WO2019163704A1 - 緩衝器 - Google Patents
緩衝器 Download PDFInfo
- Publication number
- WO2019163704A1 WO2019163704A1 PCT/JP2019/005816 JP2019005816W WO2019163704A1 WO 2019163704 A1 WO2019163704 A1 WO 2019163704A1 JP 2019005816 W JP2019005816 W JP 2019005816W WO 2019163704 A1 WO2019163704 A1 WO 2019163704A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cylinder
- shock absorber
- spacer
- partition
- annular
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16F—SPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
- F16F9/00—Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
- F16F9/32—Details
- F16F9/34—Special valve constructions; Shape or construction of throttling passages
Definitions
- the present invention relates to a double-cylinder horizontal shock absorber used for a railway vehicle or the like.
- Patent Document 1 discloses a double-cylinder horizontal shock absorber in which a liquid chamber and a reservoir chamber in a cylinder are partitioned by a partition portion fitted to the outside of the cylinder.
- An object of the present invention is to provide a shock absorber capable of reducing the number of processing steps of the partition portion and configuring an air vent structure.
- a shock absorber includes a cylinder in which hydraulic fluid is sealed and a piston slides, a rod to which the piston is connected, a part of which protrudes to the outside of the cylinder, and an outer periphery of the cylinder.
- An outer cylinder to be covered; a reservoir chamber formed between the cylinder and the outer cylinder and filled with hydraulic fluid and gas; and a liquid chamber in the cylinder provided at both ends of the cylinder and the outer cylinder.
- An annular passage is provided, and a first communication passage is provided between the fitting portion and the cylinder to connect the liquid chamber in the cylinder and the annular passage, and the spacer includes the annular passage.
- a second communication passage that communicates with the reservoir chamber, and a positioning portion that determines a circumferential position with respect to the one partition portion.
- shock absorber According to the shock absorber according to one embodiment of the present invention, it is possible to reduce the processing man-hour of the partition portion and to configure the air vent structure in the shock absorber.
- FIG. 11 is a cross-sectional view taken along the line AA ′ in FIG. 10 and is an explanatory view of another form of the positioning part, showing a spacer and a partition part combined with the spacer when the positioning part is applied to the third embodiment.
- FIG. 4th Embodiment Comprising: It is explanatory drawing of the air bleeding structure on the right side. It is explanatory drawing of the other form of a positioning part, Comprising: It is a figure which shows the spacer when the said positioning part is applied to 4th Embodiment, and the partition part combined with this spacer.
- a double-cylinder horizontal bi-flow hydraulic shock absorber 1 (hereinafter referred to as “buffer 1”) that is disposed substantially horizontally between the vehicle body and the carriage of the railway vehicle is illustrated.
- the left direction (left side) and the right direction (right side) in FIG. 1 are defined as the left direction (left side) and right direction (right side) in the shock absorber 1, and the upward direction (upper side) and the downward direction (
- the lower side is referred to as the upper direction (upper side) and the lower direction (lower side) in the shock absorber 1.
- a plane including the axis is referred to as an axis plane, and a plane perpendicular to the axis is referred to as an axis perpendicular plane.
- the shock absorber 1 has a cylinder 2 and an outer cylinder 3 arranged concentrically. Between the cylinder 2 and the outer cylinder 3, the left ends of the cylinder 2 and the outer cylinder 3 are closed by the partition part 4, and the right ends of the cylinder 2 and the outer cylinder 3 are closed by the partition part 5, thereby forming an annular shape.
- a reservoir chamber 6 is formed.
- the partition part 5 is divided into a partition part 7 that closes the right end of the cylinder 2 and a partition part 8 that closes the right end of the outer cylinder 3.
- a bracket 9 connected to the vehicle body side of the railway vehicle is fixed to the partition portion 8.
- the outer peripheral edge portion of the partition portion 8 is coupled to the right end of the outer cylinder 3.
- the partition part 7 and the partition part 8 are integrated by the right end (right end of the collar part 25 mentioned later) being fitted by the recessed part 10 of the partition part 8.
- FIG. 1 the partition part 5 and the partition part 8 are integrated by the right end (right end of the collar part 25 mentioned
- the piston 13 is slidably fitted inside the cylinder 2.
- the interior of the cylinder 2 is partitioned by a piston 13 into a left first liquid chamber 14 and a right second liquid chamber 15.
- the first liquid chamber 14 and the second liquid chamber 15 are filled with hydraulic fluid, and the reservoir chamber 6 is filled with hydraulic fluid and air.
- the piston 13 is connected to the right end of the rod 16.
- the left end side of the rod 16 passes through the first liquid chamber 14 and the partition portion 4 and extends to the outside of the cylinder 2.
- a bracket 17 is fixed to the left end of the rod 16 so as to be connected to the bogie side of the railway vehicle. Further, a cylindrical cover (not shown) that covers the rod 16 extending from the partition portion 4 is attached to the bracket 17.
- the piston 13 prevents the working fluid from flowing from the second fluid chamber 15 to the first fluid chamber 14 during the contraction stroke of the rod 16, and the second fluid chamber 15 reaches the second pressure when the fluid pressure in the second fluid chamber 15 reaches a predetermined pressure.
- a contraction-side relief valve 18 for releasing the hydraulic pressure in the liquid chamber 15 to the first liquid chamber 14 is provided.
- the piston 13 prevents the working fluid from flowing from the first liquid chamber 14 to the second liquid chamber 15, and when the liquid pressure in the first liquid chamber 14 reaches a constant pressure.
- An extension-side relief valve 19 for releasing the hydraulic pressure in the first liquid chamber 14 to the second liquid chamber 15 is provided.
- the partition portion 7 is provided with a relief valve 20 that opens according to the fluid pressure in the second fluid chamber 15 and releases the fluid pressure in the second fluid chamber 15 to the reservoir chamber 6. Further, the partition portion 7 is provided with a check valve 21 that allows only the flow of the working fluid from the reservoir chamber 6 to the second liquid chamber 15.
- the partition portion 7 is formed in a substantially cylindrical shape, and the outer peripheral surface 24 is fitted to the inner peripheral surface 11 (inside the cylinder) on the right end side of the cylinder 2, and is larger than the fitting portion 23. And a flange 25 formed with an annular surface 26 that is formed in a diameter and faces the end surface 12 on the right side (on the opposite rod side) of the cylinder 2. Between the end surface 12 of the cylinder 2 and the annular surface 26 of the flange portion 25 of the partition portion 7, an annular spacer 31 inserted through the outside of the fitting portion 23 of the partition portion 7 is provided.
- the inner diameter of the spacer 31 is formed to have a predetermined tolerance (fitting) with respect to the outer diameter of the fitting part 23 of the partition part 7. Further, the outer diameter of the spacer 31 is equal to the outer diameter of the flange portion 25 of the partition portion 7.
- the right side surface 32 of the spacer 31 is in contact with the annular surface 26 of the flange portion 25 of the partition portion 7.
- a protrusion 34 positioning portion that protrudes radially inward is formed on the inner peripheral surface 33 of the spacer 31 .
- the spacer 31 is positioned in the circumferential direction (around the axis) with respect to the partition portion 7 by engaging the protrusion 34 with a groove portion 27 (concave portion) described later formed in the fitting portion 23 of the partition portion 7.
- the inner peripheral surface 33 of the spacer 31 is provided with a notch 35 (second communication path) extending outward in the radial direction (lower side in FIGS. 2 and 3).
- the notch 35 is disposed at a position facing the protrusion 34 (a position of 180 ° when the protrusion 34 is at a position of 0 °).
- the end surface 12 of the cylinder 2 is in contact with the left side surface 36 of the spacer 31.
- an annular chamfered portion 38 is formed at the ridge portion between the end surface 12 and the inner peripheral surface 11.
- an annular passage 39 defined by the outer peripheral surface 24 of the fitting portion 23, the left side surface 36 of the spacer 31, and the chamfered portion 38 of the cylinder 2 is provided on the outer periphery of the fitting portion 23 of the partition portion 7. .
- the annular passage 39 communicates with the second liquid chamber 15 by the groove portion 27 (first communication passage) described above.
- the groove part 27 (concave part) is a key groove-like groove extending in the axial direction (left-right direction in FIG. 2) through the fitting part 23 of the partition part 7. In the partition portion 7, the groove portion 27 is disposed at the upper portion on the left end side of the second liquid chamber 15 in a state where the shock absorber 1 is attached to the vehicle.
- the annular passage 39 is communicated with the reservoir chamber 6 by a notch 35 (second communication passage) of the spacer 31.
- the notch 35 is at the lowest position in a state where the shock absorber 1 is attached to the vehicle by engaging the protrusion 34 with the groove portion 27 (concave portion) of the fitting portion 23 of the partition portion 7.
- the air vent structure on the second liquid chamber 15 side has the upper portion of the right end corner of the second liquid chamber 15 at the groove 27 (first communication path), the annular passage 39, and the notch 35 (second communication path). It is configured to communicate with the lowermost region on the right end side of the reservoir chamber 6 via a passage).
- the notch 35 of the spacer 31 extends to the right end of the reservoir chamber 6 so that the groove 27 communicates with the upper portion of the right end corner of the second liquid chamber 15.
- the partition part 7 fitting part 23
- the groove part 27 first communication path of the partition part 7
- the notch 35 (second communication path) of the spacer 31 is disposed at any position in the circumferential direction, air is supplied from the second liquid chamber 15 to the reservoir chamber by the pressure acting on the second liquid chamber 15. 6 can be discharged.
- the partition portion 4 is formed in a substantially cylindrical shape, and an outer peripheral surface 44 is formed to be fitted to the inner peripheral surface 11 on the left end side of the cylinder 2, and is formed to have a larger diameter than the fitting portion 43. And a flange 45 formed with an annular surface 46 facing the end surface 40 on the left side (rod side) of the cylinder 2. Between the end surface 40 of the cylinder 2 and the annular surface 46 of the flange portion 45 of the partition portion 4, an annular spacer 51 that is inserted outside the fitting portion 43 of the partition portion 4 is provided.
- the spacer 51 is the same component as the spacer 31 described above, but is given a different reference for convenience. Further, the outer diameter of the fitting part 43 of the partition part 4 is equal to the outer diameter of the fitting part 23 of the partition part 7.
- the left side surface 52 of the spacer 51 is brought into contact with the annular surface 46 of the flange portion 45 of the partition portion 4.
- a protrusion 54 positioning portion
- the spacer 51 is positioned in the circumferential direction (around the axis) with respect to the partition portion 4 by engaging the protrusion 54 with a groove portion 47 (first communication path) formed in the fitting portion 43 of the partition portion 4.
- the inner peripheral surface 53 of the spacer 51 is provided with a notch 55 (second communication path) extending outward in the radial direction (lower side in FIGS. 5 and 6).
- the notch 55 is disposed at a position facing the protrusion 54.
- the end surface 40 of the cylinder 2 is in contact with the right side surface 56 of the spacer 51.
- an annular chamfer 58 is formed at the ridge between the end surface 40 and the inner peripheral surface 11.
- an annular passage 59 defined by the outer peripheral surface 44 of the fitting portion 43, the right side surface 56 of the spacer 51, and the chamfered portion 58 of the cylinder 2 is provided on the outer periphery of the fitting portion 43 of the partition portion 4.
- the annular passage 59 is communicated with the first liquid chamber 14 by the groove portion 47 (first communication passage) described above.
- the groove portion 47 (concave portion) is a key groove-like groove extending in the axial direction (left-right direction in FIG. 5) through the fitting portion 43 of the partition portion 4. In the partition part 4, the groove part 47 is disposed on the upper left side of the first liquid chamber 14 in a state where the shock absorber 1 is attached to the vehicle.
- the annular passage 59 is communicated with the reservoir chamber 6 by a notch 55 (second communication passage) of the spacer 51.
- the spacer 51 engages the protrusion 54 with the groove portion 47 (first communication path) of the fitting portion 43 of the partition portion 4 so that the notch 55 is located on the lowermost side when the shock absorber 1 is attached to the vehicle.
- the air vent structure on the first liquid chamber 14 side has the upper part of the left end corner of the first liquid chamber 14 at the groove 47 (first communication path), the annular path 59, and the notch 55 (second communication path). It is configured to communicate with the lowermost region on the left end side of the reservoir chamber 6 via a passage).
- the groove 47 is communicated with the upper corner of the left end side of the first liquid chamber 14 with the shock absorber 1 attached to the vehicle.
- Pressure acting on the first liquid chamber 14 regardless of the circumferential position of the groove 47 (first communication path) of the portion 4 and the notch 55 (second communication path) of the spacer 51.
- air can be discharged from the first liquid chamber 14 to the reservoir chamber 6.
- the position where the notch 35 (second communication path) formed in the spacer 31 on the second liquid chamber 15 side is provided is a position facing the protrusion 34 (180 degrees when the protrusion 34 is at a position of 0 °).
- the opening on the reservoir chamber 6 side of the second communication path may be opened in the hydraulic fluid in the reservoir chamber 6 with the shock absorber 1 attached to the vehicle.
- the annular passage (annular groove) constituting the air bleeding structure is provided inside the partition portion. It is formed on the peripheral surface (cylinder fitting surface). Since this annular passage (annular groove) cannot be molded at the same time when the partition portion is molded, it has to be formed separately by machining on the inner peripheral surface of the partition portion after molding, which complicates the manufacturing process. It was. Further, in the structure in which the partition portion is fitted to the outer peripheral surface of the cylinder, the partition portion is enlarged in the radial direction, and the design freedom of the shock absorber is restricted.
- the partition portions 7 and 4 are not fitted to the outer peripheral surface (outside of the cylinder) of the cylinder 2, but the partition portion 7 is connected to the inner peripheral surface 11 (inside of the cylinder) of the cylinder 2. , 4 are fitted, and annular chamfered portions 38, 58 are formed at the ridges between the inner peripheral surface 11 and the end surfaces 12, 40 of the cylinder 2, so that the partition portion 7, Since the annular passages 39 and 59 are provided on the outer periphery of the four fitting portions 23 and 43, the step of grooving the partition portions 7 and 4 after molding, that is, the step of machining the grooves in the partition portions 7 and 4 is performed. It is not necessary and the manufacturing process can be greatly simplified. Moreover, since the fitting parts 23 and 43 are fitted to the inner peripheral surface 11 of the cylinder 2, it is possible to reduce the size of the partition parts 7 and 4 and thus the shock absorber 1 in the radial direction.
- the cylinder (2) in which the hydraulic fluid is sealed and the piston (13) slides, and the rod (16) that is connected to the piston (13) and partially protrudes outside the cylinder (2).
- An outer cylinder (3) that covers the outer periphery of the cylinder (2), and a reservoir chamber (6) that is formed between the cylinder (2) and the outer cylinder (3) and is filled with hydraulic fluid and gas.
- a partition portion (7, 4) provided at both ends of the cylinder (2) and the outer cylinder (3) and partitioning the liquid chamber (15, 14) and the reservoir chamber (6) in the cylinder.
- the at least one partition (7, 4) of the partition (7, 4) is a fitting portion (23, 43) fitted inside the cylinder (2).
- the diameter is larger than that of the fitting portions (23, 43) and faces the end surface (12, 40) of the cylinder (2).
- the portion (25, 45) is inserted outside the fitting portion (23, 43).
- Annular spacers (31, 51) are provided, and annular passages (39, 59) are provided on the outer periphery of the fitting portions (23, 43).
- the fitting portions (23, 43) and the cylinder (2) are provided with first communication passages (27, 47) for communicating the liquid chambers (15, 14) in the cylinder (2) with the annular passages (39, 59), and spacers (31, 51).
- first communication passages (27, 47) for communicating the liquid chambers (15, 14) in the cylinder (2) with the annular passages (39, 59), and spacers (31, 51).
- second communication passage (35, 55) for communicating the annular passage (39, 59) and the reservoir chamber (6)
- a positioning portion (34) for determining a circumferential position with respect to one partition portion (7, 4). , 54).
- the annular passage constituting the air vent structure of the liquid chamber is provided on the outer periphery of the fitting portion fitted inside the cylinder, the step of grooving the partition portion after molding, That is, a process of machining a groove (annular passage) in the partition portion is not necessary. Thereby, a manufacturing process can be simplified and a manufacturing cost can be reduced by extension.
- the fitting portion is fitted inside the cylinder, the partition portion, and thus the shock absorber can be reduced in the radial direction as compared with the structure in which the partition portion is fitted outside the cylinder.
- the annular passage (39, 59) is constituted by a chamfered portion (38, 58) formed on the inner peripheral side of the end surface (12, 40) of the cylinder 2.
- the first communication path (27, 47) is formed by a recess formed in the outer peripheral surface (24, 44) of the fitting portion (23, 43) and extending in the axial direction.
- the positioning part is constituted by protrusions (34, 54) extending radially inward from the inner peripheral surfaces (33, 53) of the spacer (31, 51), and the protrusions (34, 54) constituting the positioning part are the first ones.
- the spacer (31, 51) can be positioned in the circumferential direction with respect to the partition portion (7, 4) to be combined.
- a step of processing an orifice for communicating the annular passage and the liquid chamber in the partition portion after molding is necessary.
- the second communication path (35, 55) is formed by a notch extending radially outward from the inner peripheral surface (33, 53) of the spacer (31, 51), a step of machining an orifice in the partition after molding. Is no longer necessary.
- the air bleed structure according to the second embodiment the air bleed structure of the first liquid chamber 14 and the air bleed structure of the second liquid chamber 15 are bilaterally symmetric as in the air bleed structure according to the first embodiment described above.
- the air vent structure of the second liquid chamber 15 shown in FIG. 8 will be described, and the air vent structure of the first liquid chamber 14 will be omitted.
- the annular passage 39 is provided on the outer periphery of the fitting portion 23 of the partition portion 7 by forming the annular chamfered portion 38 at the ridge portion between the end surface 12 and the inner peripheral surface 11 of the cylinder 2.
- an annular second spacer 61 having an L-shaped cross section by an axial plane is disposed between the end surface 12 of the cylinder 2 and the spacer 31, thereby fitting the partition portion 7.
- An annular passage 69 is provided on the outer periphery of the joint portion 23 and on the inner periphery of the second spacer 61.
- the second spacer 61 is formed in a substantially cylindrical shape.
- An inner flange portion 62 is formed on the inner peripheral edge portion on the right end side of the second spacer 61.
- the end surface 12 of the cylinder 2 is in contact with the inner flange portion 62 of the second spacer 61.
- the right end surface 63 of the second spacer 61 is in contact with the left side surface 36 of the spacer 31.
- the outer peripheral surface 41 of the cylinder 2 is fitted to the inner peripheral surface 64 of the second spacer 61.
- the inner diameter of the inner flange portion 62 of the second spacer 61 is larger than the outer diameter of the fitting portion 23 of the partition portion 7 and thus the inner diameter of the cylinder 2.
- the inner periphery of the second spacer 61 is partitioned by the outer peripheral surface 24 of the fitting portion 23, the end surface 12 of the cylinder 2, the inner flange portion 62 of the second spacer 61, and the left side surface 36 of the first spacer 31.
- An annular passage 69 is provided.
- the second embodiment it is possible to obtain the same operational effects as those of the first embodiment described above.
- the shape of the second spacer 61 that is, the inner diameter and height (axial length) of the inner flange portion 62, and thus the flow passage area of the annular passage 69,
- the orifice characteristic due to the working fluid flowing through the annular passage 69 can be adjusted.
- annular passage 69 is provided on the inner periphery of the second spacer 61 by disposing the annular second spacer 61 between the end surface 12 of the cylinder 2 and the spacer 31.
- annular passage 79 is provided on the outer periphery of the fitting portion 23 of the partition portion 7 without providing the second spacer 61 in the second embodiment.
- the partition part 7 has an annular step part 71 formed between the fitting part 23 and the flange part 25.
- the outer diameter of the stepped portion 71 is larger than the outer diameter of the fitting portion 23, that is, the inner diameter of the cylinder 2 and smaller than the outer diameter of the cylinder 2.
- the inner peripheral surface 33 of the spacer 31 is fitted to the outer peripheral surface 72 of the stepped portion 71 of the partition portion 7.
- the plate thickness (axial length) of the spacer 31 is formed to be thicker (longer) than the height (axial length) of the step portion 71 of the partition portion 7, and the plate thickness of the spacer 31 and the height of the step portion 71 are Is the axial length of the annular passage.
- annular passage 79 defined by the outer peripheral surface 24 of the fitting portion 23, the stepped portion 71, the inner peripheral surface 33 of the spacer 31, and the end surface 12 of the cylinder 2 is provided on the outer periphery of the fitting portion 23 of the partition portion 7. Is provided.
- the same operational effects as those of the first and second embodiments described above can be obtained.
- the shape of the stepped portion 71 of the partitioning portion 7, that is, the outer diameter and height (axial length) of the stepped portion 71, the plate thickness (axial length) of the spacer 31, and the extension In other words, by changing the flow passage area of the annular passage 79, the orifice characteristics due to the working fluid flowing through the annular passage 79 can be adjusted.
- a key groove-like groove portion 27 (see FIG. 4) extending in the axial direction is formed on the outer peripheral surface 24 of the fitting portion 23 of the partition portion 7 to form the first communication path.
- the chamfered portion 88 can be formed by chamfering the outer peripheral surface 24 of the fitting portion 23 with a plane parallel to the axial plane to form the first communication path.
- FIG. 11 is a diagram in which the first communication path including the chamfered portion 88 is applied to the third embodiment.
- the spacer 81 to be combined is brought into contact with the chamfered portion 88 of the fitting portion 23 by bringing the end face 85 of the protrusion 84 (positioning portion) into contact with the partition portion 7 to be combined in the circumferential direction (around the axis). Can be positioned.
- a part of the outer cylinder 3 protrudes inward in the radial direction at the upper position corresponding to the spacer 91 on the right side of the outer cylinder 3 and is brought into contact with the positioning portion 94 of the spacer 91. .
- the outer cylinder 3 is formed with a protruding portion 92 that protrudes inward in the radial direction.
- the protrusion 92 is provided on the upper right side corresponding to the axial position of the spacer 91.
- the outer diameter of the spacer 31 in the first embodiment is equal to the outer diameter of the flange portion 25 of the partition portion 7, whereas the outer diameter of the spacer 91 in the fourth embodiment is the outer diameter of the flange portion 25 of the partition portion 7. Bigger than.
- the spacer 91 has a flat portion 94 formed by cutting out the upper portion (opposite side with respect to the cutout 35) in a chordal shape, in other words, a flat surface chamfered by a single plane parallel to the axial plane.
- a flat portion 94 is formed by chamfering with a parallel surface.
- the spacer 91 is positioned in the circumferential direction with respect to the outer cylinder 3 by bringing the flat portion 94 of the spacer 91 into contact with the protrusion 92 of the outer cylinder 3. That is, the planar portion 94 of the spacer 91 in the fourth embodiment functions as a positioning portion like the protrusion 34 of the spacer 31 in the first embodiment.
- the shape of the partition part 7 is the same as 1st Embodiment.
- the spacer 91 can be positioned in the circumferential direction with respect to the outer cylinder 3. Further, in the structure in which the conventional partition portion is fitted to the outside of the cylinder, a step of processing an orifice for communicating the annular passage and the liquid chamber in the partition portion after molding is necessary, but in the fourth embodiment, Since the second communication path 35 is formed by a notch extending radially outward from the inner peripheral surface 93 of the spacer 91, a process of machining an orifice in the partition part after molding becomes unnecessary.
- at least one of the partition parts is formed with a fitting part fitted inside the cylinder, and has a larger diameter than the fitting part, An annular spacer inserted between the end surface of the cylinder and the flange, and inserted into the outside of the fitting portion.
- An annular passage is provided on the outer periphery, and the fitting
- a first communication passage that communicates the liquid chamber in the cylinder and the annular passage is provided between the portion and the cylinder, and a second communication passage that communicates the annular passage and the reservoir chamber is provided in the spacer.
- a shock absorber characterized in that a communication path and a positioning portion for determining a circumferential position with respect to the one partition portion are formed. In the aspect of this section, a step of machining a groove (annular passage) in the partition after molding is not required. Moreover, with respect to the structure in which the partition portion is fitted to the outside of the cylinder, the partition portion, and thus the shock absorber can be reduced in size in the radial direction.
- the orifice characteristics due to the working fluid flowing through the annular passage can be adjusted.
- the spacer can be positioned in the circumferential direction with respect to the partition portion without machining the spacer after molding.
- this invention is not limited to above-described embodiment, Various modifications are included.
- the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to one having all the configurations described.
- a part of the configuration of an embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of an embodiment.
- shock absorber 2 cylinder, 3 outer cylinder, 6 reservoir chamber, 7 partition, 12 end face (cylinder), 14 1st liquid chamber, 15 2nd liquid chamber, 16 rod, 23 fitting section, 25 collar, 27 Groove (first communication path), 31 spacer, 34 protrusion (positioning part), 35 notch (second communication path), 39 annular path
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Fluid-Damping Devices (AREA)
Abstract
シリンダの端面の内周側に面取部を形成することにより、仕切り部の嵌合部の外周にエア抜き構造の環状通路を設けたので、成型後の仕切り部を溝加工する工程が不要である。
Description
本発明は、鉄道車両等に使用される複筒式横置き緩衝器に関する。
特許文献1には、シリンダの外側に嵌合させた仕切り部によってシリンダ内の液室とリザーバ室とが仕切られる複筒式横置き緩衝器が開示されている。
特許文献1に記載の緩衝器は、エア抜き構造の環状通路を仕切り部に同時成型することができないため、環状の溝を仕切り部の内周面(シリンダ嵌合面)に機械加工する工程が必要であり、製造工程を煩雑化させていた。
本発明は、仕切り部の加工工数を削減し、エア抜き構造を構成することが可能な緩衝器を提供することを目的とする。
本発明の一実施形態に係る緩衝器は、作動液が封入され、ピストンが摺動するシリンダと、前記ピストンが連結され、一部が前記シリンダの外部へ突出するロッドと、該シリンダの外周を被う外筒と、前記シリンダと前記外筒との間に形成され、作動液およびガスが封入されるリザーバ室と、前記シリンダおよび前記外筒の両端部に設けられ、前記シリンダ内の液室と前記リザーバ室とを仕切る仕切り部と、を有する緩衝器であって、前記両仕切り部のうち少なくとも一方の仕切り部は、前記シリンダの内側に嵌合される嵌合部と、該嵌合部よりも大径に形成され、前記シリンダの端面に対向する鍔部と、を有し、前記シリンダの端面と前記鍔部との間には、前記嵌合部の外側に挿通される環状のスペーサが設けられ、前記嵌合部の外周には、環状通路が設けられ、前記嵌合部と前記シリンダとの間には、前記シリンダ内の液室と前記環状通路とを連通させる第1連通路が設けられ、前記スペーサには、前記環状通路と前記リザーバ室とを連通させる第2連通路と、前記一方の仕切り部に対する周方向位置を決める位置決め部と、が形成されることを特徴とする。
本発明の一実施形態に係る緩衝器によれば、仕切り部の加工工数を削減し、緩衝器にエア抜き構造を構成することができる。
(第1実施形態) 図1乃至図7を参照して第1実施形態を説明する。
ここでは、鉄道車両の車体と台車との間に略水平に配置される複筒式横置きバイフロー型油圧緩衝器1(以下「緩衝器1」と称する)を例示する。以下の説明において、図1における左方向(左側)および右方向(右側)を当該緩衝器1における左方向(左側)および右方向(右側)とし、図1における上方向(上側)および下方向(下側)を当該緩衝器1における上方向(上側)および下方向(下側)と称する。また、軸線を含む平面を軸平面、および軸線に対して垂直な平面を軸直角平面と称する。
ここでは、鉄道車両の車体と台車との間に略水平に配置される複筒式横置きバイフロー型油圧緩衝器1(以下「緩衝器1」と称する)を例示する。以下の説明において、図1における左方向(左側)および右方向(右側)を当該緩衝器1における左方向(左側)および右方向(右側)とし、図1における上方向(上側)および下方向(下側)を当該緩衝器1における上方向(上側)および下方向(下側)と称する。また、軸線を含む平面を軸平面、および軸線に対して垂直な平面を軸直角平面と称する。
図1に示されるように、緩衝器1は、同心に配置されたシリンダ2および外筒3を有する。シリンダ2と外筒3との間には、シリンダ2および外筒3の左端を仕切り部4によって閉塞し、かつシリンダ2および外筒3の右端を仕切り部5によって閉塞することにより、環形状のリザーバ室6が形成される。仕切り部5は、シリンダ2の右端を閉塞させる仕切り部7と、外筒3の右端を閉鎖させる仕切り部8とに分割して構成される。仕切り部8には、鉄道車両の車体側に連結されるブラケット9が固定される。仕切り部8の外周縁部は、外筒3の右端に結合される。仕切り部5は、仕切り部7の右端(後述する鍔部25の右端)が仕切り部8の凹部10に嵌合されることにより、仕切り部7と仕切り部8とが一体化される。
シリンダ2の内側には、ピストン13が摺動可能に嵌装される。シリンダ2の内部は、ピストン13によって左側の第1液室14と右側の第2液室15とに区画される。第1液室14および第2液室15には作動液が封入され、リザーバ室6には作動液およびエアが封入される。ピストン13には、ロッド16の右端が連結される。ロッド16の左端側は、第1液室14および仕切り部4を通過してシリンダ2の外部へ延出される。なお、ロッド16の左端には、鉄道車両の台車側に連結されるブラケット17が固定される。また、ブラケット17には、仕切り部4から延出するロッド16を覆う筒形状のカバー(図示省略)が取り付けられる。
ピストン13には、ロッド16の縮み行程時に第2液室15から第1液室14への作動液の流通を阻止し、第2液室15の液圧が所定圧力に達したときに第2液室15の液圧を第1液室14へ逃がす縮み側リリーフ弁18が設けられる。また、ピストン13には、ロッド16の伸び行程時に第1液室14から第2液室15への作動液の流通を阻止し、第1液室14の液圧が一定圧力に達したときに第1液室14の液圧を第2液室15へ逃がす伸び側リリーフ弁19が設けられる。仕切り部7には、第2液室15の液圧に応じて開弁して第2液室15の液圧をリザーバ室6へ逃がすリリーフ弁20が設けられる。また、仕切り部7には、リザーバ室6から第2液室15への作動液の流通のみを許容する逆止弁21が設けられる。
次に、図2乃至図4を参照して、第2液室15に滞ったエアをリザーバ室6へ排出させるエア抜き構造を説明する。
仕切り部7は、略円筒形に形成されて外周面24がシリンダ2の右端側の内周面11(シリンダの内側)に嵌合される嵌合部23と、該嵌合部23よりも大径に形成されてシリンダ2の右側(反ロッド側)の端面12に対向する環状面26が形成された鍔部25と、を有する。シリンダ2の端面12と仕切り部7の鍔部25の環状面26との間には、仕切り部7の嵌合部23の外側に挿通される環状のスペーサ31が設けられる。なお、スペーサ31の内径は、仕切り部7の嵌合部23の外径に対して予め定められた公差(嵌め合い)となるように形成される。また、スペーサ31の外径は、仕切り部7の鍔部25の外径に等しい。
仕切り部7は、略円筒形に形成されて外周面24がシリンダ2の右端側の内周面11(シリンダの内側)に嵌合される嵌合部23と、該嵌合部23よりも大径に形成されてシリンダ2の右側(反ロッド側)の端面12に対向する環状面26が形成された鍔部25と、を有する。シリンダ2の端面12と仕切り部7の鍔部25の環状面26との間には、仕切り部7の嵌合部23の外側に挿通される環状のスペーサ31が設けられる。なお、スペーサ31の内径は、仕切り部7の嵌合部23の外径に対して予め定められた公差(嵌め合い)となるように形成される。また、スペーサ31の外径は、仕切り部7の鍔部25の外径に等しい。
スペーサ31は、右側面32が仕切り部7の鍔部25の環状面26に当接される。スペーサ31の内周面33には、径方向内側へ突出させた突起34(位置決め部)が形成される。スペーサ31は、突起34を仕切り部7の嵌合部23に形成された後述する溝部27(凹部)に係合させることにより、仕切り部7に対して周方向(軸線回り)に位置決めされる。また、スペーサ31の内周面33には、径方向外側(図2、図3における下側)へ延びる切欠35(第2連通路)が設けられる。なお、切欠35は、突起34と対向する位置(突起34を0°の位置とすると180°の位置)に配置される。
スペーサ31の左側面36には、シリンダ2の端面12が当接される。シリンダ2は、端面12と内周面11との稜部に環状の面取部38が形成される。これにより、仕切り部7の嵌合部23の外周には、嵌合部23の外周面24、スペーサ31の左側面36、およびシリンダ2の面取部38によって区画される環状通路39が設けられる。環状通路39は、前述した溝部27(第1連通路)によって第2液室15に連通される。溝部27(凹部)は、仕切り部7の嵌合部23を軸方向(図2における左右方向)へ延びるキー溝状の溝である。仕切り部7は、緩衝器1が車両に取り付けられた状態で、溝部27が第2液室15の左端側の上部に配置される。
また、環状通路39は、スペーサ31の切欠35(第2連通路)によってリザーバ室6に連通される。スペーサ31は、突起34を仕切り部7の嵌合部23の溝部27(凹部)に係合させることにより、緩衝器1が車両に取り付けられた状態で、切欠35が最も下側の位置となるように位置決めされる。このように、第2液室15側のエア抜き構造は、第2液室15の右端側の隅の上部を、溝部27(第1連通路)、環状通路39、および切欠35(第2連通路)を経由して、リザーバ室6の右端側の最も下側の領域に連通させるように構成される。
ここで、緩衝器1が車両に取り付けられた状態で、溝部27が第2液室15の右端側の隅の上部に連通するように、延いてはスペーサ31の切欠35がリザーバ室6の右端側の最も下側の領域に連通されるように、仕切り部7(嵌合部23)を周方向(軸線回り)に位置決めさせることが望ましいが、仕切り部7の溝部27(第1連通路)、延いてはスペーサ31の切欠35(第2連通路)を周方向のどの位置に配置した場合であっても、第2液室15に作用する圧力によってエアを第2液室15からリザーバ室6へ排出させることができる。
次に、図5乃至図7を参照して、第1液室14に滞ったエアをリザーバ室6へ排出させるエア抜き構造を説明する。
仕切り部4は、略円筒形に形成されて外周面44がシリンダ2の左端側の内周面11に嵌合される嵌合部43と、該嵌合部43よりも大径に形成されてシリンダ2の左側(ロッド側)の端面40に対向する環状面46が形成された鍔部45と、を有する。シリンダ2の端面40と仕切り部4の鍔部45の環状面46との間には、仕切り部4の嵌合部43の外側に挿通される環状のスペーサ51が設けられる。なお、スペーサ51は、前述したスペーサ31と同一部品であるが、便宜上、異なる符号を付与する。また、仕切り部4の嵌合部43の外径は、仕切り部7の嵌合部23の外径に等しい。
仕切り部4は、略円筒形に形成されて外周面44がシリンダ2の左端側の内周面11に嵌合される嵌合部43と、該嵌合部43よりも大径に形成されてシリンダ2の左側(ロッド側)の端面40に対向する環状面46が形成された鍔部45と、を有する。シリンダ2の端面40と仕切り部4の鍔部45の環状面46との間には、仕切り部4の嵌合部43の外側に挿通される環状のスペーサ51が設けられる。なお、スペーサ51は、前述したスペーサ31と同一部品であるが、便宜上、異なる符号を付与する。また、仕切り部4の嵌合部43の外径は、仕切り部7の嵌合部23の外径に等しい。
スペーサ51は、左側面52が仕切り部4の鍔部45の環状面46に当接される。スペーサ51の内周面53には、径方向内側へ突出させた突起54(位置決め部)が形成される。スペーサ51は、突起54を仕切り部4の嵌合部43に形成された溝部47(第1連通路)に係合させることにより、仕切り部4に対して周方向(軸線回り)に位置決めされる。また、スペーサ51の内周面53には、径方向外側(図5、図6における下側)へ延びる切欠55(第2連通路)が設けられる。なお、切欠55は、突起54と対向する位置に配置される。
スペーサ51の右側面56には、シリンダ2の端面40が当接される。シリンダ2は、端面40と内周面11との稜部に環状の面取部58が形成される。これにより、仕切り部4の嵌合部43の外周には、嵌合部43の外周面44、スペーサ51の右側面56、およびシリンダ2の面取部58によって区画される環状通路59が設けられる。環状通路59は、前述した溝部47(第1連通路)によって第1液室14に連通される。溝部47(凹部)は、仕切り部4の嵌合部43を軸方向(図5における左右方向)へ延びるキー溝状の溝である。仕切り部4は、緩衝器1が車両に取り付けられた状態で、溝部47が第1液室14の左端側の上部上側に配置される。
また、環状通路59は、スペーサ51の切欠55(第2連通路)によってリザーバ室6に連通される。スペーサ51は、突起54を仕切り部4の嵌合部43の溝部47(第1連通路)に係合させることにより、緩衝器1が車両に取り付けられた状態で、切欠55が最も下側の位置となるように位置決めされる。このように、第1液室14側のエア抜き構造は、第1液室14の左端側の隅の上部を、溝部47(第1連通路)、環状通路59、および切欠55(第2連通路)を経由して、リザーバ室6の左端側の最も下側の領域に連通させるように構成される。
前述した第2液室15側のエア抜き構造と同様に、緩衝器1が車両に取り付けられた状態で、溝部47が第1液室14の左端側の隅の上部に連通するように、延いてはスペーサ51の切欠55がリザーバ室6の左端側の最も低い領域に連通されるように、仕切り部4(嵌合部43)を周方向(軸線回り)に位置決めさせることが望ましいが、仕切り部4の溝部47(第1連通路)、延いてはスペーサ51の切欠55(第2連通路)を周方向のどの位置に配置した場合であっても、第1液室14に作用する圧力によってエアを第1液室14からリザーバ室6へ排出させることができる。
なお、例えば、第2液室15側のスペーサ31に形成される切欠35(第2連通路)が設けられる位置は、突起34と対向する位置(突起34を0°の位置とすると180°の位置)としているが、第2連通路のリザーバ室6側の開口は、緩衝器1が車両に取り付けられた状態で、リザーバ室6内の作動液中に開口していればよい。
ここで、前述した特許文献1に示されるように、シリンダの外周面(シリンダの外側)に仕切り部を嵌合させる構造では、エア抜き構造を構成する環状通路(環状溝)が仕切り部の内周面(シリンダ嵌合面)に形成されている。この環状通路(環状溝)は、仕切り部を成型するときに同時成型することができないため、成型後の仕切り部の内周面に別途機械加工によって形成する必要があり、製造工程を煩雑化させていた。また、シリンダの外周面に仕切り部を嵌合させる構造では、仕切り部が径方向に大型化され、緩衝器の設計自由度が制約されていた。
これに対し、第1実施形態では、シリンダ2の外周面(シリンダの外側)に仕切り部7,4を嵌合させるのではなく、シリンダ2の内周面11(シリンダの内側)に仕切り部7,4の嵌合部23,43を嵌合させ、かつシリンダ2の内周面11と端面12,40との稜部に環状の面取部38,58を形成することにより、仕切り部7,4の嵌合部23,43の外周に環状通路39,59を設けたので、成型後の仕切り部7,4を溝加工する工程、すなわち、仕切り部7,4に溝を機械加工する工程が不要であり、製造工程を大幅に簡易化することができる。また、シリンダ2の内周面11に嵌合部23,43を嵌合させるので、仕切り部7,4、延いては緩衝器1を径方向に小型化することが可能である。
以上、第1実施形態の詳細を説明したが、第1実施形態の作用効果を以下に示す。
本実施形態によれば、作動液が封入され、ピストン(13)が摺動するシリンダ(2)と、ピストン(13)が連結され、一部がシリンダ(2)の外部へ突出するロッド(16)と、該シリンダ(2)の外周を被う外筒(3)と、シリンダ(2)と外筒(3)との間に形成され、作動液およびガスが封入されるリザーバ室(6)と、シリンダ(2)および外筒(3)の両端部に設けられ、シリンダ内の液室(15,14)とリザーバ室(6)とを仕切る仕切り部(7,4)と、を有する緩衝器(1)であって、両仕切り部(7,4)のうち少なくとも一方の仕切り部(7,4)は、シリンダ(2)の内側に嵌合される嵌合部(23,43)と、該嵌合部(23,43)よりも大径に形成され、シリンダ(2)の端面(12,40)に対向する鍔部(25,45)と、を有し、シリンダ(2)の端面(12,40)と鍔部(25,45)との間には、嵌合部(23,43)の外側に挿通される環状のスペーサ(31,51)が設けられ、嵌合部(23,43)の外周には、環状通路(39,59)が設けられ、嵌合部(23,43)とシリンダ(2)との間には、シリンダ(2)内の液室(15,14)と環状通路(39,59)とを連通させる第1連通路(27,47)が設けられ、スペーサ(31,51)には、環状通路(39,59)とリザーバ室(6)とを連通させる第2連通路(35,55)と、一方の仕切り部(7,4)に対する周方向位置を決める位置決め部(34,54)と、が形成される。
本実施形態によれば、作動液が封入され、ピストン(13)が摺動するシリンダ(2)と、ピストン(13)が連結され、一部がシリンダ(2)の外部へ突出するロッド(16)と、該シリンダ(2)の外周を被う外筒(3)と、シリンダ(2)と外筒(3)との間に形成され、作動液およびガスが封入されるリザーバ室(6)と、シリンダ(2)および外筒(3)の両端部に設けられ、シリンダ内の液室(15,14)とリザーバ室(6)とを仕切る仕切り部(7,4)と、を有する緩衝器(1)であって、両仕切り部(7,4)のうち少なくとも一方の仕切り部(7,4)は、シリンダ(2)の内側に嵌合される嵌合部(23,43)と、該嵌合部(23,43)よりも大径に形成され、シリンダ(2)の端面(12,40)に対向する鍔部(25,45)と、を有し、シリンダ(2)の端面(12,40)と鍔部(25,45)との間には、嵌合部(23,43)の外側に挿通される環状のスペーサ(31,51)が設けられ、嵌合部(23,43)の外周には、環状通路(39,59)が設けられ、嵌合部(23,43)とシリンダ(2)との間には、シリンダ(2)内の液室(15,14)と環状通路(39,59)とを連通させる第1連通路(27,47)が設けられ、スペーサ(31,51)には、環状通路(39,59)とリザーバ室(6)とを連通させる第2連通路(35,55)と、一方の仕切り部(7,4)に対する周方向位置を決める位置決め部(34,54)と、が形成される。
よって、第1実施形態は、液室のエア抜き構造を構成する環状通路が、シリンダの内側に嵌合させた嵌合部の外周に設けられるので、成型後の仕切り部を溝加工する工程、すなわち、仕切り部に溝(環状通路)を機械加工する工程が不要となる。これにより、製造工程を簡易化することができ、延いては製造コストを削減することができる。また、シリンダの内側に嵌合部を嵌合させるので、仕切り部をシリンダの外側に嵌合させる構造に対し、仕切り部、延いては緩衝器を径方向に小型化することができる。
また、第1実施形態では、環状通路(39,59)は、シリンダ2の端面(12,40)の内周側に形成された面取部(38,58)によって構成される。
また、第1連通路(27,47)は、嵌合部(23,43)の外周面(24,44)に形成されて軸方向へ延びる凹部によって構成される。
また、第1連通路(27,47)は、嵌合部(23,43)の外周面(24,44)に形成されて軸方向へ延びる凹部によって構成される。
また、位置決め部は、スペーサ(31,51)の内周面(33,53)から径方向内側に延びる突起(34,54)によって構成され、位置決め部を構成する突起(34,54)を第1連通路(27,47)に係合させることにより、スペーサ(31,51)を、組み合わされる仕切り部(7,4)に対して周方向に位置決めさせることができる。
また、従来の仕切り部をシリンダの外側に嵌合させる構造では、成型後の仕切り部に環状通路と液室とを連通させるオリフィスを加工する工程が必要であったが、第1実施形態では、第2連通路(35,55)は、スペーサ(31,51)の内周面(33,53)から径方向外側へ延びる切欠によって構成されるので、成型後の仕切り部にオリフィスを加工する工程が不要になる。
(第2実施形態) 次に、図8、図9を参照して第2実施形態を説明する。なお、第1実施形態と同一または相当の構成要素については、同一の名称および符号を付与するとともに詳細な説明を省略する。第2実施形態に係るエア抜き構造は、前述した第1実施形態に係るエア抜き構造同様、第1液室14のエア抜き構造と第2液室15のエア抜き構造とが左右対称である。ここでは、明細書の記載を簡潔にするため、図8に示される第2液室15のエア抜き構造のみを説明し、第1液室14のエア抜き構造を省略する。
第1実施形態では、シリンダ2の端面12と内周面11との稜部に環状の面取部38を形成することにより、仕切り部7の嵌合部23の外周に環状通路39を設けた。
これに対し、第2実施形態は、シリンダ2の端面12とスペーサ31との間に軸平面による断面がL形に形成された環状の第2スペーサ61を配置することにより、仕切り部7の嵌合部23の外周かつ第2スペーサ61の内周に環状通路69を設けたものである。
これに対し、第2実施形態は、シリンダ2の端面12とスペーサ31との間に軸平面による断面がL形に形成された環状の第2スペーサ61を配置することにより、仕切り部7の嵌合部23の外周かつ第2スペーサ61の内周に環状通路69を設けたものである。
第2スペーサ61は略円筒形に形成される。第2スペーサ61の右端側の内側周縁部には、内フランジ部62が形成される。第2スペーサ61の内フランジ部62には、シリンダ2の端面12が当接される。第2スペーサ61の右側の端面63は、スペーサ31の左側面36に当接される。第2スペーサ61の内周面64には、シリンダ2の外周面41が嵌合される。第2スペーサ61の内フランジ部62の内径は、仕切り部7の嵌合部23の外径、延いてはシリンダ2の内径よりも大きい。これにより、第2スペーサ61の内周には、嵌合部23の外周面24、シリンダ2の端面12、第2スペーサ61の内フランジ部62、および第1スペーサ31の左側面36によって区画される環状通路69が設けられる。
第2実施形態によれば、前述した第1実施形態と同等の作用効果を得ることができる。また、第2実施形態では、第2スペーサ61の形状、すなわち、内フランジ部62の内径および高さ(軸方向長さ)、延いては環状通路69の流路面積を変更することにより、当該環状通路69を流通する作動液によるオリフィス特性を調節することができる。
(第3実施形態) 次に、図10を参照して第3実施形態を説明する。なお、第1および第2実施形態と同一または相当の構成要素については、同一の名称および符号を付与するとともに詳細な説明を省略する。第3実施形態に係るエア抜き構造は、前述した第1および第2実施形態に係るエア抜き構造同様、第1液室14のエア抜き構造と第2液室15のエア抜き構造とが左右対称であるので、第2液室15のエア抜き構造のみを説明する。
第2実施形態では、シリンダ2の端面12とスペーサ31との間に環状の第2スペーサ61を配置することにより、第2スペーサ61の内周に環状通路69を設けた。
これに対し、第3実施形態は、第2実施形態における第2スペーサ61を設けることなく、仕切り部7の嵌合部23の外周に環状通路79を設けたものである。
これに対し、第3実施形態は、第2実施形態における第2スペーサ61を設けることなく、仕切り部7の嵌合部23の外周に環状通路79を設けたものである。
仕切り部7は、嵌合部23と鍔部25との間に形成された環状の段部71を有する。段部71の外径は、嵌合部23の外径、すなわち、シリンダ2の内径よりも大きく、かつシリンダ2の外径よりも小さい。スペーサ31の内周面33は、仕切り部7の段部71の外周面72に嵌合される。スペーサ31の板厚(軸方向長さ)は、仕切り部7の段部71の高さ(軸方向長さ)よりも厚く(長く)形成され、スペーサ31の板厚と段部71の高さとの差が、環状通路の流路の軸方向長さになる。これにより、仕切り部7の嵌合部23の外周には、嵌合部23の外周面24、段部71、スペーサ31の内周面33、およびシリンダ2の端面12によって区画される環状通路79が設けられる。
第3実施形態によれば、前述した第1および第2実施形態と同等の作用効果を得ることができる。また、第3実施形態では、仕切り部7の段部71の形状、すなわち、段部71の外径および高さ(軸方向長さ)、ならびにスペーサ31の板厚(軸方向長さ)、延いては環状通路79の流路面積を変更することにより、当該環状通路79を流通する作動液によるオリフィス特性を調節することができる。
また、前述した第1乃至第3実施形態では、仕切り部7の嵌合部23の外周面24に軸方向へ延びるキー溝状の溝部27(図4参照)を形成して第1連通路としたが、図11に示されるように、嵌合部23の外周面24を軸平面に平行な平面によって面取りすることにより面取部88を形成して第1連通路とすることができる。なお、図11は、面取部88からなる第1連通路を第3実施形態に適用した図である。
この場合、組み合わされるスペーサ81は、突起84(位置決め部)の端面85を嵌合部23の面取部88に当接させることにより、組み合わされる仕切り部7に対して周方向(軸回り)に位置決めさせることができる。
この場合、組み合わされるスペーサ81は、突起84(位置決め部)の端面85を嵌合部23の面取部88に当接させることにより、組み合わされる仕切り部7に対して周方向(軸回り)に位置決めさせることができる。
(第4実施形態) 次に、図12を参照して第4実施形態を説明する。なお、第1乃至第3実施形態と同一または相当の構成要素については、同一の名称および符号を付与するとともに詳細な説明を省略する。第4実施形態に係るエア抜き構造は、前述した第1乃至第3実施形態に係るエア抜き構造同様、第1液室14のエア抜き構造と第2液室15のエア抜き構造とが左右対称であるので、第2液室15のエア抜き構造のみを説明する。
第4実施形態では、外筒3の右側におけるスペーサ91と対応する上部の位置に、外筒3の一部を径方向内側に突出させてスペーサ91の位置決め部94と当接させたものである。
外筒3には、径方向内側に突出する突起部92が形成される。突起部92は、スペーサ91の軸方向の位置に対応する右側上部に設けられる。第1実施形態におけるスペーサ31の外径は、仕切り部7の鍔部25の外径に等しいのに対し、第4実施形態におけるスペーサ91の外径は、仕切り部7の鍔部25の外径よりも大きい。スペーサ91は、上部(切欠35に対して反対側)を弦状に切り欠いて形成した平面部94、換言すると、仕切り部7の外周面24を軸平面に平行な一平面によって面取りした平面に対して平行な面で面取りすることにより形成した平面部94を有する。
そして、外筒3の突起部92にスペーサ91の平面部94を当接させることにより、スペーサ91が外筒3に対して周方向に位置決めされる。すなわち、第4実施形態におけるスペーサ91の平面部94は、第1実施形態におけるスペーサ31の突起34のように位置決め部として機能する。なお、第4実施形態において、仕切り部7の形状は第1実施形態と同一である。
第4実施形態によれば、スペーサ91を、外筒3に対して周方向に位置決めさせることができる。また、従来の仕切り部をシリンダの外側に嵌合させる構造では、成型後の仕切り部に環状通路と液室とを連通させるオリフィスを加工する工程が必要であったが、第4実施形態では、第2連通路35は、スペーサ91の内周面93から径方向外側へ延びる切欠によって構成されるので、成型後の仕切り部にオリフィスを加工する工程が不要になる。
(発明の態様) 以下に、本願において特許請求が可能と認識されている発明の各態様を説明する。なお、以下の各項において、(1)乃至(8)項の各々が、特許請求の範囲に記載した請求項1乃至8の各々に相当する。
(1)作動液が封入され、ピストンが摺動するシリンダと、前記ピストンが連結され、一部が前記シリンダの外部へ突出するロッドと、該シリンダの外周を被う外筒と、前記シリンダと前記外筒との間に形成され、作動液およびガスが封入されるリザーバ室と、前記シリンダおよび前記外筒の両端部に設けられ、前記シリンダ内の液室と前記リザーバ室とを仕切る仕切り部と、を有する緩衝器であって、前記両仕切り部のうち少なくとも一方の仕切り部は、前記シリンダの内側に嵌合される嵌合部と、該嵌合部よりも大径に形成され、前記シリンダの端面に対向する鍔部と、を有し、前記シリンダの端面と前記鍔部との間には、前記嵌合部の外側に挿通される環状のスペーサが設けられ、前記嵌合部の外周には、環状通路が設けられ、前記嵌合部と前記シリンダとの間には、前記シリンダ内の液室と前記環状通路とを連通させる第1連通路が設けられ、前記スペーサには、前記環状通路と前記リザーバ室とを連通させる第2連通路と、前記一方の仕切り部に対する周方向位置を決める位置決め部と、が形成されることを特徴とする緩衝器。
本項の態様においては、成型後の仕切り部に溝(環状通路)を機械加工する工程が不要となる。また、仕切り部をシリンダの外側に嵌合させる構造に対して、仕切り部、延いては緩衝器を径方向に小型化することができる。
(2)前記第1連通路は、前記嵌合部の外周面に形成されて軸方向へ延びる凹部によって構成されることを特徴とする(1)項の緩衝器。
本項の態様においては、成型後の仕切り部(嵌合部)に第1連通路を加工する工程が不要となる。
(3)前記環状通路は、前記シリンダの端面の内周側に形成される面取部によって構成されることを特徴とする(1)、(2)項の緩衝器。
本項の態様においては、成形後の仕切り部の内周面を溝加工する工程が不要となる。
(4)前記環状通路は、前記シリンダの端面と前記スペーサとの間に配置される環状の第2スペーサの内周に形成されることを特徴とする(1)、(2)項の緩衝器。
本項の態様においては、第2スペーサの形状、延いては環状通路の流路面積を変更することにより、環状通路を流通する作動液によるオリフィス特性を調節することができる。
(5)前記第2スペーサは、前記シリンダの外周面によって径方向に位置決めされることを特徴とする(4)項の緩衝器。
本項の態様においては、成型後の第2スペーサに機械加工することなく、第2スペーサをシリンダに対して径方向に位置決めすることができる。
(6)前記位置決め部は、前記スペーサの内周面から径方向内側に延びる突起によって構成されることを特徴とする(1)乃至(5)項の緩衝器。
本項の態様においては、成型後のスペーサに機械加工することなく、スペーサを仕切り部に対して周方向に位置決めすることができる。
(7)前記位置決め部を構成する突起は、前記第1連通路に係合されることを特徴とする(6)項の緩衝器。
本項の態様においては、突起を係合させるための溝を仕切り部に加工する工程が不要になる。
(8)前記第2連通路は、前記スペーサの内周面から径方向外側へ延びる切欠によって構成されることを特徴とする(1)乃至(7)項の緩衝器。
本項の態様においては、成型後の仕切り部にオリフィスを加工する工程が不要になる。
本項の態様においては、成型後の仕切り部に溝(環状通路)を機械加工する工程が不要となる。また、仕切り部をシリンダの外側に嵌合させる構造に対して、仕切り部、延いては緩衝器を径方向に小型化することができる。
(2)前記第1連通路は、前記嵌合部の外周面に形成されて軸方向へ延びる凹部によって構成されることを特徴とする(1)項の緩衝器。
本項の態様においては、成型後の仕切り部(嵌合部)に第1連通路を加工する工程が不要となる。
(3)前記環状通路は、前記シリンダの端面の内周側に形成される面取部によって構成されることを特徴とする(1)、(2)項の緩衝器。
本項の態様においては、成形後の仕切り部の内周面を溝加工する工程が不要となる。
(4)前記環状通路は、前記シリンダの端面と前記スペーサとの間に配置される環状の第2スペーサの内周に形成されることを特徴とする(1)、(2)項の緩衝器。
本項の態様においては、第2スペーサの形状、延いては環状通路の流路面積を変更することにより、環状通路を流通する作動液によるオリフィス特性を調節することができる。
(5)前記第2スペーサは、前記シリンダの外周面によって径方向に位置決めされることを特徴とする(4)項の緩衝器。
本項の態様においては、成型後の第2スペーサに機械加工することなく、第2スペーサをシリンダに対して径方向に位置決めすることができる。
(6)前記位置決め部は、前記スペーサの内周面から径方向内側に延びる突起によって構成されることを特徴とする(1)乃至(5)項の緩衝器。
本項の態様においては、成型後のスペーサに機械加工することなく、スペーサを仕切り部に対して周方向に位置決めすることができる。
(7)前記位置決め部を構成する突起は、前記第1連通路に係合されることを特徴とする(6)項の緩衝器。
本項の態様においては、突起を係合させるための溝を仕切り部に加工する工程が不要になる。
(8)前記第2連通路は、前記スペーサの内周面から径方向外側へ延びる切欠によって構成されることを特徴とする(1)乃至(7)項の緩衝器。
本項の態様においては、成型後の仕切り部にオリフィスを加工する工程が不要になる。
尚、本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
本願は、2018年2月26日付出願の日本国特許出願第2018-032069号に基づく優先権を主張する。2018年2月26日付出願の日本国特許出願第2018-032069号の明細書、特許請求の範囲、図面、及び要約書を含む全開示内容は、参照により本願に全体として組み込まれる。
1 緩衝器、2 シリンダ、3 外筒、6 リザーバ室、7 仕切り部、12 端面(シリンダ)、14 第1液室、15 第2液室、16 ロッド、23 嵌合部、25 鍔部、27 溝部(第1連通路)、31 スペーサ、34 突起(位置決め部)、35 切欠(第2連通路)、39 環状通路
Claims (8)
- 緩衝器であって、該緩衝器は、
作動液が封入され、ピストンが摺動するシリンダと、
前記ピストンが連結され、一部が前記シリンダの外部へ突出するロッドと、
該シリンダの外周を被う外筒と、
前記シリンダと前記外筒との間に形成され、作動液およびガスが封入されるリザーバ室と、
前記シリンダおよび前記外筒の両端部に設けられ、前記シリンダ内の液室と前記リザーバ室とを仕切る仕切り部と、を有しており、
前記両仕切り部のうち少なくとも一方の仕切り部は、前記シリンダの内側に嵌合される嵌合部と、該嵌合部よりも大径に形成され、前記シリンダの端面に対向する鍔部と、を有し、
前記シリンダの端面と前記鍔部との間には、前記嵌合部の外側に挿通される環状のスペーサが設けられ、
前記嵌合部の外周には、環状通路が設けられ、
前記嵌合部と前記シリンダとの間には、前記シリンダ内の液室と前記環状通路とを連通させる第1連通路が設けられ、
前記スペーサには、前記環状通路と前記リザーバ室とを連通させる第2連通路と、前記一方の仕切り部に対する周方向位置を決める位置決め部と、が形成されることを特徴とする緩衝器。 - 請求項1に記載の緩衝器において、
前記第1連通路は、前記嵌合部の外周面に形成されて軸方向へ延びる凹部によって構成されることを特徴とする緩衝器。 - 請求項1または2に記載の緩衝器において、
前記環状通路は、前記シリンダの端面の内周側に形成される面取部によって構成されることを特徴とする緩衝器。 - 請求項1または2に記載の緩衝器において、
前記環状通路は、前記シリンダの端面と前記スペーサとの間に配置される環状の第2スペーサの内周に形成されることを特徴とする緩衝器。 - 請求項4に記載の緩衝器において、
前記第2スペーサは、前記シリンダの外周面によって径方向に位置決めされることを特徴とする緩衝器。 - 請求項1乃至5のいずれか1項に記載の緩衝器において、
前記位置決め部は、前記スペーサの内周面から径方向内側に延びる突起によって構成されることを特徴とする緩衝器。 - 請求項6に記載の緩衝器において、
前記位置決め部を構成する突起は、前記第1連通路に係合されることを特徴とする緩衝器。 - 請求項1乃至7のいずれか1項に記載の緩衝器において、
前記第2連通路は、前記スペーサの内周面から径方向外側へ延びる切欠によって構成されることを特徴とする緩衝器。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980014166.XA CN111742157B (zh) | 2018-02-26 | 2019-02-18 | 缓冲器 |
JP2020501749A JP6914415B2 (ja) | 2018-02-26 | 2019-02-18 | 緩衝器 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-032069 | 2018-02-26 | ||
JP2018032069 | 2018-02-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163704A1 true WO2019163704A1 (ja) | 2019-08-29 |
Family
ID=67687753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/005816 WO2019163704A1 (ja) | 2018-02-26 | 2019-02-18 | 緩衝器 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP6914415B2 (ja) |
CN (1) | CN111742157B (ja) |
WO (1) | WO2019163704A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113638999A (zh) * | 2021-08-23 | 2021-11-12 | 南京林业大学 | 一种双油缸双出杆式粘滞流体阻尼器 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009243634A (ja) * | 2008-03-31 | 2009-10-22 | Hitachi Ltd | 液圧緩衝器 |
WO2017022494A1 (ja) * | 2015-07-31 | 2017-02-09 | 日立オートモティブシステムズ株式会社 | シリンダ装置 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5878841B2 (ja) * | 2012-08-06 | 2016-03-08 | Kyb株式会社 | 緩衝装置 |
JP6134957B2 (ja) * | 2012-09-28 | 2017-05-31 | 日立オートモティブシステムズ株式会社 | 緩衝器 |
JP6351443B2 (ja) * | 2014-08-29 | 2018-07-04 | 日立オートモティブシステムズ株式会社 | 緩衝器 |
-
2019
- 2019-02-18 CN CN201980014166.XA patent/CN111742157B/zh active Active
- 2019-02-18 JP JP2020501749A patent/JP6914415B2/ja active Active
- 2019-02-18 WO PCT/JP2019/005816 patent/WO2019163704A1/ja active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009243634A (ja) * | 2008-03-31 | 2009-10-22 | Hitachi Ltd | 液圧緩衝器 |
WO2017022494A1 (ja) * | 2015-07-31 | 2017-02-09 | 日立オートモティブシステムズ株式会社 | シリンダ装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113638999A (zh) * | 2021-08-23 | 2021-11-12 | 南京林业大学 | 一种双油缸双出杆式粘滞流体阻尼器 |
Also Published As
Publication number | Publication date |
---|---|
CN111742157B (zh) | 2022-02-25 |
JP6914415B2 (ja) | 2021-08-04 |
CN111742157A (zh) | 2020-10-02 |
JPWO2019163704A1 (ja) | 2020-12-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9435394B2 (en) | Damping device | |
US9410595B2 (en) | Damping valve for shock absorber | |
US4993524A (en) | Damping valve unit for a hydraulic oscillation damper | |
US11536344B2 (en) | Valve and shock absorber | |
WO2019163704A1 (ja) | 緩衝器 | |
KR102556709B1 (ko) | 완충기 | |
EP2980442B1 (en) | Damping valve | |
WO2017022494A1 (ja) | シリンダ装置 | |
US20220112933A1 (en) | Shock absorber | |
US9772000B2 (en) | Piston and shock absorber including piston | |
JP6894828B2 (ja) | 緩衝器 | |
JPH0960680A (ja) | 油圧緩衝器 | |
JP5253326B2 (ja) | ピストン | |
KR100424439B1 (ko) | 피스톤패킹의 장착구조 | |
US20240052908A1 (en) | Shock absorber | |
JP6080257B2 (ja) | 緩衝器 | |
US20240102528A1 (en) | Shock absorber and manufacturing method of shock absorber | |
US20230287954A1 (en) | Shock absorber | |
WO2016052008A1 (ja) | 液圧緩衝器 | |
JP3247590U (ja) | エアシリンダ | |
WO2024201696A1 (ja) | 緩衝装置、懸架装置 | |
US20220186807A1 (en) | Shock absorber | |
JP6535264B2 (ja) | バルブ及び緩衝器 | |
CN116745544A (zh) | 缓冲器 | |
JP2020159466A (ja) | 緩衝器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19757608 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020501749 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19757608 Country of ref document: EP Kind code of ref document: A1 |