을 효과적으로 처치할 수 있는 항생제 외의 방법의 개발이 절실하다 할 수 있다. 특히, 최근 수산물의 식품으로서의 안전성이 주요 사회적 관심사가 되고 있기 때문에 그 방법이 친환경적이면 더욱 바람직하다.
최근 세균성 질환의 대처 방안으로 박테리오파지(Bacteriophage)의 활용이 크게 주목을 받고 있다. 특히 자연 친화적 방식의 선호로 인하여 박테리오파지에 대한 관심은 어느 때보다 높다고 할 수 있다. 박테리오파지는 세균에 감염하는 아주 작은 미생물로서 보통 파지(Phage)라고 줄여서 부르기도 한다. 박테리오파지는 박테리아에 감염(Infection)한 후 박테리아 세포 내부에서 증식을 하고, 증식 후 자손 박테리오파지들이 박테리아 밖으로 나올 때 숙주인 박테리아의 세포벽을 파괴하는 방식으로 박테리아를 사멸시키는 능력을 갖고 있다. 박테리오파지의 박테리아 감염 방식은 매우 특이성이 높아서 특정 박테리아에 감염할 수 있는 박테리오파지의 종류는 일부로 한정된다. 즉, 특정 박테리오파지는 특정 범주의 박테리아에만 감염할 수 있고 이로 인하여 특정 박테리오파지는 특정 박테리아만을 사멸시키며 다른 박테리아에는 영향을 주지 않는다. 이러한 박테리오파지의 세균 특이성은 목적으로 하는 세균에 대해서만 항균효과를 제공하고 환경이나 어류 내의 상재균들에는 영향을 초래하지 않는다. 통상적으로 기존의 항생제들은 여러 종류의 세균들에 대하여 동시에 영향을 끼쳤다. 그러나, 박테리오파지는 특정 세균에 대해서만 작동하므로 박테리오파지 사용에 의해서 체내 정상균총 교란 등이 발생하지 않는다. 따라서 그 사용이 항생제 사용에 비교하여 매우 안전하고 그 만큼 부작용 초래 가능성이 상대적으로 크게 낮다.
박테리오파지는 1915년 영국의 세균학자 Twort가 포도상구균(Micrococcus) 집락이 어떤 것에 의해 투명하게 녹는 현상에 대한 연구를 수행하면서 발견되었다. 또한, 1917년에는 프랑스의 세균학자 d'Herelle이 이질환자 변의 여과액 중에 적리균(Shigella dysenteriae)을 녹이는 작용을 가진 것이 있다는 것을 발견하고 이에 대한 연구를 통해 독립적으로 박테리오파지를 발견하였으며, 세균을 잡아먹는다는 뜻에서 박테리오파지라고 명명하였다. 이후 이질균, 장티푸스균, 콜레라균 등 여러 병원성 박테리아에 대한 박테리오파지가 계속적으로 발견되었다.
박테리아를 사멸시킬 수 있는 특별한 능력으로 인하여 박테리오파지는 발견 이후 박테리아 감염에 대응하는 효과적 방안으로 기대를 모았으며 관련하여 많은 연구들이 있었다. 그러나 Fleming에 의해 페니실린이 발견된 이후, 항생제의 보급이 일반화되면서 박테리오파지에 대한 연구는 일부 동유럽 국가들 및 구소련에 한정되어서만 명맥이 유지되었다. 그런데 2000년 이후에 항생제 내성균의 증가로 인하여 기존 항생제의 한계성이 나타나고, 기존 항생제의 대체 물질로의 개발 가능성이 부각되면서 다시 박테리오파지가 항-박테리아제로 주목을 받고 있다. 특히 최근 항생제 사용에 대한 정부 차원의 규제가 전 세계적으로 강화됨에 따라 박테리오파지에 대한 관심이 더욱 높아지고 있으며 산업적 활용 사례도 증가하고 있다.
앞에서 설명했듯이 박테리오파지는 세균에 대한 특이성이 매우 높다. 이러한 특이성으로 인하여 박테리오파지는 동일 종류에 속하는 세균들이라 할지라도 그 일부 주(Strain)에 대해서만 항균효과를 발휘하는 경우가 많다. 또한 대상 세균 주에 따라 발휘되는 박테리오파지의 항균력 세기 자체도 다를 수 있다. 이러한 이유로 특정 종류의 세균에 대하여 효과적 제어법을 확보하려면 다양한 종류의 유용 박테리오파지의 확보가 필요하다. 비브리오 파라헤몰리티쿠스 균에 대응하여 효과적인 박테리오파지 활용법을 개발하기 위해서도 당연히 다양한 유용 박테리오파지들(비브리오 파라헤몰리티쿠스 균에 대하여 항균효과를 제공할 수 있는 여러 종류의 박테리오파지들)의 확보가 필요하고, 더 나아가 확보한 다양한 유용 박테리오파지들 중에서 항균력의 세기나 항균범위 측면에서 비교우위에 있는 박테리오파지의 선발도 필요하다.
이에, 본 발명자들은 비브리오 파라헤몰리티쿠스 균을 선택적으로 사멸시킬 수 있는 자연으로부터 분리된 박테리오파지를 이용하여 비브리오 파라헤몰리티쿠스 균의 감염을 방지 또는 처치하는 데에 활용될 수 있는 조성물을 개발하고, 또 이 조성물을 이용하여 비브리오 파라헤몰리티쿠스 균의 감염을 방지 또는 처치하는 방법을 개발하고자 노력한 끝에, 이에 적합한 박테리오파지를 자연으로부터 분리하고 이 분리된 박테리오파지를 타 박테리오파지와 구별하여 특정 지을 수 있도록 유전체(Genome)의 유전자 서열을 확보한 후 상기 박테리오파지를 유효성분으로 한 조성물을 개발한 다음 이 조성물이 비브리오 파라헤몰리티쿠스 균의 감염 방지 및 처치에 효과적으로 활용될 수 있음을 확인함으로써 본 발명을 완성하였다.
따라서 본 발명의 목적은 비브리오 파라헤몰리티쿠스 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 포도비리대(Podoviridae) 박테리오파지 Vib-PAP-1(수탁번호 KCTC 12817BP)을 제공하는 것이다.
본 발명의 또 다른 목적은 비브리오 파라헤몰리티쿠스 균에 감염하여 비브리오 파라헤몰리티쿠스 균을 사멸시킬 수 있는 분리 박테리오파지 Vib-PAP-1을 유효성분으로 포함하는 비브리오 파라헤몰리티쿠스 균의 감염을 방지하는 데에 활용 가능한 조성물 및 이 조성물을 이용한 비브리오 파라헤몰리티쿠스 균의 감염 방지 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 비브리오 파라헤몰리티쿠스 균에 감염하여 비브리오 파라헤몰리티쿠스 균을 사멸시킬 수 있는 분리 박테리오파지 Vib-PAP-1을 유효성분으로 포함하는 비브리오 파라헤몰리티쿠스 균의 감염을 처치하는 데에 활용 가능한 조성물 및 이 조성물을 이용한 비브리오 파라헤몰리티쿠스 균의 감염 처치 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 비브리오 파라헤몰리티쿠스 균 감염 방지 및 처치 목적의 약욕제를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 비브리오 파라헤몰리티쿠스 균 감염 방지 및 처치를 통한 사양 효과 제공 목적의 사료첨가제를 제공하는 것이다.
본 발명은 비브리오 파라헤몰리티쿠스 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 포도비리대 박테리오파지 Vib-PAP-1(수탁번호 KCTC 12817BP), 및 이를 유효성분으로 포함하는 조성물을 이용한 비브리오 파라헤몰리티쿠스 균의 감염 방지 및 처치 방법을 제공한다.
박테리오파지 Vib-PAP-1은 본 발명자들에 의해 분리된 후 2015년 5월 20일자로 한국생명공학연구원 미생물자원센터에 기탁되었다(수탁번호 KCTC 12817BP).
또한, 본 발명은 비브리오 파라헤몰리티쿠스 균의 감염을 방지 또는 처치하는 데에 활용될 수 있는 박테리오파지 Vib-PAP-1을 유효성분으로 포함하는 약욕제 및 사료첨가제를 제공한다.
본 발명의 조성물에 포함되는 박테리오파지 Vib-PAP-1은 비브리오 파라헤몰리티쿠스 균을 효과적으로 사멸시키므로 비브리오 파라헤몰리티쿠스 균에 의해 유발되는 질병의 예방(감염 방지)이나 치료(감염 처치)에 효과를 나타낸다. 따라서 본 발명의 조성물은 비브리오 파라헤몰리티쿠스 균에 의해 유발되는 대표적인 질병인 비브리오병에 대한 예방 및 치료 목적으로 활용될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에서 사용된 “방지” 또는 “예방”이라는 용어는 (i) 비브리오 파라헤몰리티쿠스 균 감염의 방지; 및 (ii) 비브리오 파라헤몰리티쿠스 균 감염에 의한 질병으로의 발전을 억제하는 것을 의미한다.
본 명세서에서 사용된 “처치” 또는 “치료”라는 용어는 (i) 비브리오 파라헤몰리티쿠스 균에 의해 유발된 질환의 억제; 및 (ii) 비브리오 파라헤몰리티쿠스 균에 의해 유발된 질환의 병적 상태를 경감시키는 모든 행위를 의미한다.
본 명세서의 “분리” 또는 “분리된”은 자연 상태로부터 여러 실험 기법을 활용하여 박테리오파지를 분리하는 것과 타 박테리오파지와 구별하여 특정 지을 수 있는 특징들을 확보하는 일을 지칭하며, 이에 더하여 생물공학기술로 박테리오파지를 산업적으로 활용할 수 있게끔 증식시키는 것도 포함한다.
본 발명의 조성물에 포함되는 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알지네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸 셀룰로오스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
본 발명의 조성물에는 박테리오파지 Vib-PAP-1이 유효성분으로 포함된다. 이때 포함되는 박테리오파지 Vib-PAP-1은 1× 101 pfu/㎖ 내지 1× 1030 pfu/㎖ 또는 1× 101 pfu/g 내지 1× 1030 pfu/g로 포함되며, 바람직하게는 1× 104 pfu/㎖ 내지 1× 1015 pfu/㎖ 또는 1× 104 pfu/g 내지 1× 1015 pfu/g로 포함된다.
본 발명의 조성물은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수도 있다. 이때 제형은 오일 또는 수성 매질 중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캡슐제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수도 있다.
본 발명의 조성물은 활용 방식에 따라, 이에 국한되지 않지만, 약욕제 및 사료첨가제로 구현될 수 있다.
이러한 활용 목적에서의 효율성을 높이기 위하여 다른 세균종에 대하여 항균활성을 제공할 수 있는 박테리오파지들이 본 발명의 조성물에 추가될 수 있다. 또한, 비브리오 파라헤몰리티쿠스 균에 대하여 항균활성을 갖는 다른 종류의 박테리오파지들도 추가될 수 있다. 비록 비브리오 파라헤몰리티쿠스 균에 대하여 항균활성을 갖는 박테리오파지라 하더라도 항균력의 세기나 항균범위 측면에서 차이가 있으므로 이들의 적절한 조합은 그 효과를 극대화 할 수 있다.
본 발명의 박테리오파지 Vib-PAP-1을 유효성분으로 포함하는 조성물을 이용한 비브리오 파라헤몰리티쿠스 균의 감염 방지 및 처치 방법은 기존의 항생제 등의 화학물질에 기반을 둔 방식에 비하여 비브리오 파라헤몰리티쿠스 균에 대한 특이성이 매우 높다는 장점을 제공할 수 있다. 이는 다른 유용한 상재균에는 영향을 주지 않으면서도 비브리오 파라헤몰리티쿠스 균의 감염 방지 또는 처치 목적으로 사용할 수 있음을 의미하며, 이의 사용에 따른 부작용이 매우 적다. 통상적으로 항생제 등의 화학물질을 사용하면 일반 상재균들도 피해를 함께 입게 되어 결과적으로 동물의 면역력 저하 등을 초래하여 다양한 부작용이 나타난다. 한편, 본 발명은 자연계에 이미 존재하는 박테리오파지를 분리하여 조성물의 유효성분으로 사용하기 때문에 매우 자연 친화적이라는 장점 또한 제공할 수 있다. 한편, 박테리오파지는 항균활성을 발휘할 수 있는 세균종이 같다 하더라도 항균효과 발휘에 있어 항균력의 세기나 항균범위[비브리오 파라헤몰리티쿠스 균에 속하는 여러 세균 주(Strain)의 측면에서 개별 세균 주에 대하여 박테리오파지의 항균활성이 발휘되는 범위. 통상적으로 박테리오파지는 같은 세균 종(Species)에 속하는 일부 세균 주(Strain)에 대하여 항균활성을 발휘할 수 있음. 즉, 같은 세균 종에 속한다 하더라도 개별 세균 주에 따라 박테리오파지에 대한 감수성에서 차이가 있을 수 있음] 측면에서 차이가 있으므로 본 발명은 비브리오 파라헤몰리티쿠스 균에 대한 항균력을 갖는 타 박테리오파지에 비교하여 차별적 항균효과를 제공할 수 있다. 이는 산업현장 활용 시에 그 효과에 있어 큰 차이를 제공한다.
도 1은 박테리오파지 Vib-PAP-1의 전자현미경 사진이다.
도 2는 박테리오파지 Vib-PAP-1의 비브리오 파라헤몰리티쿠스 균에 대한 사멸능을 보여주는 실험 결과이다. 투명한 부분은 시험대상 박테리아가 용균되어 결과적으로 형성된 용균반이다.
이하, 실시예에 의거하여 본 발명을 보다 구체적으로 설명하지만, 이들 실시예는 본 발명의 예시일 뿐이며 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 비브리오 파라헤몰리티쿠스 균을 사멸시킬 수 있는 박테리오파지의 분리
비브리오 파라헤몰리티쿠스 균을 사멸시킬 수 있는 박테리오파지의 선별에는 자연 환경으로부터 확보된 시료들을 이용하였다. 한편, 박테리오파지 분리에 사용된 비브리오 파라헤몰리티쿠스 균은 한국생명공학연구원 미생물자원센터로부터 분양받아 사용하였다(분양번호 KCTC 2729).
박테리오파지 분리 과정을 상세히 설명하면, 비브리오 파라헤몰리티쿠스 균을 1/1,000 비율로 접종한 LB(Luria-Bertani) 배지(트립톤, 10 g/L; 효모 추출물, 5 g/L; 염화 나트륨, 10 g/L)에 수집된 시료를 함께 첨가한 다음 37℃에서 3-4시간동안 진탕배양 하였다. 배양 후, 8,000 rpm에서 20분간 원심분리하여 상등액을 회수하였다. 회수된 상등액에 비브리오 파라헤몰리티쿠스 균을 1/1,000 비율로 접종한 다음 37℃에서 3-4시간동안 또 다시 진탕배양 하였다. 박테리오파지가 시료에 포함되어 있었을 경우 박테리오파지의 수(Titer)가 증가될 수 있도록 이러한 과정을 총 5회 반복하였다. 5회 반복 후에 배양액을 8,000 rpm에서 20분간 원심분리 하였다. 원심분리 후, 회수된 상등액을 0.45 ㎛의 필터를 이용하여 여과를 실시해 주었다. 얻어진 여과액을 사용한 통상의 점적 실험(Spot assay)을 통하여 비브리오 파라헤몰리티쿠스 균을 사멸시킬 수 있는 박테리오파지가 있는지를 조사하였다.
상기 점적 실험은 다음과 같이 실시되었다. LB 배지에 비브리오 파라헤몰리티쿠스 균을 1/1,000 비율로 접종한 다음 37℃에서 한밤동안 진탕배양 하였다. 이렇게 하여 준비된 비브리오 파라헤몰리티쿠스 균의 배양액 3 ㎖(OD600이 1.5)을 LA(Luria-Bertani Agar) 평판배지(트립톤, 10 g/L; 효모 추출물, 5 g/L; 염화 나트륨, 10 g/L; 아가, 15 g/L)에 도말(Spreading)하였다. 도말한 평판 배지를 클린벤치(Clean bench)에서 약 30분 정도 방치하여 도말액이 건조되게 하였다. 건조 후 앞에서 준비한 여과액 10 μl를 비브리오 파라헤몰리티쿠스 균이 도말된 평판 배지 위에 점적하였다. 이를 30분 정도 방치하여 건조시켰다. 건조 후 점적한 평판 배지를 37℃에서 하루 동안 정치 배양한 다음 여과액이 떨어진 위치에 투명환(Clear zone)이 생성되는가를 조사하였다. 투명환이 생성되는 여과액의 경우가 비브리오 파라헤몰리티쿠스 균을 사멸 시킬 수 있는 박테리오파지가 포함되어 있다고 판단할 수 있다. 이러한 조사를 통하여 비브리오 파라헤몰리티쿠스 균에 대한 사멸능을 가진 박테리오파지를 포함한 여과액을 확보할 수 있었다.
비브리오 파라헤몰리티쿠스 균에 대한 사멸능을 가진 박테리오파지의 존재가 확인된 여과액을 이용하여 순수 박테리오파지의 분리를 실시하였다. 순수 박테리오파지의 분리에는 통상의 용균반 분석(Plaque assay)을 이용하였다. 이를 자세히 설명하면, 용균반 분석에서 형성된 용균반 하나를 멸균된 팁을 이용하여 회수한 다음 이를 비브리오 파라헤몰리티쿠스 균 배양액에 첨가해 주어 4-5 시간 동안 37℃에서 함께 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 얻어진 상등액에 50분의 1의 부피로 비브리오 파라헤몰리티쿠스 균 배양액을 첨가해 준 다음 다시 37℃에서 4-5 시간 배양해 주었다. 박테리오파지의 수를 증가시키기 위하여 이러한 과정을 최소 5회 이상 실시한 다음 최종적으로 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 얻어진 상등액을 사용하여 다시 용균반 분석을 실시하였다. 통상 순수 박테리오파지의 분리가 상기 과정의 1회만으로는 달성되지 않기 때문에 1차 순수분리 과정에서 형성된 용균반을 이용하여 앞 단계를 전체적으로 다시 반복하였다. 이와 같은 과정을 최소 5회 이상 실시하여 순수한 박테리오파지를 포함한 용액을 확보하였다. 통상적으로 순수 박테리오파지의 분리는 형성된 용균반의 크기 및 모양이 모두 유사하게 될 때까지 반복하였다. 그리고 최종적으로는 전자현미경 분석을 통하여 박테리오파지의 순수 분리 여부를 확인하였다. 전자현미경 분석에서 순수 분리가 확인될 때까지 앞에 기술한 과정을 반복하였다. 전자현미경 분석은 통상의 방법에 따라 실시하였다. 이를 간단히 설명하면 다음과 같다. 순수한 박테리오파지를 포함한 용액을 구리 격자(Copper grid)에 묻히고 2% 우라닐 아세테이트(Uranyl acetate)로 역염색법(Negative staining)과 건조를 수행한 후 투과전자현미경을 통하여 그 형태를 관찰하였다. 순수 분리한 박테리오파지의 전자현미경 사진이 도 1에 제시되어 있다. 신규 확보된 박테리오파지는 형태적 특징으로 판단할 때 포도비리대(Podoviridae) 박테리오파지에 속함을 확인할 수 있었다.
이런 방식으로 확인된 순수 박테리오파지를 포함한 용액은 다음의 정제 과정을 거쳤다. 순수 박테리오파지를 포함한 용액 전체 부피의 50분의 1의 부피로 비브리오 파라헤몰리티쿠스 균 배양액을 첨가해 준 다음 다시 4-5 시간 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 충분한 수의 박테리오파지가 포함된 액을 얻기 위해 이러한 과정을 총 5회 반복하였다. 최종 원심분리로 얻어진 상등액을 0.45 μm의 필터를 이용하여 여과한 다음 통상의 폴리에틸렌 글리콜(Polyethylene Glycol; PEG) 침전 과정을 실시하였다. 구체적으로, 여과액 100 ㎖에 10% PEG 8000/0.5 M NaCl이 되게 PEG와 NaCl을 첨가한 다음 4℃에서 2-3시간 동안 정치한 후, 8,000 rpm에서 30분간 원심분리하여 박테리오파지 침전물을 얻었다. 이렇게 얻어진 박테리오파지 침전물을 완충액(Buffer; 10 mM Tris-HCl, 10 mM MgSO4, 0.1% Gelatin, pH 8.0) 5 ㎖로 부유시켰다. 이를 박테리오파지 부유액 또는 박테리오파지 액이라 지칭한다.
이렇게 하여 정제된 순수 박테리오파지를 확보할 수 있었고, 이 박테리오파지를 박테리오파지 Vib-PAP-1로 명명한 뒤, 2015년 5월 20일자로 한국생명공학연구원 미생물자원센터(수탁번호 KCTC 12817BP)에 기탁하였다.
실시예 2: 박테리오파지 Vib - PAP -1의 유전체 분리 및 서열 분석
박테리오파지 Vib-PAP-1의 유전체를 다음과 같이 분리하였다. 유전체 분리에는 실시예 1에서와 같은 방법으로 얻어진 박테리오파지 부유액을 이용하였다. 먼저 부유액에 포함되어 있을 수 있는 비브리오 파라헤몰리티쿠스 균의 DNA와 RNA를 제거하기 위해, 박테리오파지 부유액 10 ㎖에 DNase I과 RNase A를 각각 200 U씩 첨가한 다음 37℃에서 30분간 방치하였다. 30분 방치 후에 DNase I과 RNase A의 활성을 제거하기 위해, 0.5 M 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic acid; EDTA) 500 μl를 첨가한 다음 다시 10분간 정치시켰다. 그리고 이를 추가로 10분간 65℃에 정치시킨 다음 박테리오파지 외벽을 와해시키기 위해 proteinase K(20 ㎎/㎖) 100 μl를 첨가한 후 37℃에서 20분간 반응시켰다. 그 후 10% 도데실 황산 나트륨염(Sodium dodecyl sulfate; SDS) 500 μl를 첨가한 다음 다시 65℃에서 1시간 동안 반응시켰다. 1 시간 반응 후, 이 반응액에 25:24:1의 구성비를 갖는 페놀(Phenol):클로로포름(Chloroform):이소아밀알코올(Isoamylalcohol)의 혼합액 10 ㎖을 첨가해 준 후 잘 섞어 주었다. 그리고는 이것을 13,000 rpm에서 15분간 원심분리하여 층이 분리되게 한 다음 분리된 층들 중에서 위층을 취하여 여기에 1.5 부피비의 이소프로필 알코올(Isopropyl alcohol)을 첨가한 다음 13,000 rpm에서 10분간 원심분리하여 유전체를 침전시켰다. 침전물을 회수한 후 침전물에 70% 에탄올(Ethanol)을 첨가한 다음 다시 13,000 rpm에서 10분간 원심분리하여 침전물의 세척을 실시하였다. 세척된 침전물을 회수하고 진공 건조 시킨 다음 100 μl의 물에 녹였다. 상기 과정을 반복하여 박테리오파지 Vib-PAP-1의 유전체를 다량 확보하였다.
이렇게 얻어진 박테리오파지 Vib-PAP-1 유전체에 대하여 Roche 454 GS Junior 기기를 이용한 차세대 염기서열 분석(Next generation sequencing analysis)을 실시하였다. 최종적으로 분석된 박테리오파지 Vib-PAP-1 유전체는 42,808 bp의 크기를 가지며, 전체 유전체 서열은 서열번호 1로 제시되어 있다.
확보된 박테리오파지 Vib-PAP-1의 유전체 서열을 기반으로 Web상의 BLAST(http://www.ncbi.nlm.nih.gov/BLAST/)를 이용하여 기존에 알려진 박테리오파지 유전체 서열과의 상동성(Similarity)을 조사해 보았다. BLAST 조사 결과, 박테리오파지 Vib-PAP-1의 유전체 서열은 비브리오 박테리오파지 VP93의 유전체 서열(Genbank Accession No. FJ896200.1)과 비교적 높은 상동성을 가지고 있는 것으로 확인되었다(Query coverage/identity: 99%/95%). 그러나 박테리오파지 Vib-PAP-1은 환형의 유전체를 가짐에 반하여 비브리오 박테리오파지 VP93은 선형의 유전체를 가져 서로 상이한 박테리오파지라 판단할 수 있었다. 또한, Web상의 NEBcutter V2.0(http://nc2.neb.com/NEBcutter2/index.php) 프로그램을 이용하여 박테리오파지 Vib-PAP-1의 유전체 서열과 비브리오 박테리오파지 VP93의 유전체 서열을 비교분석한 결과, 박테리오파지 Vib-PAP-1의 유전체를 단일 절단(single cut)할 수 있는 제한효소의 종류가 15개(AvaI, AvrII, BmtI, BseRI, BsoBI, BssHII, BstNI, BstZ17I, MscI, NheI, NruI, PspGI, PvuII, SalI, XbaI)인데 반하여, 비브리오 박테리오파지 VP93의 유전체를 단일 절단할 수 있는 제한효소의 종류는 10개(AcuI,,,,,,,,,)인 것으로 보아 서로 상이한 박테리오파지임을 다시 한번 확인할 수 있었다.
이러한 사실에 근거하여 박테리오파지 Vib-PAP-1은 기존에 보고된 바 없는 신규한 박테리오파지라고 판단할 수 있었다. 이러한 사실과 함께 통상적으로 박테리오파지의 종류가 다르면 제공할 수 있는 항균력의 세기 및 항균범위가 다르다는 사실로부터 박테리오파지 Vib-PAP-1은 기존에 보고된 다른 박테리오파지들과는 다른 항균효과를 제공해 줄 수 있다고 판단하였다.
실시예 3: 박테리오파지 Vib - PAP -1의 비브리오 파라헤몰리티쿠스 균에 대한 사멸능 조사
분리된 박테리오파지 Vib-PAP-1의 비브리오 파라헤몰리티쿠스 균에 대한 사멸능을 조사하였다. 사멸능 조사에는 실시예 1에서와 같은 방법으로 점적 실험을 통하여 투명환 생성 여부를 조사하였다. 사멸능 조사에 사용되어진 비브리오 파라헤몰리티쿠스 균은 본 발명자들에 의해 분리되어 비브리오 파라헤몰리티쿠스 균으로 동정된 것들로 총 17주이었다. 박테리오파지 Vib-PAP-1은 실험에 대상이 된 비브리오 파라헤몰리티쿠스 균 중 15주에 대하여 사멸능을 갖고 있었다. 대표적 실험 결과가 도 2에 제시되어 있다. 한편, 박테리오파지 Vib-PAP-1의 에드워드시엘라 타르다(Edwardsiella tarda), 비브리오 안길라룸(Vibrio anguillarum), 비브리오 익티오엔테리(Vibrio ichthyoenteri), 락토코커스 가르비에(Lactococcus garvieae), 스트렙토코커스 파라우베리스(Streptococcus parauberis), 스트렙토코커스 이니에(Streptococcus iniae), 및 에로모나스 살모니시다 (Aeromonas salmonicida)에 대한 사멸능 조사도 별도 실험으로 실시하였는데, 그 결과로 박테리오파지 Vib-PAP-1은 이들 균종들에 대해서는 사멸능을 갖고 있지 않았다.
이상의 결과로 박테리오파지 Vib-PAP-1은 비브리오 파라헤몰리티쿠스 균에 대하여 특이적인 사멸능을 가지며, 다수의 비브리오 파라헤몰리티쿠스 균에 대하여 항균 효과를 발휘할 수 있음을 확인할 수 있었다. 이는 박테리오파지 Vib-PAP-1이 비브리오 파라헤몰리티쿠스 균의 감염 방지 및 처치 목적의 조성물의 유효성분으로 활용 가능함을 의미한다.
실시예 4: 박테리오파지 Vib - PAP -1의 비브리오 파라헤몰리티쿠스 균의 감염 예방에 대한 실험예
9 ㎖의 LB 배지를 담은 하나의 튜브에 1× 108 pfu/㎖ 수준의 박테리오파지 Vib-PAP-1 액 100 μl를 넣어주고, 다른 하나의 9 ㎖의 LB 배지를 담은 튜브에는 동량(100 μl)의 LB 배지만을 추가로 첨가하였다. 그 다음에 각 튜브에 600 nm에서 흡광도가 약 0.5 정도가 되도록 비브리오 파라헤몰리티쿠스 균의 배양액을 넣어 주었다. 비브리오 파라헤몰리티쿠스 균을 첨가한 후 튜브들을 37℃의 배양기에 옮겨 진탕배양하면서 비브리오 파라헤몰리티쿠스 균의 성장 상태를 관찰하였다. 표 1에 제시된 바와 같이, 박테리오파지 Vib-PAP-1 액을 첨가해 준 튜브에서는 비브리오 파라헤몰리티쿠스 균의 성장 억제가 관찰된 반면에 박테리오파지 액을 첨가하지 않은 튜브에서는 비브리오 파라헤몰리티쿠스 균의 성장 억제가 관찰되지 않았다.
비브리오 파라헤몰리티쿠스 균의 성장 억제
구분 OD600 흡광도 값
배양 0분 배양후 60분 배양후 120분
박테리오파지 액 미첨가 0.496 1.233 2.135
박테리오파지 액 첨가 0.496 0.286 0.122
이 결과로부터 본 발명의 박테리오파지 Vib-PAP-1이 비브리오 파라헤몰리티쿠스 균의 성장을 저해하여 감염을 억제할 뿐만 아니라 사멸까지 시키는 능력이 있음을 확인할 수 있었고, 이로부터 박테리오파지 Vib-PAP-1이 비브리오 파라헤몰리티쿠스 균의 감염을 방지하는 목적의 조성물 유효성분으로 활용될 수 있다고 결론지을 수 있었다.
실시예 5: 박테리오파지 Vib - PAP -1을 이용한 비브리오 파라헤몰리티쿠스 균의 감염 예방 동물실험
농어(Sea bass)를 이용하여 박테리오파지 Vib-PAP-1의 비브리오 파라헤몰리티쿠스 균 감염 예방 효과를 조사하였다. 농어 치어(체중: 5~7 g, 체장: 8~10 cm) 50마리를 한 그룹으로 하여 총 두 그룹으로 나눈 후 수조에서 분리 사육하면서 14일간 실험을 실시하였다. 수조의 주위환경은 통제하였고, 수조가 있는 실험실의 온도는 일정하게 유지시켰다. 실험 개시일로부터 실험군(박테리오파지 투여군)의 농어들에게는 1× 108 pfu/g의 박테리오파지 Vib-PAP-1을 포함하고 있는 사료를 통상적인 사료 급이 방식에 따라 급이하였다. 반면에 대조군(박테리오파지 미투여군)의 농어들에게는 박테리오파지 Vib-PAP-1이 포함되지 않은 동일 조성의 사료를 동일한 방식으로 급이하였다. 시험개시일로부터 7일째가 되는 날부터 2일간 실험군과 대조군 모두에 대하여 각 군에 급이하던 사료에 추가로 1× 108 cfu/g 수준으로 비브리오 파라헤몰리티쿠스 균을 오염시킨 후에 이를 하루 2회씩 급이하여 비브리오 파라헤몰리티쿠스 균 감염을 유도하였다. 2일간의 비브리오 파라헤몰리티쿠스 균 감염 유도 다음날(시험 개시일로부터 9일째가 되는 날)부터는 다시 비브리오 파라헤몰리티쿠스 균 오염이 없는 각 군에 맞는 사료를 급이하였고, 이날부터 매일 모든 시험동물들을 대상으로 비브리오병 발생 상태를 조사하였다. 비브리오병 발생 상태 조사는 체색 흑화지수를 측정하는 방식으로 실시하였다. 체색 흑화지수 측정은 통상 사용되는 Dark Coloration(DC) score(정상: 0, 연한 흑화: 1, 진한 흑화: 2)를 측정하는 방식으로 실시하였다.
시험 결과는 표 2와 같았다.
체색 흑화지수 측정 결과 (평균치)
날짜 D9 D10 D11 D12 D13 D14
대조군(박테리오파지 미투여) 0.68 0.68 0.72 0.84 1.04 1.08
실험군(박테리오파지 투여) 0.12 0 0 0 0 0
이 결과로부터 본 발명의 박테리오파지 Vib-PAP-1이 비브리오 파라헤몰리티쿠스 균을 원인으로 하는 감염 질환의 예방에 매우 효과적이라는 것을 확인할 수 있었다.
실시예 6: 박테리오파지 Vib - PAP -1을 이용한 비브리오 파라헤몰리티쿠스 균의 감염 질환 처치예
비브리오 파라헤몰리티쿠스 균에 의해 비브리오병이 유발된 농어에서의 박테리오파지 Vib-PAP-1의 처치 효과를 조사하였다. 농어 치어(체중: 5~7 g, 체장: 8~10 cm) 60마리를 한 그룹으로 하여 총 두 그룹으로 나눈 후 수조에서 분리 사육하면서 14일간 실험을 실시하였다. 수조의 주위환경은 통제하였고, 수조가 있는 실험실의 온도는 일정하게 유지시켰다. 실험 개시일로부터 5일째 되는 날부터 3일간 1× 108 cfu/g 수준으로 비브리오 파라헤몰리티쿠스 균이 오염된 사료를 하루 2회씩 통상적인 사료 급이 방식으로 급이하였다. 비브리오 파라헤몰리티쿠스 균이 오염된 사료 급이 마지막 날부터 비브리오병의 임상증상을 보이는 개체가 두 수조 모두에서 확인되었다. 3일간의 비브리오 파라헤몰리티쿠스 균이 오염된 사료 급이 시행 다음날(시험 개시일로부터 8일째가 되는 날)부터 실험군(박테리오파지 투여군)의 농어들에게는 박테리오파지 Vib-PAP-1을 포함(1× 108 pfu/g)하고 있는 사료를 통상적인 사료 급이 방식에 따라 급이하였다. 반면에 대조군(박테리오파지 미투여군)의 농어들에게는 박테리오파지 Vib-PAP-1이 포함되지 않은 동일 조성의 사료를 동일한 방식으로 급이하였다. 시험 개시일로부터 8일째가 되는 날부터는 매일 모든 시험동물들을 대상으로 비브리오병 발생 상태를 조사하였다. 비브리오병 발생 상태 조사는 체색 흑화지수를 측정하는 방식으로 실시하였다. 체색 흑화지수 측정은 통상 사용되는 Dark Coloration(DC) score(정상: 0, 연한 흑화: 1, 진한 흑화: 2)를 측정하는 방식으로 실시하였다.
시험 결과는 표 3과 같았다.
체색 흑화지수 측정 결과 (평균치)
날짜 D8 D9 D10 D11 D12 D13 D14
대조군(박테리오파지 미투여) 0.97 1.03 1.10 1.17 1.17 1.23 1.27
실험군(박테리오파지 투여) 1.00 0.93 0.87 0.77 0.43 0.20 0.13
이 결과로부터 본 발명의 박테리오파지 Vib-PAP-1이 비브리오 파라헤몰리티쿠스 균을 원인으로 하는 감염 질환의 처치에도 매우 효과적이라는 것을 확인할 수 있었다.
실시예 7: 사료첨가제 및 사료의 제조
박테리오파지 Vib-PAP-1 액을 이용하여 사료첨가제 1 g당 1× 108 pfu의 박테리오파지 Vib-PAP-1이 포함되도록 사료첨가제를 제조하였다. 사료첨가제의 제조 방법은 박테리오파지 액에 말토덱스트린을 첨가(50%, w/v)한 다음에 동결건조시켜 제조하였다. 최종적으로 고운 가루 형태로 분쇄하였다. 상기 제조 과정 중의 건조 과정에는 감압 건조, 가온 건조, 상온 건조도 대체 가능하다. 대조 실험을 위해, 박테리오파지가 포함되지 않은 사료첨가제도 박테리오파지 액 대신에 박테리오파지 액의 제조 시에 사용한 완충액(Buffer; 10 mM Tris-HCl, 10 mM MgSO4, 0.1% Gelatin, pH 8.0)을 사용하는 방식으로 제조하였다.
이렇게 제조된 2종의 사료첨가제 각각을 중량비로 250배의 양어용 생사료와 혼합하여 최종 2종의 사료를 제조하였다.
실시예 8: 약욕제의 제조
박테리오파지 Vib-PAP-1 액을 이용하여 약욕제 1 ㎖당 1× 108 pfu의 박테리오파지 Vib-PAP-1이 포함되도록 약욕제를 제조하였다. 약욕제의 제조 방법은 박테리오파지 액 제조 시에 사용하는 완충액 1 ㎖당 1× 108 pfu의 박테리오파지 Vib-PAP-1이 포함되도록 상기 박테리오파지 Vib-PAP-1 액을 첨가하여 잘 혼합해 주는 방식으로 제조하였다. 대조 실험을 위해, 박테리오파지가 포함되지 않은 약욕제로는 박테리오파지 액의 제조 시에 사용한 완충액 자체를 그대로 사용하였다.
이렇게 제조된 2종의 약욕제는 부피비로 1,000배의 물로 희석하여 최종적인 약욕제로 사용하였다.
실시예 9: 농어 사육에서의 사양 효과 확인
실시예 7 및 실시예 8에서 제조한 사료와 약욕제를 이용하여 농어 사육 시의 사양 결과 개선 여부에 대하여 조사해 보았다. 특히 본 조사는 폐사율 관점에서 실시되었다. 총 500 마리의 농어 치어(체중: 5~7 g, 체장: 8~10 cm)를 250 마리씩 한 그룹으로 총 2개 그룹(사료로 급이한 그룹-A; 약욕제로 처치한 그룹-B)으로 나누어 4주간 시험을 실시하였다. 각 그룹은 다시 125마리로 구성되는 소그룹으로 나누어지며 각 소그룹은 박테리오파지 Vib-PAP-1이 적용된 소그룹(소그룹-①) 및 박테리오파지가 적용되지 않은 소그룹(소그룹-②)으로 나누었다. 각 시험 소그룹의 농어는 일정 간격을 두고 위치한 격리된 각각의 수조에서 사육되었다. 각 소그룹은 다음의 표 4와 같이 구분되고 지칭되었다.
농어 사양 시험에서의 소그룹 구분 및 표시
적용 소그룹 구분 및 표시
박테리오파지 Vib-PAP-1 적용 박테리오파지가 적용되지 않음
사료로 급이한 그룹 A-① A-②
약욕제로 처치한 그룹 B-① B-②
사료 급이의 경우에는 실시예 7에서 설명한 사료 제조 방식에 따라 제조한 사료를 표 4의 구분에 따라 통상적인 사료 급이 방식을 따라 급이 하였으며, 약욕제 처치의 경우에는 실시예 8에서 설명한 약욕제 제조 방식에 따라 제조한 약욕제를 표 4의 구분에 따라 통상적인 약욕제 처치 방식에 따라 처치하였다.
시험 결과는 표 5에 제시되어 있다.
농어 사양 시험에서의 폐사율
그룹 폐사개체수/시험개체수 폐사율(%)
A-① 4/125 3.2
A-② 27/125 21.6
B-① 7/125 5.6
B-② 39/125 31.2
이상의 결과로 본 발명에 따라 제조된 사료의 급이와 본 발명에 따른 약욕제 처치가 농어 사육에서의 폐사율 감소에 효과가 있음을 확인할 수 있었다. 이로부터 본 발명의 조성물의 적용이 농어의 사양 결과 개선에 효과적이라는 결론을 내릴 수 있었다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
기탁기관명: KCTC
수탁번호: KCTC 12817BP
수탁일자: 20150520
Figure PCTKR2016012904-appb-I000001

Claims (5)

  1. 비브리오 파라헤몰리티쿠스 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리된 포도비리대 박테리오파지 Vib-PAP-1(수탁번호 KCTC 12817BP).
  2. 제1항의 박테리오파지 Vib-PAP-1을 유효성분으로 포함하는 비브리오 파라헤몰리티쿠스 균의 감염 방지 및 처치용 조성물.
  3. 제2항에 있어서, 상기 조성물은 약욕제 또는 사료첨가제 제조 용도로 사용되는 것을 특징으로 하는 비브리오 파라헤몰리티쿠스 균의 감염 방지 및 처치용 조성물.
  4. 제2항 또는 제3항에 의한 박테리오파지 Vib-PAP-1을 유효성분으로 포함하는 조성물을 사람을 제외한 동물에 투여하는 단계를 포함하는, 비브리오 파라헤몰리티쿠스 균에 의한 감염을 방지 또는 처치하는 방법.
  5. 제4항에 있어서, 상기 조성물이 약욕제 또는 사료첨가제 용도로 사람을 제외한 동물에 투여되는 것을 특징으로 하는 비브리오 파라헤몰리티쿠스 균에 의한 감염을 방지 또는 처치하는 방법.
PCT/KR2016/012904 2015-12-21 2016-11-10 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도 WO2017111304A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/064,698 US10751377B2 (en) 2015-12-21 2016-11-10 Vibrio parahaemolyticus bacteriophage Vib-PAP-1 and use thereof for inhibiting proliferation of vibrio parahaemolyticus
CN201680075421.8A CN108699533B (zh) 2015-12-21 2016-11-10 副溶血弧菌噬菌体Vib-PAP-1及其用于抑制副溶血弧菌增殖的用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0182590 2015-12-21
KR1020150182590A KR101727456B1 (ko) 2015-12-21 2015-12-21 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도

Publications (1)

Publication Number Publication Date
WO2017111304A1 true WO2017111304A1 (ko) 2017-06-29

Family

ID=58702997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/012904 WO2017111304A1 (ko) 2015-12-21 2016-11-10 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도

Country Status (4)

Country Link
US (1) US10751377B2 (ko)
KR (1) KR101727456B1 (ko)
CN (1) CN108699533B (ko)
WO (1) WO2017111304A1 (ko)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101792522B1 (ko) 2016-06-14 2017-11-02 주식회사 인트론바이오테크놀로지 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-5 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
KR20180072055A (ko) * 2016-12-21 2018-06-29 주식회사 인트론바이오테크놀로지 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-4 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
CN110616197B (zh) * 2019-07-02 2023-05-26 上海海洋大学 副溶血性弧菌噬菌体vB_VpaP_MGD2、其用途和新型生物杀菌制剂
KR102379685B1 (ko) * 2020-06-19 2022-03-28 이화여자대학교 산학협력단 비브리오균을 감염하는 신규한 박테리오파지 vpt02 및 이의 용도
CN116732006B (zh) * 2023-08-09 2023-11-17 山东省农业科学院畜牧兽医研究所 副溶血弧菌噬菌体解聚酶及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130021677A (ko) * 2011-08-23 2013-03-06 경희대학교 산학협력단 식중독을 유발하는 살모넬라에 특이적 사멸능을 갖는 박테리오파지
KR101267616B1 (ko) * 2012-01-09 2013-05-31 씨제이제일제당 (주) 신규 분리된 박테리오파지 및 이를 포함하는 항균 조성물
KR20140000541A (ko) * 2012-06-25 2014-01-03 주식회사 씨티씨바이오 신규한 박테리오파지 pvp-1 및 이의 비브리오 파라헤몰리티쿠스 증식 억제 용도
KR20150024115A (ko) * 2013-08-26 2015-03-06 군산대학교산학협력단 바실러스 서브틸러스 및 파지 혼합물을 유효성분으로 함유하는 어류용 프로바이오틱스 조성물

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008027235A1 (en) * 2006-08-25 2008-03-06 University Of New Mexico Methods and compositions for control of disease in aquaculture
CN101798568B (zh) * 2009-04-03 2012-06-20 珠海市晋平科技有限公司 一种分离的副溶血弧菌噬菌体及其在杀菌和防菌中的应用
CN101991611B (zh) * 2010-11-18 2012-09-19 秦生巨 活性生物抗菌物及其生产方法
CN102524131B (zh) * 2012-01-20 2013-07-24 广东海洋大学 一种富集弧菌噬菌体与生物防制宿主菌的方法
US9504721B2 (en) * 2012-06-04 2016-11-29 Ctc Bio, Inc. Bacteriophage and its use for preventing proliferation of pathogenic bacteria
KR101466620B1 (ko) * 2012-06-22 2014-11-28 주식회사 씨티씨바이오 신규한 박테리오파지 및 이의 아에로모나스 히드로필라 증식 억제 용도
CL2012002902A1 (es) * 2012-10-17 2013-05-03 Univ Chile Cepas de bacteriofagos especifica contra bacterias pertenecientes al genero vibrio para la profilaxis y terapia de vibrio anguillarum; y composicion antibacteriana que comprende dicha cepas.
CN104593346B (zh) * 2014-12-18 2017-09-26 中国海洋大学 一种来源于副溶血弧菌噬菌体的内溶素及其应用

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130021677A (ko) * 2011-08-23 2013-03-06 경희대학교 산학협력단 식중독을 유발하는 살모넬라에 특이적 사멸능을 갖는 박테리오파지
KR101267616B1 (ko) * 2012-01-09 2013-05-31 씨제이제일제당 (주) 신규 분리된 박테리오파지 및 이를 포함하는 항균 조성물
KR20140000541A (ko) * 2012-06-25 2014-01-03 주식회사 씨티씨바이오 신규한 박테리오파지 pvp-1 및 이의 비브리오 파라헤몰리티쿠스 증식 억제 용도
KR20150024115A (ko) * 2013-08-26 2015-03-06 군산대학교산학협력단 바실러스 서브틸러스 및 파지 혼합물을 유효성분으로 함유하는 어류용 프로바이오틱스 조성물

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BASTIAS, ROBERTO: "A new group of cosmopolitan bacteriophages induce a carrier state in the pandemic strain of Vibrio parahaemolyticus", ENVIRONMENTAL MICROBIOLOGY, 4 December 2010 (2010-12-04), pages 990 - 1000, XP055599995 *
DATABASE Nucleotide 8 April 2010 (2010-04-08), "Vibrio phage VP93, complete genome", XP055599992, retrieved from NCBI Database accession no. FJ896200.1 *

Also Published As

Publication number Publication date
CN108699533A (zh) 2018-10-23
CN108699533B (zh) 2022-08-23
KR101727456B1 (ko) 2017-04-17
US10751377B2 (en) 2020-08-25
US20180369299A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
WO2016108536A1 (ko) 신규한 클로스트리디움 퍼프린젠스 박테리오파지 Clo-PEP-1 및 이의 클로스트리디움 퍼프린젠스 증식 억제 용도
WO2016108540A1 (ko) 신규한 장병원성 대장균 박테리오파지 Esc-CHP-2 및 이의 장병원성 대장균 증식 억제 용도
WO2016108538A1 (ko) 신규한 장출혈성 대장균 박테리오파지 Esc-CHP-1 및 이의 장출혈성 대장균 증식 억제 용도
WO2016114517A1 (ko) 신규한 락토코커스 가르비에 박테리오파지 Lac-GAP-1 및 이의 락토코커스 가르비에 균 증식 억제 용도
WO2016108541A1 (ko) 신규한 시가독소생산 F18형 대장균 박테리오파지 Esc-COP-1 및 이의 시가독소생산 F18형 대장균 증식 억제 용도
WO2017111306A1 (ko) 신규한 파스튜렐라 멀토시다 박테리오파지 Pas-MUP-1 및 이의 파스튜렐라 멀토시다 균 증식 억제 용도
WO2017111304A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2017111305A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-2 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2016126009A1 (ko) 신규한 에드와드시엘라 타르다 박테리오파지 EdW-TAP-1 및 이의 에드와드시엘라 타르다 균 증식 억제 용도
WO2016108542A1 (ko) 신규한 장침입성 대장균 박테리오파지 Esc-COP-4 및 이의 장침입성 대장균 증식 억제 용도
WO2018101594A1 (ko) 대장균 박테리오파지 Esc-COP-7 및 이의 병원성 대장균 증식 억제 용도
WO2017217726A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-5 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2018155812A1 (ko) 신규한 엔테로코쿠스 패슘 박테리오파지 Ent-FAP-4 및 이의 엔테로코쿠스 패슘 증식 억제 용도
WO2017073916A1 (ko) 신규한 에로모나스 살모니시다 박테리오파지 Aer-SAP-1 및 이의 에로모나스 살모니시다 균 증식 억제 용도
WO2018155814A1 (ko) 신규한 클로스트리디움 퍼프린젠스 박테리오파지 Clo-PEP-2 및 이의 클로스트리디움 퍼프린젠스 균 증식 억제 용도
WO2020013451A1 (ko) 대장균 박테리오파지 esc-cop-14 및 이의 병원성 대장균 증식 억제 용도
WO2018151416A1 (ko) 신규한 녹농균 박테리오파지 Pse-AEP-3 및 이의 녹농균 증식 억제 용도
WO2018151417A1 (ko) 신규한 녹농균 박테리오파지 Pse-AEP-4 및 이의 녹농균 증식 억제 용도
WO2018208001A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-7 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2019235782A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2019235781A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-1 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2017061733A1 (ko) 신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도
WO2018236085A1 (ko) 신규한 에로모나스 하이드로필라 박테리오파지 Aer-HYP-1 및 이의 에로모나스 하이드로필라 균 증식 억제 용도
WO2013035906A1 (ko) 살모넬라 티피무륨 감염을 방지 및 처치하는 방법
WO2019164195A1 (ko) 신규한 에로모나스 하이드로필라 박테리오파지 aer-hyp-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16879171

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: MX/A/2018/007559

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16879171

Country of ref document: EP

Kind code of ref document: A1