WO2019163309A1 - スクロール流体機械 - Google Patents
スクロール流体機械 Download PDFInfo
- Publication number
- WO2019163309A1 WO2019163309A1 PCT/JP2019/000092 JP2019000092W WO2019163309A1 WO 2019163309 A1 WO2019163309 A1 WO 2019163309A1 JP 2019000092 W JP2019000092 W JP 2019000092W WO 2019163309 A1 WO2019163309 A1 WO 2019163309A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wall
- end plate
- wall body
- inclined portion
- peripheral side
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C1/00—Rotary-piston machines or engines
- F01C1/02—Rotary-piston machines or engines of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/08—Rotary pistons
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01C—ROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
- F01C21/00—Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
- F01C21/10—Outer members for co-operation with rotary pistons; Casings
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
Definitions
- the present invention relates to a scroll fluid machine.
- a scroll fluid machine that compresses or expands a fluid by meshing a fixed scroll member provided with a spiral wall on an end plate and a orbiting scroll member and performing a revolving orbiting motion.
- a so-called stepped scroll compressor as shown in Patent Document 1 is known.
- This stepped scroll compressor is provided with stepped portions at positions along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wall body of the fixed scroll and the orbiting scroll, and the outer periphery of the wall body with each step portion as a boundary.
- the height on the side is higher than the height on the inner peripheral side.
- the stepped scroll compressor is compressed not only in the circumferential direction of the wall but also in the height direction (three-dimensional compression), so compared to a general scroll compressor (two-dimensional compression) that does not have a stepped portion.
- the displacement can be increased and the compressor capacity can be increased.
- the stepped scroll compressor has a problem of large fluid leakage at the stepped portion.
- the stress is concentrated due to the stress concentrated at the base of the stepped portion.
- the inventors are considering providing a continuous inclined part instead of the step part provided in the wall body and the end plate.
- the inclined portion is provided, no investigation has been made as to how the tip clearance between the tooth tip of the wall body and the tooth bottom of the end plate can be set to achieve the desired performance.
- the present invention has been made in view of such circumstances, and it is possible to appropriately set the tip clearance at the tooth tip of the wall body having the inclined portion and the tooth bottom of the end plate, and exhibit desired performance. It is an object of the present invention to provide a scroll fluid machine that can be used.
- a scroll fluid machine includes a first scroll member having a spiral first wall provided on a first end plate, and a first scroll member disposed so as to face the first end plate.
- a second scroll member that is provided with a spiral second wall on the two end plates and relatively revolves so that the second wall engages with the first wall to form a compression chamber; At least one of the first wall body and the second wall body has a height of the wall body from the outer peripheral side in the spiral direction of the first wall body or the second wall body toward the inner peripheral side.
- the wall body has a first wall body inclined portion that continuously increases, and at least one of the first end plate and the second end plate has a tooth bottom surface facing a tooth tip of the first wall body inclined portion.
- a first end plate inclined portion that is inclined according to the inclination of the inclined portion, the tooth tip of the first wall inclined portion and the tooth tip facing the tooth tip; Tip clearance at room temperature between the tooth bottom of the end plate inclined portion is constant in the spiral direction.
- the first wall inclined portion continuously increases from the outer peripheral side to the inner peripheral side in the spiral direction.
- fluid leakage can be reduced.
- “Continuously increasing” is not limited to the case where the connection is smooth, but small steps that are inevitably connected in the manufacturing process are connected in a staircase pattern. The thing which is doing is also included.
- the distance between the opposing surfaces of the facing end plates continuously increases, so that the fluid compression does not proceed greatly. Therefore, it is not necessary to reduce the tip clearance from the outer peripheral side to the inner peripheral side in the spiral direction in consideration of the compression heat of the fluid. Therefore, by making the tip clearance at normal temperature between the first wall inclined portion and the first end plate inclined portion constant in the spiral direction, a desired tip clearance can be obtained during operation, and fluid leakage is possible. Can be made smaller.
- At least one of the first wall body and the second wall body is formed from the outer peripheral side in the spiral direction of the first wall body or the second wall body to the inner periphery.
- the tooth bottom surface facing the tooth tip has a second end plate slope portion that slopes according to the slope of the wall slope portion, and the tooth tip of the second wall slope portion and the second tip facing the tooth tip.
- the tip clearance at normal temperature between the end plate inclined portion and the tooth bottom is made larger on the inner peripheral side than on the outer peripheral side in the spiral direction.
- the tip clearance on the inner peripheral side is larger than the outer peripheral side in the spiral direction at room temperature.
- the wall body flat portion in which the height of the wall body is constant between the first wall body inclined portion and the second wall body inclined portion.
- An end plate flat portion corresponding to the wall body flat portion is provided between the first end plate inclined portion and the second end plate inclined portion, and a tooth tip of the wall body flat portion is provided.
- the first wall body inclined portion and the first end plate inclined portion at a position where the tip clearance at normal temperature between the tooth bottom of the end plate flat portion facing the tooth tip is connected to the wall flat portion.
- the tip clearance between the second wall inclined portion and the second end plate inclined portion at the position where the wall flat portion is connected.
- the chip clearance at the flat part and the chip clearance at the inclined part at the position connected to the flat part are the same. Thereby, the tip clearance is continuously formed, and the fluid leakage can be reduced as much as possible.
- the tip clearance at normal temperature between the first wall inclined portion and the first end plate inclined portion is constant in the spiral direction, a desired tip clearance can be obtained during operation, and fluid leakage is minimized. be able to.
- FIG. 1 is a schematic configuration diagram illustrating a refrigeration cycle in which a scroll compressor according to an embodiment of the present invention is used. It is the fragmentary longitudinal cross-section which showed the principal part of the scroll compressor which concerns on one Embodiment of this invention. It is a longitudinal cross-sectional view of the fixed scroll of the scroll compressor of FIG. 2, and is a III-III line arrow view of FIG. It is a top view of the fixed scroll of the scroll compressor of FIG. It is the top view which showed the wall body and end plate of the fixed scroll of the scroll compressor of FIG. It is the side view which expanded and showed the wall and end plate of the fixed scroll of FIG. 4 in the spiral direction. It is a longitudinal cross-sectional view of the turning scroll of the scroll compressor of FIG.
- FIG. 2 is the VII-VII line arrow view of FIG. It is the top view which showed the turning scroll of the scroll compressor of FIG. It is the top view which showed the wall body and end plate of the fixed scroll of the scroll compressor of FIG. It is the side view which expanded and showed the wall body and end plate of the turning scroll of FIG. 8 in the spiral direction. It is the side view which showed the chip seal gap and showed the state where the chip seal gap is relatively small. It is the side view which showed the chip seal gap and showed the state where the chip seal gap is relatively large. It is the graph which showed the volume and pressure with respect to the turning angle of a scroll compressor. It is a graph which showed tip clearance.
- the refrigeration cycle 10 includes a scroll compressor (scroll fluid machine) 1 that compresses refrigerant (fluid), a condenser 2 that radiates heat of the compressed refrigerant to the outside, and a condenser 2.
- a scroll compressor scroll fluid machine 1 that compresses refrigerant (fluid)
- a condenser 2 that radiates heat of the compressed refrigerant to the outside
- a condenser 2 that radiates heat of the compressed refrigerant to the outside
- the first expansion valve 3 provided on the high pressure side for decompressing the refrigerant that has flowed out, the economizer (gas-liquid separator) 4 for separating the decompressed refrigerant into liquid refrigerant and gas refrigerant, and the low pressure side for further decompressing the liquid refrigerant
- a second expansion valve 5 provided in the evaporator, an evaporator 6 that absorbs heat by the decompressed refrigerant, an injection passage 7 that guides the gas refrigerant from the economizer 4 to the scroll compressor 1, and the like.
- the scroll compressor 1 is a hermetic compressor, and as illustrated in FIG. 2, a scroll 11 that compresses a housing 11 having a sealed space therein and a refrigerant that is disposed in the housing 11 and is taken into the sealed space.
- the main elements are a mechanism 12, a rotating shaft that transmits a rotational force to the scroll compression mechanism 12, and an electric motor that orbits the revolving scroll 19 of the scroll compression mechanism 12 via the rotating shaft.
- the bottom of the housing 11 is sealed by a lower cover, and a cylindrical intermediate cover 13 that is long in the vertical direction is provided on the upper portion of the lower cover.
- a discharge cover 14 and an upper cover 15 are provided on the upper portion of the intermediate cover 13, and the housing 11 is hermetically sealed.
- a discharge of compressed high-pressure gas is discharged between the discharge cover 14 and the upper cover 15.
- a chamber 16 is formed.
- a scroll compression mechanism 12 is incorporated, and an electric motor including a stator and a rotor is installed below the scroll compression mechanism 12.
- the electric motor is incorporated by fixing the stator to the housing 11, and the rotating shaft is fixed to the rotor.
- the scroll compression mechanism 12 is slidably supported by a fixed scroll (first scroll member) 18 fixedly installed with respect to the housing 11, and is swung to form a compression chamber 20 by being engaged with the fixed scroll 18.
- a scroll (second scroll member) 19 is provided.
- a suction port (not shown) for sucking refrigerant is formed on the side surface of the housing 11 so as to communicate with the sealed space, and the top cover 15 communicates with the discharge chamber 16 and compressed on the top side.
- a discharge port 15a is formed through which the discharged refrigerant gas is discharged.
- the scroll compression mechanism 12 sucks the refrigerant gas sucked into the housing 11 through the suction pipe and the suction port into the compression chamber 20 through the suction port 21 on the outer peripheral side opened to the inside of the housing 11 and compresses the refrigerant gas. To do.
- the compressed refrigerant gas is discharged into the discharge chamber 16 through the discharge port 22 provided in the center of the fixed scroll 18 and the discharge port 23 provided in the discharge cover 14, and further to the upper cover 15. It is provided and sent out of the compressor via a discharge pipe 24 communicating with the discharge chamber 16.
- the discharge cover 14 is provided with an injection pipe 25 through which the intermediate pressure refrigerant is introduced from the outside into the compression chamber 20 of the scroll compression mechanism 12 through the upper cover 15.
- the refrigerant is supplied to the compression chamber 20 through the injection pipe 25 and the injection port 26.
- the reed valve 27 is a thin plate member and is provided at the outlet of the discharge port 22 to open and close the discharge port 22.
- the reed valve 27 regulates the flow of the refrigerant in only one direction. By providing the reed valve 27, the refrigerant flows from the compression chamber 20 to the discharge chamber 16 side.
- the fixed scroll 18 includes a substantially disc-shaped end plate (first end plate) 18 a and a spiral wall body (first plate) standing on one side surface of the end plate 18 a. 1 wall) 18b.
- the orbiting scroll 19 includes a substantially disc-shaped end plate (second end plate) 19 a and a spiral wall body (first plate) erected on one side surface of the end plate 19 a. 2 walls) 19b.
- the spiral shape of each wall 18b, 19b is defined using, for example, an involute curve or an Archimedean curve.
- the fixed scroll 18 and the orbiting scroll 19 are meshed with their centers O1 and O2 separated by the orbiting radius ⁇ and the phases of the wall bodies 18b and 19b shifted by 180 °, and the tooth tips of the wall bodies 18b and 19b of the scrolls 18 and 19 are engaged. And the tooth bottom are assembled so as to have a slight height clearance (chip clearance) at room temperature. Accordingly, a plurality of pairs of compression chambers 20 formed between the scrolls 18 and 19 and surrounded by the end plates 18a and 19a and the wall bodies 18b and 19b are formed symmetrically with respect to the scroll center.
- the orbiting scroll 19 revolves around the fixed scroll 18 by a rotation prevention mechanism such as an Oldham ring (not shown).
- the distance L between the opposed surfaces 18 a and 19 a facing each other is continuously decreased or increased from the outer peripheral side to the inner peripheral side of the spiral wall bodies 18 b and 19 b.
- the inclination of the tooth tips in the wall bodies 18b and 19b and the inclination of the tooth bottom surface in the end plates 18a and 19a are set.
- the wall body 18 b of the fixed scroll 18 has a wall body flat part 18 b 1, a second wall body inclined part 18 b 2, and a wall body flat part from the outer peripheral side toward the inner peripheral side.
- a portion 18b3, a first wall body inclined portion 18b4, a wall body flat portion 18b5, a second wall body inclined portion 18b6, and a wall body flat portion 18b7 are provided in this order.
- an end plate flat portion 18 a 1, a second end plate inclined portion 18 a 2, and an end plate are formed on the tooth bottom surface of the fixed scroll 18 from the outer peripheral side toward the inner peripheral side.
- the flat portion 18a3, the first end plate inclined portion 18a4, the end plate flat portion 18a5, the second end plate inclined portion 18a6, and the end plate flat portion 18a7 are provided in this order.
- the wall body 19 b of the orbiting scroll 19 has a wall body flat part 19 b 1, a second wall body inclined part 19 b 2, and a wall body flat part from the outer peripheral side toward the inner peripheral side.
- a portion 19b3, a first wall body inclined portion 19b4, a wall body flat portion 19b5, a second wall body inclined portion 19b6, and a wall body flat portion 19b7 are provided in this order.
- the end plate flat portion 19 a 1, the second end plate inclined portion 19 a 2, and the end plate are formed on the tooth bottom surface of the orbiting scroll 19 from the outer peripheral side toward the inner peripheral side.
- the flat portion 19a3, the first end plate inclined portion 19a4, the end plate flat portion 19a5, the second end plate inclined portion 19a6, and the end plate flat portion 19a7 are provided in this order.
- the wall flat portions 19b1, 19b3, 19b5, 19b7 provided on the wall 19b of the orbiting scroll 19 have a constant height from the outer peripheral side toward the inner peripheral side. That is, the dimension in the axial direction passing through the center O2 (see FIG. 2) of the orbiting scroll 19 is constant.
- the height of the wall body and the tooth bottom means the dimension in the axial direction passing through the centers O1 and O2.
- wall body flat portions 19b1 and 19b7 having a constant height are provided on the outermost and innermost sides of the wall body 19b of the orbiting scroll 19, respectively. . As shown in FIG. 8, these wall body flat portions 19b1 and 19b7 cover a region of 180 ° (for example, 180 ° to 360 °, preferably 210 ° or less) around the center O2 (see FIG. 2) of the orbiting scroll 19. Is provided.
- end plate flat portions 19a1 and 19a7 having a constant height.
- the end plate flat portions 19a1 and 19a7 are also provided over a region of 180 ° (for example, 180 ° to 360 °, preferably 210 ° or less) around the center of the orbiting scroll 19.
- the fixed scroll 18 is also provided with wall body flat portions 18 b 1 and 18 b 7 and end plate flat portions 18 a 1 and 18 a 7 in the same manner as the orbiting scroll 19.
- the wall body flat portions 18b1 and 18b7 and the end plate flat portions 18a1 and 18a7 are also provided over a region of 180 ° (for example, 180 ° to 360 °, preferably 210 ° or less) around the center of the fixed scroll 18.
- the height of the first wall inclined portion 19b4 provided on the wall 19b of the orbiting scroll 19 increases continuously from the outer peripheral side toward the inner peripheral side.
- the tooth bottom surface on the end plate 18a of the fixed scroll 18 where the tooth tips of the first wall inclined portion 19b4 face each other is inclined according to the inclination of the first wall inclined portion 19b4.
- One end plate inclined portion 18a4 is provided.
- the first wall inclined portion 18b4 provided on the wall 18b of the fixed scroll 18 also increases continuously from the outer peripheral side toward the inner peripheral side, as shown in FIG.
- a first end plate inclined portion inclined according to the inclination of the first wall inclined portion 18b4. 19a4 is provided.
- the length in the spiral direction of the first wall inclined portions 18b4 and 19b4 and the first end plate inclined portions 18a4 and 19a4 is set to a length corresponding to 20 ° or more, preferably 180 ° or more around the centers O1 and O2. .
- the width of the compression chamber decreases according to the spiral shape of the walls 18b and 19b, and the height of the compression chamber 20, that is, the opposing surface between the end plates 18a and 19a. Increased distance. Therefore, the volume change of the compression chamber 20 is moderate or slow depending on the position and shape of the first wall body inclined portions 18b4 and 19b4 and the first end plate inclined portions 18a4 and 19a4 in the spiral direction (for example, the inclination angle and the length in the spiral direction). At least a part of the first region that is substantially constant is set. As the fluid sucked in from the suction port 21 on the outer peripheral side moves toward the inner peripheral side, the pressure in the compression chamber 20 is maintained substantially constant in the first region.
- the first region may be set by providing only one first wall inclined portion 18b4, 19b4 or first end plate inclined portion 18a4, 19a4 over the spiral direction, or may include a plurality of first walls.
- the body inclined portions 18b4 and 19b4 or the first end plate inclined portions 18a4 and 19a4 may be set in series.
- the respective inclination angles are different, or the wall body flat portion or the end plate flat portion is interposed therebetween. It is realized by providing.
- An injection port 26 for supplying a refrigerant having a pressure higher than the fluid pressure in the compression chamber 20 into the compression chamber 20 is provided on the end plate 18 a of the fixed scroll 18.
- the orbiting scroll 19 revolves and the tooth tip of the wall 19b of the orbiting scroll 19 moves onto the injection port 26 and overlaps, the communication between the compression chamber 20 and the injection port 26 is closed.
- the tooth tip of the wall 19b of the orbiting scroll 19 moves from the injection port 26 and the injection port 26 opens, the compression chamber 20 and the injection port 26 communicate with each other.
- the injection port 26 is provided in the first region where the volume change of the compression chamber 20 described above is gradual or substantially constant.
- the refrigerant can be supplied to the compression chamber 20 while maintaining the pressure difference with the refrigerant supplied from the injection port 26 at a predetermined level or more in a process in which the pressure change in the compression chamber 20 is moderate or substantially constant.
- an intermediate pressure refrigerant injection step is performed.
- the second wall body inclined portions 19b2 and 19b6 provided on the wall body 19b of the orbiting scroll 19 continuously decrease in height from the outer peripheral side toward the inner peripheral side.
- Inclined portions 18a2 and 18a6 are provided.
- the second wall body inclined portions 18b2 and 18b6 provided on the wall body 18b of the fixed scroll 18 also continuously decrease from the outer peripheral side toward the inner peripheral side, and the second wall body inclined portions 18b2 and 18b6.
- Second end plate inclined portions 19a2 and 19a6 that are inclined in accordance with the inclination of the second wall body inclined portions 18b2 and 18b6 are provided on the tooth bottom surface of the end plate 19a of the orbiting scroll 19 that faces the tooth tips. .
- the width of the compression chamber 20 decreases according to the spiral shape of the wall bodies 18b and 19b, and the height of the compression chamber 20, that is, the facing between the end plates 18a and 19a.
- the distance between surfaces decreases. Therefore, the second wall body inclined portions 18b2, 18b6, 19b2, 19b6 and the second end plate inclined portions 18a2, 18a6, 19a2, 19a6 are compressed depending on the positions and shapes (for example, the inclination angle and the length in the spiral direction) of the second end plate inclined portions At least a part of each of the second region and the third region in which the volume of the chamber 20 decreases is set.
- the refrigerant sucked from the suction port 21 on the outer peripheral side goes toward the inner peripheral side, the refrigerant is not only compressed by the reduction in the width of the compression chamber 20 according to the spiral shape of the wall bodies 18b and 19b, but also the compression chamber 20 Further compression is caused by a decrease in height, that is, a distance between the opposing surfaces between the end plates 18a and 19a. As a result, three-dimensional compression is possible, and downsizing can be realized.
- the second region in which the volume of the compression chamber 20 decreases is set in front of the first region in the movement direction of the compression chamber 20 associated with the revolving orbiting motion of the orbiting scroll 19, and the third region is in the movement direction of the compression chamber 20. It is set after the first area.
- the second region is a region from when the wall bodies 18b and 19b are engaged with each other on the outer peripheral side to form the compression chamber 20 and shut down until the first region starts.
- the third region is a region from the end of the first region to the end of discharge of the compressed refrigerant from the discharge port 22.
- a two-stage compression refrigeration cycle is realized in which refrigerant is introduced from the economizer 4 through the injection flow path 7 and the injection port 26 into the compression process of the scroll compression mechanism 12. Further, a first region in which the volume change of the compression chamber 20 is moderately or substantially constant is provided between the second region and the third region where the volume of the compression chamber 20 decreases, and only one scroll compression mechanism 12 is provided. In the single-stage scroll compressor 1, an intermediate pressure refrigerant can be introduced from the economizer 4 during the compression process of the scroll compression mechanism 12.
- 19a2 and 19a6 are not limited to smoothly connected slopes, but small steps that inevitably occur during fabrication by machining or additive manufacturing (AM) are connected in a staircase pattern. If the inclined portion is viewed as a whole, it may be continuously inclined. However, large steps such as so-called stepped scrolls are not included.
- a coating may be applied.
- the coating include manganese phosphate treatment and nickel phosphorus plating.
- the tooth tip heights at the outer peripheral side end portions 18b8 and 19b8 of the second wall inclined portions 18b2 and 19b2 arranged on the outer peripheral side with respect to the first wall inclined portions 18b4 and 19b4 are as follows.
- the tooth tip heights at the inner peripheral side end portions 18b9 and 19b9 of the first wall body inclined portions 18b4 and 19b4 may be the same.
- measurement can be performed at one end 18b8, 19b8 and the other end 18b9, 19b9 with the first wall inclined portions 18b4, 19b4 and the second wall inclined portions 18b2, 19b2 interposed therebetween.
- the dimension measurement of the fixed scroll 18 or the orbiting scroll 19 can be suitably performed.
- 19a8 may be the same as the bottom surface height at the inner peripheral side end portions 18a9, 19a9 of the first end plate inclined portions 18a4, 19a4.
- a tip seal is provided on the tooth tip of the wall 18b of the fixed scroll 18.
- the tip seal is made of resin and seals the fluid by contacting the tooth bottom of the end plate 19a of the orbiting scroll 19 facing the tip seal.
- the tip seal is accommodated in a tip seal groove 18d formed in the tooth tip of the wall 18b over the circumferential direction.
- a tip seal groove 19d is formed on the tooth tip of the wall 19b of the orbiting scroll 19, and a tip seal is provided in the tip seal groove 19d.
- FIG. 11A shows that the tip clearance T is small
- FIG. 11B shows that the tip clearance T is large. Even if the tip clearance T changes due to the turning motion, the tip seal 28 is pressed from the back to the tooth bottom side of the end plate 19a by the compressed fluid, so that it can be followed and sealed.
- FIG. 13 shows the tip clearance which is the distance between the tooth tips of the wall bodies 18b and 19b and the tooth bottoms of the end plates 18a and 19a facing the tooth tips.
- This chip clearance is at room temperature (for example, room temperature), that is, before operation.
- the horizontal axis indicates the angle (that is, the distance in the spiral direction), and the vertical axis indicates the tip clearance.
- the right side shows the outer peripheral side
- the left side shows the inner peripheral side.
- the tip clearance T1 at the position corresponding to the outermost wall flat portions 18b1 and 19b1 is set to be the smallest and constant in the spiral direction. This is because compression hardly proceeds on the outermost peripheral side, and the distance between the end plates of the compression chamber 20 does not change.
- the tip clearance T2 at a position corresponding to the second wall body inclined portions 18b2 and 19b2 connected to the inner peripheral side of the outermost wall flat portions 18b1 and 19b1 is directed from the outer peripheral side in the spiral direction toward the inner peripheral side. It gradually increases. This is because in the second wall body inclined portions 18b2 and 19b2, the compression progresses as the distance between the end plates of the compression chamber 20 decreases as the compression proceeds, and there is thermal expansion due to the compression heat.
- the outer peripheral end of the chip clearance T2 is the same as the inner peripheral end of the chip clearance T1, and the chip clearance T1 and the chip clearance T2 are connected.
- the increased width of the tip clearance T2 is set according to the length in the spiral direction on the order of 1/100 mm, for example.
- the tip clearance T3 at a position corresponding to the wall flat portions 18b3 and 19b3 connected to the inner peripheral side of the second wall inclined portions 18b2 and 19b2 is constant in the spiral direction. This is because the distance between the end plates of the compression chamber 20 does not change.
- the outer peripheral end of the tip clearance T3 is the same as the inner peripheral end of the tip clearance T2, and the tip clearance T2 and the tip clearance T3 are connected.
- the tip clearance T4 at a position corresponding to the first wall inclined portions 18b4 and 19b4 connected to the inner peripheral side of the wall flat portions 18b3 and 19b3 is constant in the spiral direction. This is because, while the compression of the compression chamber 20 proceeds in accordance with the turning, the distance between the end plates of the compression chamber 20 increases and the compression does not proceed greatly.
- the outer peripheral end of the chip clearance T4 is the same as the inner peripheral end of the chip clearance T3, and the chip clearance T3 and the chip clearance T4 are connected.
- the tip clearance T5 at a position corresponding to the wall flat portions 18b5 and 19b5 connected to the inner peripheral side of the first wall inclined portions 18b4 and 19b4 is constant in the spiral direction. This is because the distance between the end plates of the compression chamber 20 does not change.
- the outer peripheral edge of the chip clearance T5 is the same as the inner peripheral edge of the chip clearance T4, and the chip clearance T4 and the chip clearance T5 are connected.
- the tip clearance T6 at a position corresponding to the second wall inclined portions 18b6 and 19b6 connected to the inner peripheral side of the wall flat portions 18b5 and 19b5 gradually increases from the outer peripheral side to the inner peripheral side in the spiral direction. It has become. This is because in the second wall body inclined portions 18b6 and 19b6, the compression progresses as the distance between the end plates of the compression chamber 20 decreases as it is compressed, and there is thermal expansion due to the compression heat.
- the outer peripheral end of the chip clearance T6 is the same as the inner peripheral end of the chip clearance T5, and the chip clearance T5 and the chip clearance T6 are connected.
- the increased width of the tip clearance T6 is set according to the length in the spiral direction on the order of 1/100 mm, for example.
- the tip clearance T7 at a position corresponding to the wall flat portions 18b7 and 19b7 connected to the inner peripheral side of the second wall inclined portions 18b6 and 19b6 is constant in the spiral direction. This is because the distance between the end plates of the compression chamber 20 does not change.
- the outer peripheral end of the chip clearance T7 is the same as the inner peripheral end of the chip clearance T6, and the chip clearance T6 and the chip clearance T7 are connected. In this way, the chip clearance is set in a state of connection like a broken line from the outer peripheral side to the inner peripheral side.
- the tooth tip of the connection part of wall body inclination part 18b2, 18b4, 18b6, 19b2, 19b4, 19b6 and wall body flat part 18b1, 18b3, 18b5, 18b7, 19b1, 19b3, 19b5, 19b7 and the edge corresponding to this It is good also as providing R chamfering shape as an inclination relaxation shape in the tooth base of a board. As a result, the processing is facilitated by performing the process of connecting smoothly at the connecting portion, and the occurrence of burrs and sagging can be suppressed and excessive contact between the tooth tip and the tooth bottom can be avoided. In addition, it is good also as a C chamfering shape instead of the R chamfering shape used as an inclination relaxation shape.
- it may have a shape in which the inclination is changed stepwise so as to alleviate the discontinuous inclination.
- you may use inclination inclination shape for any one inclination connection part of a wall body side and an endplate side.
- the scroll compressor 1 described above operates as follows.
- the orbiting scroll 19 revolves around the fixed scroll 18 by a driving source such as an electric motor (not shown).
- a driving source such as an electric motor (not shown).
- the fluid is sucked from the outer peripheral side of the scrolls 18 and 19, and the refrigerant is taken into the compression chamber 20 surrounded by the wall bodies 18b and 19b and the end plates 18a and 19a.
- the refrigerant in the compression chamber 20 is compressed as it moves from the outer peripheral side to the inner peripheral side in the second region.
- the pressure in the compression chamber 20 increases.
- the compressed refrigerant moves to the first region, and in the first region, the refrigerant moves toward the inner peripheral side.
- an intermediate pressure refrigerant is supplied from the economizer 4 to the compression chamber 20 via the injection pipe 25 and the injection port 26.
- the pressure change in the compression chamber 20 is moderate or substantially constant, and the fluid is supplied to the compression chamber while maintaining the pressure difference with the refrigerant supplied from the economizer 4 at a predetermined level or more. 20 can be supplied.
- the refrigerant moves to the third region, and in the third region, the refrigerant is compressed as it goes to the inner peripheral side, and the pressure in the compression chamber 20 rises again as shown in FIG.
- the compressed refrigerant is finally discharged from the discharge port 22 formed in the fixed scroll 18.
- the scroll compressor 1 of this embodiment there exist the following effects.
- the distance between the opposing surfaces of the facing end plates continuously increases, so that the fluid compression is large. There is no progress. Therefore, it is not necessary to reduce the tip clearance T4 from the outer peripheral side to the inner peripheral side in the spiral direction in consideration of the compression heat of the fluid. Therefore, by setting the tip clearance T4 between the first wall inclined portions 18b4 and 19b4 and the first end plate inclined portions 18a4 and 19a4 to be constant in the spiral direction, a desired tip clearance can be obtained during operation. , Fluid leakage can be reduced as much as possible.
- the distance between the facing surfaces of the facing end plates continuously decreases.
- the chip clearances T2 and T6 on the inner peripheral side are made larger than the outer peripheral side in the spiral direction at room temperature.
- Tip clearances T1, T3, T5, T7 at positions corresponding to the wall flat portions 18b1, 18b3, 18b5, 18b7, 19b1, 19b3, 19b5, 19b7, and the wall flat portions 18b1, 18b3, 18b5, 18b7, 19b1, 19b3 , 19b5, 19b7, the tip clearances T2, T4, T6 of the inclined portions 18b2, 18b4, 18b6, 19b2, 19b4, 19b6 are the same. Thereby, the tip clearance is continuously formed, and the fluid leakage can be reduced as much as possible.
- 19a2 and 19a6 are provided on both scrolls 18 and 19, but may be provided on either one.
- the first wall body inclined portion 19b4 and the second wall body inclined portions 19b2 and 19b6 are provided on one wall body (for example, the wall body 19b of the orbiting scroll 19), and the other end plate (for example, the fixed scroll 18 of the fixed scroll 18).
- the other wall body 18b and the one end plate 19a are flat.
- the shape combined with the conventional stepped shape, that is, the end plate 18a4 of the fixed scroll 18 is provided with the first end plate inclined portion 18a4 and the second end plate inclined portions 18a2, 18a6, while the end plate of the orbiting scroll 19 is provided. You may combine with the shape in which the step part was provided in 19a.
- the wall flat portions 18b1, 18b7, 19b1, 19b7 and the end plate flat portions 18a1, 18a7, 19a1, 19a7 are provided, but the inner peripheral side and / or the outer peripheral side flat portions are omitted. You may make it provide the 2nd wall body inclination part 18b2, 19b2 extending in the whole wall body 18b, 19b.
- the scroll compressor has been described, but the present invention can also be applied to a scroll expander used as an expander.
- Discharge cover 15 Upper cover 15a: Discharge port 16: Discharge chamber 18: Fixed Scroll (first scroll member) 18a: end plate (first end plate) 18a1: end plate flat portion 18a2: second end plate inclined portion 18a3: end plate flat portion 18a4: first end plate inclined portion 18a5: end plate flat portion 18a6: second end plate inclined portion 18a7: end plate flat portion 18a8: Outer peripheral end 18a9: Inner peripheral end 18b: Wall (first wall) 18b1: Wall body flat part 18b2: Second wall body inclined part 18b3: Wall body flat part 18b4: First wall body inclined part 18b5: Wall body flat part 18b6: Second wall body inclined part 18b7: Wall body flat part 18b8: Outer
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Rotary Pumps (AREA)
Abstract
第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って圧縮室を形成するように相対的に公転旋回運動を行う第2スクロール部材と、を備え、壁体の渦巻き方向の外周側から内周側に向かって壁体の高さが連続的に増大する第1壁体傾斜部を有し、第1壁体傾斜部の歯先に対向する歯底面が第1壁体傾斜部の傾斜に応じて傾斜する第1端板傾斜部を有し、第1壁体傾斜部の歯先と歯先に対向する第1端板傾斜部の歯底との間の常温におけるチップクリアランスT4が、渦巻き方向において一定とされている。
Description
本発明は、スクロール流体機械に関するものである。
一般に、端板上に渦巻状の壁体が設けられた固定スクロール部材と旋回スクロール部材とを噛み合わせ、公転旋回運動を行わせて流体を圧縮または膨張するスクロール流体機械が知られている。
このようなスクロール流体機械として、特許文献1に示すようないわゆる段付きスクロール圧縮機が知られている。この段付きスクロール圧縮機は、固定スクロールおよび旋回スクロールの渦巻状の壁体の歯先面および歯底面の渦巻き方向に沿う位置に各々段部が設けられ、各段部を境に壁体の外周側の高さが内周側の高さよりも高くされている。段付きスクロール圧縮機は、壁体の周方向だけでなく、高さ方向にも圧縮(三次元圧縮)されるため、段部を備えていない一般的なスクロール圧縮機(二次元圧縮)に比べ、押しのけ量を大きくし、圧縮機容量を増加することができる。
しかし、段付きスクロール圧縮機は、段部における流体漏れが大きいという問題がある。また、段部の根元部分に応力が集中して強度が低下するという問題がある。
これに対して、発明者等は、壁体及び端板に設けられた段部に代えて連続的な傾斜部を設けることを検討している。
しかし、傾斜部を設けた場合に、壁体の歯先と端板の歯底との間のチップクリアランスをどのように設定すれば所望の性能を発揮できるのかについて検討がなされていない。
しかし、傾斜部を設けた場合に、壁体の歯先と端板の歯底との間のチップクリアランスをどのように設定すれば所望の性能を発揮できるのかについて検討がなされていない。
本発明は、このような事情に鑑みてなされたものであって、傾斜部を有する壁体の歯先と端板の歯底に適切にチップクリアランスを設定し、所望の性能を発揮することができるスクロール流体機械を提供することを目的とする。
上記課題を解決するために、本発明のスクロール流体機械は以下の手段を採用する。
すなわち、本発明の一態様に係るスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って圧縮室を形成するように相対的に公転旋回運動を行う第2スクロール部材と、備え、前記第1壁体および前記第2壁体の少なくとも一方は、該第1壁体又は該第2壁体の渦巻き方向の外周側から内周側に向かって該壁体の高さが連続的に増大する第1壁体傾斜部を有し、前記第1端板および前記第2端板の少なくとも一方は、前記第1壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する第1端板傾斜部を有し、前記第1壁体傾斜部の歯先と該歯先に対向する前記第1端板傾斜部の歯底との間の常温におけるチップクリアランスが、前記渦巻き方向において一定とされている。
すなわち、本発明の一態様に係るスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って圧縮室を形成するように相対的に公転旋回運動を行う第2スクロール部材と、備え、前記第1壁体および前記第2壁体の少なくとも一方は、該第1壁体又は該第2壁体の渦巻き方向の外周側から内周側に向かって該壁体の高さが連続的に増大する第1壁体傾斜部を有し、前記第1端板および前記第2端板の少なくとも一方は、前記第1壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する第1端板傾斜部を有し、前記第1壁体傾斜部の歯先と該歯先に対向する前記第1端板傾斜部の歯底との間の常温におけるチップクリアランスが、前記渦巻き方向において一定とされている。
第1壁体傾斜部が渦巻き方向の外周側から内周側に向かって連続的に増大するようになっており、従来の壁体及び歯底に段部が設けられた段付きスクロール流体機械に比べて、流体漏れを少なくすることができる。
「連続的に増大する」とは、滑らかに接続された場合に限定されるものではなく、製作上不可避的に小さな段差が階段状に接続されており、傾斜を全体としてみれば連続的に増大しているものも含まれる。
第1壁体傾斜部及び第1端板傾斜部によって形成された圧縮空間は、向かい会う端板の対向面間距離が連続的に増大するので、流体の圧縮が大きく進むことはない。したがって、流体の圧縮熱を考慮して渦巻き方向の外周側から内周側にかけてチップクリアランスを小さくする必要がない。そこで、第1壁体傾斜部と第1端板傾斜部との常温におけるチップクリアランスを渦巻き方向において一定とすることで、運転時において所望のチップクリアランスとすることができ、流体漏れを可及的に小さくすることができる。
「連続的に増大する」とは、滑らかに接続された場合に限定されるものではなく、製作上不可避的に小さな段差が階段状に接続されており、傾斜を全体としてみれば連続的に増大しているものも含まれる。
第1壁体傾斜部及び第1端板傾斜部によって形成された圧縮空間は、向かい会う端板の対向面間距離が連続的に増大するので、流体の圧縮が大きく進むことはない。したがって、流体の圧縮熱を考慮して渦巻き方向の外周側から内周側にかけてチップクリアランスを小さくする必要がない。そこで、第1壁体傾斜部と第1端板傾斜部との常温におけるチップクリアランスを渦巻き方向において一定とすることで、運転時において所望のチップクリアランスとすることができ、流体漏れを可及的に小さくすることができる。
さらに、本発明の一態様に係るスクロール流体機械では、前記第1壁体および前記第2壁体の少なくとも一方は、該第1壁体又は該第2壁体の渦巻き方向の外周側から内周側に向かって該壁体の高さが連続的に減少する第2壁体傾斜部を有し、前記第1端板および前記第2端板の少なくとも一方は、前記第2壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する第2端板傾斜部を有し、前記第2壁体傾斜部の歯先と該歯先に対向する前記第2端板傾斜部の歯底との間の常温におけるチップクリアランスが、前記渦巻き方向の外周側よりも内周側の方が大きくされている。
第2壁体傾斜部及び第2端板傾斜部によって形成された圧縮空間は、向かい会う端板の対向面間距離が連続的に減少するので、流体の圧縮が進む。そこで、流体の圧縮熱を考慮して、常温において渦巻き方向の外周側よりも内周側の方のチップクリアランスを大きくした。これにより、スクロール流体機械の運転時に熱膨張しても、外周側から内周側にわたって所望のチップクリアランスに設定でき、歯先と歯底との干渉を避けつつ、流体漏れを可及的に小さくすることができる。
さらに、本発明の一態様に係るスクロール流体機械では、前記第1壁体傾斜部と前記第2壁体傾斜部との間には、前記壁体の高さが一定とされた壁体平坦部が設けられ、前記第1端板傾斜部と前記第2端板傾斜部との間には、前記壁体平坦部に対応した端板平坦部が設けられ、前記壁体平坦部の歯先と該歯先に対向する前記端板平坦部の歯底との間の常温におけるチップクリアランスが、該壁体平坦部が接続される位置における前記第1壁体傾斜部と前記第1端板傾斜部との間のチップクリアランス、及び、該壁体平坦部が接続される位置における前記第2壁体傾斜部と前記第2端板傾斜部との間のチップクリアランスと同一とされている。
平坦部におけるチップクリアランスと、平坦部に接続される位置における傾斜部のチップクリアランスを同一とした。これにより、チップクリアランスが連続的に形成されて流体漏れを可及的に小さくすることができる。
第1壁体傾斜部と第1端板傾斜部との常温におけるチップクリアランスを渦巻き方向において一定としたので、運転時において所望のチップクリアランスとすることができ、流体漏れを可及的に小さくすることができる。
以下に、本発明に係る実施形態について、図面を参照して説明する。
冷凍サイクル10は、図1に示すように、冷媒(流体)を圧縮するスクロール圧縮機(スクロール流体機械)1と、圧縮された冷媒の熱を外部に放熱する凝縮器2と、凝縮器2から流出した冷媒を減圧する高圧側に設けられる第1膨張弁3と、減圧された冷媒を液冷媒とガス冷媒とに分離するエコノマイザ(気液分離器)4と、液冷媒を更に減圧する低圧側に設けられる第2膨張弁5と、減圧された冷媒に熱を吸収させる蒸発器6と、エコノマイザ4からガス冷媒をスクロール圧縮機1に導くインジェクション流路7などを備える。
冷凍サイクル10は、図1に示すように、冷媒(流体)を圧縮するスクロール圧縮機(スクロール流体機械)1と、圧縮された冷媒の熱を外部に放熱する凝縮器2と、凝縮器2から流出した冷媒を減圧する高圧側に設けられる第1膨張弁3と、減圧された冷媒を液冷媒とガス冷媒とに分離するエコノマイザ(気液分離器)4と、液冷媒を更に減圧する低圧側に設けられる第2膨張弁5と、減圧された冷媒に熱を吸収させる蒸発器6と、エコノマイザ4からガス冷媒をスクロール圧縮機1に導くインジェクション流路7などを備える。
スクロール圧縮機1は、密閉型圧縮機であり、図2に示すように、内部に密閉空間を有するハウジング11と、ハウジング11内に配置され、密閉空間内に取り込まれた冷媒を圧縮するスクロール圧縮機構12と、スクロール圧縮機構12に回転力を伝達する回転軸と、回転軸を介してスクロール圧縮機構12の旋回スクロール19を公転旋回運動させる電動モータを主たる要素として構成されている。
ハウジング11は、底部が下部カバーによって密閉され、下部カバーの上部には、上下方向に長い円筒状の中間カバー13を備えている。中間カバー13の上部には、ディスチャージカバー14及び上部カバー15が設けられて、ハウジング11が密閉されており、このディスチャージカバー14と上部カバー15間に、圧縮された高圧のガスが吐出される吐出チャンバー16が形成されている。
ハウジング11内には、スクロール圧縮機構12が組み込まれるとともに、その下方にステータとロータとからなる電動モータが設置されている。電動モータは、ステータがハウジング11に固定設置されることによって組み込まれ、ロータには、回転軸が固定されている。
スクロール圧縮機構12は、ハウジング11に対して固定設置されている固定スクロール(第1スクロール部材)18と、摺動自在に支持され、固定スクロール18と噛み合わされることにより圧縮室20を形成する旋回スクロール(第2スクロール部材)19などを備える。
ハウジング11の側面には、冷媒を吸入する吸入口(図示せず。)が、密閉空間に連通するように形成されており、上部カバー15の頭頂側には、吐出チャンバー16と連通し、圧縮された冷媒ガスを吐出する吐出口15aが形成されている。
スクロール圧縮機構12は、吸入配管及び吸入口を介してハウジング11内に吸い込まれた冷媒ガスを、ハウジング11内部に対して開口されている外周側の吸入口21から圧縮室20内に吸い込み、圧縮する。圧縮された冷媒ガスは、固定スクロール18の中心部に設けられている吐出ポート22及びディスチャージカバー14に設けられている吐出口23を介して吐出チャンバー16内に吐出され、更に、上部カバー15に設けられ、吐出チャンバー16と連通している吐出管24を介して圧縮機の外部へと送出されるようになっている。
また、ディスチャージカバー14には、外部からスクロール圧縮機構12の圧縮室20の内部へ中間圧の冷媒を導入するインジェクション管25が上部カバー15を貫通して設けられる。インジェクション管25及びインジェクションポート26を介して冷媒が圧縮室20へ供給される。
リード弁27は、薄板状部材であって、吐出ポート22の出口部に設けられ、吐出ポート22を開閉する。リード弁27は、冷媒の流れを一方向のみに規定する。リード弁27が設けられることによって、冷媒は、圧縮室20から吐出チャンバー16側に流れる。
固定スクロール18は、図2に示されているように、略円板形状の端板(第1端板)18aと、端板18aの一側面上に立設された渦巻状の壁体(第1壁体)18bとを備えている。旋回スクロール19は、図2に示されているように、略円板形状の端板(第2端板)19aと、端板19aの一側面上に立設された渦巻状の壁体(第2壁体)19bとを備えている。各壁体18b,19bの渦巻形状は、例えば、インボリュート曲線やアルキメデス曲線を用いて定義されている。
固定スクロール18と旋回スクロール19は、その中心O1,O2を旋回半径ρだけ離し、壁体18b,19bの位相を180°ずらして噛み合わされ、両スクロール18,19の壁体18b、19bの歯先と歯底間に常温で僅かな高さ方向のクリアランス(チップクリアランス)を有するように組み付けられている。これにより、両スクロール18,19間に、その端板18a,19aと壁体18b、19bとにより囲まれて形成される複数対の圧縮室20がスクロール中心に対して対称に形成される。旋回スクロール19は、図示しないオルダムリング等の自転防止機構によって固定スクロール18の周りを公転旋回運動する。
図2に示すように、向かい合う両端板18a,19a間の対向面間距離Lが、渦巻状の壁体18b,19bの外周側から内周側に向かって、連続的に減少又は増大するように、壁体18b,19bにおける歯先の傾斜や端板18a,19aにおける歯底面の傾斜が設定されている。
図3,図5及び図6に示すように、固定スクロール18の壁体18bには、外周側から内周側に向かって、壁体平坦部18b1、第2壁体傾斜部18b2、壁体平坦部18b3、第1壁体傾斜部18b4、壁体平坦部18b5、第2壁体傾斜部18b6、壁体平坦部18b7が順に設けられている。また、図3,図4及び図6に示すように、固定スクロール18の歯底面には、外周側から内周側に向けて、端板平坦部18a1、第2端板傾斜部18a2、端板平坦部18a3、第1端板傾斜部18a4、端板平坦部18a5、第2端板傾斜部18a6、端板平坦部18a7の順に設けられている。
図7,図9及び図10に示すように、旋回スクロール19の壁体19bには、外周側から内周側に向かって、壁体平坦部19b1、第2壁体傾斜部19b2、壁体平坦部19b3、第1壁体傾斜部19b4、壁体平坦部19b5、第2壁体傾斜部19b6、壁体平坦部19b7が順に設けられている。また、図7,図8及び図10に示すように、旋回スクロール19の歯底面には、外周側から内周側に向けて、端板平坦部19a1、第2端板傾斜部19a2、端板平坦部19a3、第1端板傾斜部19a4、端板平坦部19a5、第2端板傾斜部19a6、端板平坦部19a7の順に設けられている。
旋回スクロール19の壁体19bに設けられた壁体平坦部19b1,19b3,19b5,19b7は、それぞれ、外周側から内周側に向かって、高さが一定である。すなわち、旋回スクロール19の中心O2(図2参照)を通る軸線方向の寸法が一定とされている。以下、壁体や歯底の高さは、中心O1,O2を通る軸線方向の寸法を意味する。
図10に示されているように、旋回スクロール19の壁体19bの最外周側と最内周側には、それぞれ、高さが一定とされた壁体平坦部19b1,19b7が設けられている。これら壁体平坦部19b1,19b7は、図8に示すように、旋回スクロール19の中心O2(図2参照)まわりに180°(例えば180°以上360°以下、好ましくは210°以下)の領域にわたって設けられている。
旋回スクロール19の端板19aの歯底についても同様に、高さが一定とされた端板平坦部19a1,19a7が設けられている。これら端板平坦部19a1,19a7についても、旋回スクロール19の中心まわりに180°(例えば180°以上360°以下、好ましくは210°以下)の領域にわたって設けられている。
図4に示すように、固定スクロール18についても、旋回スクロール19と同様に、壁体平坦部18b1,18b7及び端板平坦部18a1,18a7が設けられている。壁体平坦部18b1,18b7及び端板平坦部18a1,18a7についても、固定スクロール18の中心まわりに180°(例えば180°以上360°以下、好ましくは210°以下)の領域にわたって設けられている。
図10に示すように、旋回スクロール19の壁体19bに設けられた第1壁体傾斜部19b4は、外周側から内周側に向かって高さが連続的に増加する。図6に示すように、この第1壁体傾斜部19b4の歯先が対向する固定スクロール18の端板18a上の歯底面には、第1壁体傾斜部19b4の傾斜に応じて傾斜する第1端板傾斜部18a4が設けられている。同様に、図6に示すように、固定スクロール18の壁体18bに設けられた第1壁体傾斜部18b4も、外周側から内周側に向かって連続的に増加し、図10に示すように、この第1壁体傾斜部18b4の歯先に対向する旋回スクロール19の端板19a上の歯底面には、第1壁体傾斜部18b4の傾斜に応じて傾斜する第1端板傾斜部19a4が設けられている。第1壁体傾斜部18b4,19b4及び第1端板傾斜部18a4,19a4の渦巻き方向の長さは、中心O1,O2回りに20°以上、好ましくは180°以上に相当する長さとされている。
これにより、旋回スクロール19の公転旋回運動時、壁体18b,19bの渦巻形状に応じて圧縮室の幅が減少すると共に、圧縮室20の高さ、すなわち、端板18a,19a間の対向面間距離が増加する。したがって、第1壁体傾斜部18b4,19b4及び第1端板傾斜部18a4,19a4の渦巻方向の位置及び形状(例えば傾斜角度や渦巻方向の長さ)によって、圧縮室20の容積変化が緩やか又は略一定となる第1領域の少なくとも一部が設定される。外周側の吸入口21から吸い込まれた流体が内周側に向かうにしたがい、第1領域では、圧縮室20内の圧力が略一定に維持される。
なお、第1領域は、渦巻方向にわたって、1つの第1壁体傾斜部18b4,19b4又は第1端板傾斜部18a4,19a4のみが設けられることによって設定されてもよいし、複数の第1壁体傾斜部18b4,19b4又は第1端板傾斜部18a4,19a4が直列に配置されることによって設定されてもよい。複数の第1壁体傾斜部18b4,19b4又は第1端板傾斜部18a4,19a4が直列に配置される場合は、それぞれの傾斜角度を異ならせたり、間に壁体平坦部又は端板平坦部を設けたりすることによって実現される。
固定スクロール18の端板18aには、圧縮室20内の流体圧力よりも高圧の冷媒を圧縮室20内に供給するインジェクションポート26が設けられる。旋回スクロール19が公転旋回運動をして、旋回スクロール19の壁体19bの歯先が、インジェクションポート26上へ移動して両者が重なると、圧縮室20とインジェクションポート26の連通が閉じられる。反対に、旋回スクロール19の壁体19bの歯先が、インジェクションポート26上から移動してインジェクションポート26が開口すると、圧縮室20とインジェクションポート26とが連通する。インジェクションポート26は、上述した圧縮室20の容積変化が緩やか又は略一定となる第1領域に設けられる。これにより、圧縮室20内の圧力変化が緩やか又は略一定の過程において、インジェクションポート26から供給される冷媒との圧力差を所定以上に維持したまま、冷媒を圧縮室20へ供給できる。第1領域では、中間圧冷媒のインジェクション工程が行われる。
旋回スクロール19の壁体19bに設けられた第2壁体傾斜部19b2,19b6は、外周側から内周側に向かって高さが連続的に減少する。この第2壁体傾斜部19b2,19b6の歯先が対向する固定スクロール18の端板18a上の歯底面には、第2壁体傾斜部19b2,19b6の傾斜に応じて傾斜する第2端板傾斜部18a2,18a6が設けられている。同様に、固定スクロール18の壁体18bに設けられた第2壁体傾斜部18b2,18b6も、外周側から内周側に向かって連続的に減少し、この第2壁体傾斜部18b2,18b6の歯先に対向する旋回スクロール19の端板19a上の歯底面には、第2壁体傾斜部18b2,18b6の傾斜に応じて傾斜する第2端板傾斜部19a2,19a6が設けられている。
これにより、旋回スクロール19の公転旋回運動時、壁体18b,19bの渦巻形状に応じて圧縮室20の幅が減少すると共に、圧縮室20の高さ、すなわち、端板18a,19a間の対向面間距離が減少する。したがって、第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6の渦巻方向の位置及び形状(例えば傾斜角度や渦巻方向の長さ)によって、圧縮室20の容積が減少する第2領域及び第3領域のそれぞれの少なくとも一部が設定される。外周側の吸入口21から吸い込まれた冷媒は内周側に向かうにしたがい、壁体18b,19bの渦巻形状に応じた圧縮室20の幅の減少によって圧縮されるだけでなく、圧縮室20の高さ、すなわち、端板18a,19a間の対向面間距離の減少によって更に圧縮されることになる。これにより、三次元圧縮が可能となり、小型化を実現することができる。
圧縮室20の容積が減少する第2領域は、旋回スクロール19の公転旋回運動に伴う圧縮室20の移動方向において第1領域の前に設定され、第3領域は、圧縮室20の移動方向において第1領域の後に設定される。第2領域は、外周側にて壁体18b,19b同士が噛み合って圧縮室20を形成して締め切った後から、第1領域が開始するまでの領域である。第3領域は、第1領域が終了した後から、圧縮された冷媒の吐出ポート22からの吐出が終了するまでの領域である。
圧縮室20の容積が減少する第2領域が第1領域の前において設定されることによって、第1領域の前の第2領域において、冷媒が内周側に向かうにしたがい、圧縮室20内の圧力が上昇する。圧力が上昇した冷媒は、第1領域では、内周側に向かうが、圧縮室20内の圧力が略一定に維持される。そして、圧縮室20の容積が減少する第3領域が第1領域の後において設定されることによって、第1領域の後の第3領域において、冷媒が内周側に向かうにしたがい、圧縮室20内の圧力が再び上昇する。第2領域では、低段圧縮工程が行われ、第3領域では、高段圧縮工程が行われる。
以上より、エコノマイザ4からインジェクション流路7及びインジェクションポート26を介してスクロール圧縮機構12の圧縮過程の途中へ冷媒を導入する2段圧縮冷凍サイクルが実現される。また、圧縮室20の容積が減少する第2領域と第3領域の間に、圧縮室20の容積変化が緩やか又は略一定となる第1領域が設けられ、スクロール圧縮機構12を一つのみ備える単段のスクロール圧縮機1において、エコノマイザ4からスクロール圧縮機構12の圧縮工程途中に中間圧の冷媒を導入できる。
なお、本実施形態でいう第1壁体傾斜部18b4,19b4、第1端板傾斜部18a4,19a4、第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6における連続的という意味は、滑らかに接続された傾斜に限定されるものではなく、機械加工又は積層造形(AM)などによる製作時に不可避的に生じるような小さな段差が階段状に接続されており、傾斜部を全体としてみれば連続的に傾斜しているものも含まれる。ただし、いわゆる段付きスクロールのような大きな段差は含まれない。
第1壁体傾斜部18b4,19b4、第1端板傾斜部18a4,19a4、第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6には、コーティングが施されてもよい。コーティングとしては、例えば、リン酸マンガン処理やニッケルリンめっき等が挙げられる。
図6及び図10に示すように、第1壁体傾斜部18b4,19b4よりも外周側に配置される第2壁体傾斜部18b2,19b2の外周側端部18b8,19b8における歯先高さは、第1壁体傾斜部18b4,19b4の内周側端部18b9,19b9における歯先高さと同一であるとよい。これにより、第1壁体傾斜部18b4,19b4及び第2壁体傾斜部18b2,19b2を間に挟んで、一方の端部18b8,19b8と他方の端部18b9,19b9で測定を行うことができ、固定スクロール18又は旋回スクロール19の寸法測定を好適に行うことができる。
端板18a,19aについても、図6及び図10に示すように、第1端板傾斜部18a4,19a4よりも外周側に配置される第2端板傾斜部18a2,19a2の外周側端部18a8,19a8における歯底面高さは、第1端板傾斜部18a4,19a4の内周側端部18a9,19a9における歯底面高さと同一であるとよい。これにより、第1端板傾斜部18a4,19a4及び第2端板傾斜部18a2,19a2を間に挟んで、一方の端部18a8,19a8と他方の端部18a9,19a9で測定を行うことで、固定スクロール18又は旋回スクロール19の寸法測定を好適に行うことができる。
固定スクロール18の壁体18bの歯先には、チップシールが設けられる。チップシールは樹脂製とされており、対向する旋回スクロール19の端板19aの歯底に接触して流体をシールする。チップシールは、壁体18bの歯先に周方向にわたって形成されたチップシール溝18d内に収容されている。なお、旋回スクロール19の壁体19bの歯先に対しても同様に、チップシール溝19dが形成され、チップシール溝19d内にチップシールが設けられる。
両スクロール18,19が相対的に公転旋回運動を行うと、旋回直径(旋回半径ρ×2)分だけ歯先と歯底の位置が相対的にずれる。この歯先と歯底の位置ずれに起因して、傾斜部では、歯先と歯底との間のチップクリアランスが変化する。例えば、図11AではチップクリアランスTが小さく、図11BではチップクリアランスTが大きいことを示している。チップシール28は、このチップクリアランスTが旋回運動によって変化しても、背面から圧縮流体によって端板19aの歯底側に押圧されるので、追従してシールできるようになっている。
図13には、壁体18b,19bの歯先と、歯先に対向する端板18a,19aの歯底との間の距離であるチップクリアランスが示されている。このチップクリアランスは、常温(例えば室温)すなわち運転前におけるものである。同図において、横軸は角度(すなわち渦巻き方向の距離)を示し、縦軸はチップクリアランスを示す。同図において右側が外周側を示し、左側が内周側を示す。
同図から分かるように、最外周側の壁体平坦部18b1,19b1に対応する位置のチップクリアランスT1は、渦巻き方向に一定で、かつ最も小さく設定されている。これは、最外周側は圧縮が殆ど進まず、また圧縮室20の端板間距離が変化しないからである。
最外周側の壁体平坦部18b1,19b1の内周側に接続された第2壁体傾斜部18b2,19b2に対応する位置のチップクリアランスT2は、渦巻き方向の外周側から内周側に向かって漸次増大するようになっている。これは、第2壁体傾斜部18b2,19b2では、圧縮室20の端板間距離が圧縮するにつれて減少することによって圧縮が進み、圧縮熱による熱膨張があるからである。チップクリアランスT2の外周端は、チップクリアランスT1の内周端と同一とされ、チップクリアランスT1とチップクリアランスT2とは接続されている。チップクリアランスT2の増大幅は、例えば、100分の1mmのオーダーで渦巻き方向の長さに応じて設定される。
第2壁体傾斜部18b2,19b2の内周側に接続された壁体平坦部18b3,19b3に対応する位置のチップクリアランスT3は、渦巻き方向に一定とされている。これは、圧縮室20の端板間距離が変化しないからである。チップクリアランスT3の外周端は、チップクリアランスT2の内周端と同一とされ、チップクリアランスT2とチップクリアランスT3とは接続されている。
壁体平坦部18b3,19b3の内周側に接続された第1壁体傾斜部18b4,19b4に対応する位置のチップクリアランスT4は、渦巻き方向に一定とされている。これは、旋回に応じて圧縮室20の圧縮が進む一方で、圧縮室20の端板間距離が増大し、圧縮が大きく進まないからである。チップクリアランスT4の外周端は、チップクリアランスT3の内周端と同一とされ、チップクリアランスT3とチップクリアランスT4とは接続されている。
第1壁体傾斜部18b4,19b4の内周側に接続された壁体平坦部18b5,19b5に対応する位置のチップクリアランスT5は、渦巻き方向に一定とされている。これは、圧縮室20の端板間距離が変化しないからである。チップクリアランスT5の外周端は、チップクリアランスT4の内周端と同一とされ、チップクリアランスT4とチップクリアランスT5とは接続されている。
壁体平坦部18b5,19b5の内周側に接続された第2壁体傾斜部18b6,19b6に対応する位置のチップクリアランスT6は、渦巻き方向の外周側から内周側に向かって漸次増大するようになっている。これは、第2壁体傾斜部18b6,19b6では、圧縮室20の端板間距離が圧縮するにつれて減少することによって圧縮が進み、圧縮熱による熱膨張があるからである。チップクリアランスT6の外周端は、チップクリアランスT5の内周端と同一とされ、チップクリアランスT5とチップクリアランスT6とは接続されている。チップクリアランスT6の増大幅は、例えば、100分の1mmのオーダーで渦巻き方向の長さに応じて設定される。
第2壁体傾斜部18b6,19b6の内周側に接続された壁体平坦部18b7,19b7に対応する位置のチップクリアランスT7は、渦巻き方向に一定とされている。これは、圧縮室20の端板間距離が変化しないからである。チップクリアランスT7の外周端は、チップクリアランスT6の内周端と同一とされ、チップクリアランスT6とチップクリアランスT7とは接続されている。
このように、チップクリアランスは、外周側から内周側にかけて折れ線のように接続した状態で設定される。
このように、チップクリアランスは、外周側から内周側にかけて折れ線のように接続した状態で設定される。
なお、壁体傾斜部18b2,18b4,18b6,19b2,19b4,19b6と壁体平坦部18b1,18b3,18b5,18b7,19b1,19b3,19b5,19b7との接続部の歯先およびこれに対応する端板の歯底に、傾斜緩和形状としてR面取り形状を設けることとしても良い。これにより、接続部において滑らかに接続する加工を行うことで加工が容易となり、バリやダレの発生を抑制して、歯先と歯底との間の過剰な接触を回避することができる。
なお、傾斜緩和形状として用いたR面取り形状に変えて、C面取り形状としても良い。または、不連続な傾斜を緩和するように段階的に傾斜を変えて接続する形状であってもよい。また、傾斜緩和形状は、壁体側及び端板側のいずれか一方の傾斜接続部に用いても良い。
なお、傾斜緩和形状として用いたR面取り形状に変えて、C面取り形状としても良い。または、不連続な傾斜を緩和するように段階的に傾斜を変えて接続する形状であってもよい。また、傾斜緩和形状は、壁体側及び端板側のいずれか一方の傾斜接続部に用いても良い。
上述したスクロール圧縮機1は、以下のように動作する。
図示しない電動モータ等の駆動源によって、旋回スクロール19が固定スクロール18回りに公転旋回運動を行う。これにより、各スクロール18,19の外周側から流体を吸い込み、各壁体18b,19b及び各端板18a,19aによって囲まれた圧縮室20に冷媒を取り込む。
図示しない電動モータ等の駆動源によって、旋回スクロール19が固定スクロール18回りに公転旋回運動を行う。これにより、各スクロール18,19の外周側から流体を吸い込み、各壁体18b,19b及び各端板18a,19aによって囲まれた圧縮室20に冷媒を取り込む。
まず、外周側にて壁体18b,19b同士が噛み合って圧縮室を形成して締め切った後に、第2領域において、圧縮室20内の冷媒は外周側から内周側に移動するにしたがい圧縮され、図12に示すように、圧縮室20内の圧力が上昇する。圧縮された冷媒は、第1領域へ移動し、第1領域では、冷媒は内周側に向かう。そして、インジェクション管25及びインジェクションポート26を介して、エコノマイザ4から中間圧の冷媒が圧縮室20へ供給される。第1領域では、図12に示すように、圧縮室20内の圧力変化が緩やか又は略一定であり、エコノマイザ4から供給される冷媒との圧力差を所定以上に維持したまま、流体を圧縮室20へ供給できる。
その後、冷媒は第3領域へ移動し、第3領域において、冷媒が内周側に向かうにしたがい圧縮され、図12に示すように、圧縮室20内の圧力が再び上昇する。圧縮された冷媒は、最終的に固定スクロール18に形成された吐出ポート22から吐出される。
以上の通り、本実施形態のスクロール圧縮機1によれば、以下の作用効果を奏する。
第1壁体傾斜部18b4,19b4及び第1端板傾斜部18a4,19a4によって形成された圧縮室20は、向かい会う端板の対向面間距離が連続的に増大するので、流体の圧縮が大きく進むことはない。したがって、流体の圧縮熱を考慮して渦巻き方向の外周側から内周側にかけてチップクリアランスT4を小さくする必要がない。そこで、第1壁体傾斜部18b4,19b4と第1端板傾斜部18a4,19a4との常温におけるチップクリアランスT4を渦巻き方向において一定とすることで、運転時において所望のチップクリアランスとすることができ、流体漏れを可及的に小さくすることができる。
第1壁体傾斜部18b4,19b4及び第1端板傾斜部18a4,19a4によって形成された圧縮室20は、向かい会う端板の対向面間距離が連続的に増大するので、流体の圧縮が大きく進むことはない。したがって、流体の圧縮熱を考慮して渦巻き方向の外周側から内周側にかけてチップクリアランスT4を小さくする必要がない。そこで、第1壁体傾斜部18b4,19b4と第1端板傾斜部18a4,19a4との常温におけるチップクリアランスT4を渦巻き方向において一定とすることで、運転時において所望のチップクリアランスとすることができ、流体漏れを可及的に小さくすることができる。
第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6によって形成された圧縮室20は、向かい会う端板の対向面間距離が連続的に減少するので、流体の圧縮が進む。そこで、流体の圧縮熱を考慮して、常温において渦巻き方向の外周側よりも内周側の方のチップクリアランスT2,T6を大きくした。これにより、スクロール圧縮機1の運転時に熱膨張しても、外周側から内周側にわたって所望のチップクリアランスに設定でき、歯先と歯底との干渉を避けつつ、流体漏れを可及的に小さくすることができる。
壁体平坦部18b1,18b3,18b5,18b7,19b1,19b3,19b5,19b7に対応する位置のチップクリアランスT1,T3,T5,T7と、壁体平坦部18b1,18b3,18b5,18b7,19b1,19b3,19b5,19b7に接続される位置における傾斜部18b2,18b4,18b6,19b2,19b4,19b6のチップクリアランスT2,T4,T6を同一とした。これにより、チップクリアランスが連続的に形成されて流体漏れを可及的に小さくすることができる。
なお、本実施形態では、第1壁体傾斜部18b4,19b4、第1端板傾斜部18a4,19a4、第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6を両スクロール18,19に設けることとしたが、いずれか一方に設けてもよい。
具体的には、一方の壁体(例えば旋回スクロール19の壁体19b)に第1壁体傾斜部19b4及び第2壁体傾斜部19b2,19b6を設け、他方の端板(例えば固定スクロール18の端板18a)に第1端板傾斜部19a4及び第2端板傾斜部19a2,19a6を設けた場合には、他方の壁体18bと一方の端板19aは平坦とする。
また、従来の段付き形状と組み合わせた形状、すなわち、固定スクロール18の端板18aに第1端板傾斜部18a4及び第2端板傾斜部18a2,18a6を設ける一方で、旋回スクロール19の端板19aに段部が設けられた形状と組み合わせてもよい。
具体的には、一方の壁体(例えば旋回スクロール19の壁体19b)に第1壁体傾斜部19b4及び第2壁体傾斜部19b2,19b6を設け、他方の端板(例えば固定スクロール18の端板18a)に第1端板傾斜部19a4及び第2端板傾斜部19a2,19a6を設けた場合には、他方の壁体18bと一方の端板19aは平坦とする。
また、従来の段付き形状と組み合わせた形状、すなわち、固定スクロール18の端板18aに第1端板傾斜部18a4及び第2端板傾斜部18a2,18a6を設ける一方で、旋回スクロール19の端板19aに段部が設けられた形状と組み合わせてもよい。
本実施形態では、壁体平坦部18b1,18b7,19b1,19b7及び端板平坦部18a1,18a7,19a1,19a7を設けることとしたが、内周側及び/又は外周側の平坦部を省略して第2壁体傾斜部18b2,19b2を壁体18b,19bの全体に延長して設けるようにしてもよい。
本実施形態では、スクロール圧縮機として説明したが、膨張機として用いるスクロール膨張機に対しても本発明を適用することができる。
1 :スクロール圧縮機(スクロール流体機械)
2 :凝縮器
3 :第1膨張弁
4 :エコノマイザ(気液分離器)
5 :第2膨張弁
6 :蒸発器
7 :インジェクション流路
10 :冷凍サイクル
11 :ハウジング
12 :スクロール圧縮機構
13 :中間カバー
14 :ディスチャージカバー
15 :上部カバー
15a :吐出口
16 :吐出チャンバー
18 :固定スクロール(第1スクロール部材)
18a :端板(第1端板)
18a1 :端板平坦部
18a2 :第2端板傾斜部
18a3 :端板平坦部
18a4 :第1端板傾斜部
18a5 :端板平坦部
18a6 :第2端板傾斜部
18a7 :端板平坦部
18a8 :外周側端部
18a9 :内周側端部
18b :壁体(第1壁体)
18b1 :壁体平坦部
18b2 :第2壁体傾斜部
18b3 :壁体平坦部
18b4 :第1壁体傾斜部
18b5 :壁体平坦部
18b6 :第2壁体傾斜部
18b7 :壁体平坦部
18b8 :外周側端部
18b9 :内周側端部
18d :チップシール溝
19 :旋回スクロール(第2スクロール部材)
19a :端板(第2端板)
19a1 :端板平坦部
19a2 :第2端板傾斜部
19a3 :端板平坦部
19a4 :第1端板傾斜部
19a5 :端板平坦部
19a6 :第2端板傾斜部
19a7 :端板平坦部
19a8 :外周側端部
19a9 :内周側端部
19b :壁体(第2壁体)
19b1 :壁体平坦部
19b2 :第2壁体傾斜部
19b3 :壁体平坦部
19b4 :第1壁体傾斜部
19b5 :壁体平坦部
19b6 :第2壁体傾斜部
19b7 :壁体平坦部
19b8 :外周側端部
19b9 :内周側端部
20 :圧縮室
21 :吸入口
22 :吐出ポート
23 :吐出口
24 :吐出管
25 :インジェクション管
26 :インジェクションポート
27 :リード弁
28 :チップシール
2 :凝縮器
3 :第1膨張弁
4 :エコノマイザ(気液分離器)
5 :第2膨張弁
6 :蒸発器
7 :インジェクション流路
10 :冷凍サイクル
11 :ハウジング
12 :スクロール圧縮機構
13 :中間カバー
14 :ディスチャージカバー
15 :上部カバー
15a :吐出口
16 :吐出チャンバー
18 :固定スクロール(第1スクロール部材)
18a :端板(第1端板)
18a1 :端板平坦部
18a2 :第2端板傾斜部
18a3 :端板平坦部
18a4 :第1端板傾斜部
18a5 :端板平坦部
18a6 :第2端板傾斜部
18a7 :端板平坦部
18a8 :外周側端部
18a9 :内周側端部
18b :壁体(第1壁体)
18b1 :壁体平坦部
18b2 :第2壁体傾斜部
18b3 :壁体平坦部
18b4 :第1壁体傾斜部
18b5 :壁体平坦部
18b6 :第2壁体傾斜部
18b7 :壁体平坦部
18b8 :外周側端部
18b9 :内周側端部
18d :チップシール溝
19 :旋回スクロール(第2スクロール部材)
19a :端板(第2端板)
19a1 :端板平坦部
19a2 :第2端板傾斜部
19a3 :端板平坦部
19a4 :第1端板傾斜部
19a5 :端板平坦部
19a6 :第2端板傾斜部
19a7 :端板平坦部
19a8 :外周側端部
19a9 :内周側端部
19b :壁体(第2壁体)
19b1 :壁体平坦部
19b2 :第2壁体傾斜部
19b3 :壁体平坦部
19b4 :第1壁体傾斜部
19b5 :壁体平坦部
19b6 :第2壁体傾斜部
19b7 :壁体平坦部
19b8 :外周側端部
19b9 :内周側端部
20 :圧縮室
21 :吸入口
22 :吐出ポート
23 :吐出口
24 :吐出管
25 :インジェクション管
26 :インジェクションポート
27 :リード弁
28 :チップシール
Claims (3)
- 第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って圧縮室を形成するように相対的に公転旋回運動を行う第2スクロール部材と、
を備え、
前記第1壁体および前記第2壁体の少なくとも一方は、該第1壁体又は該第2壁体の渦巻き方向の外周側から内周側に向かって該壁体の高さが連続的に増大する第1壁体傾斜部を有し、
前記第1端板および前記第2端板の少なくとも一方は、前記第1壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する第1端板傾斜部を有し、
前記第1壁体傾斜部の歯先と該歯先に対向する前記第1端板傾斜部の歯底との間の常温におけるチップクリアランスが、前記渦巻き方向において一定とされているスクロール流体機械。 - 前記第1壁体および前記第2壁体の少なくとも一方は、該第1壁体又は該第2壁体の渦巻き方向の外周側から内周側に向かって該壁体の高さが連続的に減少する第2壁体傾斜部を有し、
前記第1端板および前記第2端板の少なくとも一方は、前記第2壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する第2端板傾斜部を有し、
前記第2壁体傾斜部の歯先と該歯先に対向する前記第2端板傾斜部の歯底との間の常温におけるチップクリアランスが、前記渦巻き方向の外周側よりも内周側の方が大きくされている請求項1に記載のスクロール流体機械。 - 前記第1壁体傾斜部と前記第2壁体傾斜部との間には、前記壁体の高さが一定とされた壁体平坦部が設けられ、
前記第1端板傾斜部と前記第2端板傾斜部との間には、前記壁体平坦部に対応した端板平坦部が設けられ、
前記壁体平坦部の歯先と該歯先に対向する前記端板平坦部の歯底との間の常温におけるチップクリアランスが、該壁体平坦部が接続される位置における前記第1壁体傾斜部と前記第1端板傾斜部との間のチップクリアランス、及び、該壁体平坦部が接続される位置における前記第2壁体傾斜部と前記第2端板傾斜部との間のチップクリアランスと同一とされている請求項2に記載のスクロール流体機械。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-028956 | 2018-02-21 | ||
JP2018028956A JP7039320B2 (ja) | 2018-02-21 | 2018-02-21 | スクロール流体機械 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019163309A1 true WO2019163309A1 (ja) | 2019-08-29 |
Family
ID=67687668
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/000092 WO2019163309A1 (ja) | 2018-02-21 | 2019-01-07 | スクロール流体機械 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7039320B2 (ja) |
WO (1) | WO2019163309A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5862395A (ja) * | 1981-10-12 | 1983-04-13 | Sanden Corp | スクロ−ル型圧縮機 |
JP2010196663A (ja) * | 2009-02-26 | 2010-09-09 | Mitsubishi Heavy Ind Ltd | 圧縮機 |
CN204003446U (zh) * | 2014-06-04 | 2014-12-10 | 恒升精密科技股份有限公司 | 压缩机涡卷 |
-
2018
- 2018-02-21 JP JP2018028956A patent/JP7039320B2/ja active Active
-
2019
- 2019-01-07 WO PCT/JP2019/000092 patent/WO2019163309A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5862395A (ja) * | 1981-10-12 | 1983-04-13 | Sanden Corp | スクロ−ル型圧縮機 |
JP2010196663A (ja) * | 2009-02-26 | 2010-09-09 | Mitsubishi Heavy Ind Ltd | 圧縮機 |
CN204003446U (zh) * | 2014-06-04 | 2014-12-10 | 恒升精密科技股份有限公司 | 压缩机涡卷 |
Also Published As
Publication number | Publication date |
---|---|
JP2019143547A (ja) | 2019-08-29 |
JP7039320B2 (ja) | 2022-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1033713C (zh) | 容积式涡旋流体装置 | |
JP6344573B2 (ja) | スクロール圧縮機 | |
JP2003269346A (ja) | スクロール型流体機械 | |
JPH0372839B2 (ja) | ||
JP2007170253A (ja) | スクロール圧縮機 | |
WO2014092065A1 (ja) | スクロール型流体機械 | |
JP4576306B2 (ja) | スクロール圧縮機および空気調和機 | |
JP4789623B2 (ja) | スクロール圧縮機 | |
WO2015194119A1 (ja) | スクロール圧縮機 | |
JP2019203475A (ja) | 圧縮機 | |
WO2019163516A1 (ja) | スクロール流体機械 | |
WO2019163628A1 (ja) | スクロール流体機械 | |
WO2019163309A1 (ja) | スクロール流体機械 | |
WO2019163321A1 (ja) | スクロール流体機械 | |
JPH09126168A (ja) | 流体機械 | |
JP4423024B2 (ja) | スクロール圧縮機 | |
WO2019163537A1 (ja) | スクロール流体機械 | |
US20130219950A1 (en) | Scroll Compressor and Air Conditioner | |
JP7023738B2 (ja) | スクロール流体機械 | |
WO2024185038A1 (ja) | スクロール圧縮機およびそれを備えた冷凍サイクル装置 | |
JP6996267B2 (ja) | スクロール圧縮機 | |
CN111742142B (zh) | 涡旋流体机械 | |
WO2022230314A1 (ja) | スクロール圧縮機 | |
JP2022187295A (ja) | スクロール流体機械 | |
WO2018021058A1 (ja) | スクロール圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19756533 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 13.10.2020) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19756533 Country of ref document: EP Kind code of ref document: A1 |