WO2017061733A1 - 신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도 - Google Patents

신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도 Download PDF

Info

Publication number
WO2017061733A1
WO2017061733A1 PCT/KR2016/010954 KR2016010954W WO2017061733A1 WO 2017061733 A1 WO2017061733 A1 WO 2017061733A1 KR 2016010954 W KR2016010954 W KR 2016010954W WO 2017061733 A1 WO2017061733 A1 WO 2017061733A1
Authority
WO
WIPO (PCT)
Prior art keywords
streptococcus
bacteriophage
inies
inp
bacteriophages
Prior art date
Application number
PCT/KR2016/010954
Other languages
English (en)
French (fr)
Inventor
윤성준
전수연
권안성
송현민
강상현
Original Assignee
주식회사 인트론바이오테크놀로지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 인트론바이오테크놀로지 filed Critical 주식회사 인트론바이오테크놀로지
Priority to CN201680058769.6A priority Critical patent/CN108431213B/zh
Priority to US15/766,497 priority patent/US10722544B2/en
Publication of WO2017061733A1 publication Critical patent/WO2017061733A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N63/00Biocides, pest repellants or attractants, or plant growth regulators containing microorganisms, viruses, microbial fungi, animals or substances produced by, or obtained from, microorganisms, viruses, microbial fungi or animals, e.g. enzymes or fermentates
    • A01N63/40Viruses, e.g. bacteriophages
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/16Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions
    • A23K10/18Addition of microorganisms or extracts thereof, e.g. single-cell proteins, to feeding-stuff compositions of live microorganisms
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/158Fatty acids; Fats; Products containing oils or fats
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/163Sugars; Polysaccharides
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/20Inorganic substances, e.g. oligoelements
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/99Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from microorganisms other than algae or fungi, e.g. protozoa or bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/04Antibacterial agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10321Viruses as such, e.g. new isolates, mutants or their genomic sequences
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10332Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2795/00Bacteriophages
    • C12N2795/00011Details
    • C12N2795/10011Details dsDNA Bacteriophages
    • C12N2795/10311Siphoviridae
    • C12N2795/10371Demonstrated in vivo effect

Definitions

  • the present invention relates to a method for preventing and treating infection of Streptococcus inies using a composition comprising the bacteriophage isolated from nature capable of killing Streptococcus inies and killing Streptococcus inies and an active ingredient.
  • Sypovirida bacteriophage Str-INP-1 isolated from nature which has a genome represented by SEQ ID NO: 1 having the ability to specifically kill Streptococcus inies. No. KCTC 12687BP), and a method for preventing and post-infection treatment of Streptococcus inies using a composition comprising the bacteriophage as an active ingredient.
  • Streptococcus iniae known as the causative agent of streptococcosis, is a Gram-positive cocci belonging to the genus Streptococcus and is known as a pathogen that causes streptococcus in farmed fish and causes severe economic losses.
  • Streptococcus inies is a beta-hemolytic bacterium that completely dissolves red blood cells, and is highly pathogenic to freshwater fish as well as marine fish and photo-inflammatory fish.
  • Streptococcus inies is a deadly bacterium that kills about 30-50% of infected fish at the time of infection.
  • Streptococcus inies are isolated as infectious bacteria from freshwater and marine fish in Korea, Japan, USA, Israel, Australia, etc., and are known to cause diseases in flounder, sweetfish, tilapia, rainbow trout, defense, sardines, and domes.
  • Streptococcosis caused by Streptococcus inertia infection can occur regardless of the size of the larvae from larvae to adult fish.
  • the development of the plan is urgently needed.
  • safety as a food of aquatic products has become a major social concern in recent years, it is more preferable to be environmentally friendly.
  • Vaccine as a means to control the disease of aquaculture fish has been in full swing, but the type of vaccine has not yet diversified, so the variety of disease is diversified, and in order to cope with the increase in the incidence of mixed diseases, other diseases are combined with the vaccine. Control means must be developed in combination.
  • Bacteriophages are tiny microorganisms that infect bacteria, often called phage. Bacteriophages have the ability to infect bacteria and multiply inside bacterial cells, and kill off bacteria by destroying the cell wall of the host bacteria when the progeny bacteriophages come out of the bacteria. Bacteriophage bacterial infections are highly specific, so there are only a few types of bacteriophages that can infect certain bacteria.
  • certain bacteriophages can infect only a specific category of bacteria, so that certain bacteriophages kill only certain bacteria and do not affect other bacteria.
  • the bacterial specificity of these bacteriophages provides antimicrobial effects only to the target bacteria and does not affect the environment or flora in fish.
  • Conventional antibiotics usually affect several kinds of bacteria at the same time. Bacteriophage only works for certain bacteria, so the use of bacteriophage does not cause normal bacterial total disturbances. Therefore, its use is very safe compared to the use of antibiotics, and the likelihood of side effects is relatively low.
  • the bacteriophage was discovered in 1915 by a British bacteriologist Twort, who studied the phenomenon of colonization of the micrococcus colony transparently by something.
  • French bacteriologist d'Herelle discovered that some of the filtrates of foreign patients had a function of dissolving Shigella disenteriae , and through this study, they independently discovered bacteriophages and consumed them. In the sense, they named it bacteriophage. Since then, bacteriophages have been found for many pathogenic bacteria such as dysentery, typhoid, and cholera.
  • bacteriophages Because of its special ability to kill bacteria, bacteriophages have been expected to be an effective way to combat bacterial infections since their discovery and many studies have been done. However, after the discovery of penicillin by Flemming, the prevalence of antibiotics has led to studies of bacteriophages only limited to some Eastern European countries and the former Soviet Union. However, since 2000, due to the increase of antibiotic-resistant bacteria, the limit of existing antibiotics appears, and as the possibility of developing an alternative to the existing antibiotics is highlighted, bacteriophage is attracting attention as an anti-bacterial agent.
  • bacteriophages have a very high specificity for bacteria. Due to this specificity, bacteriophages often exert an antimicrobial effect against only some strains, even if they belong to the same species. In addition, the antibacterial activity of the bacteriophages may be different depending on the bacterial strain. For this reason, it is necessary to secure various kinds of useful bacteriophages in order to secure effective control methods for specific kinds of bacteria. In order to develop effective bacteriophage in response to Streptococcus inies, of course, it is necessary to secure various useful bacteriophages (a variety of bacteriophages that can provide antimicrobial effects against Streptococcus inies) and further secure them. Among the various useful bacteriophages, selection of bacteriophages that are comparatively superior in terms of strength or antimicrobial range is also required.
  • the present inventors have developed a composition that can be used to prevent or treat infection of Streptococcus inies using bacteriophages isolated from nature capable of selectively killing Streptococcus inies. After trying to develop a method for preventing or treating the infection of Streptococcus inies using the composition, it is possible to isolate the bacteriophage suitable for this purpose from nature and to distinguish it from other bacteriophages. After securing the gene sequence, the present invention was completed by developing a composition using the bacteriophage as an active ingredient, and then confirming that the composition can be effectively used for preventing and treating Streptococcus inies.
  • an object of the present invention is Siphoviridae bacteriophage Str-INP- isolated from nature characterized by having a genome represented by SEQ ID NO: 1 having the ability to specifically kill Streptococcus inies. 1 (Accession No. KCTC 12687BP).
  • Another object of the present invention is to prevent the infection of Streptococcus inies comprising the isolated bacteriophage Str-INP-1 as an active ingredient that can kill Streptococcus inies and kill Streptococcus inies. It is to provide a usable composition and a method for preventing infection of Streptococcus inies using the composition.
  • Another object of the present invention is to treat the infection of Streptococcus inies comprising the isolated bacteriophage Str-INP-1 as an active ingredient capable of infecting Streptococcus inies and killing Streptococcus inies. It is to provide a composition that can be utilized and a method for treating infection of Streptococcus inies using the composition.
  • Still another object of the present invention is to provide a bath for preventing and treating Streptococcus inae fungi using the compositions.
  • Still another object of the present invention is to provide a feed additive for the purpose of providing a specification effect through the prevention and treatment of Streptococcus inies using the compositions.
  • Sypovirida bacteriophage Str-INP-1 isolated from nature, characterized by having a genome represented by SEQ ID NO: 1 having the ability to specifically kill Streptococcus inies ), And a method for preventing and treating infection of Streptococcus inies using the composition comprising the same as an active ingredient.
  • Bacteriophage Str-INP-1 was isolated by the inventors and deposited in the Korea Institute of Biotechnology and Microbial Resources Center on October 1, 2014 (Accession No. KCTC 12687BP).
  • the present invention also provides a bath and feed additive comprising bacteriophage Str-INP-1 as an active ingredient that can be used to prevent or treat infection of Streptococcus inies.
  • Bacteriophage Str-INP-1 included in the composition of the present invention effectively kills Streptococcus inies and thus has an effect on prevention (infection prevention) or treatment (infection treatment) of streptococcus caused by Streptococcus inies. Indicates. Therefore, the composition of the present invention can be used for the purpose of prevention and treatment of streptococcosis caused by Streptococcus inies.
  • treatment refers to (1) inhibition of streptococcosis caused by Streptococcus inies; And (2) alleviation of streptococcosis caused by Streptococcus inies.
  • isolated refers to the separation of bacteriophages from the natural state by using various experimental techniques, and to securing characteristics that can be distinguished from other bacteriophages. This includes growing the bacteriophages for industrial use.
  • compositions of the present invention are those commonly used in the formulation, lactose, dextrose, sucrose, sorbitol, mannitol, starch, acacia rubber, calcium phosphate, alginate, gelatin, calcium silicate , Microcrystalline cellulose, polyvinylpyrrolidone, cellulose, water, syrup, methyl cellulose, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate, mineral oil, and the like, but are not limited thereto. no.
  • the composition of the present invention may further include lubricants, wetting agents, sweeteners, flavoring agents, emulsifiers, suspending agents, preservatives and the like in addition to the above components.
  • the composition of the present invention includes bacteriophage Str-INP-1 as an active ingredient.
  • the bacteriophage Str-INP-1 included at this time is included as 1 ⁇ 10 1 pfu / ml 1 ⁇ 10 30 pfu / ml or 1 ⁇ 10 1 pfu / g to 1 ⁇ 10 30 pfu / g, preferably 1 ⁇ 10 4 pfu / ml to 1 ⁇ 10 15 pfu / ml or 1 ⁇ 10 4 pfu / g to 1 ⁇ 10 15 pfu / g.
  • compositions of the present invention may be prepared in unit dosage form by being formulated with pharmaceutically acceptable carriers and / or excipients, according to methods which may be readily practiced by those skilled in the art. It may also be prepared by incorporation into a multi-dose container.
  • the formulations here may be in the form of solutions, suspensions or emulsions in oils or aqueous media or in the form of extracts, powders, granules, tablets or capsules, and may further comprise dispersants or stabilizers.
  • composition of the present invention may be implemented as a bath and feed additives.
  • Bacteriophages that can provide antimicrobial activity against other bacterial species can be added to the composition of the present invention in order to increase the efficiency in this application.
  • other types of bacteriophages having antimicrobial activity against Streptococcus inies may also be added. Although bacteriophages that have antimicrobial activity against Streptococcus inies are different in terms of strength and antimicrobial range of antimicrobial activity, a proper combination of these can maximize the effect.
  • the present invention can also provide the advantage of being very natural because it is used as an active ingredient of the composition to separate the bacteriophage already present in nature.
  • the antibacterial effects of bacteriophages against individual bacterial strains in terms of their strength and antimicrobial range (strains belonging to Streptococcus inies) Range of activity
  • bacteriophages can exert antimicrobial activity against some bacterial strains belonging to the same bacterial species, ie susceptibility to bacteriophage depending on the individual bacterial strains, even if they belong to the same bacterial species. Since there is a difference in terms of the present invention can provide a differential antimicrobial effect compared to other bacteriophages having a bacterium for Streptococcus bacteria. This makes a big difference in the effectiveness of industrial sites.
  • Figure 2 is an experimental result showing the killing ability against Streptococcus inies of bacteriophage Str-INP-1.
  • the transparent part is the lysate plaque formed by lysis of the bacteria under test.
  • Streptococcus inies bacteria used for bacteriophage separation have been previously identified by the present inventors and identified as Streptococcus inies bacteria (Identification).
  • Streptococcus I mean, THB (T odd H ewitt roth B) inoculated with the bacteria as a 1/1000 ratio in the collected sample medium (Heart Infusion, 3.1 g / L; Peptone, 20 g / L Dextrose, 2 g / L; sodium chloride, 2 g / L; disodium phosphate, 0.4 g / L; sodium carbonate, 2.5 g / L) were added together and shaken at 30 ° C. for 3-4 hours. After incubation, the supernatant was recovered by centrifugation at 8,000 rpm for 20 minutes.
  • THB T odd H ewitt roth B
  • the recovered supernatant was inoculated with Streptococcus inies at a rate of 1/1000 and then shaken again at 30 ° C. for 3-4 hours.
  • the process was repeated five times in order to increase the number of bacteriophages (Titer). After five repetitions, the culture was centrifuged at 8,000 rpm for 20 minutes. After centrifugation, the recovered supernatant was filtered using a 0.45 ⁇ m filter. It was examined whether there was a bacteriophage capable of killing Streptococcus inies by a conventional spot assay using the obtained filtrate.
  • the drip experiment was conducted as follows. Streptococcus inies were inoculated in THB medium at a rate of 1/1000 and shaken at 30 ° C. for one night. 3 ml of Streptococcus inies prepared in this manner (OD 600 1.5) were plated with THA ( T odd H ewitt A gar) plate medium (heart infusion, 3.1 g / L; peptone, 20 g / L; dextrose, 2 g / L; sodium chloride, 2 g / L; disodium phosphate, 0.4 g / L; sodium carbonate, 2.5 g / L; agar, 15 g / L).
  • THA T odd H ewitt A gar
  • the plated flat medium was left in a clean bench for about 30 minutes to allow the smear to dry. After drying, 10 ⁇ l of the filtrate prepared above was instilled onto a plate medium plated with Streptococcus inies. It was left to dry for 30 minutes. After drying, the plated medium was incubated at 30 ° C. for one day, and then the presence of a clear zone at the location of the filtrate was examined. In the case of the filtrate in which the transparent ring is formed, it can be determined that the Streptococcus nip contains bacteriophages capable of killing bacteria. Through this investigation, it was possible to obtain a filtrate including bacteriophages having the ability to kill Streptococcus inies.
  • Separation of pure bacteriophages was carried out using a filtrate confirmed the presence of bacteriophages having killing ability against Streptococcus inies. Separation of pure bacteriophage was carried out using a conventional Plaque assay. To explain this in detail, one of the lytic plaques formed in the lytic plaque assay was recovered using a sterile tip and then added to the Streptococcus inies culture medium and incubated together at 30 ° C. for 4-5 hours. After incubation, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes.
  • the culture medium was added to Streptococcus inies at a volume of 50/50 and then incubated at 30 ° C for 4-5 hours.
  • this procedure was performed at least five times, and finally, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes.
  • lysis plate analysis was performed again. Since the separation of the pure bacteriophage is not usually achieved in one step of the above process, the previous step was repeated again using the lysate formed. This procedure was carried out at least five times to obtain a solution containing pure bacteriophage.
  • the solution containing pure bacteriophage identified in this way was subjected to the following purification process.
  • the culture medium was added to Streptococcus ini in a volume of 1/50 of the total volume of the solution containing the pure bacteriophage, and then incubated again for 4-5 hours. After incubation, the supernatant was obtained by centrifugation at 8,000 rpm for 20 minutes. This procedure was repeated a total of five times to obtain a solution containing a sufficient number of bacteriophages.
  • the supernatant obtained by the final centrifugation was filtered using a 0.45 ⁇ m filter followed by a conventional polyethylene glycol (PEG) precipitation process.
  • PEG polyethylene glycol
  • PEG and NaCl were added to 100 ml of the filtrate to be 10% PEG 8000 / 0.5 M NaCl, and then allowed to stand at 4 ° C. for 2-3 hours, followed by centrifugation at 8,000 rpm for 30 minutes to obtain a bacteriophage precipitate.
  • the bacteriophage precipitate thus obtained was suspended in 5 ml of buffer (Buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0). This is called bacteriophage suspension or bacteriophage solution.
  • Example 2 bacteriophage Str - INP -1 genome isolation and sequencing
  • the genome of the bacteriophage Str-INP-1 was isolated as follows. Bacteriophage suspension obtained in the same manner as in Example 1 was used for dielectric separation. First, in order to remove DNA and RNA of Streptococcus inies that may be included in the suspension, 200 U of each of DNase I and RNase A was added to 10 ml of bacteriophage suspension, and then left at 37 ° C. for 30 minutes. In order to remove the activity of DNase I and RNase A after 30 minutes, 500 ⁇ l of 0.5 M ethylenediaminetetraacetic acid (EDTA) was added and allowed to stand for 10 minutes. The mixture was left at 65 ° C.
  • EDTA ethylenediaminetetraacetic acid
  • the genome thus obtained was subjected to genome sequencing of bacteriophage Str-INP-1 through Next generation sequencing analysis of Roche 454 GS Junior. Finally, the analyzed bacteriophage Str-INP-1 genome has a size of 33,269 bp and the entire genome sequence is set forth in SEQ ID NO: 1.
  • the bacteriophage Str-INP-1 could be judged as a novel bacteriophage that has not been reported previously. With this fact, it is judged that Bacteriophage Str-INP-1 can provide different antibacterial effect from other bacteriophages that have been reported from the fact that different kinds of bacteriophages generally provide different strengths and ranges of antibacterial activity.
  • the killing ability of the Streptococcus inies of the isolated bacteriophage Str-INP-1 was investigated.
  • the killing ability was investigated by the drop test in the same manner as in Example 1 to determine the production of transparent rings.
  • the Streptococcus inies which were used for the killing ability investigation were 43 species identified by the present inventors and identified as Streptococcus inies.
  • Bacteriophage Str-INP-1 had the ability to kill 36 of 43 Streptococcus inies. Representative experimental results are shown in FIG. 2.
  • the bacteriophage Str-INP-1 has a specific killing ability against Streptococcus inies, and it can be confirmed that it can exert an antimicrobial effect against a number of Streptococcus inies.
  • the bacteriophage Str-INP-1 can be used as an active ingredient of a composition for preventing and treating infections of Streptococcus inies.
  • Example 4 bacteriophage Str - INP -1's Streptococcus Inie For the prevention of bacterial infection Experimental Example
  • the bacteriophage Str-INP-1 of the present invention was found to be capable of inhibiting the growth of Streptococcus inies as well as killing them. From this, the bacteriophage Str-INP-1 was found to be Streptococcus inies. It can be concluded that it can be used as an active ingredient of a composition for the purpose of preventing infection of.
  • Streptococcus inies The treatment effect of bacteriophage Str-INP-1 in striatococci caused by Streptococcus inies was investigated.
  • Four-month-old halibut fry (6-9 cm) was divided into two groups, which were divided into two groups, and then separated and bred in a tank for 14 days.
  • the environment of the bath was controlled and the temperature of the laboratory containing the bath was kept constant.
  • Feed containing Streptococcus inies at a level of 1 ⁇ 10 8 cfu / g for 3 days from the 5th day from the start of the experiment was fed twice a day by a conventional feed.
  • individuals with clinical symptoms of streptococcus were identified from the last day of feed containing Streptococcus inies.
  • Body color blackening index measurement results (average) date D8 D9 D10 D11 D12 D13 D14 Control group (not administered bacteriophage) 1.04 1.40 1.64 1.72 1.68 1.36 1.16 Experimental group (bacteriophage administration) 1.00 0.84 0.32 0.20 0.12 0.08 0.04
  • the feed additive was prepared using bacteriophage Str-INP-1 solution to include 1 ⁇ 10 8 pfu of bacteriophage Str-INP-1 per g of feed additive.
  • the method of preparing a feed additive was prepared by adding maltodextrin to the bacteriophage solution (40%, w / v) and adding trihalose to a total of 10%, followed by lyophilization. Finally, it was ground to a fine powder form.
  • the drying process in the manufacturing process may be replaced by reduced pressure drying, warming drying, room temperature drying.
  • a feed additive without bacteriophage was used in place of the bacteriophage solution, using the buffer used to prepare the bacteriophage solution (Buffer; 10 mM Tris-HCl, 10 mM MgSO 4 , 0.1% Gelatin, pH 8.0). It was prepared by.
  • Each of the two feed additives thus prepared was mixed with 250 times the fish feed for fish in a weight ratio to prepare the final two feeds.
  • a bacteriophage Str-INP-1 solution was used to prepare a bath so that 1 ⁇ 10 8 pfu of bacteriophage Str-INP-1 per ml of the bath detergent was included.
  • the method of preparing a bath detergent is prepared by adding the mixed bacteriophage Str-INP-1 solution so that 1 ⁇ 10 8 pfu of bacteriophage Str-INP-1 is included per 1 ml of the buffer used to prepare the bacteriophage solution. It was.
  • the buffer itself used in the preparation of the bacteriophage solution was used as it is.
  • the two types of baths thus prepared were diluted with 1,000 times water by volume and used as the final bath.
  • Example 6 and Example 7 were investigated whether the improvement of the specifications results when flounder breeding.
  • the survey was conducted in terms of mortality.
  • a total of 600 halibuts, 300 were divided into two groups (group-A fed feed; group-B treated with a bath) for 4 weeks.
  • Each group was divided into 150 subgroups, and each subgroup was divided into a small group (small group-1) to which the bacteriophage Str-INP-1 was applied and a small group (small group-2) to which the bacteriophage was not applied.
  • the flounder was a four-month-old flounder fry, and flounders from each subgroup were raised in separate tanks at regular intervals. Each subgroup is divided and referred to as Table 3 below.
  • the feed prepared according to the feed preparation method described in Example 6 was fed according to the conventional feed feeding method according to the classification of Table 3, and in the case of the treatment of the bathing agent, the bathing agent described in Example 7
  • the bath preparation prepared according to the preparation method was treated according to the conventional bath treatment method according to the classification of Table 3.
  • the test results are shown in Table 4.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Polymers & Plastics (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Animal Husbandry (AREA)
  • Food Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Physiology (AREA)
  • Birds (AREA)
  • Molecular Biology (AREA)
  • Epidemiology (AREA)
  • Immunology (AREA)
  • General Engineering & Computer Science (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Insects & Arthropods (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Environmental Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Dentistry (AREA)
  • Plant Pathology (AREA)

Abstract

본 발명은 스트렙토코커스 이니에 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 시포비리대 박테리오파지 Str-INP-1(수탁번호 KCTC 12687BP), 및 이를 유효성분으로 포함하는 조성물을 이용한 스트렙토코커스 이니에 균의 감염을 방지 및 처치하는 방법에 관한 것이다.

Description

신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도
본 발명은 스트렙토코커스 이니에 균에 감염하여 스트렙토코커스 이니에 균을 사멸시킬 수 있는 자연으로부터 분리한 박테리오파지 및 이를 유효성분으로 포함한 조성물을 이용한 스트렙토코커스 이니에 균의 감염을 방지 및 처치하는 방법에 관한 것으로, 더욱 상세하게는 스트렙토코커스 이니에 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 시포비리대 박테리오파지 Str-INP-1(수탁번호 KCTC 12687BP), 및 상기 박테리오파지를 유효성분으로 포함하는 조성물을 이용한 스트렙토코커스 이니에 균의 감염 방지 및 감염 후 처치 방법에 관한 것이다.
연쇄구균증(Streptococcosis)의 원인균으로 알려진 스트렙토코커스 이니에(Streptococcus iniae) 균은 그람 양성 구균으로 스트렙토코커스 속(Genus)에 속하며 양식어류에 연쇄구균증을 야기하여 심각한 경제적 손실을 입히는 병원체로 알려져 있다. 또한, 스트렙토코커스 이니에 균은 적혈구를 완전히 용해시키는 베타 용혈성(Beta-hemolytic) 세균으로 해양어 및 광염성 어류뿐만 아니라 담수어에 대해서도 매우 병원성이 높다. 특히, 스트렙토코커스 이니에 균은 감염 발병 시에 감염 어류의 약 30∼50%를 사망시킬 정도로 치명적인 세균이다. 스트렙토코커스 이니에 균은 한국, 일본, 미국, 이스라엘, 오스트레일리아 등지의 담수 및 해산어에서 감염균으로 분리되는데, 주로 넙치, 은어, 틸라피아, 무지개송어, 방어, 정어리, 돔류 등에서 질병을 일으키는 것으로 알려져 있다.
스트렙토코커스 이니에 균에 감염된 어류는 일반적으로 힘없이 떠다니거나 수조바닥에 가만히 붙어 정지해 있으며 선회운동을 하기도 한다. 또한, 외관적으로는 안구돌출이나 아가미 뚜껑 안쪽에의 점상출혈이 흔히 관찰되며, 가슴 또는 배지느러미에서의 울혈이 관찰되기도 한다. 스트렙토코커스 이니에 균에 감염된 어류의 해부 소견으로는 뇌 손상, 체색흑화, 주둥이 발적, 안구돌출, 각막 백탁, 간의 울혈, 복수, 탈장 등이 주로 보고 된다.
스트렙토코커스 이니에 균 감염에 의한 연쇄구균증은 치어에서 성어까지 개체의 크기에 상관없이 발병하고 이에 따라 초래하는 경제적 피해가 매우 크기 때문에 스트렙토코커스 이니에 균 감염을 예방하고 나아가 감염 처치에까지 활용될 수 있는 방안의 개발이 절실한 실정이다. 특히, 최근 수산물의 식품으로서의 안전성이 주요 사회적 관심사가 되고 있기 때문에 친환경적인 방안이면 더욱 바람직하다.
어류 양식 산업은 부족한 식량자원을 손쉽게 얻을 수 있다는 점에서 해마다 급속한 성장을 거듭하고 있다. 그러나 이러한 양식 산업의 성장이 증가 할수록 사료를 통한 주변 환경의 오염 역시 증가하고 있고 특히 사료에 포함되어 있는 많은 양의 항생제가 광범위하게 사용됨으로써 오히려 인류의 건강을 위협하기도 한다. 넙치를 비롯한 어류 양식장에서는 세균성 질병의 치료 방법으로서 과다하게 항균 화학요법제인 항생제가 사용되고 있고, 이러한 결과로 다양한 약제에 대한 내성을 지닌 균이 빈번하게 나타나고 있어서, 어류 양식 어가에 상당한 경제적 손실을 입히고 있는 실정이다. 또한, 이러한 항생제의 과다한 사용은 국민 건강을 위협하고 나아가서는 양식 어류의 소비 심리를 위축시켜서 전반적인 수산업의 경쟁력 저하를 야기할 것이다. 따라서 세균에 의한 어류 질병을 방지할 수 있고 또한 이들의 감염을 효과적으로 처치할 수 있는 방법의 개발이 절실하다 할 수 있다.
최근에는 양식 어류의 질병제어를 위한 수단으로 백신(Vaccine) 개발 등이 본격화 되고 있으나 아직 백신종류가 다양화되지 못해 질병종류가 다양화 되고 혼합질병 발생 증가에 따른 대처를 위해서는 백신과 함께 또 다른 질병제어 수단이 복합적으로 개발되어야 한다.
최근 세균성 질환의 대처 방안으로 박테리오파지(Bacteriophage)의 활용이 크게 주목을 받고 있다. 특히 자연친화적 방식의 선호로 인하여 박테리오파지에 대한 관심은 어느 때보다 높다고 할 수 있다. 박테리오파지는 세균에 감염하는 아주 작은 미생물로서 보통 파지(Phage)라고 줄여서 부르기도 한다. 박테리오파지는 박테리아에 감염(Infection)한 후 박테리아 세포 내부에서 증식을 하고, 증식 후 자손 박테리오파지들이 박테리아 밖으로 나올 때 숙주인 박테리아의 세포벽을 파괴하는 방식으로 박테리아를 사멸시키는 능력을 갖고 있다. 박테리오파지의 박테리아 감염 방식은 매우 특이성이 높아서 특정 박테리아에 감염할 수 있는 박테리오파지의 종류는 일부로 한정된다. 즉, 특정 박테리오파지는 특정 범주의 박테리아에만 감염할 수 있고 이로 인하여 특정 박테리오파지는 특정 박테리아만을 사멸시키며 다른 박테리아에는 영향을 주지 않는다. 이러한 박테리오파지의 세균 특이성은 목적으로 하는 세균에 대해서만 항균효과를 제공하고 환경이나 어류 내의 상재균들에는 영향을 초래하지 않는다. 통상적으로 기존의 항생제들은 여러 종류의 세균들에 대하여 동시에 영향을 끼쳤다. 박테리오파지는 특정 세균에 대해서만 작동하므로 박테리오파지 사용에 의해서 체내 정상균총 교란 등이 발생하지 않는다. 따라서 그 사용이 항생제 사용에 비교하여 매우 안전하고 그 만큼 부작용 초래 가능성이 상대적으로 크게 낮다.
박테리오파지는 1915년 영국의 세균학자 Twort가 포도상구균(Micrococcus) 집락이 어떤 것에 의해 투명하게 녹는 현상에 대한 연구를 수행하면서 발견되었다. 또한, 1917년에는 프랑스의 세균학자 d'Herelle이 이질환자 변의 여과액 중에 적리균(Shigella disenteriae)을 녹이는 작용을 가진 것이 있다는 것을 발견하고 이에 대한 연구를 통해 독립적으로 박테리오파지를 발견하였으며, 세균을 잡아먹는다는 뜻에서 박테리오파지라고 명명하였다. 이후 이질균, 장티푸스균, 콜레라균 등 여러 병원성 박테리아에 대한 박테리오파지가 계속적으로 발견되었다.
박테리아를 사멸시킬 수 있는 특별한 능력으로 인하여 박테리오파지는 발견 이후 박테리아 감염에 대응하는 효과적 방안으로 기대를 모았으며 관련하여 많은 연구들이 있었다. 그러나 Flemming에 의해 페니실린이 발견된 이후, 항생제의 보급이 일반화되면서 박테리오파지에 대한 연구는 일부 동유럽 국가들 및 구소련에 한정되어서만 명맥이 유지되었다. 그런데 2000년 이후에 항생제 내성균의 증가로 인하여 기존 항생제의 한계성이 나타나고, 기존 항생제의 대체 물질로의 개발 가능성이 부각되면서 다시 박테리오파지가 항-박테리아제로 주목을 받고 있다.
특히 최근 항생제 사용에 대한 정부 차원의 규제가 전 세계적으로 강화됨에 따라 박테리오파지에 대한 관심이 더욱 높아지고 있으며 산업적 활용 사례도 증가하고 있다.
앞에서 설명했듯이 박테리오파지는 세균에 대한 특이성이 매우 높다. 이러한 특이성으로 인하여 박테리오파지는 동일 종류에 속하는 세균들이라 할지라도 그 일부 주 (strain)에 대해서만 항균효과를 발휘하는 경우가 많다. 또한 대상 세균주에 따라 발휘되는 박테리오파지의 항균력 세기 자체도 다를 수 있다. 이러한 이유로 특정 종류의 세균에 대하여 효과적 제어법을 확보하려면 다양한 종류의 유용 박테리오파지의 확보가 필요하다. 스트렙토코커스 이니에 균에 대응하여 효과적인 박테리오파지 활용법을 개발하기 위해서도 당연히 다양한 유용 박테리오파지들(스트렙토코커스 이니에 균에 대하여 항균효과를 제공할 수 있는 여러 종류의 박테리오파지들)의 확보가 필요하고, 더 나아가 확보한 다양한 유용 박테리오파지들 중에서 항균력의 세기나 항균범위 측면에서 비교우위에 있는 박테리오파지의 선발도 필요하다.
이에, 본 발명자들은 스트렙토코커스 이니에 균을 선택적으로 사멸시킬 수 있는 자연으로부터 분리된 박테리오파지를 이용하여 스트렙토코커스 이니에 균의 감염을 방지 또는 처치하는 데에 활용될 수 있는 조성물을 개발하고, 또 이 조성물을 이용하여 스트렙토코커스 이니에 균의 감염을 방지 또는 처치하는 방법을 개발하고자 노력한 끝에, 이에 적합한 박테리오파지를 자연으로부터 분리하고 이 분리된 박테리오파지를 타 박테리오파지와 구별하여 특정지을 수 있도록 유전체(Genome)의 유전자 서열을 확보한 후 상기 박테리오파지를 유효성분으로 한 조성물을 개발한 다음 이 조성물이 스트렙토코커스 이니에 균의 감염 방지 및 처치에 효과적으로 활용될 수 있음을 확인함으로써 본 발명을 완성하였다.
따라서 본 발명의 목적은 스트렙토코커스 이니에 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 시포비리대(Siphoviridae) 박테리오파지 Str-INP-1(수탁번호 KCTC 12687BP)을 제공하는 것이다.
본 발명의 또 다른 목적은 스트렙토코커스 이니에 균에 감염하여 스트렙토코커스 이니에 균을 사멸시킬 수 있는 분리 박테리오파지 Str-INP-1을 유효성분으로 포함하는 스트렙토코커스 이니에 균의 감염을 방지하는 데에 활용 가능한 조성물 및 이 조성물을 이용한 스트렙토코커스 이니에 균의 감염 방지 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 스트렙토코커스 이니에 균에 감염하여 스트렙토코커스 이니에 균을 사멸시킬 수 있는 분리 박테리오파지 Str-INP-1을 유효성분으로 포함하는 스트렙토코커스 이니에 균의 감염을 처치하는 데에 활용 가능한 조성물 및 이 조성물을 이용한 스트렙토코커스 이니에 균의 감염 처치 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 스트렙토코커스 이니에 균 감염 방지 및 처치 목적의 약욕제를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물들을 이용한 스트렙토코커스 이니에 균 감염 방지 및 처치를 통한 사양 효과 제공 목적의 사료첨가제를 제공하는 것이다.
본 발명은 스트렙토코커스 이니에 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는 자연으로부터 분리한 시포비리대 박테리오파지 Str-INP-1(수탁번호 KCTC 12687BP), 및 이를 유효성분으로 포함하는 조성물을 이용한 스트렙토코커스 이니에 균의 감염 방지 및 처치 방법을 제공한다.
박테리오파지 Str-INP-1은 본 발명자들에 의해 분리된 후 2014년 10월 1일자로 한국생명공학연구원 미생물자원센터에 기탁되었다(수탁번호 KCTC 12687BP).
또한, 본 발명은 스트렙토코커스 이니에 균의 감염을 방지 또는 처치하는 데에 활용될 수 있는 박테리오파지 Str-INP-1을 유효성분으로 포함하는 약욕제 및 사료첨가제를 제공한다.
본 발명의 조성물에 포함되는 박테리오파지 Str-INP-1은 스트렙토코커스 이니에 균을 효과적으로 사멸시키므로 스트렙토코커스 이니에 균에 의해 유발되는 연쇄구균증의 예방(감염 방지)이나 치료(감염 처치)에 효과를 나타낸다. 따라서 본 발명의 조성물은 스트렙토코커스 이니에 균에 의해 유발되는 연쇄구균증에 대한 예방 및 치료 목적으로 활용될 수 있다.
본 명세서에서 사용된 “처치” 또는 “치료”라는 용어는 (1) 스트렙토코커스 이니에 균에 의해 유발된 연쇄구균증의 억제; 및 (2) 스트렙토코커스 이니에 균에 의해 유발된 연쇄구균증의 경감을 의미한다.
본 명세서의 “분리” 또는 “분리된”은 자연 상태로부터 여러 실험 기법을 활용하여 박테리오파지를 분리하는 것과 타 박테리오파지와 구별하여 특정지을 수 있는 특징들을 확보하는 일을 지칭하며, 이에 더하여 생물공학기술로 박테리오파지를 산업적으로 활용할 수 있게끔 증식시키는 것도 포함한다.
본 발명의 조성물에 포함되는 약제학적으로 허용되는 담체는 제제 시에 통상적으로 이용되는 것으로서, 락토오스, 덱스트로오스, 수크로오스, 솔비톨, 만니톨, 전분, 아카시아 고무, 인산칼슘, 알기네이트, 젤라틴, 규산칼슘, 미세결정성 셀룰로오스, 폴리비닐피롤리돈, 셀룰로오스, 물, 시럽, 메틸 셀룰로스, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 활석, 스테아르산 마그네슘 및 미네랄 오일 등을 포함하나, 이에 한정되는 것은 아니다. 본 발명의 조성물은 상기 성분들 이외에 윤활제, 습윤제, 감미제, 향미제, 유화제, 현탁제, 보존제 등을 추가로 포함할 수 있다.
본 발명의 조성물에는 박테리오파지 Str-INP-1이 유효성분으로 포함된다. 이때 포함되는 박테리오파지 Str-INP-1은 1× 101 pfu/㎖ 내지 1× 1030 pfu/㎖ 또는 1× 101 pfu/g 내지 1× 1030 pfu/g로 포함되며, 바람직하게는 1× 104 pfu/㎖ 내지 1× 1015 pfu/㎖ 또는 1× 104 pfu/g 내지 1× 1015 pfu/g로 포함된다.
본 발명의 조성물은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있는 방법에 따라, 약학적으로 허용되는 담체 및/또는 부형제를 이용하여 제제화 됨으로써 단위 용량 형태로 제조되거나 또는 다용량 용기 내에 내입시켜 제조될 수도 있다. 이때 제형은 오일 또는 수성 매질 중의 용액, 현탁액 또는 유화액 형태이거나 엑스제, 분말제, 과립제, 정제 또는 캡슐제 형태일 수도 있으며, 분산제 또는 안정화제를 추가적으로 포함할 수도 있다.
본 발명의 조성물은 활용 방식에 따라, 이에 국한되지 않지만, 약욕제 및 사료첨가제로 구현될 수 있다.
이러한 활용 목적에서의 효율성을 높이기 위하여 다른 세균종에 대하여 항균활성을 제공할 수 있는 박테리오파지들이 본 발명의 조성물에 추가될 수 있다. 또한, 스트렙토코커스 이니에 균에 대하여 항균활성을 갖는 다른 종류의 박테리오파지들도 추가될 수 있다. 비록 스트렙토코커스 이니에 균에 대하여 항균활성을 갖는 박테리오파지라 하더라도 항균력의 세기나 항균범위 측면에서 차이가 있으므로 이들의 적절한 조합은 그 효과를 극대화 할 수 있다.
본 발명의 박테리오파지 Str-INP-1을 유효성분으로 포함하는 조성물을 이용한 스트렙토코커스 이니에 균의 감염 방지 및 처치 방법은 기존의 항생제 등의 화학물질에 기반을 둔 방식에 비하여 스트렙토코커스 이니에 균에 대한 특이성이 매우 높다는 장점을 제공할 수 있다. 이는 다른 유용한 상재균에는 영향을 주지 않으면서도 스트렙토코커스 이니에 균의 감염 방지 또는 처치 목적으로 사용할 수 있음을 의미하며, 이의 사용에 따른 부작용이 매우 적다. 통상적으로 항생제 등의 화학물질을 사용하면 일반 상재균들도 피해를 함께 입게 되어 결과적으로 동물의 면역력 저하 등을 초래하여 다양한 부작용이 나타난다. 한편, 본 발명은 자연계에 이미 존재하는 박테리오파지를 분리하여 조성물의 유효성분으로 사용하기 때문에 매우 자연 친화적이라는 장점 또한 제공할 수 있다. 한편, 박테리오파지는 항균활성을 발휘할 수 있는 세균종이 같다 하더라도 항균효과 발휘에 있어 항균력의 세기나 항균범위(스트렙토코커스 이니에 균에 속하는 여러 세균 주[strain]의 측면에서 개별 세균 주에 대하여 박테리오파지의 항균활성이 발휘되는 범위. 통상적으로 박테리오파지는 같은 세균 종[species]에 속하는 일부 세균 주[strain]에 대하여 항균활성을 발휘할 수 있음. 즉, 같은 세균 종에 속한다 하더라도 개별 세균 주에 따라 박테리오파지에 대한 감수성에서 차이가 있을 수 있음) 측면에서 차이가 있으므로 본 발명은 스트렙토코커스 이니에 균에 대한 균력을 갖는 타 박테리오파지에 비교하여 차별적 항균효과를 제공할 수 있다. 이는 산업현장 활용 시에 그 효과에 있어 큰 차이를 제공한다.
도 1은 박테리오파지 Str-INP-1의 전자현미경 사진이다.
도 2는 박테리오파지 Str-INP-1의 스트렙토코커스 이니에 균에 대한 사멸능을 보여주는 실험 결과이다. 투명한 부분은 시험대상 박테리아가 용균되어 결과적으로 형성된 용균반이다.
이하, 실시예에 의거하여 본 발명을 보다 구체적으로 설명하지만, 이들 실시예는 본 발명의 예시일 뿐이며 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다.
실시예 1: 스트렙토코커스 이니에 균을 사멸시킬 수 있는 박테리오파지의 분리
스트렙토코커스 이니에 균을 사멸시킬 수 있는 박테리오파지의 선별에는 자연 환경으로부터 확보된 시료들을 이용하였다. 한편, 박테리오파지 분리에 사용된 스트렙토코커스 이니에 균은 본 발명자들에 의해 미리 분리되어 스트렙토코커스 이니에 균으로 동정(Identification)된 것이다.
박테리오파지 분리 과정을 상세히 설명하면, 수집된 시료를 스트렙토코커스 이니에 균을 1/1000 비율로 접종한 THB(Todd Hewitt Broth) 배지(하트 인퓨전, 3.1 g/L; 펩톤, 20 g/L; 덱스트로오스, 2 g/L; 염화나트륨, 2 g/L; 디소듐포스페이트, 0.4 g/L; 탄산나트륨, 2.5 g/L)에 함께 첨가한 다음 30℃에서 3-4시간동안 진탕배양 하였다. 배양 후, 8,000 rpm에서 20분간 원심분리하여 상등액을 회수하였다. 회수된 상등액에 스트렙토코커스 이니에 균을 1/1000 비율로 접종한 다음 30℃에서 3-4시간동안 또 다시 진탕배양 하였다. 박테리오파지가 시료에 포함되어 있었을 경우 박테리오파지의 수(Titer)가 증가될 수 있도록 이러한 과정을 총 5회 반복하였다. 5회 반복 후에 배양액을 8,000 rpm에서 20분간 원심분리 하였다. 원심분리 후, 회수된 상등액을 0.45 ㎛의 필터를 이용하여 여과를 실시해 주었다. 얻어진 여과액을 사용한 통상의 점적 실험(Spot assay)을 통하여 스트렙토코커스 이니에 균을 사멸시킬 수 있는 박테리오파지가 있는지를 조사하였다.
상기 점적 실험은 다음과 같이 실시되었다. THB 배지에 스트렙토코커스 이니에 균을 1/1000 비율로 접종한 다음 30℃에서 한밤동안 진탕배양 하였다. 이렇게 하여 준비된 스트렙토코커스 이니에 균의 배양액 3 ㎖(OD600이 1.5)을 THA(Todd Hewitt Agar) 평판배지(하트 인퓨전, 3.1 g/L; 펩톤, 20 g/L; 덱스트로오스, 2 g/L; 염화나트륨, 2 g/L; 디소듐포스페이트, 0.4 g/L; 탄산나트륨, 2.5 g/L; 아가, 15 g/L)에 도말(Spreading)하였다. 도말한 평판 배지를 클린벤치(Clean bench)에서 약 30분 정도 방치하여 도말액이 건조되게 하였다. 건조 후 앞에서 준비한 여과액 10 μl를 스트렙토코커스 이니에 균이 도말된 평판 배지 위에 점적하였다. 이를 30분 정도 방치하여 건조시켰다. 건조 후 점적한 평판 배지를 30℃에서 하루 동안 정치 배양한 다음 여과액이 떨어진 위치에 투명환(Clear zone)이 생성되는가를 조사하였다. 투명환이 생성되는 여과액의 경우가 스트렙토코커스 이니에 균을 사멸 시킬 수 있는 박테리오파지가 포함되어 있다고 판단할 수 있다. 이러한 조사를 통하여 스트렙토코커스 이니에 균에 대한 사멸능을 가진 박테리오파지를 포함한 여과액을 확보할 수 있었다.
스트렙토코커스 이니에 균에 대한 사멸능을 가진 박테리오파지의 존재가 확인된 여과액을 이용하여 순수 박테리오파지의 분리를 실시하였다. 순수 박테리오파지의 분리에는 통상의 용균반 분석(Plaque assay)을 이용하였다. 이를 자세히 설명하면, 용균반 분석에서 형성된 용균반 하나를 멸균된 팁을 이용하여 회수한 다음 이를 스트렙토코커스 이니에 균 배양액에 첨가해 주어 4-5 시간 동안 30℃에서 함께 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 얻어진 상등액에 50분의 1의 부피로 스트렙토코커스 이니에 균 배양액을 첨가해 준 다음 다시 30℃에서 4-5 시간 배양해 주었다. 박테리오파지의 수를 증가시키기 위하여 이러한 과정을 최소 5회 이상 실시한 다음 최종적으로 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 얻어진 상등액을 사용하여 다시 용균반 분석을 실시하였다. 통상 순수 박테리오파지의 분리가 상기 과정의 1회로 달성되지 않기 때문에 이때 형성된 용균반을 이용하여 앞 단계를 전체적으로 다시 반복하였다. 이와 같은 과정을 최소 5회 이상 실시하여 순수한 박테리오파지를 포함한 용액을 확보하였다. 통상적으로 순수 박테리오파지의 분리는 형성된 용균반의 크기 및 모양이 모두 유사하게 될 때까지 반복하였다. 그리고 최종적으로는 전자현미경을 통하여 박테리오파지의 순수 분리 여부를 확인하였다. 전자현미경 분석에서 순수 분리가 확인될 때까지 앞에 기술한 과정을 반복하였다. 전자현미경 분석은 통상의 방법에 따라 실시하였다. 이를 간단히 설명하면 다음과 같다. 순수한 박테리오파지를 포함한 용액을 구리 격자(Copper grid)에 묻히고 2% 우라닐 아세테이트(Uranyl acetate)로 역염색법(Negative staining)과 건조를 수행한 후 투과전자현미경을 통하여 그 형태를 촬영하였다. 순수 분리한 박테리오파지의 전자현미경 사진이 도 1에 제시되어 있다. 형태적 특징으로 판단할 때 신규 확보된 박테리오파지는 시포비리대(Siphoviridae) 박테리오파지에 속함을 확인할 수 있었다.
이런 방식으로 확인된 순수 박테리오파지를 포함한 용액은 다음의 정제 과정을 거쳤다. 순수 박테리오파지를 포함한 용액 전체 부피의 50분의 1의 부피로 스트렙토코커스 이니에 균 배양액을 첨가해 준 다음 다시 4-5 시간 배양하였다. 배양 후 8,000 rpm에서 20분간 원심분리하여 상등액을 얻었다. 충분한 수의 박테리오파지가 포함된 액을 얻기 위해 이러한 과정을 총 5회 반복하였다. 최종 원심분리로 얻어진 상등액을 0.45 μm의 필터를 이용하여 여과한 다음 통상의 폴리에틸렌 글리콜(Polyethylene Glycol; PEG) 침전 과정을 실시하였다. 구체적으로, 여과액 100 ㎖에 10% PEG 8000/0.5 M NaCl이 되게 PEG와 NaCl을 첨가한 다음 4℃에서 2-3시간 동안 정치한 후, 8,000 rpm에서 30분간 원심분리하여 박테리오파지 침전물을 얻었다. 이렇게 얻어진 박테리오파지 침전물을 완충액(Buffer; 10 mM Tris-HCl, 10 mM MgSO4, 0.1% Gelatin, pH 8.0) 5 ㎖로 부유시켰다. 이를 박테리오파지 부유액 또는 박테리오파지 액이라 지칭한다.
이렇게 하여 정제된 순수 박테리오파지를 확보할 수 있었고, 이 박테리오파지를 박테리오파지 Str-INP-1로 명명한 뒤, 2014년 10월 1일자로 한국생명공학연구원 미생물자원센터(수탁번호 KCTC 12687BP)에 기탁하였다.
실시예 2: 박테리오파지 Str - INP -1의 유전체 분리 및 서열 분석
박테리오파지 Str-INP-1의 유전체를 다음과 같이 분리하였다. 유전체 분리에는 실시예 1에서와 같은 방법으로 얻어진 박테리오파지 부유액을 이용하였다. 먼저 부유액에 포함되어 있을 수 있는 스트렙토코커스 이니에 균의 DNA와 RNA를 제거하기 위해, 박테리오파지 부유액 10 ㎖에 DNase I과 RNase A를 각각 200 U씩 첨가한 다음 37℃에서 30분간 방치하였다. 30분 방치 후에 DNase I과 RNase A의 활성을 제거하기 위해, 0.5 M 에틸렌디아민테트라아세트산(Ethylenediaminetetraacetic acid; EDTA) 500 μl를 첨가한 다음 다시 10분간 정치시켰다. 그리고 이를 추가로 10분간 65℃에 정치시킨 다음 박테리오파지 외벽을 와해시키기 위해 proteinase K(20 ㎎/㎖) 100 μl를 첨가한 후 37℃에서 20분간 반응시켰다. 그 후 10% 도데실 황산 나트륨염(Sodium dodecyl sulfate; SDS) 500 μl를 첨가한 다음 다시 65℃에서 1시간 동안 반응시켰다. 1 시간 반응 후, 이 반응액에 25:24:1의 구성비를 갖는 페놀(Phenol) : 클로로포름(Chloroform) : 이소아밀알코올(Isoamylalcohol)의 혼합액 10 ㎖을 첨가해 준 후 잘 섞어 주었다. 그리고는 이것을 13,000 rpm에서 15분간 원심분리하여 층이 분리되게 한 다음 분리된 층들 중에서 위층을 취하여 여기에 1.5 부피비의 이소프로필 알코올(Isopropyl alcohol)을 첨가한 다음 13,000 rpm에서 10분간 원심분리하여 유전체를 침전시켰다. 침전물을 회수한 후 침전물에 70% 에탄올(Ethanol)을 첨가한 다음 다시 13,000 rpm에서 10분간 원심분리하여 침전물의 세척을 실시하였다. 세척된 침전물을 회수하고 진공 건조 시킨 다음 100 μl의 물에 녹였다. 상기 과정을 반복하여 박테리오파지 Str-INP-1의 유전체를 다량 확보하였다.
이렇게 얻어진 유전체는 ㈜천랩에서 Roche 454 GS Junior 기기의 차세대 염기서열 분석(Next generation sequencing analysis)을 통하여 박테리오파지 Str-INP-1의 유전체 서열분석을 실시하였다. 최종적으로 분석된 박테리오파지 Str-INP-1 유전체는 33,269 bp의 크기를 가지며, 전체 유전체 서열은 서열번호 1로 제시되어 있다.
확보된 박테리오파지 Str-INP-1의 유전체 서열을 기반으로 Web상의 BLAST(http://www.ncbi.nlm.nih.gov/BLAST/)를 이용하여 기존에 알려진 박테리오파지 유전체 서열과의 상동성(Similarity)을 조사해 보았다. BLAST 조사 결과, 50% 이상의 상동성을 가진 박테리오파지 서열은 확인할 수 없었다.
이러한 사실에 근거하여 박테리오파지 Str-INP-1은 기존에 보고된 바 없는 신규한 박테리오파지라고 판단할 수 있었다. 이러한 사실과 함께 통상적으로 박테리오파지의 종류가 다르면 제공할 수 있는 항균력의 세기 및 항균범위가 다르다는 사실로부터 박테리오파지 Str-INP-1은 기존에 보고된 다른 박테리오파지들과는 다른 항균효과를 제공해 줄 수 있다고 판단하였다.
실시예 3: 박테리오파지 Str - INP -1의 스트렙토코커스 이니에 균에 대한 사멸능 조사
분리된 박테리오파지 Str-INP-1의 스트렙토코커스 이니에 균에 대한 사멸능을 조사하였다. 사멸능 조사에는 실시예 1에서와 같은 방법으로 점적 실험을 통하여 투명환 생성 여부를 조사하였다. 사멸능 조사에 사용되어진 스트렙토코커스 이니에 균은 본 발명자들에 의해 분리되어 스트렙토코커스 이니에 균으로 동정된 것들로 총 43종이었다. 박테리오파지 Str-INP-1은 실험에 대상이 된 스트렙토코커스 이니에 균 43종 중에 36종에 대하여 사멸능을 갖고 있었다. 대표적 실험 결과가 도 2에 제시되어 있다. 한편, 박테리오파지 Str-INP-1의 에드워드시엘라 타르다(Edwardsiella tarda), 비브리오 안길라룸(Vibrio anguillarum), 비브리오 익티오엔테리(Vibrio ichthyoenteri), 락토코커스 가르비에(Lactococcus garvieae), 및 스트렙토코커스 파라우베리스(Streptococcus parauberis)에 대한 사멸능 조사도 별도 실험으로 실시하였는데, 그 결과로 박테리오파지 Str-INP-1은 이들 균종들에 대해서는 사멸능을 갖고 있지 않았다.
이상의 결과로 박테리오파지 Str-INP-1은 스트렙토코커스 이니에 균에 대하여 특이적인 사멸능을 가지며, 다수의 스트렙토코커스 이니에 균에 대하여 항균 효과를 발휘할 수 있음을 확인할 수 있었다. 이는 박테리오파지 Str-INP-1이 스트렙토코커스 이니에 균의 감염 방지 및 처치 목적의 조성물의 유효성분으로 활용 가능함을 의미한다.
실시예 4: 박테리오파지 Str - INP -1의 스트렙토코커스 이니에 균의 감염 예방에 대한 실험예
9 ㎖의 THB 배지를 담은 하나의 튜브에 1× 108 pfu/㎖ 수준의 박테리오파지 Str-INP-1 액 100 μl를 넣어주고, 다른 하나의 9 ㎖의 THB 배지를 담은 튜브에는 동량의 THB 배지만을 추가로 첨가하였다. 그 다음에 각 튜브에 600 nm에서 흡광도가 약 0.5 정도가 되도록 스트렙토코커스 이니에 균의 배양액을 넣어 주었다. 스트렙토코커스 이니에 균을 첨가한 후 튜브들을 30℃의 배양기에 옮겨 진탕배양하면서 스트렙토코커스 이니에 균의 성장 상태를 관찰하였다. 표 1에 제시된 바와 같이, 박테리오파지 Str-INP-1 액을 첨가해 준 튜브에서는 스트렙토코커스 이니에 균의 성장 억제가 관찰된 반면에 박테리오파지 액을 첨가하지 않은 튜브에서는 스트렙토코커스 이니에 균의 성장 억제가 관찰되지 않았다.
스트렙토코커스 이니에 균의 성장 억제
구분 OD600 흡광도 값
배양 0분 배양후 60분 배양후 120분
박테리오파지 액 미첨가 0.498 0.982 1.564
박테리오파지 액 첨가 0.498 0.295 0.142
이 결과로부터 본 발명의 박테리오파지 Str-INP-1이 스트렙토코커스 이니에 균의 성장을 저해할 뿐만 아니라 사멸까지 시키는 능력이 있음을 확인할 수 있었고, 이로부터 박테리오파지 Str-INP-1이 스트렙토코커스 이니에 균의 감염을 방지하는 목적의 조성물의 유효성분으로 활용될 수 있다고 결론지을 수 있었다.
실시예 5: 박테리오파지 Str - INP -1을 이용한 스트렙토코커스 이니에 균의 감염 질환 처치예
스트렙토코커스 이니에 균에 의해 연쇄구균증이 유발된 넙치에서의 박테리오파지 Str-INP-1의 처치 효과를 조사하였다. 생후 4개월의 넙치 치어(체장 6~9 cm) 50마리를 한 그룹으로 하여 총 두 그룹으로 나눈 후 수조에서 분리 사육하면서 14일간 실험을 실시하였다. 수조의 주위환경은 통제하였고, 수조가 있는 실험실의 온도는 일정하게 유지시켰다. 실험 개시일로부터 5일째 되는 날부터 3일간 1× 108 cfu/g 수준으로 스트렙토코커스 이니에 균을 포함하고 있는 사료를 하루 2회씩 통상적인 사료 급이 방식으로 급이하였다. 스트렙토코커스 이니에 균을 포함하고 있는 사료 급이 마지막 날부터 연쇄구균증의 임상증상을 보이는 개체가 두 수조 모두에서 확인되었다. 3일간의 스트렙토코커스 이니에 균을 포함하고 있는 사료 급이 시행 다음날(시험 개시일로부터 8일째가 되는 날)부터 실험군(박테리오파지 투여군)의 넙치들에게는 1× 108 pfu/g의 박테리오파지 Str-INP-1을 포함하고 있는 사료를 통상적인 사료 급이 방식에 따라 급이하였다. 반면에 대조군(박테리오파지 미투여군)의 넙치들에게는 박테리오파지 Str-INP-1이 포함되지 않은 동일 조성의 사료를 동일한 방식으로 급이하였다. 시험 개시일로부터 8일째가 되는 날부터는 매일 모든 시험동물들을 대상으로 연쇄구균증 발생 상태를 조사하였다. 연쇄구균증 발생 상태 조사는 체색 흑화지수를 측정하는 방식으로 실시하였다. 체색 흑화지수 측정은 통상 사용되는 Dark Coloration(DC) score(정상: 0, 연한 흑화: 1, 진한 흑화: 2)를 측정하는 방식으로 실시하였다. 그 결과는 표 2와 같았다.
체색 흑화지수 측정 결과 (평균치)
날짜 D8 D9 D10 D11 D12 D13 D14
대조군(박테리오파지 미투여) 1.04 1.40 1.64 1.72 1.68 1.36 1.16
실험군(박테리오파지 투여) 1.00 0.84 0.32 0.20 0.12 0.08 0.04
이 결과로부터 본 발명의 박테리오파지 Str-INP-1이 스트렙토코커스 이니에 균을 원인으로 하는 감염 질환의 처치에도 매우 효과적이라는 것을 확인할 수 있었다.
실시예 6: 사료첨가제 및 사료의 제조
박테리오파지 Str-INP-1 액을 이용하여 사료첨가제 1 g당 1× 108 pfu의 박테리오파지 Str-INP-1이 포함되도록 사료첨가제를 제조하였다. 사료첨가제의 제조 방법은 박테리오파지 액에 말토덱스트린을 첨가(40%, w/v)하고 여기에 전체 10%가 되게 트리할로오즈를 첨가한 다음에 동결건조시켜 제조하였다. 최종적으로 고운 가루 형태로 분쇄하였다. 상기 제조 과정 중의 건조 과정에는 감압 건조, 가온 건조, 상온 건조도 대체 가능하다. 대조 실험을 위해, 박테리오파지가 포함되지 않은 사료첨가제도 박테리오파지 액 대신에 박테리오파지 액의 제조 시에 사용한 완충액(Buffer; 10 mM Tris-HCl, 10 mM MgSO4, 0.1% Gelatin, pH 8.0)을 사용하는 방식으로 제조하였다.
이렇게 제조된 2종의 사료첨가제 각각을 중량비로 250배의 양어용 생사료와 혼합하여 최종 2종의 사료를 제조하였다.
실시예 7: 약욕제의 제조
박테리오파지 Str-INP-1 액을 이용하여 약욕제 1 ㎖당 1× 108 pfu의 박테리오파지 Str-INP-1이 포함되도록 약욕제를 제조하였다. 약욕제의 제조 방법은 박테리오파지 액 제조 시에 사용하는 완충액 1 ㎖당 1× 108 pfu의 박테리오파지 Str-INP-1이 포함되도록 상기 박테리오파지 Str-INP-1 액을 첨가하여 잘 혼합해 주는 방식으로 제조하였다. 대조 실험을 위해, 박테리오파지가 포함되지 않은 약욕제로는 박테리오파지 액의 제조 시에 사용한 완충액 자체를 그대로 사용하였다.
이렇게 제조된 2종의 약욕제는 부피비로 1,000배의 물로 희석하여 최종적인 약욕제로 사용하였다.
실시예 8: 넙치 사육에서의 사양 효과 확인
실시예 6 및 실시예 7에서 제조한 사료와 약욕제를 이용하여 넙치 사육 시의 사양 결과 개선 여부에 대하여 조사해 보았다. 특히 본 조사는 폐사율 관점에서 실시되었다. 총 600 마리의 넙치를 300 마리씩 한 그룹으로 총 2개 그룹(사료로 급이한 그룹-A; 약욕제로 처치한 그룹-B)으로 나누어 4주간 시험을 실시하였다. 각 그룹은 다시 150마리로 구성되는 소그룹으로 나누어지며 각 소그룹은 박테리오파지 Str-INP-1이 적용된 소그룹(소그룹-①) 및 박테리오파지가 적용되지 않은 소그룹(소그룹-②)으로 나누었다. 본 시험에 대상이 된 넙치는 생후 4개월의 넙치 치어였으며, 각 시험 소그룹의 넙치는 일정 간격을 두고 위치한 격리된 각각의 수조에서 사육되었다. 각 소그룹은 다음의 표 3과 같이 구분되고 지칭되었다.
넙치 사양 시험에서의 소그룹 구분 및 표시
적용 소그룹 구분 및 표시
박테리오파지 Str-INP-1 적용 박테리오파지가 적용되지 않음
사료로 급이한 그룹 A-① A-②
약욕제로 처치한 그룹 B-① B-②
사료 급이의 경우에는 실시예 6에서 설명한 사료 제조 방식에 따라 제조한 사료를 표 3의 구분에 따라 통상적인 사료 급이 방식을 따라 급이 하였으며, 약욕제 처치의 경우에는 실시예 7에서 설명한 약욕제 제조 방식에 따라 제조한 약욕제를 표 3의 구분에 따라 통상적인 약욕제 처치 방식에 따라 처치하였다. 시험 결과가 표 4에 제시되어 있다.
넙치 사양 시험에서의 폐사율
그룹 폐사개체수/시험개체수 폐사율(%)
A-① 6/150 4.0
A-② 37/150 24.7
B-① 8/150 5.3
B-② 43/150 28.7
이상의 결과로 본 발명에 따라 제조된 사료의 급이와 본 발명에 따른 약욕제 처치가 넙치 사육에서의 폐사율 감소에 효과가 있음을 확인할 수 있었다. 이로부터 본 발명의 조성물의 적용이 넙치의 사양 결과 개선에 효과적이라는 결론을 내릴 수 있었다.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적인 기술은 단지 바람직한 구현 예일 뿐이며, 이에 본 발명의 범위가 제한되는 것이 아닌 점은 명백하다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항과 그의 등가물에 의하여 정의된다고 할 것이다.
기탁기관명: KCTC
수탁번호: KCTC 12687BP
수탁일자: 20141001
Figure PCTKR2016010954-appb-I000001

Claims (5)

  1. 스트렙토코커스 이니에 균을 특이적으로 사멸시킬 수 있는 능력을 갖는 서열번호 1로 표시되는 유전체를 갖는 것을 특징으로 하는, 자연으로부터 분리된 시포비리대 박테리오파지 Str-INP-1(수탁번호 KCTC 12687BP).
  2. 제1항의 박테리오파지 Str-INP-1을 유효성분으로 포함하는 스트렙토코커스 이니에 균의 감염 방지 및 처치용 조성물.
  3. 제2항에 있어서, 상기 조성물은 약욕제 또는 사료첨가제 제조 용도로 사용되는 것을 특징으로 하는 스트렙토코커스 이니에 균의 감염 방지 및 처치용 조성물.
  4. 제2항 또는 제3항에 의한 박테리오파지 Str-INP-1을 유효성분으로 포함하는 조성물을 사람을 제외한 동물에 투여하는 단계를 포함하는, 스트렙토코커스 이니에 균에 의한 감염을 방지 또는 처치하는 방법.
  5. 제4항에 있어서, 상기 조성물이 약욕제 또는 사료첨가제 용도로 사람을 제외한 동물에 투여되는 것을 특징으로 하는 스트렙토코커스 이니에 균에 의한 감염을 방지 또는 처치하는 방법.
PCT/KR2016/010954 2015-10-08 2016-09-30 신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도 WO2017061733A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680058769.6A CN108431213B (zh) 2015-10-08 2016-09-30 新的海豚链球菌噬菌体Str-INP-1及其海豚链球菌增殖抑制用途
US15/766,497 US10722544B2 (en) 2015-10-08 2016-09-30 Streptococcus iniae bacteriophage Str-INP-1 and use of the same for inhibiting the proliferation of Streptococcus iniae

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0141281 2015-10-08
KR1020150141281A KR101723466B1 (ko) 2015-10-08 2015-10-08 신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도

Publications (1)

Publication Number Publication Date
WO2017061733A1 true WO2017061733A1 (ko) 2017-04-13

Family

ID=58488005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/010954 WO2017061733A1 (ko) 2015-10-08 2016-09-30 신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도

Country Status (4)

Country Link
US (1) US10722544B2 (ko)
KR (1) KR101723466B1 (ko)
CN (1) CN108431213B (ko)
WO (1) WO2017061733A1 (ko)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102073088B1 (ko) * 2018-06-04 2020-02-04 (주)인트론바이오테크놀로지 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
KR102073094B1 (ko) * 2018-06-04 2020-02-04 (주)인트론바이오테크놀로지 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-3 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
KR102073086B1 (ko) * 2018-06-04 2020-02-04 (주)인트론바이오테크놀로지 신규한 스트렙토코커스 수이스 박테리오파지 Str-SUP-1 및 이의 스트렙토코커스 수이스 균 증식 억제 용도

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020000217A (ko) * 1999-02-25 2002-01-05 뉴 호라이즌스 다이아그노스틱스, 인코포레이티드 스트렙토코커스 감염의 예방 및 치료 방법
KR20120067096A (ko) * 2010-12-15 2012-06-25 주식회사 인트론바이오테크놀로지 녹농균 및 황색포도상구균을 사멸시키는 박테리오파지

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084492A (ja) * 2005-09-22 2007-04-05 Hiroshima Univ バクテリオファージを含む、細菌性感染症治療用の薬剤
TW200936759A (en) * 2007-12-21 2009-09-01 Intervet Int Bv Fish vaccine
CN102824631A (zh) * 2012-07-23 2012-12-19 中国科学院海洋研究所 一种海豚链球菌减毒疫苗的制备和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020000217A (ko) * 1999-02-25 2002-01-05 뉴 호라이즌스 다이아그노스틱스, 인코포레이티드 스트렙토코커스 감염의 예방 및 치료 방법
KR20120067096A (ko) * 2010-12-15 2012-06-25 주식회사 인트론바이오테크놀로지 녹농균 및 황색포도상구균을 사멸시키는 박테리오파지

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE NCBI 18 January 2015 (2015-01-18), Database accession no. KP208803.1 *
RICHARDS, GARY P.: "Bacteriophage Remediation of Bacterial Pathogens in Aquaculture: a Review of the Technology", BACTERIOPHAGE, vol. 4, no. 4, 2014, pages 1 - 12, XP055378409 *
WRIGHT, E. E. ET AL.: "Induction and Characterization of Lysogenic Bacteriophages from Streptococcus Iniae", JOURNAL OF APPLIED MICROBIOLOGY, vol. 1, no. 14, 2013, pages 1616 - 1624 *

Also Published As

Publication number Publication date
KR101723466B1 (ko) 2017-04-06
CN108431213A (zh) 2018-08-21
US10722544B2 (en) 2020-07-28
CN108431213B (zh) 2021-08-13
US20180303885A1 (en) 2018-10-25

Similar Documents

Publication Publication Date Title
WO2016114517A1 (ko) 신규한 락토코커스 가르비에 박테리오파지 Lac-GAP-1 및 이의 락토코커스 가르비에 균 증식 억제 용도
WO2016108536A1 (ko) 신규한 클로스트리디움 퍼프린젠스 박테리오파지 Clo-PEP-1 및 이의 클로스트리디움 퍼프린젠스 증식 억제 용도
WO2016108540A1 (ko) 신규한 장병원성 대장균 박테리오파지 Esc-CHP-2 및 이의 장병원성 대장균 증식 억제 용도
WO2016108538A1 (ko) 신규한 장출혈성 대장균 박테리오파지 Esc-CHP-1 및 이의 장출혈성 대장균 증식 억제 용도
WO2016126009A1 (ko) 신규한 에드와드시엘라 타르다 박테리오파지 EdW-TAP-1 및 이의 에드와드시엘라 타르다 균 증식 억제 용도
WO2017111306A1 (ko) 신규한 파스튜렐라 멀토시다 박테리오파지 Pas-MUP-1 및 이의 파스튜렐라 멀토시다 균 증식 억제 용도
WO2016108541A1 (ko) 신규한 시가독소생산 F18형 대장균 박테리오파지 Esc-COP-1 및 이의 시가독소생산 F18형 대장균 증식 억제 용도
WO2016108542A1 (ko) 신규한 장침입성 대장균 박테리오파지 Esc-COP-4 및 이의 장침입성 대장균 증식 억제 용도
WO2018101594A1 (ko) 대장균 박테리오파지 Esc-COP-7 및 이의 병원성 대장균 증식 억제 용도
WO2017073916A1 (ko) 신규한 에로모나스 살모니시다 박테리오파지 Aer-SAP-1 및 이의 에로모나스 살모니시다 균 증식 억제 용도
WO2017111304A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-1 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2017217726A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-5 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2017111305A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-2 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2018155812A1 (ko) 신규한 엔테로코쿠스 패슘 박테리오파지 Ent-FAP-4 및 이의 엔테로코쿠스 패슘 증식 억제 용도
WO2020013451A1 (ko) 대장균 박테리오파지 esc-cop-14 및 이의 병원성 대장균 증식 억제 용도
WO2018151417A1 (ko) 신규한 녹농균 박테리오파지 Pse-AEP-4 및 이의 녹농균 증식 억제 용도
WO2018151416A1 (ko) 신규한 녹농균 박테리오파지 Pse-AEP-3 및 이의 녹농균 증식 억제 용도
WO2017061733A1 (ko) 신규한 스트렙토코커스 이니에 박테리오파지 Str-INP-1 및 이의 스트렙토코커스 이니에 균 증식 억제 용도
WO2018208001A1 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-7 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도
WO2019235782A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-2 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2019235781A1 (ko) 신규한 스트렙토코커스 수이스 박테리오파지 str-sup-1 및 이의 스트렙토코커스 수이스 균 증식 억제 용도
WO2018236085A1 (ko) 신규한 에로모나스 하이드로필라 박테리오파지 Aer-HYP-1 및 이의 에로모나스 하이드로필라 균 증식 억제 용도
WO2013035906A1 (ko) 살모넬라 티피무륨 감염을 방지 및 처치하는 방법
WO2019164195A1 (ko) 신규한 에로모나스 하이드로필라 박테리오파지 aer-hyp-3 및 이의 에로모나스 하이드로필라 균 증식 억제 용도
WO2018117462A2 (ko) 신규한 비브리오 파라헤몰리티쿠스 박테리오파지 Vib-PAP-4 및 이의 비브리오 파라헤몰리티쿠스 균 증식 억제 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16853849

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15766497

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16853849

Country of ref document: EP

Kind code of ref document: A1