WO2019163489A1 - 二次電池用積層体の製造方法 - Google Patents

二次電池用積層体の製造方法 Download PDF

Info

Publication number
WO2019163489A1
WO2019163489A1 PCT/JP2019/003729 JP2019003729W WO2019163489A1 WO 2019163489 A1 WO2019163489 A1 WO 2019163489A1 JP 2019003729 W JP2019003729 W JP 2019003729W WO 2019163489 A1 WO2019163489 A1 WO 2019163489A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
adhesive material
secondary battery
electrode
laminate
Prior art date
Application number
PCT/JP2019/003729
Other languages
English (en)
French (fr)
Inventor
雅信 佐藤
大西 益弘
大士 古賀
慶一朗 田中
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US16/975,392 priority Critical patent/US20210036375A1/en
Priority to EP19756683.9A priority patent/EP3764449A4/en
Priority to KR1020207022731A priority patent/KR20200124223A/ko
Priority to CN201980011351.3A priority patent/CN111670512A/zh
Priority to JP2020501645A priority patent/JP7517146B2/ja
Publication of WO2019163489A1 publication Critical patent/WO2019163489A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/46Separators, membranes or diaphragms characterised by their combination with electrodes
    • H01M50/461Separators, membranes or diaphragms characterised by their combination with electrodes with adhesive layers between electrodes and separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0436Small-sized flat cells or batteries for portable equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing a laminate for a secondary battery.
  • Secondary batteries such as lithium ion secondary batteries are small and light, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications.
  • the secondary battery generally includes a battery member such as a positive electrode, a negative electrode, and a separator that separates the positive electrode and the negative electrode and prevents a short circuit between the positive electrode and the negative electrode.
  • the electrode before being immersed in the electrolyte and the separator are pressure-bonded to form a laminated body (hereinafter sometimes referred to as “secondary battery laminated body”), which is necessary.
  • secondary battery laminated body a laminated body
  • it may be cut to a desired size, or laminated, folded or wound.
  • the crimped electrode and the separator may be misaligned, which may cause problems such as generation of defects and reduced productivity.
  • a separator having an adhesive layer on the surface thereof is used to favorably bond an electrode and a separator in a secondary battery manufacturing process.
  • Patent Document 1 after forming a porous coating layer by applying a coating solution containing inorganic particles and a binder polymer on a porous substrate and drying the coating solution, A separator having a porous coating layer and an adhesive layer is produced on a porous substrate by applying a binder solution having a predetermined surface energy and contact angle on the surface and drying, and used for assembling a secondary battery.
  • a battery member having an adhesive layer such as a separator having an adhesive layer is stored in a rolled state until it is used to form a laminate for a secondary battery after the adhesive layer is formed.
  • an adhesive layer such as a separator having an adhesive layer
  • the battery members adjacent to each other through the adhesive layer may be stuck (blocked). And when battery members adhere, when the battery member which has an adhesion layer is drawn out from a roll and manufacturing the laminated body for secondary batteries, the operation
  • an object of the present invention is to provide a method capable of efficiently producing a laminate for a secondary battery in which an electrode and a separator are bonded together while ensuring the adhesive force between the electrode and the separator.
  • the present inventor has intensively studied for the purpose of solving the above problems. Then, the inventor makes the amount of the adhesive material formed on the bonding surface within a predetermined range and forms the adhesive material when manufacturing the laminated body for the secondary battery in which the electrode and the separator are bonded together. After that, if the electrode and the separator are bonded together without bringing other members into contact with the bonding surface on which the adhesive material is formed, the laminated body for the secondary battery can be efficiently obtained while ensuring the adhesive force between the electrode and the separator.
  • the present invention has been completed by finding that it can be produced.
  • this invention aims at solving the said subject advantageously, and the manufacturing method of the laminated body for secondary batteries of this invention is for secondary batteries formed by bonding an electrode and a separator.
  • a method for manufacturing a laminate the step (A) of forming an adhesive material on at least one bonding surface of the electrode and the separator, and the bonding in which the adhesive material is formed after the step (A)
  • the step (C) of bonding wherein the formation amount of the adhesive material in the step (A) is 0.1 g / m 2 or more and 100 g / m 2 or less.
  • the “lamination start position” refers to a position where the bonding surface of the electrode and the bonding surface of the separator are brought into contact with each other when bonding the electrode and the separator.
  • the “formation amount of the adhesive material” refers to the amount of the adhesive material formed per unit area of the bonding surface, and the mass of the adhesive material formed on the bonding surface is defined as the bonding material. It can be calculated by dividing by the area of the bonding surface on which the material is formed. Note that the “area of the bonding surface” refers to the area of the portions that contact each other when the electrode and the separator are bonded together (that is, when one of the electrode and the separator is smaller than the other) The area of the bonding surface is equal to the area of the smaller bonding surface).
  • the adhesive material is preferably made of a polymer. If the adhesive material which consists of a polymer is used, an electrode and a separator can be adhere
  • the manufacturing method of the laminated body for secondary batteries of this invention WHEREIN:
  • the said polymer contains the low Tg polymer whose glass transition temperature is 25 degrees C or less. If a polymer containing a low Tg polymer is used as an adhesive material, the adhesive strength between the electrode and the separator can be further increased.
  • the “glass transition temperature” can be measured according to JIS K7121.
  • the manufacturing method of the laminated body for secondary batteries of this invention supplies the adhesive composition containing the said adhesive material and a solvent to the said bonding surface in the said process (A), and is used for the said adhesive composition.
  • the amount of coarse particles having a diameter of 10 ⁇ m or more is preferably 100 ppm or less. If the amount of coarse particles is not more than the above upper limit value, the energy density of the secondary battery produced using the secondary battery laminate can be increased.
  • the “amount of coarse particles” can be measured using the measuring method described in the examples of the present specification.
  • the manufacturing method of the laminated body for secondary batteries of this invention WHEREIN: In the said process (A), the said adhesive material is formed in one place or more on a bonding surface, and the formation area of the said adhesive material is 1 place. is preferably 25 [mu] m 2 or more 250000Myuemu 2 hereinafter. If the formation area per location of the adhesive material is within the above range, the laminate for a secondary battery can be efficiently produced while the electrode and the separator are favorably bonded.
  • the manufacturing method of the laminated body for secondary batteries of this invention forms the said adhesive material by the inkjet method in the said process (A). If the adhesive material is formed by the ink jet method, the electrode and the separator can be bonded more satisfactorily.
  • the manufacturing method of the laminated body for secondary batteries of this invention is used when manufacturing the laminated body for secondary batteries formed by bonding an electrode (a positive electrode and / or a negative electrode) and a separator.
  • the secondary battery laminate produced using the method for producing a secondary battery laminate of the present invention produces a secondary battery such as a non-aqueous secondary battery (for example, a lithium ion secondary battery). Can be used.
  • the manufacturing method of the laminated body for secondary batteries of this invention can be used especially suitably, when manufacturing the laminated body for secondary batteries continuously.
  • the manufacturing method of the laminated body for secondary batteries of this invention is a method of bonding an electrode and a separator and manufacturing the laminated body for secondary batteries. Then, in the manufacturing method of the secondary battery laminate of the present invention, the electrodes and separators of at least one of the bonding step of the bonding material to form an amount of 0.1 g / m 2 or more 100 g / m 2 or less on the surface (A ), The step (B) of transporting the electrode and the separator to the bonding start position is performed without bringing other members into contact with the bonding surface on which the adhesive material is formed.
  • the step (C) for bonding the electrode and the separator is performed to produce a laminate for a secondary battery.
  • the battery member (electrode and / or Or separator) does not cause blocking.
  • the amount of the adhesive material formed is within a predetermined range, the electrode and the separator are sufficiently connected even when the battery member (electrode and / or separator) on which the adhesive material is formed is used for bonding as it is. Can be glued. Therefore, the laminated body for secondary batteries can be manufactured efficiently.
  • the laminate for a secondary battery produced by the production method of the present invention is one in which an electrode and a separator are bonded together via a bonding surface.
  • the electrode which is bonded to the separator to form the secondary battery laminate may be only the positive electrode, only the negative electrode, or both the positive electrode and the negative electrode.
  • the number of positive electrodes, negative electrodes, and separators included in the secondary battery laminate may be one. Two or more may be sufficient. That is, the structure of the laminate for a secondary battery manufactured using the manufacturing method of the present invention may be any of the following (1) to (6).
  • Separator / positive electrode / separator / negative electrode (6) Multiple positive and negative electrodes are separators (For example, “separator / negative electrode / separator / positive electrode / separator / negative electrode.. ./Separator/positive electrode”) Note that a laminate for a secondary battery having a plurality of electrodes and / or separators can be produced by repeatedly performing the steps (A) to (C) described above.
  • the electrode is not particularly limited, and for example, an electrode composed of an electrode base material formed by forming an electrode composite layer on one side or both sides of a current collector, or an electrode composite layer of an electrode base material An electrode obtained by further forming a porous film layer thereon can be used.
  • the current collector, the electrode mixture layer and the porous membrane layer are not particularly limited, and may be any collector that can be used in the field of secondary batteries, such as those described in JP2013-145663A.
  • An electrical conductor, an electrode mixture layer and a porous membrane layer can be used.
  • the porous membrane layer refers to a layer containing non-conductive particles as described in, for example, JP-A-2013-145663.
  • the electrode used for manufacture of the laminated body for secondary batteries may be wound by roll shape, and may be cut
  • the separator which consists of a separator base material, or the separator which forms a porous film layer in the single side
  • the separator substrate and the porous membrane layer are not particularly limited, and can be used in the field of secondary batteries such as those described in JP 2012-204303 A and JP 2013-145863 A, for example. Any separator substrate and porous membrane layer may be used.
  • the separator used for manufacture of the laminated body for secondary batteries may be wound by roll shape, and may be cut
  • the adhesive material for bonding the electrode and the separator is not particularly limited as long as it can bond the electrode and the separator and does not inhibit the battery reaction, and is used in the field of secondary batteries. Any adhesive material that has been described can be used. Especially, it is preferable to use the adhesive material which consists of a polymer as an adhesive material from a viewpoint of adhere
  • the polymer which comprises an adhesive material may be only one type, and may be two or more types.
  • the polymer that can be used as the adhesive material is not particularly limited, and is a fluorine-based polymer such as polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene (PVdF-HFP) copolymer; styrene- Conjugated diene polymers such as butadiene copolymer (SBR) and acrylonitrile-butadiene copolymer (NBR); hydrides of conjugated diene polymers; polymers containing (meth) acrylic acid alkyl ester monomer units ( Acrylic polymer); polyvinyl alcohol polymers such as polyvinyl alcohol (PVA); and the like.
  • “(meth) acrylic acid” means acrylic acid and / or methacrylic acid.
  • the shape of the adhesive material made of a polymer is not particularly limited, and may be particulate, non-particulate, or a combination of particulate and non-particulate. Also good.
  • the adhesive material made of a polymer is particulate, the particulate adhesive material may be a single-phase particle formed from a single polymer, or two or more different from each other. It may be a particle having a different phase structure formed by physically or chemically bonding the polymer.
  • the heterophasic structure a core-shell structure in which spherical particles are formed from a polymer having a central part (core part) and an outer shell part (shell part) different from each other; two or more polymers Side-by-side structure in which are arranged side by side.
  • the “core shell structure” includes not only a structure in which the shell part completely covers the outer surface of the core part but also a structure in which the shell part partially covers the outer surface of the core part.
  • the shell The part is a shell part that partially covers the outer surface of the core part.
  • the volume average particle diameter of the particulate adhesive material is preferably 0.1 ⁇ m or more, more preferably 0.15 ⁇ m or more, and 0 More preferably, it is 18 ⁇ m or more, preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 2 ⁇ m or less. If the volume average particle diameter of the particulate adhesive material is not less than the above lower limit value, the adhesive force between the electrode and the separator can be increased. Moreover, if the volume average particle diameter of the particulate adhesive material is not more than the above upper limit value, the energy density of the secondary battery produced using the secondary battery laminate can be increased.
  • the “volume average particle diameter” means a particle diameter at which the cumulative volume calculated from the small diameter side is 50% in the volume-based particle diameter distribution measured by the laser diffraction method.
  • the volume-average particle diameter of the polymer having the core-shell structure is preferably 0.1 ⁇ m or more, and preferably 0.15 ⁇ m or more. More preferably, it is 0.2 ⁇ m or more, more preferably 5 ⁇ m or less, more preferably 3 ⁇ m or less, and further preferably 2 ⁇ m or less. If the volume average particle diameter of the adhesive material made of a polymer having a core-shell structure is not less than the above lower limit value, the adhesive force between the electrode and the separator can be increased.
  • the volume average particle diameter of the adhesive material made of the polymer having a core-shell structure is equal to or less than the above upper limit value, the energy density of the secondary battery produced using the secondary battery laminate can be increased.
  • the adhesive material made of the polymer having a core-shell structure is calculated from the smaller diameter side in the volume-based particle size distribution with respect to the volume average particle size (D50).
  • the ratio (D10 / D50) of the particle diameter (D10) at which the accumulated volume is 10% is preferably 0.5 or more and 1.0 or less, more preferably 0.55 or more and 1.0 or less, More preferably, it is 0.6 or more and 1.0 or less.
  • the adhesive force of an electrode and a separator can be improved.
  • the adhesive material made of the polymer having a core-shell structure is calculated from the smaller diameter side in the volume-based particle size distribution with respect to the volume average particle size (D50).
  • the ratio (D90 / D50) of the particle diameter (D90) at which the accumulated volume becomes 90% is preferably 1.5 or less, more preferably 1.45 or less, and 1.4 or less. Is more preferable.
  • D90 / D50 is not more than the above upper limit value, the adhesive force between the electrode and the separator can be increased.
  • the polymer having the core-shell structure has a core part diameter of 100% of the volume average particle diameter of the polymer having the core-shell structure.
  • they are 5% or more and less than 100%, More preferably, they are 10% or more and less than 100%, More preferably, they are 20% or more and less than 100%. If the diameter of the core part is not less than the above lower limit value, the particle shape can be kept good even after being supplied to the bonding surface, and the electrode and the separator can be adhered well.
  • the polymer constituting the adhesive material preferably contains a low Tg polymer having a glass transition temperature of 25 ° C. or lower. If the polymer constituting the adhesive material contains a low Tg polymer, the adhesive force between the electrode and the separator can be increased.
  • the glass transition temperature of the low Tg polymer is preferably ⁇ 120 ° C. or higher.
  • the polymer having the core-shell structure preferably has a glass transition temperature of the core portion higher than the glass transition temperature of the shell portion. If the glass transition temperature of the core part is higher than the glass transition temperature of the shell part, the electrode and separator are made to exhibit a sufficiently high adhesive force on the shell part while maintaining a good particle shape even after being supplied to the bonding surface. Can be bonded well.
  • the glass transition temperature of the core portion of the polymer having a core-shell structure is preferably ⁇ 40 ° C. or higher and 110 ° C. or lower, more preferably ⁇ 40 ° C. or higher and 60 ° C. or lower, and ⁇ 40 ° C. or higher and 25 ° C. or lower.
  • the glass transition temperature of the shell portion of the polymer having a core-shell structure is preferably ⁇ 40 ° C. or higher, more preferably ⁇ 35 ° C. or higher, still more preferably ⁇ 30 ° C. or higher, and 50 It is preferably at most 0 ° C, more preferably at most 40 ° C, further preferably at most 30 ° C, particularly preferably at most 25 ° C.
  • the polymer having a core-shell structure preferably has at least one glass transition temperature at 25 ° C. or lower.
  • the amount of the adhesive material formed on the bonding surface needs to be 0.1 g / m 2 or more and 100 g / m 2 or less, and is 0.1 g / m 2 or more and 50 g / m 2 or less. Is more preferably 0.1 g / m 2 or more and 10 g / m 2 or less, and further preferably 0.1 g / m 2 or more and 1 g / m 2 or less. If the formation amount of the adhesive material is 0.1 g / m 2 or more, the electrode and the separator can be sufficiently bonded. Moreover, if the formation amount of the adhesive material is 100 g / m 2 or less, the laminate for a secondary battery can be efficiently produced.
  • the amount of adhesive material formed on each bonded surface is 0.1 g / m 2.
  • the amount may be 100 g / m 2 or less.
  • the adhesive material can be supplied to the bonding surface in any state such as a solid state, a molten state, a state dissolved in a solvent, or a state dispersed in a solvent.
  • the adhesive material is preferably supplied in a state dissolved in a solvent or dispersed in a solvent, and more preferably supplied in a state dispersed in a solvent.
  • step (A) when the adhesive material is supplied to the bonding surface in a state dissolved in the solvent or dispersed in the solvent, that is, an adhesive composition containing the adhesive material and the solvent is applied to the bonding surface.
  • an adhesive composition containing the adhesive material and the solvent is applied to the bonding surface.
  • attachment For example, water, an organic solvent, and mixtures thereof can be used.
  • the solvent is preferably water and alcohol, and more preferably water.
  • the concentration of the adhesive material in the adhesive composition is preferably 1% by mass or more and 40% by mass or less, more preferably 1% by mass or more and 30% by mass or less, and more preferably 1% by mass or more and 15% by mass. More preferably, it is as follows. If the density
  • the viscosity of the adhesive composition is preferably 1 mPa ⁇ s or more and 50 mPa ⁇ s or less, more preferably 1 mPa ⁇ s or more and 40 mPa ⁇ s or less, and 1 mPa ⁇ s or more and 30 mPa ⁇ s or less. Is more preferable. If the viscosity of the adhesive composition is within the above range, the adhesive composition can be easily supplied to a desired position on the bonding surface to achieve a desired formation amount, so that the electrode and the separator are good. Can be adhered to.
  • “viscosity” refers to the value of static viscosity at a temperature of 20 ° C. measured using a Brookfield viscometer (B-type viscometer).
  • the surface tension of the adhesive composition is preferably 10 mN / m or more, more preferably 15 mN / m or more, further preferably 20 mN / m or more, and 72 mN / m or less. Is preferably 70 mN / m or less, and more preferably 65 mN / m or less. If the surface tension of the bonding composition is equal to or higher than the above lower limit value, the bonding composition can be supplied in a desired shape on the bonding surface to obtain a desired formation amount. Furthermore, it can manufacture efficiently.
  • the bonding composition can be supplied to a desired position on the bonding surface, and the electrode and the separator can be favorably bonded.
  • surface tension refers to a value measured in accordance with JIS K2241.
  • the amount of coarse particles having a diameter of 10 ⁇ m or more contained in the adhesive composition is preferably 100 ppm or less, more preferably 50 ppm or less, and even more preferably 10 ppm or less. If the amount of coarse particles is not more than the above upper limit value, the energy density of the secondary battery produced using the secondary battery laminate can be increased.
  • the coarse particles contained in the adhesive composition are usually made of a particulate adhesive material made of a polymer.
  • the formation of the adhesive material on the bonding surface is not particularly limited, and can be performed by using a method such as an inkjet method, a spray method, a dispenser method, a gravure coating method, or a screen printing method.
  • a method for forming the adhesive material is preferably an ink jet method.
  • the adhesive material may be formed on the entire bonding surface or only on a part of the bonding surface.
  • the adhesive material is not particularly limited, and is formed to have an arbitrary plan view shape such as a stripe shape, a dot shape, or a lattice shape. Can do.
  • the dot-shaped adhesive material may be uniformly disposed (formed) on the entire bonding surface, or arranged (formed) in a predetermined pattern such as a stripe shape, a dot shape, or a lattice shape.
  • the dot-shaped adhesive material may be arranged (formed) in a stripe shape.
  • the adhesive composition is applied in a desired pattern by an ink jet method from the viewpoint of easy formation and arrangement of the adhesive material. It is preferable to form an adhesive material.
  • the cross-sectional shape of the adhesive material is not particularly limited, and can be a convex shape, a concave-convex shape, or a concave shape.
  • the electrode and the separator it is a concave-convex shape. It is preferable.
  • the cross-sectional shape of the adhesive material can be changed, for example, by adjusting the drying conditions when the adhesive material is formed using the adhesive composition.
  • the formation area of the adhesive material formed on the bonding surface is preferably 25 ⁇ m 2 or more per location. , more preferably 50 [mu] m 2 or more, further preferably 100 [mu] m 2 or more, preferably 250000Myuemu 2 or less, more preferably 200000Myuemu 2 or less, still more preferably 100000 2 or less.
  • the formation area of the adhesive material per location is 25 ⁇ m 2 or more, the electrode and the separator can be sufficiently bonded. Moreover, if the formation area of the adhesive material per location is 250,000 ⁇ m 2 or less, the laminate for a secondary battery can be efficiently produced.
  • said formation area can be adjusted by changing the quantity, shape, and range which apply an adhesive material or an adhesive composition to a bonding surface. Specifically, for example, when forming an adhesive material by an inkjet method using an adhesive composition, the formation area is a gradation of discharge of the adhesive composition from the nozzles of the inkjet head (discharged at the same point). It can be adjusted by changing the number of times.
  • Step (B)> the electrode and the separator are transported to the bonding start position without bringing other members into contact with the bonding surface on which the adhesive material is formed. In this way, if other members are not brought into contact with the bonding surface on which the adhesive material is formed, problems such as blocking do not occur. Therefore, an adhesive material having excellent adhesiveness can be used, and a laminate for a secondary battery can be used. The body can be manufactured efficiently.
  • the conveyance of an electrode and a separator is not specifically limited, For example, it can carry out using arbitrary conveyance mechanisms, such as a roller, a belt conveyor, a manipulator, and an adsorption
  • the adhesive composition on the bonding surface may be dried during conveyance in the step (B).
  • drying is not particularly limited, and can be performed using a heating device such as a heater, a dryer, or a heat roller.
  • the temperature at the time of drying of the electrode and / or separator supplied with the adhesive composition is not particularly limited and is preferably 0 ° C. or higher, more preferably 10 ° C. or higher, and 15 ° C. More preferably, it is set to 200 ° C. or less, more preferably 150 ° C. or less, and further preferably 100 ° C. or less.
  • the drying rate can be sufficiently increased and the secondary battery laminate can be efficiently produced. Moreover, if the temperature at the time of drying shall be below the said upper limit, the shape of the adhesive material after drying can be made favorable, and an electrode and a separator can be adhere
  • the electrode and the separator are bonded through the bonding surface.
  • the bonding is not particularly limited, and can be performed, for example, by pressurizing and / or heating the laminated body of the electrode and the separator superimposed via the bonding surface.
  • step (C) the pressure applied to the laminate in step (C), the temperature at which the electrodes and the separator are bonded together, and the time for pressing and / or heating the laminate depend on the type and amount of the adhesive material used. Can be adjusted accordingly.
  • the manufacturing of the laminated body for secondary batteries using the manufacturing method of the laminated body for secondary batteries of this invention is not specifically limited, For example, it can carry out using the manufacturing apparatus 100 as shown in FIG. it can.
  • the manufacturing apparatus 100 shown in FIG. 1 includes a laminate for a secondary battery in which electrodes (positive electrode and negative electrode) and a separator are laminated in the order of “positive electrode / separator / negative electrode / separator” from the upper side to the lower side.
  • 200 is an apparatus for manufacturing 200.
  • the obtained secondary battery laminate 200 is cut into an appropriate size and then further overlapped before being used for manufacturing a secondary battery.
  • the manufacturing apparatus 100 is cut
  • the manufacturing apparatus 100 includes a plurality (nine in the illustrated example) of the conveying rollers 1, a plurality (three in the illustrated example) of the press rollers 2, and a plurality of (four in the illustrated example) adhesive material supply machines 60A. , 60B, 60C, 60D and a cutting machine 50 are further provided.
  • an oblique stripe shape as shown in FIG. 2 is applied to the surface of the negative electrode 11 (the upper surface in the illustrated example) that is fed from the negative electrode roll 10 and conveyed via the conveying roller 1.
  • An adhesive composition 61 containing an adhesive material is supplied from the adhesive material supply machine 60A so as to form a coating pattern (step (A)).
  • the angle formed with the direction orthogonal to the transport direction in plan view is ⁇ measured from the narrow angle side, and the arrangement pitch is P.
  • the width is W.
  • the negative electrode 11 supplied with the adhesive material and the separator 21 fed from the first separator roll 20 are conveyed to the bonding start position where the press roller 2 is positioned (step (B)), and are bonded by the press roller 2. (Step (C)).
  • the manufacturing apparatus 100 uses the transport roller 1 positioned between the adhesive material supply machine 60A and the press roller 2 as a heat roller, and the adhesive composition.
  • the product may be dried.
  • an oblique stripe-shaped coating pattern as shown in FIG. 2 is formed on the surface of the laminate of the negative electrode 11 and the separator 21 bonded together using an adhesive material on the negative electrode 11 side.
  • the adhesive composition 61 containing the adhesive material is supplied from the adhesive material supplier 60B (step (A)).
  • the laminate of the negative electrode 11 and the separator 21 supplied with the adhesive material and the separator 31 fed out from the second separator roll 30 are conveyed to the bonding start position where the press roller 2 is positioned (step (B)).
  • the press roller 2 step (C)).
  • the manufacturing apparatus 100 uses the conveying roller 1 positioned between the adhesive material supply machine 60B and the press roller 2 as a heat roller, and the adhesive composition.
  • the product may be dried.
  • the application of an oblique stripe shape similar to that shown in FIG. 2 is applied to the surface on the separator 31 side of the laminate of the negative electrode 11 and the separators 21 and 31 bonded together using an adhesive material.
  • Adhesive composition 61 containing an adhesive material is supplied from adhesive material supply machine 60C so as to form a pattern (step (A)).
  • the positive electrode 41 is placed on the separator 31 of the laminate of the negative electrode 11 and the separators 21 and 31 to which the adhesive material is supplied (step (B)) and bonded by the press roller 2.
  • the manufacturing apparatus 100 uses the conveying roller 1 positioned between the adhesive material supply machine 60C and the press roller 2 as a heat roller, and the adhesive composition.
  • the product may be dried.
  • the manufacturing apparatus 100 shows, for example in FIG. 2 with respect to the surface at the side of the positive electrode of the laminated body 200 for secondary batteries laminated
  • the adhesive composition 61 containing the adhesive material is supplied from the adhesive material supply machine 60D so that the application pattern of the diagonal stripe shape is the same as the above, the laminate 200 for the secondary battery is cut by the cutting machine 50. .
  • the laminate obtained by cutting the secondary battery laminate 200 with the cutting machine 50 is used for manufacturing a secondary battery after further overlapping.
  • the secondary battery manufacturing method using the secondary battery laminate includes the steps of manufacturing the secondary battery laminate using the above-described secondary battery laminate manufacturing method of the present invention, and a secondary battery manufacturing method.
  • a step of assembling a secondary battery using the laminate and the electrolytic solution (an assembling step).
  • the electrolytic solution an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt is used as the supporting electrolyte.
  • the lithium salt include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi, and the like.
  • LiPF 6 , LiClO 4 , and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable because it is easily dissolved in a solvent and exhibits a high degree of dissociation.
  • electrolyte may be used individually by 1 type and may be used combining two or more types by arbitrary ratios. Usually, the lithium ion conductivity tends to increase as the supporting electrolyte having a higher degree of dissociation is used, so that the lithium ion conductivity can be adjusted depending on the type of the supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • carbonates because they have a high dielectric constant and a wide stable potential region.
  • the lower the viscosity of the solvent used the higher the lithium ion conductivity tends to be, so the lithium ion conductivity can be adjusted depending on the type of solvent.
  • the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate.
  • the secondary battery is further laminated with additional battery members (electrodes and / or separators, etc.) as necessary with respect to the secondary battery laminate produced according to the method for producing a secondary battery laminate of the present invention.
  • the obtained laminate can be assembled according to need by winding or folding it into the battery container according to the shape of the battery, pouring the electrolyte into the battery container and sealing it.
  • an overcurrent prevention element such as a fuse or a PTC element, an expanded metal, a lead plate, etc. may be provided as necessary.
  • the shape of the secondary battery may be any of a coin type, a button type, a sheet type, a cylindrical type, a square type, a flat type, and the like.
  • ⁇ Glass transition temperature> According to JIS K7121, the measurement was carried out using a differential scanning calorimeter (DSC 6220SII, manufactured by Nanotechnology Co., Ltd.) at a measurement temperature of ⁇ 100 ° C. to 180 ° C. and a heating rate of 5 ° C./min.
  • DSC 6220SII differential scanning calorimeter
  • ⁇ Volume average particle size D50 and particle size distribution> The particle size distribution (volume basis) of the aqueous dispersion of the particulate polymer was measured with a laser diffraction type particle size distribution measuring device (manufactured by Shimadzu Corporation, product name “SALD-3100”).
  • the particle diameter at which the cumulative volume calculated from the small diameter side becomes 50% was defined as the volume average particle diameter (D50) of each particle. Further, using the measured particle size distribution, the particle diameter (D10) at which the cumulative volume calculated from the small diameter side becomes 10% and the particle diameter (D90) at which the cumulative volume calculated from the small diameter side becomes 90% are obtained, D10 / D50 and D90 / D50 were calculated.
  • D50 volume average particle diameter
  • D10 / D50 and D90 / D50 were calculated.
  • ⁇ Content of coarse particles The mass (B) of a nylon mesh having an average pore diameter of 10 ⁇ m was measured and set in a funnel. Thereto, 100 g of the adhesive composition was poured and filtered. Here, ion-exchanged water was poured, washed until it became cloudy, and dried in an oven at 90 ° C. for 60 minutes or more. After standing to cool, the mass (A) of the nylon mesh was measured and the amount of mesh residue was measured. The amount of mesh residue, that is, the amount of coarse particles having a particle diameter of 10 ⁇ m or more in the bonding composition was determined by the following formula.
  • Coarse particle content (ppm) (AB) / (C ⁇ D / 100) ⁇ 1000000
  • the formation area S 50 per one part of the adhesive material is determined by using a laser microscope (manufactured by Keyence Corporation, VR-3100), the major axis diameter x and minor axis of the dot-like adhesive material formed in a 2 mm 2 region.
  • ⁇ Dry adhesive strength> The positive electrode, the negative electrode, and the separator created in the examples and comparative examples were cut into a width of 10 mm and a length of 50 mm, respectively, and the positive electrode and the separator, and the negative electrode and the separator were laminated, and a roll with a temperature corresponding to a temperature of 70 ° C. and a load of 1 MPa. The laminate was pressed at 10 m / min with a press to obtain a test piece.
  • a cellophane tape was affixed on the surface of the electrode of the test piece with the current collector side of the electrode (positive electrode or negative electrode) facing down. At this time, a cellophane tape defined in JIS Z1522 was used. The cellophane tape was fixed on a horizontal test bench. And the stress when one end of the separator was pulled vertically upward at a pulling speed of 50 mm / min and peeled was measured. This measurement was performed three times for each of the laminate including the positive electrode and the separator, and the laminate including the negative electrode and the separator, for a total of 6 times, and the average value of the stress was obtained as the peel strength to determine the adhesion between the electrode and the separator. Evaluation was made according to the following criteria.
  • the shortest injection time during which the electrolyte did not spill during the injection was determined and evaluated according to the following criteria. It shows that it is excellent in electrolyte solution pouring property, so that the shortest pouring time is short.
  • the produced secondary battery was charged at a constant current and a constant voltage (CCCV) up to 4.3 V in an atmosphere at a temperature of 25 ° C.
  • CCCV constant voltage
  • the manufactured secondary battery was charged to 4.4 V by a constant current method of 0.5 C in an atmosphere at a temperature of 45 ° C., and charging / discharging to discharge to 3.0 V was repeated 200 cycles.
  • the charge / discharge capacity retention rate was determined.
  • High voltage cycle characteristic is 95% or more
  • B High voltage cycle characteristic is 90% or more and less than 95%
  • C High voltage cycle characteristic is less than 90%
  • Example 1 ⁇ Preparation of adhesive material>
  • a particulate first adhesive material made of a polymer having a core-shell structure a core part made of a polymer having a glass transition temperature of 108 ° C. and a glass transition temperature of ⁇ 17 ° C. partially covering the outer surface of the core part.
  • An aqueous dispersion of core-shell particles having a shell portion made of the above polymer was prepared.
  • an aqueous dispersion of styrene-butadiene copolymer (SBR) was prepared as a particulate second adhesive material made of a polymer having a single phase structure.
  • SBR styrene-butadiene copolymer
  • a 5% aqueous sodium hydroxide solution was added to the mixture containing the binder for the negative electrode mixture layer to adjust to pH 8, and then the unreacted monomer was removed by heating under reduced pressure. Then, it cooled to 30 degrees C or less, and obtained the water dispersion liquid containing the binder for desired negative mix layers.
  • 100 parts of artificial graphite (volume average particle diameter: 15.6 ⁇ m) as a negative electrode active material and a 2% aqueous solution of carboxymethylcellulose sodium salt (product name “MAC350HC” manufactured by Nippon Paper Industries Co., Ltd.) as a viscosity modifier are solidified.
  • the mixture was adjusted to a solid content concentration of 68% by mixing 1 part and ion-exchanged water corresponding to the minute, and further mixed at 25 ° C. for 60 minutes. Furthermore, after adjusting solid content concentration to 62% with ion-exchange water, it further mixed for 15 minutes at 25 degreeC.
  • 1.5 parts of the aqueous dispersion containing the binder for the negative electrode mixture layer and solid ion equivalent water and ion-exchanged water are added so that the final solid content concentration is 52%. Adjust and mix for an additional 10 minutes. This was defoamed under reduced pressure to obtain a slurry composition for a secondary battery negative electrode having good fluidity.
  • the obtained slurry composition for secondary battery negative electrode was applied on a copper foil having a thickness of 20 ⁇ m as a current collector by a comma coater so that the film thickness after drying was about 150 ⁇ m and dried. .
  • This drying was performed by conveying the copper foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a negative electrode raw material before pressing.
  • the negative electrode raw material before pressing was rolled with a roll press to obtain a negative electrode after pressing with a negative electrode mixture layer thickness of 80 ⁇ m.
  • the obtained slurry composition for a secondary battery positive electrode was applied with a comma coater onto an aluminum foil having a thickness of 20 ⁇ m as a current collector so that the film thickness after drying was about 150 ⁇ m and dried. .
  • This drying was performed by transporting the aluminum foil in an oven at 60 ° C. at a speed of 0.5 m / min for 2 minutes. Thereafter, heat treatment was performed at 120 ° C. for 2 minutes to obtain a positive electrode raw material.
  • the positive electrode provided with the positive electrode compound material layer was obtained by rolling the obtained positive electrode original fabric using a roll press machine.
  • a laminate for a lithium ion secondary battery was manufactured and cut with the manufacturing apparatus shown in FIG.
  • an adhesive material supply machine an inkjet type adhesive material supply machine including an inkjet head (manufactured by Konica, KM1024 (shear mode type)) was used.
  • the conveying speed was 10 m / min, and the adhesive composition was supplied in a stripe pattern ( ⁇ : 45 °, P: 200 ⁇ m, W: 30 ⁇ m) as shown in FIG.
  • the supplied adhesive composition was dried by using a heat roller as a part of the transport roller.
  • the adhesive material after drying was observed with the laser microscope, the adhesive material was a fine dot shape. That is, a plurality of minute dot-like adhesive materials are arranged in an oblique stripe pattern on the bonding surface.
  • the cross section was observed with a laser microscope and the average height (thickness) and maximum height (thickness) of the adhesive material were confirmed, the cross section had an uneven shape, the average height was 1 ⁇ m, and the maximum height The thickness was 3 ⁇ m.
  • the dry adhesive force of the laminated body for secondary batteries was evaluated. The results are shown in Table 1. ⁇ Manufacture of secondary batteries> Five cut laminates for a secondary battery were stacked and pressed at a temperature of 70 ° C.
  • Example 2 In the same manner as in Example 1 except that the adhesive composition was supplied in a dot-shaped coating pattern (diameter: 50 ⁇ m, distance between dots: 200 ⁇ m) during the production of the secondary battery laminate, the adhesive material and adhesive Composition, negative electrode, positive electrode, separator, laminate for secondary battery, and secondary battery were prepared or manufactured.
  • the adhesive material was in the form of minute dots. That is, there are a plurality of large dots formed by aggregating a plurality of minute dot-like adhesive materials on the bonding surface. Moreover, when the cross section of the adhesive material was observed with a laser microscope, the cross section had an uneven shape. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 3 Adhesive material, adhesive composition, negative electrode, positive electrode, separator, secondary battery laminate, except that production conditions were changed as shown in Table 1 during production of the secondary battery laminate.
  • the body and the secondary battery were prepared or manufactured.
  • the adhesive material was in the form of minute dots. That is, a plurality of minute dot-like adhesive materials are arranged in an oblique stripe pattern on the bonding surface. When the cross section of the adhesive material was observed with a laser microscope, the cross section had a convex shape. Then, evaluation was performed in the same manner as in Example 1. The results are shown in Table 1.
  • Example 4 A particulate polymer having a single phase structure with a glass transition temperature of 15 ° C. is used as the first adhesive material, and a stripe shape ( ⁇ : 45 °, P: 400 ⁇ m, W: 30 ⁇ m) and the manufacturing conditions were changed as shown in Table 1, and at the time of manufacturing the secondary battery, five cut secondary battery laminates were stacked and pressed at a temperature of 40 ° C. and a pressure of 1 MPa for 5 seconds.
  • An adhesive material, an adhesive composition, a negative electrode, a positive electrode, a separator, a secondary battery laminate, and a secondary battery were prepared or manufactured in the same manner as in Example 1 except that the body was used.
  • the adhesive material was in the form of minute dots.
  • the adhesive composition is applied to a dot-like coating pattern with a gravure roll on one side (for separator 21) or both sides (for separator 31) of a polypropylene (PP) separator (product name “Celguard 2500”). 1 except that it is dried with hot air at a temperature of 70 ° C. (drying time: 6 seconds) and has no adhesive material feeders 60A to 60D and a heat roll.
  • the adhesive material was in the form of minute dots.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、電極とセパレータとを貼り合わせてなる二次電池用積層体を、電極とセパレータとの接着力を確保しつつ効率的に製造し得る方法を提供する。本発明の二次電池用積層体の製造方法は、電極およびセパレータの少なくとも一方の貼り合わせ面に接着材料を形成する工程(A)と、工程(A)の後、接着材料が形成された貼り合わせ面に他の部材を接触させることなく、電極およびセパレータを貼り合わせ開始位置まで搬送する工程(B)と、工程(B)の後、貼り合わせ面を介して電極とセパレータとを貼り合わせる工程(C)とを含み、工程(A)における接着材料の形成量が0.1g/m以上100g/m以下である。

Description

二次電池用積層体の製造方法
 本発明は、二次電池用積層体の製造方法に関するものである。
 リチウムイオン二次電池などの二次電池は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。そして、二次電池は、一般に、正極、負極、および、正極と負極とを隔離して正極と負極との間の短絡を防ぐセパレータなどの電池部材を備えている。
 ここで、二次電池の製造プロセスにおいては、電解液に浸漬する前の電極とセパレータとを圧着させて積層体(以下、「二次電池用積層体」と称することがある。)とし、必要に応じて所望のサイズに切断したり、積層、折畳または巻回したりすることがある。そして、当該切断、積層、折畳または巻回の際には、圧着された電極とセパレータとが位置ズレなどを起こし、不良の発生、生産性の低下といった問題を生じることがある。
 そこで、近年では、表面に接着層を有するセパレータを用いることにより、二次電池の製造プロセスにおいて電極とセパレータとを良好に接着させる技術が提案されている。具体的には、例えば特許文献1では、無機物粒子およびバインダー高分子を含むコーティング溶液を多孔性基材上に塗布して乾燥することにより多孔性コーティング層を形成した後、当該多孔性コーティング層の表面に所定の表面エネルギーおよび接触角を有するバインダー溶液を塗布して乾燥することにより、多孔性基材上に多孔性コーティング層および接着層を有するセパレータを製造し、二次電池の組み立てに用いている。
 また、一般に、接着層を有するセパレータ等の接着層を有する電池部材は、接着層を形成した後、二次電池用積層体の形成に用いられるまで、ロール状に巻き取った状態で保管されている(例えば、特許文献2参照)。
特表2014-534570号公報 特開2015-41603号公報
 しかし、接着層を有する電池部材は、ロール状に巻き取った状態で保管すると、接着層を介して隣接する電池部材同士が膠着(ブロッキング)する虞がある。そして、電池部材同士が膠着すると、ロールから接着層を有する電池部材を繰り出して二次電池用積層体を製造する際に、膠着した電池部材同士を剥離する作業が必要になったり、接着層が剥離したりして、生産性が低下する。
 そこで、本発明は、電極とセパレータとを貼り合わせてなる二次電池用積層体を、電極とセパレータとの接着力を確保しつつ効率的に製造し得る方法を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、電極とセパレータとを貼り合わせてなる二次電池用積層体を製造するに当たり、貼り合わせ面に形成する接着材料の量を所定の範囲内にすると共に、接着材料を形成後、接着材料が形成された貼り合わせ面に他の部材を接触させることなく電極とセパレータとを貼り合わせれば、電極とセパレータとの接着力を確保しつつ二次電池用積層体を効率的に製造できることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の二次電池用積層体の製造方法は、電極と、セパレータとを貼り合わせてなる二次電池用積層体の製造方法であって、前記電極および前記セパレータの少なくとも一方の貼り合わせ面に接着材料を形成する工程(A)と、前記工程(A)の後、前記接着材料が形成された貼り合わせ面に他の部材を接触させることなく、前記電極および前記セパレータを貼り合わせ開始位置まで搬送する工程(B)と、前記工程(B)の後、前記貼り合わせ面を介して前記電極と前記セパレータとを貼り合わせる工程(C)とを含み、前記工程(A)における前記接着材料の形成量が0.1g/m以上100g/m以下であることを特徴とする。このように、工程(A)において形成する接着材料の量を所定の範囲内にすると共に、工程(B)および工程(C)において接着材料が形成された貼り合わせ面に他の部材を接触させることなく電極とセパレータとを貼り合わせれば、電極とセパレータとを十分に接着させつつ、接着材料を形成した電池部材(電極および/またはセパレータ)を一旦ロール状に巻き取って保管等する場合と比較し、二次電池用積層体を効率的に製造することができる。
 ここで、本発明において、「貼り合わせ開始位置」とは、電極とセパレータとの貼り合わせに当たり、電極の貼り合わせ面とセパレータの貼り合わせ面とを当接させる位置を指す。また、本発明において、「接着材料の形成量」とは、貼り合わせ面の単位面積当たりに形成される接着材料の量を指し、貼り合わせ面上に形成された接着材料の質量を、当該接着材料が形成された貼り合わせ面の面積で割ることにより算出することができる。なお、「貼り合わせ面の面積」とは、電極とセパレータとを貼り合わせた際に互いに当接する部分の面積を指す(即ち、電極およびセパレータの一方が他方よりも小さい場合には、電極およびセパレータの貼り合わせ面の面積は、小さい側の貼り合わせ面の面積と一致する)。
 ここで、本発明の二次電池用積層体の製造方法は、前記接着材料が重合体からなることが好ましい。重合体からなる接着材料を用いれば、電極とセパレータとを良好に接着させることができる。
 また、本発明の二次電池用積層体の製造方法は、前記重合体が、ガラス転移温度が25℃以下の低Tg重合体を含むことが好ましい。低Tg重合体を含む重合体を接着材料として使用すれば、電極とセパレータとの接着強度を更に高めることができる。
 なお、本発明において、「ガラス転移温度」は、JIS K7121に従って測定することができる。
 更に、本発明の二次電池用積層体の製造方法は、前記工程(A)では、前記接着材料と溶媒とを含む接着用組成物を前記貼り合わせ面に供給し、前記接着用組成物に含まれている直径10μm以上の粗大粒子の量が100ppm以下であることが好ましい。粗大粒子の量が上記上限値以下であれば、二次電池用積層体を用いて作製した二次電池のエネルギー密度を高めることができる。
 ここで、本発明において、「粗大粒子の量」は、本明細書の実施例に記載の測定方法を用いて測定することができる。
 また、本発明の二次電池用積層体の製造方法は、前記工程(A)では、貼り合わせ面上の一箇所以上に前記接着材料を形成し、前記接着材料の形成面積が、一箇所当たり、25μm以上250000μm以下であることが好ましい。接着材料の一箇所当たりの形成面積が上記範囲内であれば、電極とセパレータとを良好に接着させつつ、二次電池用積層体を効率的に製造することができる。
 そして、本発明の二次電池用積層体の製造方法は、前記工程(A)において、前記接着材料の形成をインクジェット法により行うことが好ましい。インクジェット法により接着材料を形成すれば、電極とセパレータとを更に良好に接着させることができる。
 本発明によれば、電極とセパレータとの接着力を確保しつつ二次電池用積層体を効率的に製造することができる。
二次電池用積層体の製造装置の一例の概略構成を示す説明図である。 接着用組成物の塗工パターンの一例を示す平面図である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の二次電池用積層体の製造方法は、電極(正極および/または負極)と、セパレータとを貼り合わせてなる二次電池用積層体を製造する際に用いられる。そして、本発明の二次電池用積層体の製造方法を用いて製造した二次電池用積層体は、非水系二次電池(例えば、リチウムイオン二次電池)などの二次電池を製造する際に用いることができる。
 なお、本発明の二次電池用積層体の製造方法は、二次電池用積層体を連続的に製造する際に特に好適に用いることができる。
(二次電池用積層体の製造方法)
 本発明の二次電池用積層体の製造方法は、電極と、セパレータとを貼り合わせて二次電池用積層体を製造する方法である。そして、本発明の二次電池用積層体の製造方法では、電極およびセパレータの少なくとも一方の貼り合わせ面に接着材料を0.1g/m以上100g/m以下の量で形成する工程(A)を実施した後、接着材料が形成された貼り合わせ面に他の部材を接触させることなく、電極およびセパレータを貼り合わせ開始位置まで搬送する工程(B)を実施し、更に、貼り合わせ面を介して電極とセパレータとを貼り合わせる工程(C)を実施して、二次電池用積層体を製造する。このように、接着材料が形成された貼り合わせ面に他の部材を接触させることなく電極およびセパレータを貼り合わせ開始位置まで搬送して貼り合わせれば、接着材料が形成された電池部材(電極および/またはセパレータ)がブロッキングを起こすことがない。また、接着材料の形成量を所定の範囲内にすれば、接着材料が形成された電池部材(電極および/またはセパレータ)をそのまま貼り合わせに用いる場合であっても、電極とセパレータとを十分に接着させることができる。従って、二次電池用積層体を効率的に製造することができる。
<二次電池用積層体>
 本発明の製造方法により製造される二次電池用積層体は、電極とセパレータとが貼り合わせ面を介して貼り合わされたものである。ここで、セパレータと貼り合わされて二次電池用積層体を構成する電極は、正極のみであってもよいし、負極のみであってもよいし、正極および負極の双方であってもよい。また、正極および負極の双方をセパレータと貼り合わせて二次電池用積層体とする場合、二次電池用積層体が有する正極、負極およびセパレータの数は、それぞれ、1つであってもよいし、2つ以上であってもよい。
 即ち、本発明の製造方法を用いて製造する二次電池用積層体の構造は、下記(1)~(6)の何れであってもよい。
(1)正極/セパレータ
(2)負極/セパレータ
(3)正極/セパレータ/負極
(4)正極/セパレータ/負極/セパレータ
(5)セパレータ/正極/セパレータ/負極
(6)複数の正極および負極がセパレータを介して交互に積層された構造(例えば、「セパレータ/負極/セパレータ/正極/セパレータ/負極・・・・・/セパレータ/正極」など)
 なお、複数の電極および/またはセパレータを有する二次電池用積層体は、上述した工程(A)~(C)を繰り返し実施することにより製造することができる。
<電極>
 ここで、電極としては、特に限定されることなく、例えば、集電体の片面または両面に電極合材層を形成してなる電極基材からなる電極、或いは、電極基材の電極合材層上に多孔膜層を更に形成してなる電極を用いることができる。
 なお、集電体、電極合材層および多孔膜層としては、特に限定されることなく、例えば特開2013-145763号公報に記載のもの等、二次電池の分野において使用され得る任意の集電体、電極合材層および多孔膜層を使用し得る。ここで、多孔膜層とは、例えば特開2013-145763号公報に記載されているような非導電性粒子を含む層を指す。
 そして、二次電池用積層体の製造に用いられる電極は、ロール状に巻かれていてもよいし、予め切断されていてもよい。
<セパレータ>
 また、セパレータとしては、特に限定されることなく、例えば、セパレータ基材からなるセパレータ、または、セパレータ基材の片面または両面に多孔膜層を形成してなるセパレータを用いることができる。
 なお、セパレータ基材および多孔膜層としては、特に限定されることなく、例えば特開2012-204303号公報や特開2013-145763号公報に記載のもの等、二次電池の分野において使用され得る任意のセパレータ基材および多孔膜層を使用し得る。
 そして、二次電池用積層体の製造に用いられるセパレータは、ロール状に巻かれていてもよいし、予め切断されていてもよい。中でも、二次電池用積層体を効率良く連続的に製造する観点からは、セパレータとしては、ロール状に巻かれているものを用いることが好ましい。
<接着材料>
 更に、電極とセパレータとを接着させる接着材料としては、電極とセパレータとを接着可能であり、且つ、電池反応を阻害しないものであれば、特に限定されることなく、二次電池の分野において使用されている任意の接着材料を用いることができる。中でも、電極とセパレータとを良好に接着させる観点からは、接着材料としては、重合体からなる接着材料を用いることが好ましい。なお、接着材料を構成する重合体は、1種類のみであってもよいし、2種類以上であってもよい。
 ここで、接着材料として使用し得る重合体としては、特に限定されることなく、ポリフッ化ビニリデン、ポリビニリデンフルオライド-ヘキサフルオロプロピレン(PVdF-HFP)共重合体等のフッ素系重合体;スチレン-ブタジエン共重合体(SBR)、アクリロニトリル-ブタジエン共重合体(NBR)等の共役ジエン系重合体;共役ジエン系重合体の水素化物;(メタ)アクリル酸アルキルエステル単量体単位を含む重合体(アクリル系重合体);ポリビニルアルコール(PVA)等のポリビニルアルコール系重合体;などが挙げられる。
 なお、本発明において、「(メタ)アクリル酸」とは、アクリル酸および/またはメタクリル酸を意味する。
 そして、重合体よりなる接着材料の形状は、特に限定されることなく、粒子状であってもよいし、非粒子状であってもよいし、粒子状と非粒子状との組み合わせであってもよい。
 なお、重合体よりなる接着材料が粒子状である場合、当該粒子状の接着材料は、単一の重合体から形成された単一相構造の粒子であってもよいし、互いに異なる2つ以上の重合体が物理的または化学的に結合して形成された異相構造の粒子であってもよい。ここで、異相構造の具体例としては、球状の粒子であって中心部(コア部)と外殻部(シェル部)とが異なる重合体から形成されているコアシェル構造;2つ以上の重合体が並置された構造であるサイドバイサイド構造;などが挙げられる。なお、本発明において、「コアシェル構造」には、コア部の外表面をシェル部が完全に覆う構造の他、コア部の外表面をシェル部が部分的に覆う構造も含まれるものとする。そして、本発明では、外観上、コア部の外表面がシェル部によって完全に覆われているように見える場合であっても、シェル部の内外を連通する孔が形成されていれば、そのシェル部はコア部の外表面を部分的に覆うシェル部とする。
 また、重合体よりなる接着材料が粒子状である場合、当該粒子状の接着材料の体積平均粒子径は、0.1μm以上であることが好ましく、0.15μm以上であることがより好ましく、0.18μm以上であることが更に好ましく、5μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることが更に好ましい。粒子状の接着材料の体積平均粒子径が上記下限値以上であれば、電極とセパレータとの接着力を高めることができる。また、粒子状の接着材料の体積平均粒子径が上記上限値以下であれば、二次電池用積層体を用いて作製した二次電池のエネルギー密度を高めることができる。
 なお、本発明において、「体積平均粒子径」とは、レーザー回折法で測定された体積基準の粒子径分布において、小径側から計算した累積体積が50%となる粒子径を表す。
 更に、粒子状の接着材料がコアシェル構造を有する重合体を含む場合、当該コアシェル構造を有する重合体の体積平均粒子径は、0.1μm以上であることが好ましく、0.15μm以上であることがより好ましく、0.2μm以上であることが更に好ましく、5μm以下であることが好ましく、3μm以下であることがより好ましく、2μm以下であることが更に好ましい。コアシェル構造を有する重合体よりなる接着材料の体積平均粒子径が上記下限値以上であれば、電極とセパレータとの接着力を高めることができる。また、コアシェル構造を有する重合体よりなる接着材料の体積平均粒子径が上記上限値以下であれば、二次電池用積層体を用いて作製した二次電池のエネルギー密度を高めることができる。
 また、粒子状の接着材料がコアシェル構造を有する重合体を含む場合、コアシェル構造を有する重合体よりなる接着材料は、体積平均粒子径(D50)に対する、体積基準の粒子径分布において小径側から計算した累積体積が10%となる粒子径(D10)の比(D10/D50)が、0.5以上1.0以下あることが好ましく、0.55以上1.0以下であることがより好ましく、0.6以上1.0以下であることが更に好ましい。D10/D50が上記下限値以上であれば、電極とセパレータとの接着力を高めることができる。
 更に、粒子状の接着材料がコアシェル構造を有する重合体を含む場合、コアシェル構造を有する重合体よりなる接着材料は、体積平均粒子径(D50)に対する、体積基準の粒子径分布において小径側から計算した累積体積が90%となる粒子径(D90)の比(D90/D50)が、1.5以下であることが好ましく、1.45以下であることがより好ましく、1.4以下であることが更に好ましい。D90/D50が上記上限値以下であれば、電極とセパレータとの接着力を高めることができる。
 また、粒子状の接着材料がコアシェル構造を有する重合体を含む場合、当該コアシェル構造を有する重合体は、コア部の径が、コアシェル構造を有する重合体の体積平均粒子径100%に対して、好ましくは5%以上100%未満、より好ましくは10%以上100%未満、更に好ましくは20%以上100%未満である。コア部の径が上記下限値以上であれば、貼り合わせ面に供給された後も粒子形状を良好に保ち、電極とセパレータとを良好に接着することができる。
 更に、接着材料が重合体からなる場合、接着材料を構成する重合体は、ガラス転移温度が25℃以下の低Tg重合体を含むことが好ましい。接着材料を構成する重合体が低Tg重合体を含有していれば、電極とセパレータとの接着力を高めることができる。なお、低Tg重合体のガラス転移温度は、-120℃以上であることが好ましい。
 なお、接着材料がコアシェル構造を有する重合体を含む場合、当該コアシェル構造を有する重合体は、コア部のガラス転移温度がシェル部のガラス転移温度よりも高いことが好ましい。コア部のガラス転移温度がシェル部のガラス転移温度よりも高ければ、貼り合わせ面に供給された後も粒子形状を良好に保ちつつシェル部に十分に高い接着力を発揮させて、電極とセパレータとを良好に接着することができる。
 そして、コアシェル構造を有する重合体のコア部のガラス転移温度は、-40℃以上110℃以下であることが好ましく、-40℃以上60℃以下であることがより好ましく、-40℃以上25℃以下であることが更に好ましい。コア部のガラス転移温度が上記下限値以上であれば、貼り合わせ面に供給された後も粒子形状を良好に保つことができる。また、コア部のガラス転移温度が上記上限値以下であれば、電極とセパレータとを良好に接着することができる。
 また、コアシェル構造を有する重合体のシェル部のガラス転移温度は、-40℃以上であることが好ましく、-35℃以上であることがより好ましく、-30℃以上であることが更に好ましく、50℃以下であることが好ましく、40℃以下であることがより好ましく、30℃以下であることが更に好ましく、25℃以下であることが特に好ましい。シェル部のガラス転移温度が上記下限値以上であれば、貼り合わせ面に供給された後も粒子形状を良好に保つことができる。また、シェル部のガラス転移温度が上記上限値以下であれば、電極とセパレータとを良好に接着することができる。
 ここで、コアシェル構造を有する重合体は、25℃以下に少なくとも一つのガラス転移温度を有することが好ましい。
<工程(A)>
 工程(A)では、電極およびセパレータの少なくとも一方の貼り合わせ面に上述した接着材料を形成する。
 ここで、貼り合わせ面に形成する接着材料の量は、0.1g/m以上100g/m以下であることが必要であり、0.1g/m以上50g/m以下であることが好ましく、0.1g/m以上10g/m以下であることがより好ましく、0.1g/m以上1g/m以下であることが更に好ましい。接着材料の形成量が0.1g/m以上であれば、電極とセパレータとを十分に接着させることができる。また、接着材料の形成量が100g/m以下であれば、二次電池用積層体を効率的に製造することができる。
 そして、工程(A)において電極側の貼り合わせ面とセパレータ側の貼り合わせ面との双方に接着材料を形成する場合には、各貼り合わせ面において接着材料の形成量が0.1g/m以上100g/m以下となるようにすればよい。
 なお、接着材料は、固体状態、溶融状態、溶媒に溶解させた状態または溶媒に分散させた状態などの任意の状態で貼り合わせ面へと供給することができる。中でも、接着材料は、溶媒に溶解させた状態または溶媒に分散させた状態で供給することが好ましく、溶媒に分散させた状態で供給することがより好ましい。
 そして、工程(A)において接着材料を溶媒に溶解させた状態または溶媒に分散させた状態で貼り合わせ面に供給する場合、即ち、接着材料と溶媒とを含む接着用組成物を貼り合わせ面に供給する場合、接着用組成物の溶媒としては、特に限定されることなく、例えば、水、有機溶媒およびそれらの混合物を用いることができる。なお、有機溶媒としては、特に限定されることなく、シクロペンタン、シクロヘキサン等の環状脂肪族炭化水素類;トルエン、キシレン等の芳香族炭化水素類;エチルメチルケトン、シクロヘキサノン等のケトン類;酢酸エチル、酢酸ブチル、γ-ブチロラクトン、ε-カプロラクトン等のエステル類;アセトニトリル、プロピオニトリル等のニトリル類;テトラヒドロフラン、エチレングリコールジエチルエーテル等のエーテル類:メタノール、エタノール、イソプロパノール、エチレングリコール、エチレングリコールモノメチルエーテル等のアルコール類;などが挙げられる。
 上述した中でも、二次電池用積層体を効率的に製造する観点からは、溶媒としては、水およびアルコールが好ましく、水がより好ましい。
 また、接着用組成物中の接着材料の濃度は、1質量%以上40質量%以下であることが好ましく、1質量%以上30質量%以下であることがより好ましく、1質量%以上15質量%以下であることが更に好ましい。接着材料の濃度が上記範囲内であれば、二次電池用積層体を更に効率的に製造することができる。
 更に、接着用組成物の粘度は、1mPa・s以上50mPa・s以下であることが好ましく、1mPa・s以上40mPa・s以下であることがより好ましく、1mPa・s以上30mPa・s以下であることが更に好ましい。接着用組成物の粘度が上記範囲内であれば、貼り合わせ面上の所望の位置に接着用組成物を容易に供給し、所望の形成量とすることができるので、電極とセパレータとを良好に接着させることができる。
 なお、本発明において、「粘度」とは、ブルックフィールド粘度計(B型粘度計)を用いて測定された、温度20℃での静的粘度の値を指す。
 また、接着用組成物の表面張力は、10mN/m以上であることが好ましく、15mN/m以上であることがより好ましく、20mN/m以上であることが更に好ましく、72mN/m以下であることが好ましく、70mN/m以下であることがより好ましく、65mN/m以下であることが更に好ましい。接着用組成物の表面張力が上記下限値以上であれば、接着用組成物を貼り合わせ面上に所望の形状で供給し、所望の形成量とすることができ、二次電池用積層体を更に効率的に製造することができる。また、接着用組成物の表面張力が上記上限値以下であれば、貼り合わせ面上の所望の位置に接着用組成物を供給し、電極とセパレータとを良好に接着させることができる。
 なお、本発明において、「表面張力」は、JIS K2241に準拠して測定した値を指す。
 更に、接着用組成物に含まれている直径10μm以上の粗大粒子の量は、100ppm以下であることが好ましく、50ppm以下であることがより好ましく、10ppm以下であることが更に好ましい。粗大粒子の量が上記上限値以下であれば、二次電池用積層体を用いて作製した二次電池のエネルギー密度を高めることができる。なお、接着用組成物に含まれている粗大粒子は、通常、重合体よりなる粒子状の接着材料よりなる。
 そして、貼り合わせ面への接着材料の形成は、特に限定されることなく、例えば、インクジェット法、スプレー法、ディスペンサー法、グラビアコーティング法、スクリーン印刷法などの方法を用いて行うことができる。中でも、生産性および形成形状の自由度の高さの観点からは、接着材料の形成方法は、インクジェット法であることが好ましい。
 なお、接着材料は、貼り合わせ面の全面に形成してもよいし、貼り合わせ面の一部のみに形成してもよい。そして、貼り合わせ面の一部のみに接着材料を形成する場合、接着材料は、特に限定されることなく、ストライプ状、ドット状、格子状などの任意の平面視形状となるように形成することができる。中でも、二次電池用積層体を用いて二次電池を製造する際の電解液の注液性を高める観点からは、接着材料は、ドット状に形成することが好ましい。そして、ドット状の接着材料は、貼り合わせ面の全面に均一に配置(形成)してもよいし、ストライプ状、ドット状、格子状などの所定のパターンになるように配列させて配置(形成)してもよい。中でも、二次電池用積層体を用いて二次電池を製造する際の電解液の注液性を高める観点からは、ドット状の接着材料はストライプ状に配列させて配置(形成)することが好ましい。なお、微小なドット状の接着材料を所定のパターンに配列する場合には、接着材料の形成および配列のし易さの観点から、インクジェット法により接着用組成物を所望のパターンで塗工して接着材料を形成することが好ましい。
 また、接着材料の断面形状は、特に限定されることなく、凸形状、凹凸形状、凹形状とすることができ、中でも、電極とセパレータとを更に良好に接着させる観点からは、凹凸形状であることが好ましい。なお、接着材料の断面形状は、例えば、接着用組成物を用いて接着材料を形成する際の乾燥条件を調整することにより変更することができる。
 ここで、貼り合わせ面上の一箇所以上、好ましくは二箇所以上に接着材料を形成する場合、貼り合わせ面に形成する接着材料の形成面積は、一箇所当たり、25μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることが更に好ましく、250000μm以下であることが好ましく、200000μm以下であることがより好ましく、100000μm以下であることが更に好ましい。一箇所当たりの接着材料の形成面積が25μm以上であれば、電極とセパレータとを十分に接着させることができる。また、一箇所当たりの接着材料の形成面積が250000μm以下であれば、二次電池用積層体を効率的に製造することができる。
 なお、上記の形成面積は、接着材料または接着用組成物を貼り合わせ面に塗工する量、形状および範囲を変更することで調整することができる。具体的には、形成面積は、例えば、接着用組成物を用いてインクジェット法により接着材料を形成する場合には、インクジェットヘッドのノズルからの接着用組成物の吐出の諧調(同じポイントに吐出した回数)を変更することで調整することができる。
<工程(B)>
 工程(B)では、接着材料が形成された貼り合わせ面に他の部材を接触させることなく、電極およびセパレータを貼り合わせ開始位置まで搬送する。このように、接着材料が形成された貼り合わせ面に他の部材を接触させなければ、ブロッキング等の問題が生じないので、接着性に優れる接着材料を用いることができると共に、二次電池用積層体を効率的に製造することができる。
 なお、電極およびセパレータの搬送は、特に限定されることなく、例えば、ローラ、ベルトコンベア、マニピュレーター、吸着バンドなどの任意の搬送機構を用いて行うことができる。中でも、二次電池用積層体の製造効率を更に高める観点からは、電極およびセパレータの少なくとも一方をローラを用いて搬送することが好ましい。
 また、工程(A)において接着材料を接着用組成物として供給した場合には、工程(B)における搬送中に貼り合わせ面上の接着用組成物を乾燥させてもよい。ここで、乾燥は、特に限定されることなく、ヒーター、ドライヤー、ヒートローラなどの加熱装置を用いて行うことができる。なお、接着用組成物が供給された電極および/またはセパレータの乾燥時の温度は、特に限定されることなく、0℃以上とすることが好ましく、10℃以上とすることがより好ましく、15℃以上とすることが更に好ましく、200℃以下とすることが好ましく、150℃以下とすることがより好ましく、100℃以下とすることが更に好ましい。乾燥時の温度を上記下限値以上にすれば、乾燥速度を十分に高めて二次電池用積層体を効率的に製造することができる。また、乾燥時の温度を上記上限値以下にすれば、乾燥後の接着材料の形状を良好なものとし、電極とセパレータとを良好に接着させることができる。
<工程(C)>
 工程(C)では、貼り合わせ面を介して電極とセパレータとを貼り合わせる。ここで、貼り合わせは、特に限定されることなく、例えば、貼り合わせ面を介して重ね合わせた電極とセパレータとの積層体を加圧および/または加熱することにより行うことができる。
 なお、工程(C)において積層体に加える圧力、電極とセパレータとを貼り合わせる際の温度、並びに、積層体を加圧および/または加熱する時間は、使用する接着材料の種類および量等に応じて適宜調整することができる。
<二次電池用積層体の製造装置の一例>
 そして、本発明の二次電池用積層体の製造方法を用いた二次電池用積層体の製造は、特に限定されることなく、例えば図1に示すような製造装置100を用いて行うことができる。
 ここで、図1に示す製造装置100は、電極(正極および負極)並びにセパレータが上側から下側に向かって「正極/セパレータ/負極/セパレータ」の順で積層されてなる二次電池用積層体200を製造する装置である。なお、この製造装置100では、得られた二次電池用積層体200は、適当なサイズに切断された後、更に重ね合わせてから二次電池の製造に用いられる。
 そして、製造装置100は、負極11をロール状に巻き取ってなる負極ロール10と、セパレータ21,31をロール状に巻き取ってなる第一セパレータロール20および第二セパレータロール30と、予め切断された正極41を収容する正極ストッカー40とを備えている。また、製造装置100は、複数(図示例では9つ)の搬送ローラ1と、複数(図示例では3組)のプレスローラ2と、複数の(図示例では4つ)の接着材料供給機60A,60B,60C,60Dと、切断機50とを更に備えている。
 この製造装置100では、まず、負極ロール10から繰り出されて搬送ローラ1を介して搬送される負極11の表面(図示例では上側の表面)に対し、例えば図2に示すような斜めストライプ形状の塗工パターンとなるように、接着材料供給機60Aから接着材料を含む接着用組成物61が供給される(工程(A))。ここで、図2に示す斜めストライプ形状の塗工パターンは、平面視において、搬送方向に直交する方向との為す角度が狭角側から測定してθであり、配設ピッチがPであり、幅がWである。そして、接着材料が供給された負極11および第一セパレータロール20から繰り出されたセパレータ21がプレスローラ2の位置する貼り合わせ開始位置まで搬送され(工程(B))、プレスローラ2により貼り合わされる(工程(C))。
 なお、接着材料供給機60Aから接着用組成物を供給する場合には、製造装置100では、接着材料供給機60Aとプレスローラ2との間に位置する搬送ローラ1をヒートローラとし、接着用組成物を乾燥させてもよい。
 また、製造装置100では、接着材料を用いて貼り合わされた負極11とセパレータ21との積層体の負極11側の表面に対し、例えば図2に示すような斜めストライプ形状の塗工パターンとなるように、接着材料供給機60Bから接着材料を含む接着用組成物61が供給される(工程(A))。そして、接着材料が供給された負極11とセパレータ21との積層体、および、第二セパレータロール30から繰り出されたセパレータ31がプレスローラ2の位置する貼り合わせ開始位置まで搬送され(工程(B))、プレスローラ2により貼り合わされる(工程(C))。
 なお、接着材料供給機60Bから接着用組成物を供給する場合には、製造装置100では、接着材料供給機60Bとプレスローラ2との間に位置する搬送ローラ1をヒートローラとし、接着用組成物を乾燥させてもよい。
 更に、製造装置100では、接着材料を用いて貼り合わされた負極11とセパレータ21,31との積層体のセパレータ31側の表面に対し、例えば図2に示すのと同様な斜めストライプ形状の塗工パターンとなるように、接着材料供給機60Cから接着材料を含む接着用組成物61が供給される(工程(A))。そして、貼り合わせ開始位置において、接着材料が供給された負極11とセパレータ21,31との積層体のセパレータ31上に正極41が載置され(工程(B))、プレスローラ2により貼り合わされる(工程(C))。
 なお、接着材料供給機60Cから接着用組成物を供給する場合には、製造装置100では、接着材料供給機60Cとプレスローラ2との間に位置する搬送ローラ1をヒートローラとし、接着用組成物を乾燥させてもよい。
 そして、製造装置100では、上側から下側に向かって「正極/セパレータ/負極/セパレータ」の順で積層されてなる二次電池用積層体200の正極側の表面に対し、例えば図2に示すのと同様な斜めストライプ形状の塗工パターンとなるように、接着材料供給機60Dから接着材料を含む接着用組成物61を供給した後、切断機50で二次電池用積層体200を切断する。
 なお、切断機50で二次電池用積層体200を切断して得られる積層体は、更に重ね合わせてから二次電池の製造に用いられる。
(二次電池の製造方法)
 二次電池用積層体を用いた二次電池の製造方法は、上述した本発明の二次電池用積層体の製造方法を用いて二次電池用積層体を製造する工程と、二次電池用積層体と、電解液とを用いて二次電池を組み立てる工程(組み立て工程)とを含む。
<組み立て工程>
 ここで、電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。例えば、二次電池がリチウムイオン二次電池である場合には、支持電解質としては、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 更に、電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
 なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
 そして、二次電池は、本発明の二次電池用積層体の製造方法に従って製造した二次電池用積層体に対し、必要に応じて追加の電池部材(電極および/またはセパレータなど)を更に積層した後、得られた積層体を必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより組み立てることができる。なお、二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。また、二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 実施例および比較例において、接着材料を構成する重合体のガラス転移温度、体積平均粒子径D50および粒子径分布、接着用組成物の粘度、表面張力および直径10μm以上の粗大粒子の含有量、電極とセパレータとのドライ接着力、並びに、二次電池の電解液注液性、出力特性およびサイクル特性は、下記の方法で測定および評価した。
<ガラス転移温度>
 JIS K7121に準拠し、測定温度-100℃~180℃、昇温速度5℃/分にて、示差走査熱量分析計(ナノテクノロジー社製、DSC6220SII)を用いて測定した。
<体積平均粒子径D50および粒子径分布>
 粒子状の重合体の水分散液について、レーザー回折式粒子径分布測定装置(島津製作所社製、製品名「SALD-3100」)により粒子径分布(体積基準)を測定した。そして、測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径を各粒子の体積平均粒子径(D50)とした。また、測定された粒子径分布を使用し、小径側から計算した累積体積が10%となる粒子径(D10)および小径側から計算した累積体積が90%となる粒子径(D90)を求め、D10/D50およびD90/D50を算出した。
<粘度>
 調製した接着用組成物について、ブルックフィールド粘度計(英弘精機株式会社製、DV1M)を使用し、温度20℃での静的粘度を測定した。
<表面張力>
 調製した接着用組成物について、JIS K2241に準拠し、表面張力測定装置(協和界面化学株式会社製、DY-700)を使用し、温度25℃における表面張力を測定した。
<粗大粒子の含有量>
 平均孔径10μmのナイロンメッシュの質量(B)を測定し、漏斗にセットした。そこに、接着用組成物100gを注ぎ、ろ過した。ここに、イオン交換水を注ぎ、濁りがなくなるまで洗浄し、90℃のオーブンで、60分以上乾燥した。放冷後、ナイロンメッシュの質量(A)を測定しメッシュ残渣量の測定を行った。メッシュ残渣量、即ち接着用組成物中の粒子径が10μm以上の粗大粒子量は、下記式により求めた。
 粗大粒子の含有量(ppm)=(A-B)/(C×D/100)×1000000
A:メッシュ+乾燥物の質量(g)
B:メッシュの質量(g)
C:ろ過した接着用組成物の質量(g)
D:接着用組成物の全固形分濃度(%)
<接着材料の1箇所あたりの形成面積>
 接着材料の1箇所あたりの形成面積S50は、レーザー顕微鏡(キーエンス社製、VR-3100)を用いて、2mmの領域に形成されているドット状の接着材料の長軸径xと短軸径yを測定し、z=(x+y)/2を平均径として、各ドットの面積をS=1/4πzとして算出し、50個のドットの面積Sの平均値として算出した。
<ドライ接着力>
 実施例および比較例で作成した正極、負極、およびセパレータをそれぞれ10mm幅、長さ50mm幅に切り出し、正極とセパレータ、および、負極とセパレータを積層させ、温度70℃、荷重1MPa相当の圧力のロールプレスで積層体を10m/分でプレスし、試験片とした。
 この試験片を、電極(正極または負極)の集電体側の面を下にして、電極の表面にセロハンテープを貼り付けた。この際、セロハンテープとしてはJIS Z1522に規定されるものを用いた。また、セロハンテープは水平な試験台に固定しておいた。そして、セパレータの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。
 この測定を、正極およびセパレータを備える積層体、並びに、負極およびセパレータを備える積層体でそれぞれ3回、合計6回行い、応力の平均値をピール強度として求めて、電極とセパレータとの接着性を下記の基準で評価した。ピール強度が大きいほど、接着性が高いことを示す。
 A:ピール強度が3N/m以上
 B:ピール強度が1N/m以上3N/m未満
 C:ピール強度が1N/m未満
<電解液注液性>
 作製した二次電池用積層体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF)を注液時間を異ならせつつ空気が残らないように注入した。
 そして、注液の際に電解液が吹きこぼれない最短の注液時間を求め、下記の基準で評価した。最短の注液時間が短いほど、電解液注液性に優れていることを示す。
 A:最短の注液時間が100秒未満
 B:最短の注液時間が100秒以上300秒未満
 C:最短の注液時間が300秒以上500秒未満
 D:最短の注液時間が500秒以上
<出力特性>
 作製した二次電池を、温度25℃の雰囲気下で、4.3Vまで定電流定電圧(CCCV)充電した。その後、温度-10℃の雰囲気下で、0.2Cの定電流法によって3.0Vまで放電した際の電気容量と、1Cの定電流法によって3.0Vまで放電した際の電気容量とを求めた。
 そして、電気容量の比(=(1Cでの電気容量/0.2Cでの電気容量)×100(%))で表される放電容量維持率を求めた。これらの測定を、二次電池5セルについて行い、各セルの放電容量維持率の平均値を、低温出力特性として、以下の基準で評価した。この値が大きいほど、出力特性に優れることを示す。
 A:低温出力特性が80%以上
 B:低温出力特性が70%以上80%未満
 C:低温出力特性が60%以上70%未満
 D:低温出力特性が60%未満
<サイクル特性>
 作製した二次電池を、温度45℃の雰囲気下で、0.5Cの定電流法によって4.4Vに充電し、3.0Vまで放電する充放電を、200サイクル繰り返した。そして、200サイクル終了時の電気容量と、5サイクル終了時の電気容量との比(=(200サイクル終了時の電気容量/5サイクル終了時の電気容量)×100(%))で表される充放電容量維持率を求めた。これらの測定を、二次電池5セルについて行い、各セルの充放電容量維持率の平均値を、高電圧サイクル特性として、以下の基準で評価した。この値が大きいほど、サイクル特性に優れることを示す。
 A:高電圧サイクル特性が95%以上
 B:高電圧サイクル特性が90%以上95%未満
 C:高電圧サイクル特性が90%未満
(実施例1)
<接着材料の準備>
 コアシェル構造を有する重合体からなる粒子状の第一の接着材料として、ガラス転移温度108℃の重合体よりなるコア部と、コア部の外表面を部分的に覆う、ガラス転移温度が-17℃の重合体よりなるシェル部とを有するコアシェル粒子の水分散液を準備した。
 また、単一相構造の重合体からなる粒子状の第二の接着材料として、スチレン-ブタジエン共重合体(SBR)の水分散液を準備した。
 そして、接着材料を構成する重合体のガラス転移温度、体積平均粒子径D50および粒子径分布を測定した。結果を表1に示す。
<接着用組成物の調製>
 固形分相当で、第二の接着材料の水分散液10部と、第一の接着材料の水分散液100部とを撹拌容器内で混合し、イオン交換水により希釈して、固形分濃度10%の接着用組成物を得た。
 そして、接着用組成物の粘度、表面張力および直径10μm以上の粗大粒子の含有量を測定した。結果を表1に示す。
<負極の形成>
 攪拌機付き5MPa耐圧容器に、1,3-ブタジエン33部、イタコン酸3.5部、スチレン63.5部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部および重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却して反応を停止し、負極合材層用結着材(SBR)を含む混合物を得た。上記負極合材層用結着材を含む混合物に、5%水酸化ナトリウム水溶液を添加して、pH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、30℃以下まで冷却し、所望の負極合材層用結着材を含む水分散液を得た。
 次に、負極活物質としての人造黒鉛(体積平均粒子径:15.6μm)100部、粘度調整剤としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製、製品名「MAC350HC」)の2%水溶液を固形分相当で1部、およびイオン交換水を混合して固形分濃度68%に調整した後、25℃で60分間さらに混合した。更に、イオン交換水で固形分濃度を62%に調整した後、25℃で15分間更に混合した。得られた混合液に、上記の負極合材層用結着材を含む水分散液を固形分相当で1.5部、およびイオン交換水を入れ、最終固形分濃度が52%となるように調整し、さらに10分間混合した。これを減圧下で脱泡処理して流動性の良い二次電池負極用スラリー組成物を得た。
 得られた二次電池負極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmの銅箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、銅箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、プレス前の負極原反を得た。このプレス前の負極原反をロールプレスで圧延して、負極合材層の厚みが80μmのプレス後の負極を得た。
<正極の形成>
 正極活物質としての体積平均粒子径12μmのLiCoOを100部と、導電材としてのアセチレンブラック(電気化学工業社製、製品名「HS-100」)を2部と、結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、二次電池正極用スラリー組成物を得た。
 得られた二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。
 そして、得られた正極原反を、ロールプレス機を用いて圧延することにより、正極合材層を備える正極を得た。
<セパレータの準備>
 ポリプロピレン(PP)製のセパレータ(製品名「セルガード2500」)を準備した。
<二次電池用積層体の製造>
 準備した接着用組成物、負極、正極およびセパレータを使用し、図1に示す製造装置でリチウムイオン二次電池用積層体を製造し、切断した。
 なお、接着材料供給機としては、インクジェットヘッド(コニカ製、KM1024(シアモードタイプ))を備えるインクジェット方式の接着材料供給機を用いた。
 また、搬送速度は10m/分とし、接着用組成物は図2に示すストライプ形状(θ:45°、P:200μm、W:30μm)の塗工パターンで供給し、その他の製造条件は表1に示す条件とした。
 なお、供給した接着用組成物は、搬送ローラの一部にヒートローラを用いることで乾燥した。そして、乾燥後の接着材料をレーザー顕微鏡で観測したところ、接着材料は、微小なドット状をしていた。即ち、貼り合わせ面には、微小なドット状の複数の接着材料が斜めストライプ状のパターンに配列されて存在していた。また、レーザー顕微鏡で断面を観察して接着材料の平均高さ(厚み)および最大高さ(厚み)を確認したところ、断面は凹凸形状をしており、平均高さは1μmであり、最大高さは3μmであった。
 そして、二次電池用積層体のドライ接着力を評価した。結果を表1に示す。
<二次電池の製造>
 切断した二次電池用積層体を5つ重ね合わせ、温度70℃、圧力1MPaで10秒間プレスして重ね合わせ体とした。
 作製した重ね合わせ体を電池の外装としてのアルミ包材外装で包み、電解液(溶媒:エチレンカーボネート/ジエチルカーボネート/ビニレンカーボネート=68.5/30/1.5(体積比)、電解質:濃度1MのLiPF)を注液した。その後、アルミ包材外装の開口を150℃のヒートシールで閉口して、容量800mAhの積層型リチウムイオン二次電池を製造した。
 そして、二次電池の電解液注液性、出力特性およびサイクル特性を評価した。結果を表1に示す。
(実施例2)
 二次電池用積層体の製造時に、接着用組成物をドット形状の塗工パターン(直径:50μm、ドット間の距離:200μm)で供給した以外は実施例1と同様にして、接着材料、接着用組成物、負極、正極、セパレータ、二次電池用積層体および二次電池を準備または製造した。なお、接着材料は、微小なドット状をしていた。即ち、貼り合わせ面には、微小なドット状の複数の接着材料が集合してなる大きなドットが複数存在していた。また、レーザー顕微鏡で接着材料の断面を観察したところ、断面は凹凸形状をしていた。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例3)
 二次電池用積層体の製造時に、製造条件を表1に示すように変更した以外は実施例1と同様にして、接着材料、接着用組成物、負極、正極、セパレータ、二次電池用積層体および二次電池を準備または製造した。なお、接着材料は、微小なドット状をしていた。即ち、貼り合わせ面には、微小なドット状の複数の接着材料が斜めストライプ状のパターンに配列されて存在していた。また、レーザー顕微鏡で接着材料の断面を観察したところ、断面は凸形状をしていた。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(実施例4)
 第一の接着材料として、ガラス転移温度15℃の単一相構造の粒子状重合体を使用し、二次電池用積層体の製造時に、ストライプ形状(θ:45°、P:400μm、W:30μm)および製造条件を表1に示すように変更し、二次電池の製造時に、切断した二次電池用積層体を5つ重ね合わせ、温度40℃、圧力1MPaで5秒間プレスして重ね合わせ体とした以外は実施例1と同様にして、接着材料、接着用組成物、負極、正極、セパレータ、二次電池用積層体および二次電池を準備または製造した。なお、接着材料は、微小なドット状をしていた。即ち、貼り合わせ面には、微小なドット状の複数の接着材料が斜めストライプ状のパターンに配列されて存在していた。また、レーザー顕微鏡で接着材料の断面を観察したところ、断面は凹凸形状をしていた。そして、実施例1と同様にして評価を行った。結果を表1に示す。
(比較例1)
 セパレータとして、ポリプロピレン(PP)製のセパレータ(製品名「セルガード2500」)の片面(セパレータ21用)または両面(セパレータ31用)に接着用組成物をグラビアロールでドット状の塗工パターンに塗工し、温度70℃で熱風乾燥(乾燥時間:6秒)してなるものを使用し、接着材料供給機60A~60Dおよびヒートロールを有さない以外は図1に示す製造装置と同様の構成を有する製造装置を使用して二次電池用積層体を製造した以外は実施例1と同様にして、接着材料、接着用組成物、負極、正極、セパレータ、二次電池用積層体および二次電池を準備または製造した。なお、接着材料は、微小なドット状をしていた。即ち、貼り合わせ面には、微小なドット状の複数の接着材料が集合してなる大きなドットが複数存在していた。また、レーザー顕微鏡で接着材料の断面を観察したところ、断面は凸形状をしていた。そして、実施例1と同様にして評価を行った。結果を表1に示す。
 なお、二次電池用積層体の製造時には、ロール状に巻き取ったセパレータがブロッキングを起こしていたため、剥離しながら製造を行った。
Figure JPOXMLDOC01-appb-T000001
 表1より、実施例1~4では、電極とセパレータとの接着力を確保しつつ二次電池用積層体を効率的に製造することができる。一方、表1より、比較例1では、セパレータのブロッキングにより接着材料が剥離し、電極とセパレータとの接着力を十分に確保することができないと共に、二次電池用積層体を効率的に製造することができないことが分かる。
 本発明によれば、電極とセパレータとの接着力を確保しつつ二次電池用積層体を効率的に製造することができる。
1 搬送ローラ
2 プレスローラ
10 負極ロール
11 負極
20 第一セパレータロール
30 第二セパレータロール
21,31 セパレータ
40 正極ストッカー
41 正極
50 切断機
60A,60B,60C,60D 接着材料供給機
61 接着材料
100 製造装置
200 二次電池用積層体

Claims (6)

  1.  電極と、セパレータとを貼り合わせてなる二次電池用積層体の製造方法であって、
     前記電極および前記セパレータの少なくとも一方の貼り合わせ面に接着材料を形成する工程(A)と、
     前記工程(A)の後、前記接着材料が形成された貼り合わせ面に他の部材を接触させることなく、前記電極および前記セパレータを貼り合わせ開始位置まで搬送する工程(B)と、
     前記工程(B)の後、前記貼り合わせ面を介して前記電極と前記セパレータとを貼り合わせる工程(C)と、
    を含み、
     前記工程(A)における前記接着材料の形成量が0.1g/m以上100g/m以下である、二次電池用積層体の製造方法。
  2.  前記接着材料が重合体からなる、請求項1に記載の二次電池用積層体の製造方法。
  3.  前記重合体が、ガラス転移温度が25℃以下の低Tg重合体を含む、請求項2に記載の二次電池用積層体の製造方法。
  4.  前記工程(A)では、前記接着材料と溶媒とを含む接着用組成物を前記貼り合わせ面に供給し、
     前記接着用組成物に含まれている直径10μm以上の粗大粒子の量が100ppm以下である、請求項1~3の何れかに記載の二次電池用積層体の製造方法。
  5.  前記工程(A)では、貼り合わせ面上の一箇所以上に前記接着材料を形成し、
     前記接着材料の形成面積が、一箇所当たり、25μm以上250000μm以下である、請求項1~4の何れかに記載の二次電池用積層体の製造方法。
  6.  前記工程(A)において、前記接着材料の形成をインクジェット法により行う、請求項1~5の何れかに記載の二次電池用積層体の製造方法。
PCT/JP2019/003729 2018-02-26 2019-02-01 二次電池用積層体の製造方法 WO2019163489A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/975,392 US20210036375A1 (en) 2018-02-26 2019-02-01 Method of producing laminate for secondary battery
EP19756683.9A EP3764449A4 (en) 2018-02-26 2019-02-01 PROCESS FOR MANUFACTURING A RECHARGEABLE BATTERY LAMINATE BODY
KR1020207022731A KR20200124223A (ko) 2018-02-26 2019-02-01 이차 전지용 적층체의 제조 방법
CN201980011351.3A CN111670512A (zh) 2018-02-26 2019-02-01 二次电池用层叠体的制造方法
JP2020501645A JP7517146B2 (ja) 2018-02-26 2019-02-01 二次電池用積層体の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-032347 2018-02-26
JP2018032347 2018-02-26

Publications (1)

Publication Number Publication Date
WO2019163489A1 true WO2019163489A1 (ja) 2019-08-29

Family

ID=67687067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003729 WO2019163489A1 (ja) 2018-02-26 2019-02-01 二次電池用積層体の製造方法

Country Status (6)

Country Link
US (1) US20210036375A1 (ja)
EP (1) EP3764449A4 (ja)
JP (1) JP7517146B2 (ja)
KR (1) KR20200124223A (ja)
CN (1) CN111670512A (ja)
WO (1) WO2019163489A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632274A (zh) * 2019-12-10 2021-11-09 株式会社Lg新能源 单元电池以及制造该单元电池的方法和设备
KR20220133880A (ko) 2020-01-31 2022-10-05 니폰 제온 가부시키가이샤 이차 전지용 적층체 및 이차 전지
WO2023008165A1 (ja) * 2021-07-30 2023-02-02 日本ゼオン株式会社 非水系二次電池用積層体、非水系二次電池用積層体の製造方法及び非水系二次電池
JP2023517079A (ja) * 2020-03-25 2023-04-21 エルジー エナジー ソリューション リミテッド 単位セルの製造装置および方法
JP2023517563A (ja) * 2020-03-25 2023-04-26 エルジー エナジー ソリューション リミテッド 単位セル製造装置及び方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3675234A4 (en) * 2017-08-21 2021-06-09 Zeon Corporation LAMINATE FOR WATERLESS SECONDARY BATTERIES, METHOD FOR MANUFACTURING THE SAME, WRAPS FOR WATERLESS SECONDARY BATTERIES, AND METHOD FOR MANUFACTURING A WATERLESS SECONDARY BATTERY ELEMENT
KR102354261B1 (ko) * 2018-06-12 2022-01-20 주식회사 엘지화학 패턴화 전극접착층이 구비된 전기화학소자용 분리막 및 상기 분리막의 제조방법
CN115149108A (zh) * 2021-03-30 2022-10-04 宁德新能源科技有限公司 电化学装置及电子装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345115A (ja) * 2000-06-01 2001-12-14 Mitsubishi Electric Corp 電 池
JP2009072794A (ja) * 2007-09-18 2009-04-09 Jfe Steel Kk 積層コアの製造装置
WO2010087123A1 (ja) * 2009-01-28 2010-08-05 株式会社村田製作所 電池とその製造方法
JP2012160352A (ja) * 2011-02-01 2012-08-23 Ihi Corp 電極積層体の製造装置および製造方法
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2013503456A (ja) * 2009-08-31 2013-01-31 ポーラス パワー テクノロジーズ,エルエルシー 積層アセンブリを用いる電池の製造
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP2014534570A (ja) 2011-12-27 2014-12-18 エルジー・ケム・リミテッド セパレータの製造方法、その方法によって製造されたセパレータ、及びそれを備える電気化学素子
JP2015041603A (ja) 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
JP2016107642A (ja) * 2014-12-09 2016-06-20 旭化成イーマテリアルズ株式会社 多層多孔膜及び蓄電デバイス用セパレータ

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6967183B2 (en) * 1998-08-27 2005-11-22 Cabot Corporation Electrocatalyst powders, methods for producing powders and devices fabricated from same
KR100388648B1 (ko) * 2001-05-23 2003-06-25 주식회사 코캄엔지니어링 자동화된 리튬 2차전지 제조 시스템
US6610353B1 (en) * 2002-09-23 2003-08-26 The Gillette Co. Method of applying adhesive to electrochemical cell components
JP5603522B2 (ja) * 2012-07-30 2014-10-08 帝人株式会社 非水電解質電池用セパレータおよび非水電解質電池
US9748547B2 (en) * 2012-11-26 2017-08-29 Zeon Corporation Method for producing electrode/separator laminate, and lithium-ion rechargeable battery
JP5877213B2 (ja) * 2014-01-24 2016-03-02 旭化成イーマテリアルズ株式会社 積層体、蓄電デバイス用セパレータ、蓄電デバイス、リチウムイオン二次電池および共重合体
EP3176855B1 (en) * 2014-07-30 2019-05-22 Zeon Corporation Composition for nonaqueous secondary battery function layers, base with function layer for nonaqueous secondary batteries, method for producing laminate for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2018021263A1 (ja) * 2016-07-28 2018-02-01 三洋電機株式会社 二次電池の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001345115A (ja) * 2000-06-01 2001-12-14 Mitsubishi Electric Corp 電 池
JP2009072794A (ja) * 2007-09-18 2009-04-09 Jfe Steel Kk 積層コアの製造装置
WO2010087123A1 (ja) * 2009-01-28 2010-08-05 株式会社村田製作所 電池とその製造方法
JP2013503456A (ja) * 2009-08-31 2013-01-31 ポーラス パワー テクノロジーズ,エルエルシー 積層アセンブリを用いる電池の製造
JP2012160352A (ja) * 2011-02-01 2012-08-23 Ihi Corp 電極積層体の製造装置および製造方法
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
JP2014534570A (ja) 2011-12-27 2014-12-18 エルジー・ケム・リミテッド セパレータの製造方法、その方法によって製造されたセパレータ、及びそれを備える電気化学素子
JP2013145763A (ja) 2013-04-30 2013-07-25 Nippon Zeon Co Ltd 二次電池多孔膜用スラリー組成物、二次電池用電極、二次電池用セパレータおよび二次電池
JP2015041603A (ja) 2013-08-23 2015-03-02 日本ゼオン株式会社 リチウムイオン二次電池用の接着剤、接着層付きセパレータ、接着層付き電極、及びリチウムイオン二次電池
JP2016107642A (ja) * 2014-12-09 2016-06-20 旭化成イーマテリアルズ株式会社 多層多孔膜及び蓄電デバイス用セパレータ

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3764449A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113632274A (zh) * 2019-12-10 2021-11-09 株式会社Lg新能源 单元电池以及制造该单元电池的方法和设备
KR20220133880A (ko) 2020-01-31 2022-10-05 니폰 제온 가부시키가이샤 이차 전지용 적층체 및 이차 전지
JP2023517079A (ja) * 2020-03-25 2023-04-21 エルジー エナジー ソリューション リミテッド 単位セルの製造装置および方法
JP2023517563A (ja) * 2020-03-25 2023-04-26 エルジー エナジー ソリューション リミテッド 単位セル製造装置及び方法
JP7392870B2 (ja) 2020-03-25 2023-12-06 エルジー エナジー ソリューション リミテッド 単位セル製造装置及び方法
JP7463638B2 (ja) 2020-03-25 2024-04-09 エルジー エナジー ソリューション リミテッド 単位セルの製造装置および方法
WO2023008165A1 (ja) * 2021-07-30 2023-02-02 日本ゼオン株式会社 非水系二次電池用積層体、非水系二次電池用積層体の製造方法及び非水系二次電池

Also Published As

Publication number Publication date
JP7517146B2 (ja) 2024-07-17
EP3764449A4 (en) 2021-11-24
EP3764449A1 (en) 2021-01-13
KR20200124223A (ko) 2020-11-02
CN111670512A (zh) 2020-09-15
JPWO2019163489A1 (ja) 2021-02-04
US20210036375A1 (en) 2021-02-04

Similar Documents

Publication Publication Date Title
WO2019163489A1 (ja) 二次電池用積層体の製造方法
US10297815B2 (en) Method for producing electrode for lithium ion secondary batteries
CN112088446B (zh) 非水系二次电池用浆料、非水系二次电池用间隔件、非水系二次电池用电极、非水系二次电池用层叠体以及非水系二次电池
JP7414003B2 (ja) 二次電池用積層体および二次電池、並びに、それらの製造方法
CN112655106B (zh) 二次电池及其制造方法
CN111712951B (zh) 非水系二次电池用层叠体的制造方法和非水系二次电池的制造方法
WO2022209997A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層およびその製造方法、非水系二次電池用積層体およびその製造方法、ならびに、非水系二次電池
WO2022230621A1 (ja) 非水系二次電池用積層体、接着用組成物及び非水系二次電池
WO2021131918A1 (ja) 二次電池およびその製造方法
WO2021153516A1 (ja) 二次電池用積層体及び二次電池
WO2021131914A1 (ja) 二次電池およびその製造方法
WO2023032718A1 (ja) 非水系二次電池接着層用組成物、非水系二次電池用接着層及びその製造方法、非水系二次電池用積層体及びその製造方法、並びに、非水系二次電池
CN117642879A (zh) 非水系二次电池用层叠体、非水系二次电池用层叠体的制造方法以及非水系二次电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19756683

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020501645

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019756683

Country of ref document: EP

Effective date: 20200928