WO2019163467A1 - 復水システムの制御方法並びに復水システム及びこれを備えた船舶 - Google Patents

復水システムの制御方法並びに復水システム及びこれを備えた船舶 Download PDF

Info

Publication number
WO2019163467A1
WO2019163467A1 PCT/JP2019/003414 JP2019003414W WO2019163467A1 WO 2019163467 A1 WO2019163467 A1 WO 2019163467A1 JP 2019003414 W JP2019003414 W JP 2019003414W WO 2019163467 A1 WO2019163467 A1 WO 2019163467A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
condensate
pressure
pump
ground
Prior art date
Application number
PCT/JP2019/003414
Other languages
English (en)
French (fr)
Inventor
卓也 田村
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020207022607A priority Critical patent/KR102499921B1/ko
Priority to CN201980013928.4A priority patent/CN112041628B/zh
Publication of WO2019163467A1 publication Critical patent/WO2019163467A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/02Use of propulsion power plant or units on vessels the vessels being steam-driven
    • B63H21/10Use of propulsion power plant or units on vessels the vessels being steam-driven relating to condensers or engine-cooling fluid heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K15/00Adaptations of plants for special use
    • F01K15/02Adaptations of plants for special use for driving vehicles, e.g. locomotives
    • F01K15/04Adaptations of plants for special use for driving vehicles, e.g. locomotives the vehicles being waterborne vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K9/00Plants characterised by condensers arranged or modified to co-operate with the engines
    • F01K9/02Arrangements or modifications of condensate or air pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/06Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using air or other gas as the cooling medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B9/00Auxiliary systems, arrangements, or devices
    • F28B9/08Auxiliary systems, arrangements, or devices for collecting and removing condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus

Definitions

  • the present invention relates to a condensate system control method, a condensate system, and a ship equipped with the condensate system.
  • a condenser that generates condensate by condensing steam discharged from a steam turbine is known in a steam turbine included in a steam plant employed in a ship or a power generation system.
  • non-condensable gas mixed with the steam discharged from the steam turbine and continuously flowing out of the condenser is continuously discharged to the condenser.
  • a vacuum pump that puts the inside of the chamber into a vacuum state may be provided.
  • the condenser is in a vacuum state, such as when the steam turbine is operating or when the steam turbine is stopped before stopping the steam turbine auxiliary equipment, or when the steam plant is stopped or when the steam turbine auxiliary equipment is started or stopped.
  • the capacity required for the condensate pump for sucking condensate may be different from when it is not.
  • the present invention has been made in view of such circumstances, and controls the condensate system that can appropriately maintain the condensate level in the condenser even when the vacuum state in the condenser has changed. It is an object of the present invention to provide a method, a condensate system, and a ship equipped with the same.
  • a condensate system control method, a condensate system, and a ship equipped with the condensate system of the present invention employ the following means. That is, a control method for a condensate system according to one aspect of the present invention includes a condenser that condenses steam discharged from a steam turbine into condensate, and a ground condenser that heats the condensate from the condenser.
  • a condenser level control valve provided between the condenser and the condenser, and a condenser system pressure detection unit capable of detecting the pressure in the condenser.
  • the condensate system control method includes a rotation speed switching step of adjusting the minimum rotation speed of the condensate pump according to the pressure in the condenser obtained by the condenser pressure detector.
  • a rotation speed switching step of adjusting the minimum rotation speed of the condensate pump according to the pressure in the condenser obtained by the condenser pressure detector.
  • the minimum rotational speed of the condensate pump is lowered accordingly (that is, the minimum value of the discharge head of the condensate pump is lowered),
  • the pressure of condensate discharged from the condensate pump can be lowered.
  • the condensate flowing into each of the condenser and tank connected to the discharge side of the ground condenser can be properly secured, so even if the condenser is in a low vacuum, the condenser in the condenser is The water level can be maintained properly.
  • the condenser has a high vacuum
  • a smaller pressure is required to suck in the condensate from the condenser.
  • the low vacuum mentioned here is, for example, about -0.5 bar to 0 bar (including atmospheric pressure) in gauge pressure
  • the high vacuum is, for example, about -1 bar to -0.5 bar in gauge pressure.
  • the minimum number of rotations is not the actual number of rotations of the condensate pump, but the number of rotations set so that the condensate pump does not operate at a lower number of rotations.
  • the condensate system control method when the pressure in the condenser obtained by the condenser pressure detection unit is equal to or higher than a predetermined pressure, Reduce the minimum speed of the water pump.
  • the condensate pump when the inside of the condenser becomes a low vacuum, the condensate pump is reduced by lowering the minimum rotation speed of the condensate pump accordingly (that is, lowering the minimum value of the discharge head of the condensate pump).
  • the pressure of condensate discharged from the pump can be lowered. Thereby, it is possible to prevent the condensate in the condenser from flowing excessively into the tank through the ground condenser.
  • the condensate flowing into each of the condenser and tank connected to the discharge side of the ground condenser can be properly secured, so even if the condenser is in a low vacuum, the condenser in the condenser is The water level can be maintained properly. In addition, it is possible to prevent idling of the condensate pump due to a decrease in the condensate level in the condenser.
  • the low vacuum referred to here is, for example, about ⁇ 0.5 bar to 0 bar (including atmospheric pressure) in gauge pressure.
  • the pressure in the condenser is a gauge pressure of ⁇ 0.5 bar or more and 0 bar or less, the minimum rotation speed of the condensate pump is decreased.
  • the control method for the condensate system reduces the minimum rotation speed of the condensate pump when the pressure in the condenser is -0.5 bar or more and 0 bar or less in gauge pressure. According to this, when the vacuum state is low, the condensate pump discharged from the condensate pump is reduced by lowering the minimum rotation speed of the condensate pump accordingly (that is, lowering the minimum value of the discharge head of the condensate pump). The water pressure can be lowered.
  • the condensate system control method provides a maximum opening degree of the condensate level control valve according to the pressure in the condenser obtained by the condenser pressure detection unit. An opening degree switching step of adjusting the angle.
  • the condensate system control method includes an opening degree switching step of adjusting the maximum opening degree of the condensate level control valve according to the pressure in the condenser obtained by the condenser pressure detector. Including. According to this, for example, when the inside of the condenser becomes a high vacuum, the maximum opening of the condensate level control valve can be lowered accordingly. Accordingly, it is possible to prevent the pressure in the condenser from becoming high (approaching low vacuum) by preventing the opening of the condensate level control valve from becoming larger than necessary.
  • the opening of the condensate level control valve becomes excessively large, the pressure of the condensate discharged from the condensate pump will increase, and even if the condensate pump is at the minimum rotation speed, Due to the discharge, the condensate passes through the ground condenser and flows into the tank, so that the condensate that should flow into the condenser cannot be secured, and the condensate pump is emptied due to a decrease in the condensate level in the condenser. There is a possibility of driving.
  • the high vacuum referred to here is, for example, about ⁇ 1 bar to ⁇ 0.5 bar in gauge pressure.
  • the maximum opening is not the actual opening of the condensate level control valve, but an opening that is set so that the opening of the condensate level control valve does not increase any more.
  • the pressure becomes lower than the maximum pressure the maximum opening of the condensate level control valve is lowered.
  • the condensate system control method in the opening degree switching step, when the pressure in the condenser obtained by the condenser pressure detection unit is equal to or lower than a predetermined pressure that is determined in advance, Reduce the maximum opening of the water level control valve. According to this, when the inside of the condenser is in a high vacuum, the condensate passes through the ground condenser due to discharge from the condensate pump even though the condensate pump rotates at the minimum rotation speed. Thus, it is possible to prevent the condensate level in the condenser from being lowered without ensuring the condensate that would have flowed into the tank and supposed to flow into the condenser. That is, since the condensate flowing into the condenser connected to the ground condenser can be appropriately secured, the condensate level in the condenser can be appropriately maintained.
  • the maximum opening degree of the condensate level control valve is set. Lower.
  • the maximum opening of the condensate level control valve when the pressure in the condenser is ⁇ 1 bar or more and ⁇ 0.5 bar or less in gauge pressure, the maximum opening of the condensate level control valve is lowered. According to this, when the vacuum state is high, the maximum opening of the condensate level control valve can be lowered accordingly. Accordingly, it is possible to prevent the pressure in the condenser from becoming high (approaching low vacuum) by preventing the opening of the condensate level control valve from becoming larger than necessary.
  • a condensate system includes a condenser that condenses steam discharged from a steam turbine to condense, a ground condenser that heats the condensate from the condenser, and the ground condenser.
  • a condenser level control valve provided between the condenser and a condenser pressure detection unit capable of detecting the pressure in the condenser, the pressure obtained in the condenser pressure detection part
  • a control unit is provided that adjusts the minimum number of revolutions of the condensate pump according to the pressure in the condenser.
  • ⁇ Condensate flowing into the condenser connected to the ground condenser can be secured appropriately, and a condensate system that can maintain the condensate level in the condenser properly can be provided.
  • control unit is configured to control a maximum of the condensate level control valve according to the pressure in the condenser obtained by the condenser pressure detection unit. Adjust the opening.
  • ⁇ Condensate flowing into the condenser connected to the ground condenser can be secured appropriately, and a condensate system that can maintain the condensate level in the condenser properly can be provided.
  • the condensate level in the condenser is appropriately adjusted even when the vacuum state in the condenser has changed. Can be maintained.
  • the condensate system 1 includes a condenser 10, a ground condenser 12, a cascade tank (tank) 14, a condensate pump 16, and a condensate level control valve 18, and pipes W1, W2, W3 ( W3a, W3b).
  • the condensate system 1 includes a TCP (Turbine Control Panel) 20 and a VFD controller (VFD: Variable Frequency Drive) 22.
  • the condensate system 1 is suitable for use in a ship, and is provided in the ship in a form in which the above-described components are accommodated in a ship hull structure, that is, in a space surrounded by the outer plate 40.
  • the TCP 20 and the VFD controller 22 include, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and the like.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program as an example, and the CPU reads the program into a RAM or the like to execute information processing / arithmetic processing.
  • the program is preinstalled in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or distributed via wired or wireless communication means. Etc. may be applied.
  • the computer-readable storage medium is a magnetic disk, a magneto-optical disk, a CD-ROM, a DVD-ROM, a semiconductor memory, or the like.
  • the above-mentioned components included in the condensate system 1 shown in FIG. 1 are arranged at different heights in the vertical direction (up and down direction on the paper).
  • the surface on which the condensate pump 16 at the bottom is installed is defined as a reference surface P1
  • the surface on which the ground capacitor 12 and the cascade tank 14 are installed is defined as an installation surface P2.
  • the reference plane P1 and the installation plane P2 are each level of the engine room provided in the ship.
  • the condenser 10 condenses the steam discharged from, for example, a steam turbine (not shown) provided in a steam plant (not shown) that serves as a power source for the ship, and condenses it.
  • a cooling pipe (not shown) is provided at the upper part, and a lower tank (not shown) for storing condensate is provided at the lower part.
  • the steam discharged from the steam turbine is guided into the body of the condenser 10 and is condensed by being cooled by the cooling pipe. As described above, the condensate is temporarily stored in the lower tank.
  • the condenser 10 is provided with a level meter (not shown) that can measure the liquid level of the condensate in the lower tank.
  • the output signal of the level meter is transmitted to the TCP 20, and the TCP 20 can acquire the condensate liquid level by the level meter.
  • the condenser 10 includes a vacuum device (not shown) (for example, a vacuum pump) for making the inside of the condenser 10 into a vacuum state from the atmospheric pressure, and a condenser internal pressure detection unit (for detecting the pressure of the condenser 10). These output signals are also transmitted to the TCP 20.
  • a vacuum device (not shown) is controlled to put the condenser 10 into a vacuum state according to a command from the TCP 20.
  • the TCP 20 can acquire the pressure in the condenser 10 by a condenser internal pressure detection unit (not shown).
  • the ground condenser 12 condenses and condenses steam leaked from the ground portion of a steam turbine or the like (not shown) provided in the ship, and the condensate stored in the condenser 10 is used as cooling water. The That is, the leaked steam is cooled by the condensate in the ground condenser 12, and the condensed water is heated by the steam leaked in the ground condenser 12.
  • the condenser 10 and the ground condenser 12 are connected by a first pipe W1 through which condensate flows.
  • a condensate pump 16 is provided in the middle of the first pipe W1, and the condensate flow of the condensate system 1 is formed by the condensate pump 16.
  • a discharge pressure detection unit 26 capable of detecting the discharge pressure of the condensate pump 16 is provided on the discharge side of the condensate pump 16 in the first pipe W1.
  • the condensate pump 16 is electrically connected to the VFD controller 22, and the VFD controller 22 can change the rotation speed of the condensate pump 16. Further, the VFD controller 22 is electrically connected to the TCP 20, and the rotational speed of the condensate pump 16 is set by a command from the TCP 20. Further, the signal of the discharge pressure detection unit 26 is transmitted to the TCP 20, and the TCP 20 can acquire the pressure of the condensate discharged from the condensate pump 16 by the discharge pressure detection unit 26.
  • ground condenser 12 (discharge side) and the condenser 10 are connected by a second pipe W2 through which condensate flows.
  • a condensate level control valve 18 is provided in the middle of the second pipe W2, and the flow rate of condensate flowing from the ground condenser 12 (discharge side) to the condenser 10 can be adjusted by its opening.
  • the condensate level control valve 18 is electrically connected to the TCP 20, and the opening degree of the condensate level control valve 18 is adjusted by a command from the TCP 20.
  • the condensate system 1 includes a cascade tank 14.
  • the cascade tank 14 can store a part of the condensate from the ground condenser 12, and is installed upstream of an economizer provided in a ship equipped with the condensate system 1.
  • the stored condensate is stored in the economizer. To be supplied.
  • the second pipe W2 connected to the ground condenser 12 (discharge side) and the cascade tank 14 are connected by a third pipe W3 through which condensate flows. That is, a part of the condensate flowing through the second pipe W2 (that is, a part of the condensate from the ground condenser 12) can be guided to the cascade tank 14 by the third pipe W3.
  • a condensate heater 24 is provided in the middle of the third pipe W3, and the condensate flowing through the third pipe W3 can be heated.
  • the third pipe W3 is divided into a third pipe horizontal part W3a installed in the horizontal direction and a third pipe rising part W3b raised from the third pipe horizontal part W3a.
  • the flow of condensate during operation of the condensate system 1 according to the present embodiment will be described.
  • the condensate flowing through the condensate system 1 forms its flow by the condensate pump 16.
  • the flow of condensate in the condensate system 1 will be described with the condenser 10 as a starting point.
  • Condensate stored in the condenser 10 flows into the ground condenser 12 through the condensate pump 16 while flowing through the first pipe W1.
  • the condensate that has flowed into the ground condenser 12 undergoes heat exchange with the ground condenser 12, and then flows into the second pipe W2.
  • the condensate guided to the second pipe W2 passes through the condensate level control valve 18 and returns to the condenser 10. Further, a part of the condensate led to the second pipe W2 is led to the third pipe W3 and flows into the cascade tank 14 under a predetermined condition (described later).
  • the pressure in the condenser 10 is set to a high vacuum (for example, about -1 bar to -0.5 bar in gauge pressure) by a vacuum device (not shown).
  • a vacuum device not shown
  • the steam discharged from a steam turbine or the like (not shown) is sucked into the condenser 10.
  • the condensate led to the third pipe W3 by the operation of the condensate pump 16 is the level of the condensate between the third pipe rising portions W3b (between Cm and Fm shown in FIG. 1).
  • the minimum rotation speed (first minimum rotation speed) of the condensate pump 16, that is, the minimum discharge head (lifting height) is set so as to maintain (Gm shown in FIG. 1).
  • Cm is the height between the reference plane P1 (installation position of the condensate pump 16) and the inlet of the cascade tank 14 (hereinafter referred to as “pump-tank height Cm”)
  • Fm is the reference.
  • the height between the surface P1 (installation position of the condensate pump 16) and the discharge port of the ground condenser 12 (hereinafter referred to as “pump-capacitor height Fm”), Gm is the liquid level of the condensate. (Hereinafter referred to as “liquid level height Gm”).
  • the height of the inlet of the cascade tank 14 is equal to the height of the upper end of the third pipe rising portion W3b
  • the height of the discharge port of the ground condenser 12 is equal to the height of the lower end of the third pipe rising portion W3b.
  • the pressure of condensate discharged from the condensate pump 16 is the head (Bm shown in FIG. 1) of the condenser 10 with respect to the reference plane P1 (installation position of the condensate pump 16). Height Bm ”), the discharge head of the condensate pump 16 (Dm shown in FIG. 1, hereinafter referred to as“ discharge head Dm ”), the pressure in the condenser 10 (Am shown in FIG. 1). And hereinafter referred to as “condenser pressure Am”). That is, the pressure of condensate discharged from the condensate pump 16 can be expressed as Am + Bm + Dm. At this time, the condenser pressure Am becomes a negative value in a vacuum.
  • the liquid level height Gm in the third pipe rising portion W3b depends on the rotational speed of the discharge head Dm, that is, the condensate pump 16. That is, when the rotational speed of the condensate pump 16 increases, the liquid level height Gm increases, and when the rotational speed of the condensate pump 16 decreases, the liquid level height Gm decreases.
  • the pressure in the condenser 10 is low (for example, a gauge pressure of about ⁇ 0.5 bar to 0 bar (including atmospheric pressure)). It becomes.
  • the condensate stored in the condenser 10 is controlled by the TCP 20 so that the liquid level is maintained at a preset liquid level. Specifically, the control of adjusting the liquid level is performed by the TCP 20 comparing the liquid level of the condensate acquired by a level meter (not shown) with a preset liquid level. . In addition, in the following, instructions for devices related to the liquid level control (including the condensate pump 16, the condensate level control valve 18, the VFD controller 22, the discharge pressure detection unit 26, the condenser internal pressure detection unit, etc.) Information acquisition is assumed to be executed by the TCP 20.
  • the rotation speed of the condensate pump 16 is increased to increase the discharge head Dm. If the discharge head Dm increases, the pressure of condensate discharged from the condensate pump 16 increases accordingly, the liquid level height Gm in the third pipe rising portion W3b increases, and the condensate cascades. It flows into the tank 14 (see FIG. 2). As a result, the liquid level can be lowered by guiding the excess amount of the condensate stored in the condenser 10 to the cascade tank 14.
  • the level of the condensate stored in the condenser 10 falls, for example, the number of revolutions of the condensate pump 16 is reduced and the condensate flowing into the ground condenser 12 from the condenser 10 is reduced. By suppressing the flow rate of water, the level of the condensate stored in the condenser 10 can be increased.
  • the liquid level of the condensate stored in the condenser 10 is lowered, the liquid level is maintained by adjusting the opening of the condensate level control valve 18. For example, by increasing the opening of the condensate level control valve 18, the flow rate of the condensate flowing from the ground condenser 12 to the condenser 10 side is increased. Accordingly, the liquid level of the condensate stored in the condenser 10 can be increased by suppressing the flow rate of the condensate flowing from the ground condenser 12 into the cascade tank 14 or preventing the condensate from flowing. .
  • control is performed by the TCP 20 so as to adjust the minimum number of revolutions of the condensate pump 16 according to the pressure (vacuum state) in the condenser 10 obtained by the condenser internal pressure detector (not shown). Is done. Specifically, when the pressure in the condenser 10 becomes a low vacuum, the minimum rotational speed of the condensate pump 16 is set to a rotational speed lower than the first minimum rotational speed from the first minimum rotational speed described above. It was decided to reduce to the second minimum rotation speed.
  • the minimum rotation speed is set to the first minimum rotation speed
  • the TCP 20 When it is determined that the pressure in the condenser 10 acquired from the water pressure detector is a low vacuum, the minimum rotation speed is set to the second minimum rotation speed (rotation speed switching step).
  • the ejection head Dm can be changed depending on the vacuum state.
  • the second minimum number of rotations means that the condensate guided to the third pipe W3 by the operation of the condensate pump 16 when the pressure in the condenser 10 is low vacuum is generated in the third pipe rising portion W3b.
  • the number of revolutions of the condensate pump 16 is set so as to be a discharge head Dm that keeps the liquid level height Gm in the interval (between Cm and Fm shown in FIG. 1).
  • the condenser pressure Am of the low vacuum (Am is a negative value in the vacuum state) is higher than the condenser pressure Am of the high vacuum (Am is a negative value in the vacuum state).
  • the minimum rotational speed of the condensate pump 16 is set.
  • the liquid level height Gm is maintained at the same level as at the time of high vacuum even at the time of low vacuum. That is, when the vacuum is high, the condensate pump 16 must draw the condensate at a pressure that is not inferior to the vacuum pressure in the condenser 10, but when the vacuum is low, the vacuum pressure in the condenser 10 is high vacuum. Since it is weaker than the time, it is necessary to reduce the pressure at which the condensate pump 16 draws the condensate in the condenser 10. For this reason, the second minimum rotation speed is lower than the first minimum rotation speed.
  • control is performed by the TCP 20 so as to adjust the maximum opening of the condensate level control valve 18 according to the pressure in the condenser 10 obtained by a condenser internal pressure detection unit (not shown). Is done. Specifically, when the pressure in the condenser 10 becomes high vacuum, the maximum opening degree of the condensate level control valve 18 is set lower than the maximum opening degree of low vacuum.
  • the TCP 20 When the maximum opening of the condensate level control valve 18 in the high vacuum is the first maximum opening and the maximum opening of the condensate level control valve 18 in the low vacuum is the second maximum opening, the TCP 20 When it is determined that the pressure in the condenser 10 acquired from the internal pressure detector is high vacuum, the maximum opening is set to the first maximum opening, and the TCP 20 is acquired from the condenser internal pressure detector. When it is determined that the pressure in the condenser 10 is low vacuum, the maximum opening is set to the second maximum opening (opening switching step). At this time, the first maximum opening is, for example, about 60%, and the second maximum opening is, for example, about 100%.
  • the first maximum opening is, for example, the maximum opening of the condensate level control valve 18 set so as not to eliminate the pressure loss of the condensate flowing through the condensate level control valve 18. If the pressure loss at the condensate level control valve 18 is eliminated by excessively increasing the opening degree (when the resistance by the condensate level control valve 18 is reduced), the condensate pump 16 is connected to the condenser 10. When the condensate is drawn from the condensate level control valve 18 side, the pressure required is reduced. That is, a phenomenon equivalent to the increase in the condenser pressure Am occurs. As a result, the liquid level height Gm in the third pipe rising portion W3b, which depends on the discharge head Dm and the condenser pressure Am, increases. Then, the condensate is guided to the cascade tank 14 even though the opening degree is increased (see FIG. 2).
  • the above-described low vacuum is, for example, about -0.5 bar to 0 bar (including atmospheric pressure) in gauge pressure
  • the high vacuum is, for example, about -1 bar to -0.5 bar in gauge pressure.
  • the TCP 20 determines the vacuum state in the condenser 10 with ⁇ 0.5 bar as a threshold value (predetermined pressure).
  • a threshold value predetermined pressure
  • the range and threshold value of a vacuum pressure can be suitably changed with the specification of the condensate system 1.
  • the above-mentioned minimum rotational speed is not the actual rotational speed of the condensate pump 16 but the rotational speed set so that the condensate pump 16 does not operate at a rotational speed lower than that.
  • the aforementioned maximum opening is not an actual opening of the condensate level control valve 18 but an opening set so that the opening of the condensate level control valve 18 does not become any larger.
  • FIG. 4 shows the number of rotations of the condensate pump 16, the pressure in the condenser 10, the level of condensate in the condenser 10, and the condensate level control valve 18 in the control of the condensate system 1 described above.
  • An example of the relationship of the opening degree is shown.
  • FIG. 4 when the pressure (vacuum state) in the condenser 10 is switched from low to high vacuum in the process of changing from atmospheric pressure to high vacuum by a vacuum device (not shown) (see the dashed line in FIG. 4). ), The minimum rotation speed of the condensate pump 16 is increased by the above-described rotation speed switching step, and the second minimum rotation speed is changed to the first minimum rotation speed.
  • the rotational speed of the condensate pump 16 indicated by the solid line in FIG. 4 is also increasing.
  • the pressure (vacuum state) in the condenser 10 is changed from low vacuum to high vacuum (see the one-dot chain line in FIG. 4)
  • the maximum opening degree of the condensate level control valve 18 is increased by the opening degree switching process described above.
  • the first maximum opening is reached from the second maximum opening.
  • the opening degree of the condensate level control valve 18 indicated by the broken line in FIG. 4 also decreases.
  • the present embodiment has the following effects.
  • the inside of the condenser 10 becomes a low vacuum, it is discharged from the condensate pump 16 by lowering the minimum rotation speed of the condensate pump 16 accordingly (that is, lowering the minimum value of the discharge head Dm).
  • the pressure of condensate can be lowered. Thereby, it is possible to prevent the condensate in the condenser 10 from passing through the ground condenser 12 and excessively flowing into the cascade tank 14.
  • the condenser 10 it is possible to appropriately secure the condensate flowing into the condenser 10 and the cascade tank 14 connected to the discharge side of the ground condenser 12, so that even if the condenser 10 is in a low vacuum, the condenser 10
  • the liquid level of the condensate in the water vessel 10 can be maintained appropriately.
  • the discharge head Dm cannot be lowered (that is, the minimum rotation speed of the condensate pump is a set value in a high vacuum, and a high value in a high vacuum.
  • the condensate discharge from the condensate pump 16 causes the ground capacitor 12 to exceed the head difference between the two devices (difference between Cm and Fm shown in FIG. 1) and to the cascade tank 14. Condensate flows in (see FIG. 2), the condensate that should flow into the condenser 10 cannot be secured, and the condensate pump 16 is emptied due to a decrease in the level of the condensate in the condenser 10. There is a possibility of driving.
  • the condenser pressure Am is smaller than when the condenser 10 has a low vacuum, so that the condensate can be obtained without reducing the minimum value of the discharge head Dm.
  • the pressure of the condensate discharged from the pump 16 is lowered.
  • the maximum opening degree of the condensate level control valve 18 can be lowered accordingly. Accordingly, it is possible to prevent the pressure of the condensate discharged from the condensate pump 16 from being increased by preventing the opening of the condensate level control valve 18 from becoming unnecessarily large during high vacuum. That is, it is possible to prevent the condensate in the condenser 10 from flowing into the cascade tank 14 from the ground condenser 12 due to the discharge of the condensate from the condensate pump 16 operating at the minimum rotation speed.
  • the condensate flowing into the condenser 10 connected to the ground condenser 12 can be appropriately secured, the level of the condensate in the condenser 10 can be maintained appropriately. Further, it is possible to prevent idling of the condensate pump 16 due to a decrease in the level of the condensate in the condenser 10.
  • Condensate system 10 Condenser 12 Ground condenser 14 Cascade tank (tank) 16 Condensate pump 18 Condensate level control valve 20 TCP (control unit) 22 VFD controller 24 Condensate heater 26 Discharge pressure detector 40 Outer plate P1 Reference surface P2 Installation surface W1 First piping (pipe) W2 Second piping (piping) W3 3rd piping (piping) W3a 3rd piping horizontal section (piping) W3b 3rd pipe rising part (pipe)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

復水器内の真空状態に変化があった場合でも、復水器内の復水レベルを適切に維持することを目的とする。蒸気タービンから排出された蒸気を凝縮して復水とする復水器(10)と、復水器(10)からの復水を加熱するグランドコンデンサ(12)と、グランドコンデンサ(12)からの復水の一部を貯留するタンク(14)と、復水器(10)とグランドコンデンサ(12)の復水流入側との間に設けられた復水ポンプ(16)と、グランドコンデンサ(12)の復水吐出側と復水器(10)との間に設けられた復水レベル制御弁(18)と、復水器(10)内の圧力を検出可能な復水器内圧力検出部とを備えた復水システム(1)の制御方法であって、復水器内圧力検出部で得られた復水器(10)内の圧力に応じて、復水ポンプ(16)の最低回転数を調節する回転数切替工程を含む。

Description

復水システムの制御方法並びに復水システム及びこれを備えた船舶
 本発明は、復水システムの制御方法並びに復水システム及びこれを備えた船舶に関する。
 船舶や発電システムに採用される蒸気プラントが備える蒸気タービンにおいて、蒸気タービンから排出された蒸気を凝縮することで復水を生成する復水器が知られている。
 特許文献1に開示されている発明では、復水器の底部に設けられた復水器ホットウェルに貯留された復水を復水ポンプによって脱気器に供給する場合において、復水ポンプの回転数を下げることによって供給する復水の流量を低減させることとしている。
特開2010-270637号公報
 復水器には、復水器の性能を維持するために、蒸気タービンから排出される蒸気に混合して流入する非凝縮性のガスを連続的に復水器外に排出して、復水器内を真空状態にする真空ポンプが設けられることがある。蒸気タービン運転中や蒸気タービン補機停止前の蒸気タービン停止中など真空ポンプによって復水器内が真空状態にある時と、蒸気プラント停止中や蒸気タービン補機起動・停止過程時などの真空状態にない時とでは、復水を吸込む復水ポンプに要求される能力が異なる場合がある。
 特許文献1に開示されている発明では、復水ポンプの回転数によって供給する復水の流量を低減させているものの、復水器内の真空状態が考慮されていないので、復水器内の真空状態によっては、適切に流量を制御できない可能性がある。つまり、復水器内の復水レベルを適切に維持できない可能性がある。
 本発明はこのような事情に鑑みてなされたものであって、復水器内の真空状態に変化があった場合でも、復水器内の復水レベルを適切に維持できる復水システムの制御方法並びに復水システム及びこれを備えた船舶を提供することを目的とする。
 上記課題を解決するために、本発明の復水システムの制御方法並びに復水システム及びこれを備えた船舶は以下の手段を採用する。
 すなわち、本発明の一態様に係る復水システムの制御方法は、蒸気タービンから排出された蒸気を凝縮して復水とする復水器と、該復水器からの復水を加熱するグランドコンデンサと、該グランドコンデンサからの復水の一部を貯留するタンクと、前記復水器と前記グランドコンデンサの復水流入側との間に設けられた復水ポンプと、前記グランドコンデンサの復水吐出側と前記復水器との間に設けられた復水レベル制御弁と、前記復水器内の圧力を検出可能な復水器内圧力検出部とを備えた復水システムの制御方法であって、前記復水器内圧力検出部で得られた前記復水器内の圧力に応じて、前記復水ポンプの最低回転数を調節する回転数切替工程を含む。
 本態様に係る復水システムの制御方法は、復水器内圧力検出部で得られた復水器内の圧力に応じて、復水ポンプの最低回転数を調節する回転数切替工程を含む。ここで、復水システムを構成する主要機器の配置について、例えば、ヘッドの高い順に、タンク(流入側)、グランドコンデンサ(吐出側)、グランドコンデンサ(流入側)、復水器、復水ポンプとされる。これによれば、例えば、復水器内が低真空となった場合、これに応じて復水ポンプの最低回転数を下げる(即ち、復水ポンプの吐出ヘッドの最小値を下げる)ことで、復水ポンプから吐出される復水の圧力を下げることができる。これによって、復水器内の復水がグランドコンデンサを通過してタンクに過剰に流入することを防止できる。つまり、グランドコンデンサの吐出側に接続された復水器およびタンクのそれぞれに流入する復水を適切に確保することができるので、復水器内が低真空の場合でも、復水器内の復水レベルを適切に維持できる。また、復水器内の復水レベル低下による復水ポンプの空運転を防止できる。仮に、復水器内が低真空とされた場合において、復水ポンプの吐出ヘッドを下げることができない場合(即ち、高真空時の高い吐出ヘッドのままの場合)、復水ポンプからの復水の吐出によってグランドコンデンサからタンクに、両機器間のヘッド(高低差分による差圧)を超えて復水が流入してしまい、復水器に流入するはずの復水を確保できずに、復水器内の復水レベル低下によって復水ポンプが空運転してしまう可能性がある。なお、復水器内が高真空の場合は、復水器内が低真空の場合と比べて、復水器から復水を吸込むために大きな圧力が必要になるので、復水ポンプの吐出ヘッドの最小値を下げずとも、復水器から復水を吸込む時に復水ポンプから吐出される復水の圧力が低くなる。
 ここで言う低真空とは、例えば、ゲージ圧で-0.5bar~0bar(大気圧含む)程度とされ、高真空とは、例えば、ゲージ圧で-1bar~-0.5bar程度とされる。また、最低回転数とは復水ポンプの実際の回転数ではなく、それ以下の回転数で復水ポンプが運転しないように設定された回転数のことを言う。
 また、本発明の一態様に係る復水システムの制御方法において、前記回転数切替工程では、前記復水器内圧力検出部で得られた前記復水器内の圧力が予め決定されている所定圧力以上となった場合、前記復水ポンプの最低回転数を下げる。
 本態様に係る復水システムの制御方法において、回転数切替工程では、復水器内圧力検出部で得られた復水器内の圧力が予め決定されている所定圧力以上となった場合、復水ポンプの最低回転数を下げる。これによれば、復水器内が低真空となった場合、これに応じて復水ポンプの最低回転数を下げる(即ち、復水ポンプの吐出ヘッドの最小値を下げる)ことで、復水ポンプから吐出される復水の圧力を下げることができる。これによって、復水器内の復水がグランドコンデンサを通過してタンクに過剰に流入することを防止できる。つまり、グランドコンデンサの吐出側に接続された復水器およびタンクのそれぞれに流入する復水を適切に確保することができるので、復水器内が低真空の場合でも、復水器内の復水レベルを適切に維持できる。また、復水器内の復水レベル低下による復水ポンプの空運転を防止できる。
 ここで言う低真空とは、例えば、ゲージ圧で-0.5bar~0bar(大気圧含む)程度とされる。
 また、本発明の一態様に係る復水システムの制御方法は、前記復水器内の圧力がゲージ圧で-0.5bar以上0bar以下のとき、前記復水ポンプの最低回転数を下げる。
 本態様に係る復水システムの制御方法は、前記復水器内の圧力がゲージ圧で-0.5bar以上0bar以下のとき、前記復水ポンプの最低回転数を下げる。これによれば、低真空状態のとき、これに応じて復水ポンプの最低回転数を下げる(即ち、復水ポンプの吐出ヘッドの最小値を下げる)ことで、復水ポンプから吐出される復水の圧力を下げることができる。
 また、本発明の一態様に係る復水システムの制御方法は、前記復水器内圧力検出部で得られた前記復水器内の圧力に応じて、前記復水レベル制御弁の最大開度を調節する開度切替工程を含む。
 本態様に係る復水システムの制御方法は、復水器内圧力検出部で得られた復水器内の圧力に応じて、復水レベル制御弁の最大開度を調節する開度切替工程を含む。これによれば、例えば、復水器内が高真空となった場合、これに応じて復水レベル制御弁の最大開度を下げることができる。これによって、復水レベル制御弁の開度が必要以上に大きくなることを防止することで、復水器内の圧力が高くなる(低真空に近づく)ことを防止できる。つまり、最低回転数で運転している復水ポンプからの復水の吐出によって、復水器内の復水がグランドコンデンサからタンクに流入することを防止できる。したがって、グランドコンデンサに接続された復水器に流入する復水を適切に確保することができるので、復水器内の復水レベルを適切に維持できる。また、復水器内の復水レベル低下による復水ポンプの空運転を防止できる。仮に、復水レベル制御弁の開度が過度に大きくなってしまうと、復水ポンプから吐出される復水の圧力が高くなり、復水ポンプが最低回転数の場合でも、復水ポンプからの吐出によって、復水がグランドコンデンサを通過してタンクに流入してしまい、復水器に流入するはずの復水を確保できずに、復水器内の復水レベル低下によって復水ポンプが空運転してしまう可能性がある。
 ここで言う高真空とは、例えば、ゲージ圧で-1bar~-0.5bar程度とされる。また、最大開度とは復水レベル制御弁の実際の開度ではなく、復水レベル制御弁の開度がこれ以上大きくならないように設定された開度のことを言う。
 また、本発明の一態様に係る復水システムの制御方法において、前記開度切替工程では、前記復水器内圧力検出部で得られた前記復水器内の圧力が予め決定されている所定圧力以下となった場合、前記復水レベル制御弁の最大開度を下げる。
 本態様に係る復水システムの制御方法において、開度切替工程では、復水器内圧力検出部で得られた復水器内の圧力が予め決定されている所定圧力以下となった場合、復水レベル制御弁の最大開度を下げる。これによれば、復水器内が高真空となった場合において、復水ポンプが最低回転数で回転しているにも関わらず、復水ポンプからの吐出によって、復水がグランドコンデンサを通過してタンクに流入してしまい、復水器に流入するはずの復水を確保できずに、復水器内の復水レベルが低下することを防止できる。つまり、グランドコンデンサに接続された復水器に流入する復水を適切に確保することができるので、復水器内の復水レベルを適切に維持できる。
 また、本発明の一態様に係る復水システムの制御方法は、前記復水器内の圧力がゲージ圧で-1bar以上-0.5bar以下のとき、前記復水レベル制御弁の最大開度を下げる。
 本態様に係る復水システムの制御方法は、前記復水器内の圧力がゲージ圧で-1bar以上-0.5bar以下のとき、前記復水レベル制御弁の最大開度を下げる。これによれば、高い真空状態のとき、これに応じて復水レベル制御弁の最大開度を下げることができる。これによって、復水レベル制御弁の開度が必要以上に大きくなることを防止することで、復水器内の圧力が高くなる(低真空に近づく)ことを防止できる。
 本発明の一態様に係る復水システムは、蒸気タービンから排出された蒸気を凝縮して復水とする復水器と、該復水器からの復水を加熱するグランドコンデンサと、該グランドコンデンサからの復水の一部を貯留するタンクと、前記復水器と前記グランドコンデンサの復水流入側との間に設けられた復水ポンプと、前記グランドコンデンサの復水吐出側と前記復水器との間に設けられた復水レベル制御弁と、前記復水器内の圧力を検出可能な復水器内圧力検出部とを備え、前記復水器内圧力検出部で得られた前記復水器内の圧力に応じて、前記復水ポンプの最低回転数を調節する制御部を備える。
 グランドコンデンサに接続された復水器に流入する復水を適切に確保することができ、復水器内の復水レベルを適切に維持できる復水システムを提供できる。
 また、本発明の一態様に係る復水システムにおいて、前記制御部は、前記復水器内圧力検出部で得られた前記復水器内の圧力に応じて、前記復水レベル制御弁の最大開度を調節する。
 グランドコンデンサに接続された復水器に流入する復水を適切に確保することができ、復水器内の復水レベルを適切に維持できる復水システムを提供できる。
 また、本発明の一態様に係る船舶は、前述の復水システムを備える。
 本発明に係る復水システムの制御方法並びに復水システム及びこれを備えた船舶によれば、復水器内の真空状態に変化があった場合でも、復水器内の復水レベルを適切に維持できる。
本発明の一実施形態に係る復水システムにおいてカスケードタンクに復水が流入していない状態を示す構成図である。 本発明の一実施形態に係る復水システムにおいてカスケードタンクに復水が流入している状態を示す構成図である。 復水ポンプの最低回転数における流量特性における復水器内の真空状態による差異を示した図である。 本発明の一実施形態に係る復水システムにおける復水ポンプ回転数、復水器内圧力、復水器内の復水レベル、復水レベル制御弁の開度の関係の一例を示した図である。
 以下に、本発明に係る復水システムの制御方法並びに復水システム及びこれを備えた船舶の一実施形態について図面を参照して説明する。
 まず、本実施形態に係る復水システム1の構成について説明する。
 図1に示すように、復水システム1は、復水器10、グランドコンデンサ12、カスケードタンク(タンク)14、復水ポンプ16、復水レベル制御弁18を備え、配管W1,W2,W3(W3a,W3b)によって接続されている。また、復水システム1は、TCP(Turbine Control Panel:制御部)20と、VFDコントローラ(VFD:Variable Frequency Drive)22を備えている。復水システム1は、船舶に採用されて好適であり、前述の構成要素が船舶の船体構造内すなわち外板40で囲まれた空間内に収容される形態で船舶に備えられている。
 TCP20およびVFDコントローラ22は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、およびコンピュータ読み取り可能な記憶媒体等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。なお、プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。
 図1に示す復水システム1が備えている上記の構成要素は、それぞれ鉛直方向(紙面上下方向)の高さ位置が異なって配置されており、例えば図1においては、鉛直方向上からカスケードタンク14の流入側、グランドコンデンサ12の吐出側、グランドコンデンサ12の流入側、復水器10、復水ポンプ16とされている。この時、最下部にある復水ポンプ16が設置されている面を基準面P1とし、グランドコンデンサ12およびカスケードタンク14が設置されている面を設置面P2としている。なお、基準面P1や設置面P2は、船舶に設けられた機関室の各階層である。
 復水器10は、例えば、船舶の動力源となる蒸気プラント(図示せず)が備える蒸気タービン等(図示せず)から排出された蒸気を凝縮させて復水するものであり、胴内の上部に冷却管(図示せず)を備え、下部に復水を貯留する下部タンク(図示せず)を備えている。蒸気タービンから排出された蒸気は、復水器10の胴内に導かれ、冷却管によって冷却されることで復水される。復水は、前述の通り、下部タンクに一時的に貯留される。
 復水器10には、下部タンク内の復水の液面レベルを計測可能なレベル計(図示せず)が設けられている。レベル計の出力信号は、TCP20に送信されるようになっており、TCP20はレベル計によって復水の液面レベルを取得できる。
 また、復水器10には、復水器10内を大気圧から真空状態にする図示しない真空装置(例えば、真空ポンプ)と復水器10の圧力を検出できる復水器内圧力検出部(図示せず)とが設けられており、これらの出力信号もTCP20に送信されるようになっている。図示しない真空装置は、TCP20からの指令によって復水器10を真空状態にするように制御される。また、TCP20は図示しない復水器内圧力検出部によって復水器10内の圧力を取得できる。
 グランドコンデンサ12は、船舶が備える蒸気タービン等(図示せず)のグランド部から漏出した蒸気を凝縮させて復水するものであり、復水器10に貯留された復水が冷却水として使用される。つまり、漏出した蒸気はグランドコンデンサ12にて復水によって冷却され、復水はグランドコンデンサ12にて漏出した蒸気によって加熱される。
 復水器10とグランドコンデンサ12(流入側)とは、復水が流通する第1配管W1によって接続されている。第1配管W1の途中には、復水ポンプ16が設けられており、この復水ポンプ16によって復水システム1の復水の流れが形成される。また、第1配管W1における復水ポンプ16の吐出側には、復水ポンプ16の吐出圧力が検出可能な吐出圧力検出部26が設けられている。
 復水ポンプ16は、VFDコントローラ22と電気的に接続されており、VFDコントローラ22は復水ポンプ16の回転数を変更できる。また、VFDコントローラ22は、TCP20と電気的に接続されており、TCP20からの指令によって復水ポンプ16の回転数が設定される。また、吐出圧力検出部26の信号は、TCP20に送信されるようになっており、TCP20は吐出圧力検出部26によって、復水ポンプ16から吐出された復水の圧力を取得できる。
 グランドコンデンサ12(吐出側)と復水器10とは、復水が流通する第2配管W2によって接続されている。第2配管W2の途中には、復水レベル制御弁18が設けられており、グランドコンデンサ12(吐出側)から復水器10へ流れる復水の流量を、その開度によって調節できる。
 復水レベル制御弁18は、TCP20と電気的に接続されており、TCP20からの指令によって復水レベル制御弁18の開度が調節される。
 また、復水システム1は、カスケードタンク14を備えている。カスケードタンク14は、グランドコンデンサ12からの復水の一部を貯留できるものであり、復水システム1を備えている船舶に設けられているエコノマイザの上流側に設置され、貯留した復水はエコノマイザに供給される。
 グランドコンデンサ12(吐出側)に接続された第2配管W2とカスケードタンク14とは、復水が流通する第3配管W3によって接続されている。つまり、第2配管W2に流通する復水の一部(即ち、グランドコンデンサ12からの復水の一部)を第3配管W3によってカスケードタンク14に導くことができる。第3配管W3の途中には、復水ヒータ24が設けられており、第3配管W3を流通する復水を加熱できる。また、第3配管W3は、水平方向に設置された第3配管水平部W3aと、第3配管水平部W3aから立ち上げられた第3配管立上り部W3bとに分けられる。
 次に、本実施形態に係る復水システム1運転時の復水の流れについて説明する。
 前述の通り、復水システム1を流通する復水は、復水ポンプ16によってその流れを形成する。以下、復水器10を始点として、復水システム1の復水の流れについて説明する。
 復水器10に貯留された復水は、第1配管W1を流通しながら復水ポンプ16を通過してグランドコンデンサ12に流入する。グランドコンデンサ12に流入した復水は、グランドコンデンサ12で熱交換された後、第2配管W2に流入する。第2配管W2に導かれた復水は、復水レベル制御弁18を通過して復水器10に戻る。また、第2配管W2に導かれた復水の一部は、第3配管W3に導かれ、所定の条件の場合(後述)に、カスケードタンク14に流入する。
 蒸気タービン運転中や蒸気タービン補機停止前のタービン停止中は、真空装置(図示せず)によって復水器10内の圧力が高真空(例えば、ゲージ圧で-1bar~-0.5bar程度)に保たれており、蒸気タービン等(図示せず)から排出された蒸気が、復水器10内に吸込まれる構成となっている。
 この時、復水ポンプ16の運転によって第3配管W3に導かれた復水が、第3配管立上り部W3bの間(図1で示すCmとFmとの間)で復水の液面高さ(図1で示すGm)を保つように、復水ポンプ16の最低回転数(第1最低回転数)、即ち、最低吐出ヘッド(揚程)が設定されている。ここで、Cmは基準面P1(復水ポンプ16の設置位置)とカスケードタンク14の流入口との間の高さ(以後、「ポンプ-タンク間高さCm」と言う。)、Fmは基準面P1(復水ポンプ16の設置位置)とグランドコンデンサ12の吐出口との間の高さ(以後、「ポンプ-コンデンサ間高さFm」と言う。)、Gmは復水の液面高さ(以後、「液面高さGm」と言う。)である。この時、カスケードタンク14の流入口の高さは、第3配管立上り部W3b上端の高さに等しく、グランドコンデンサ12の吐出口の高さは、第3配管立上り部W3b下端の高さに等しい。
 復水ポンプ16から吐出される復水の圧力は、基準面P1(復水ポンプ16の設置位置)に対する復水器10のヘッド(図1で示すBmであり、以後、「ポンプ-復水器高さBm」と言う。)、復水ポンプ16の吐出ヘッド(図1で示すDmであり、以後、「吐出ヘッドDm」と言う。)、復水器10内の圧力(図1で示すAmであり、以後、「復水器圧力Am」と言う。)を加算したものである。つまり、復水ポンプ16から吐出される復水の圧力は、Am+Bm+Dmで表すことができる。この時、復水器圧力Amは、真空時には負値となる。また、第3配管立上り部W3b内における液面高さGmは、復水ポンプ16から吐出される復水の圧力(Am+Bm+Dm)、その他、各配管にて発生する圧力損失(以後、「配管損失Em」と言う。)に依存する。つまり、液面高さGmは、下式で表すことができる。
  Gm=Am+Bm+Dm-Em
 仮に、同一の復水システム1であれば、ポンプ-復水器高さBm、配管損失Emは等しいと考えられるので、第3配管立上り部W3b内における液面高さGmは、吐出ヘッドDm、復水器圧力Amに依存することになる。更に、復水器圧力Amがほぼ一定であれば、第3配管立上り部W3b内における液面高さGmは、吐出ヘッドDm、即ち、復水ポンプ16の回転数に依存する。つまり、復水ポンプ16の回転数が上がれば液面高さGmが上昇して、復水ポンプ16の回転数が下がれば液面高さGmが下降する。
 なお、例えば、蒸気プラントの停止中や蒸気タービン補機起動・停止過程時などは、復水器10内圧力が低真空(例えば、ゲージ圧で-0.5bar~0bar(大気圧含む)程度)となる。
 次に、第2配管W2に導かれた復水の一部がカスケードタンク14に流入する場合について説明する。
 復水器10に貯留された復水は、その液面レベルが予め設定された液面レベルを保つようにTCP20によって制御されている。具体的には、レベル計(図示せず)によって取得した復水の液面レベルと予め設定された液面レベルとをTCP20が比較することで、液面レベルを調節する制御を実行している。なお、以下において、液面レベルの制御に関わる機器(復水ポンプ16、復水レベル制御弁18、VFDコントローラ22、吐出圧力検出部26、復水器内圧力検出部等を含む)に対する指令や情報の取得は、TCP20によって実行されているものとする。
 復水器10に貯留された復水の液面レベルが上昇した場合は、例えば、復水ポンプ16の回転数を上げて、吐出ヘッドDmを増大させる。吐出ヘッドDmが増大すれば、それに応じて、復水ポンプ16から吐出される復水の圧力が高くなり、第3配管立上り部W3b内における液面高さGmが上昇して、復水がカスケードタンク14に流入する(図2参照)。これによって、復水器10に貯留された復水の過剰分をカスケードタンク14に導くことで、液面レベルを下降させることができる。
 これに対して、復水器10に貯留された復水の液面レベルが下降した場合は、例えば、復水ポンプ16の回転数を下げて、復水器10からグランドコンデンサ12に流入する復水の流量を抑えることで、復水器10に貯留された復水の液面レベルを上昇させることができる。
 それでもなお、復水器10に貯留された復水の液面レベルが下降する場合は、復水レベル制御弁18の開度を調節することで液面レベルを保つようにする。例えば、復水レベル制御弁18の開度を大きくすることで、グランドコンデンサ12から復水器10側に流入する復水の流量を増やす。これによって、グランドコンデンサ12からカスケードタンク14に流入する復水の流量を抑える、または、流入しないようにすることで、復水器10に貯留された復水の液面レベルを上昇させることができる。
 本実施形態においては、図示しない復水器内圧力検出部で得られた復水器10内の圧力(真空状態)に応じて、復水ポンプ16の最低回転数を調節するようにTCP20によって制御される。具体的には、復水器10内の圧力が低真空になった場合、復水ポンプ16の最低回転数を前述の第1最低回転数から、第1最低回転数よりも低い回転数とされた第2最低回転数に下げることとした。つまり、TCP20が、復水器内圧力検出部から取得した復水器10内の圧力が高真空であると判断した場合は、最低回転数が第1最低回転数に設定され、TCP20が、復水器内圧力検出部から取得した復水器10内の圧力が低真空であると判断した場合は、最低回転数が第2最低回転数に設定される(回転数切替工程)。これにより、図3に示すように、真空状態によって吐出ヘッドDmを変化させることができる。
 ここで、第2最低回転数とは、復水器10内の圧力が低真空の時に、復水ポンプ16の運転によって第3配管W3に導かれた復水が、第3配管立上り部W3bの間(図1で示すCmとFmとの間)で液面高さGmを保つような吐出ヘッドDmとなるように設定された復水ポンプ16の回転数である。この時、低真空の復水器圧力Am(真空状態のときAmは負値)は、高真空の復水器圧力Am(真空状態のときAmは負値)よりも高いため、復水ポンプ16から吐出される復水の圧力を低真空時と高真空時で等しくしたい場合、即ち、第3配管立上り部W3b内における液面高さGmを等しくしたい場合、復水ポンプ16の最低回転数を下げて吐出ヘッドDmを下げることで、低真空時においても高真空時と同程度の液面高さGmを維持する。つまり、高真空時は、復水ポンプ16が復水器10内の真空圧力に負けない圧力で復水を引かなければならないが、低真空時は、復水器10内の真空圧力が高真空時よりも弱いため、復水ポンプ16が復水器10内の復水を引く圧力を小さくする必要がある。そのため、第2最低回転数は第1最低回転数よりも低い回転数となる。
 更に、本実施形態においては、図示しない復水器内圧力検出部で得られた復水器10内の圧力に応じて、復水レベル制御弁18の最大開度を調節するようにTCP20によって制御される。具体的には、復水器10内の圧力が高真空になった場合、復水レベル制御弁18の最大開度を低真空の最大開度よりも下げることとした。高真空における復水レベル制御弁18の最大開度を第1最大開度とし、低真空における復水レベル制御弁18の最大開度を第2最大開度としたとき、TCP20が、復水器内圧力検出部から取得した復水器10内の圧力が高真空であると判断した場合は、最大開度が第1最大開度に設定され、TCP20が、復水器内圧力検出部から取得した復水器10内の圧力が低真空であると判断した場合は、最大開度が第2最大開度に設定される(開度切替工程)。この時、第1最大開度は、例えば、60%程度の開度とされ、第2最大開度は、例えば、100%程度の開度とされる。
 なお、第1最大開度とは、例えば、復水レベル制御弁18を流通する復水の圧力損失がなくならないように設定された復水レベル制御弁18の最大開度である。仮に、開度を過度に大きくすることで復水レベル制御弁18での圧力損失がなくなった場合(復水レベル制御弁18による抵抗が小さくなった場合)、復水ポンプ16が復水器10を介して復水レベル制御弁18側から復水を引く時に必要な圧力が小さくなる。つまり、復水器圧力Amが高くなることに等しい現象が発生する。これによって、吐出ヘッドDm、復水器圧力Amに依存する、第3配管立上り部W3b内における液面高さGmが上昇することになる。そうすると、開度を上げているにも関わらず、復水がカスケードタンク14に導かれてしまう(図2参照)。
 ここで、前述の低真空とは、例えば、ゲージ圧で-0.5bar~0bar(大気圧含む)程度あり、高真空とは、例えば、ゲージ圧で-1bar~-0.5bar程度である。この場合、TCP20は、-0.5barを閾値(所定圧力)として復水器10内の真空状態を判断する。なお、真空圧力の範囲や閾値は、復水システム1の仕様によって適宜変更できることは言うまでもない。
 また、前述の最低回転数とは、復水ポンプ16の実際の回転数ではなく、それ以下の回転数で復水ポンプ16が運転しないように設定された回転数のことを言う。更に、前述の最大開度とは復水レベル制御弁18の実際の開度ではなく、復水レベル制御弁18の開度がこれ以上大きくならないように設定された開度のことを言う。
 図4には、前述の復水システム1の制御における、復水ポンプ16の回転数、復水器10内の圧力、復水器10内の復水の液面レベル、復水レベル制御弁18の開度の関係の一例が示されている。図4において、復水器10内の圧力(真空状態)が図示しない真空装置によって大気圧から高真空の状態に移行する過程で、低真空から高真空に切り替わった場合(図4の一点鎖線参照)、前述の回転数切替工程によって復水ポンプ16の最低回転数が上がり、第2最低回転数から第1最低回転数になる。それに伴い、図4の実線で示された復水ポンプ16の回転数も増加している。また、復水器10内の圧力(真空状態)が低真空から高真空に移行した場合(図4の一点鎖線参照)、前述の開度切替工程によって復水レベル制御弁18の最大開度が下がり、第2最大開度から第1最大開度になる。それに伴い、図4の破線で示された復水レベル制御弁18の開度も低下している。
 本実施形態においては、以下の効果を奏する。
 復水器10内が低真空となった場合、これに応じて復水ポンプ16の最低回転数を下げる(即ち、吐出ヘッドDmの最小値を下げる)ことで、復水ポンプ16から吐出される復水の圧力を下げることができる。これによって、復水器10内の復水がグランドコンデンサ12を通過してカスケードタンク14に過剰に流入することを防止できる。つまり、グランドコンデンサ12の吐出側に接続された復水器10およびカスケードタンク14のそれぞれに流入する復水を適切に確保することができるので、復水器10内が低真空の場合でも、復水器10内の復水の液面レベルを適切に維持できる。また、復水器10内の復水の液面レベル低下による復水ポンプ16の空運転を防止できる。仮に、復水器10内が低真空とされた場合において、吐出ヘッドDmを下げることができない場合(即ち、復水ポンプの最低回転数が高真空時の設定値であり、高真空時の高い吐出ヘッドのままの場合)、復水ポンプ16からの復水の吐出によってグランドコンデンサ12から、両機器間のヘッド差(図1で示すCmとFmとの差)を超えて、カスケードタンク14に復水が流入してしまい(図2参照)、復水器10に流入するはずの復水を確保できずに、復水器10内の復水の液面レベル低下によって復水ポンプ16が空運転してしまう可能性がある。
 なお、復水器10内が高真空の場合は、復水器10内が低真空の場合と比べて、復水器圧力Amが小さいため、吐出ヘッドDmの最小値を下げずとも、復水ポンプ16から吐出される復水の圧力が低くなる。
 また、復水器10内が高真空となった場合、これに応じて復水レベル制御弁18の最大開度を下げることができる。これによって、高真空時に、復水レベル制御弁18の開度が必要以上に大きくなることを防止することで、復水ポンプ16から吐出される復水の圧力が高くなることを防止できる。つまり、復水器10内の復水が、最低回転数で運転している復水ポンプ16からの復水の吐出によって、グランドコンデンサ12からカスケードタンク14に流入することを防止できる。したがって、グランドコンデンサ12に接続された復水器10に流入する復水を適切に確保することができるので、復水器10内の復水の液面レベルを適切に維持できる。また、復水器10内の復水の液面レベル低下による復水ポンプ16の空運転を防止できる。
1 復水システム
10 復水器
12 グランドコンデンサ
14 カスケードタンク(タンク)
16 復水ポンプ
18 復水レベル制御弁
20 TCP(制御部)
22 VFDコントローラ
24 復水ヒータ
26 吐出圧力検出部
40 外板
P1 基準面
P2 設置面
W1 第1配管(配管)
W2 第2配管(配管)
W3 第3配管(配管)
W3a 第3配管水平部(配管)
W3b 第3配管立上り部(配管)

Claims (9)

  1.  蒸気タービンから排出された蒸気を凝縮して復水とする復水器と、
     該復水器からの復水を加熱するグランドコンデンサと、
     該グランドコンデンサからの復水の一部を貯留するタンクと、
     前記復水器と前記グランドコンデンサの復水流入側との間に設けられた復水ポンプと、
     前記グランドコンデンサの復水吐出側と前記復水器との間に設けられた復水レベル制御弁と、
     前記復水器内の圧力を検出可能な復水器内圧力検出部と、
    を備えた復水システムの制御方法であって、
     前記復水器内圧力検出部で得られた前記復水器内の圧力に応じて、前記復水ポンプの最低回転数を調節する回転数切替工程を含む復水システムの制御方法。
  2.  前記回転数切替工程では、前記復水器内圧力検出部で得られた前記復水器内の圧力が予め決定されている所定圧力以上となった場合、前記復水ポンプの最低回転数を下げる請求項1に記載の復水システムの制御方法。
  3.  前記復水器内の圧力がゲージ圧で-0.5bar以上0bar以下のとき、前記復水ポンプの最低回転数を下げる請求項2に記載の復水システムの制御方法。
  4.  前記復水器内圧力検出部で得られた前記復水器内の圧力に応じて、前記復水レベル制御弁の最大開度を調節する開度切替工程を含む請求項1に記載の復水システムの制御方法。
  5.  前記開度切替工程では、前記復水器内圧力検出部で得られた前記復水器内の圧力が予め決定されている所定圧力以下となった場合、前記復水レベル制御弁の最大開度を下げる請求項4に記載の復水システムの制御方法。
  6.  前記復水器内の圧力がゲージ圧で-1bar以上-0.5bar以下のとき、前記復水レベル制御弁の最大開度を下げる請求項5に記載の復水システムの制御方法。
  7.  蒸気タービンから排出された蒸気を凝縮して復水とする復水器と、
     該復水器からの復水を加熱するグランドコンデンサと、
     該グランドコンデンサからの復水の一部を貯留するタンクと、
     前記復水器と前記グランドコンデンサの復水流入側との間に設けられた復水ポンプと、
     前記グランドコンデンサの復水吐出側と前記復水器との間に設けられた復水レベル制御弁と、
     前記復水器内の圧力を検出可能な復水器内圧力検出部と、
    を備え、
     前記復水器内圧力検出部で得られた前記復水器内の圧力に応じて、前記復水ポンプの最低回転数を調節する制御部を備える復水システム。
  8.  前記制御部は、前記復水器内圧力検出部で得られた前記復水器内の圧力に応じて、前記復水レベル制御弁の最大開度を調節する請求項7に記載の復水システム。
  9.  請求項7または8に記載の復水システムを備えた船舶。
PCT/JP2019/003414 2018-02-23 2019-01-31 復水システムの制御方法並びに復水システム及びこれを備えた船舶 WO2019163467A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020207022607A KR102499921B1 (ko) 2018-02-23 2019-01-31 복수 시스템의 제어 방법 그리고 복수 시스템 및 이것을 구비한 선박
CN201980013928.4A CN112041628B (zh) 2018-02-23 2019-01-31 冷凝系统的控制方法、冷凝系统以及具备该冷凝系统的船舶

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018031063A JP7034759B2 (ja) 2018-02-23 2018-02-23 復水システムの制御方法並びに復水システム及びこれを備えた船舶
JP2018-031063 2018-02-23

Publications (1)

Publication Number Publication Date
WO2019163467A1 true WO2019163467A1 (ja) 2019-08-29

Family

ID=67688338

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003414 WO2019163467A1 (ja) 2018-02-23 2019-01-31 復水システムの制御方法並びに復水システム及びこれを備えた船舶

Country Status (4)

Country Link
JP (1) JP7034759B2 (ja)
KR (1) KR102499921B1 (ja)
CN (1) CN112041628B (ja)
WO (1) WO2019163467A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779351A (zh) * 2019-11-06 2020-02-11 江苏科技大学 一种船舶厨房蒸汽收集处理与控制系统及其控制方法
CN110986617A (zh) * 2019-12-11 2020-04-10 中国船舶重工集团公司第七一九研究所 一种冷凝器控制方法
CN112361838A (zh) * 2020-11-11 2021-02-12 招商局金陵船舶(威海)有限公司 一种冷凝水驳运电控系统及使用方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110793346B (zh) * 2019-11-06 2021-04-06 江苏科技大学 一种船舶厨房蒸汽收集处理装置及其工作方法
CN112815734B (zh) * 2020-12-30 2022-09-13 大连船舶重工集团有限公司 一种船舶真空冷凝器多重保护系统及方法
CN114352922A (zh) * 2021-12-10 2022-04-15 镇江北新建材有限公司 一种冷凝水排放系统、方法和石膏板生产线
CN114384942A (zh) * 2021-12-10 2022-04-22 镇江北新建材有限公司 冷凝水液位控制系统、方法、装置和石膏板生产线

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198804A (ja) * 1987-10-09 1989-04-17 Toshiba Corp 復水再循環流量制御装置
JPH0720279A (ja) * 1993-07-05 1995-01-24 Mitsubishi Heavy Ind Ltd プラント機器異常診断装置
JPH1047013A (ja) * 1996-07-31 1998-02-17 Toshiba Corp 排熱利用発電プラントの制御装置
JPH10131713A (ja) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd グランド蒸気復水器のドレン排出装置
JP2003097223A (ja) * 2001-09-25 2003-04-03 Hitachi Ltd 復水器水位制御装置
JP2010270637A (ja) * 2009-05-20 2010-12-02 Toshiba Corp 蒸気タービン発電システム
WO2017169322A1 (ja) * 2016-03-28 2017-10-05 三菱重工業株式会社 舶用蒸気タービンモジュール構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59110810A (ja) * 1982-12-17 1984-06-26 Toshiba Corp 蒸気タ−ビン用脱気器の水位制御装置
JP4074137B2 (ja) * 2002-05-31 2008-04-09 株式会社東芝 復水器システム
CN102454439B (zh) * 2010-10-19 2015-07-15 株式会社东芝 汽轮机装置
CN102997215A (zh) * 2012-06-14 2013-03-27 深圳市广前电力有限公司 一种联合循环机组的快速启动方法及快速启动系统
EP2886811B1 (de) * 2013-12-20 2017-08-09 Orcan Energy AG Verfahren zur Regelung eines Kondensators in einer thermischen Kreisprozessvorrichtung und thermische Kreisprozessvorrichtung
CN104656688A (zh) * 2014-12-24 2015-05-27 大唐贵州发耳发电有限公司 一种新型除氧器水位控制系统
CN104728827B (zh) * 2015-03-24 2016-06-29 中国电力工程顾问集团中南电力设计院有限公司 配小水流汽封加热器的凝结水系统
JP6771338B2 (ja) * 2016-08-26 2020-10-21 三菱パワー株式会社 ポンプシステム及びその運転方法並びに発電プラント
CN107120981B (zh) * 2017-06-16 2023-04-25 华电郑州机械设计研究院有限公司 一种在线监测、闭环调节的高背压供热工况异常控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198804A (ja) * 1987-10-09 1989-04-17 Toshiba Corp 復水再循環流量制御装置
JPH0720279A (ja) * 1993-07-05 1995-01-24 Mitsubishi Heavy Ind Ltd プラント機器異常診断装置
JPH1047013A (ja) * 1996-07-31 1998-02-17 Toshiba Corp 排熱利用発電プラントの制御装置
JPH10131713A (ja) * 1996-10-29 1998-05-19 Mitsubishi Heavy Ind Ltd グランド蒸気復水器のドレン排出装置
JP2003097223A (ja) * 2001-09-25 2003-04-03 Hitachi Ltd 復水器水位制御装置
JP2010270637A (ja) * 2009-05-20 2010-12-02 Toshiba Corp 蒸気タービン発電システム
WO2017169322A1 (ja) * 2016-03-28 2017-10-05 三菱重工業株式会社 舶用蒸気タービンモジュール構造

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110779351A (zh) * 2019-11-06 2020-02-11 江苏科技大学 一种船舶厨房蒸汽收集处理与控制系统及其控制方法
CN110986617A (zh) * 2019-12-11 2020-04-10 中国船舶重工集团公司第七一九研究所 一种冷凝器控制方法
CN110986617B (zh) * 2019-12-11 2021-04-02 中国船舶重工集团公司第七一九研究所 一种冷凝器控制方法
CN112361838A (zh) * 2020-11-11 2021-02-12 招商局金陵船舶(威海)有限公司 一种冷凝水驳运电控系统及使用方法

Also Published As

Publication number Publication date
KR20200124654A (ko) 2020-11-03
CN112041628A (zh) 2020-12-04
CN112041628B (zh) 2022-07-05
JP7034759B2 (ja) 2022-03-14
JP2019143945A (ja) 2019-08-29
KR102499921B1 (ko) 2023-02-14

Similar Documents

Publication Publication Date Title
WO2019163467A1 (ja) 復水システムの制御方法並びに復水システム及びこれを備えた船舶
JP5268317B2 (ja) 油冷式空気圧縮機
JPS60162170A (ja) 冷却装置とその冷媒流量制御方法
CN107246807B (zh) 用于电厂的高效可调整真空控制方法及系统
JP5967315B2 (ja) 蒸気生成装置及び蒸気生成ヒートポンプ
JP5921160B2 (ja) ポンプの制御方法及びその制御装置
CN103452608A (zh) 一种用于凝结水系统的控制装置和控制方法
KR100724654B1 (ko) 냉동 장치용 스크류 압축기
JP2005134070A (ja) ヒートポンプ給湯機
JP2012163270A (ja) 貫流ボイラ装置及び貫流ボイラの燃焼制御方法
JP2005098546A (ja) ヒートポンプ給湯装置
US20160177952A1 (en) Mobile sludge exhauster and method
KR101852187B1 (ko) 복수기의 운전을 위한 냉각수 유량제어 방법
JP5794630B2 (ja) 貫流ボイラ
JP6394896B2 (ja) 蒸気発生システム
KR101544446B1 (ko) 복수기의 진공도 조절 장치
JP2007147108A (ja) 貯湯式給湯装置
JP7172265B2 (ja) ヒートポンプ装置
JP2010133598A (ja) ヒートポンプ式給湯機
JP2001300512A (ja) 蒸発濃縮装置
JPWO2005080798A1 (ja) 給水ポンプシステム
CN219674918U (zh) 一种汽轮机正压旁路冷凝器壳程压力调节系统
CN110259703A (zh) 一种变速调节水泵的防汽化保护方法
JPS62200153A (ja) 冷凍機の冷媒液面制御装置
JP2013072564A (ja) 冷凍機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757228

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757228

Country of ref document: EP

Kind code of ref document: A1