WO2019163321A1 - スクロール流体機械 - Google Patents

スクロール流体機械 Download PDF

Info

Publication number
WO2019163321A1
WO2019163321A1 PCT/JP2019/000735 JP2019000735W WO2019163321A1 WO 2019163321 A1 WO2019163321 A1 WO 2019163321A1 JP 2019000735 W JP2019000735 W JP 2019000735W WO 2019163321 A1 WO2019163321 A1 WO 2019163321A1
Authority
WO
WIPO (PCT)
Prior art keywords
end plate
wall body
wall
peripheral side
scroll
Prior art date
Application number
PCT/JP2019/000735
Other languages
English (en)
French (fr)
Inventor
創 佐藤
陽平 堀田
央幸 木全
Original Assignee
三菱重工サーマルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工サーマルシステムズ株式会社 filed Critical 三菱重工サーマルシステムズ株式会社
Publication of WO2019163321A1 publication Critical patent/WO2019163321A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation

Definitions

  • the present invention relates to a scroll fluid machine.
  • a scroll fluid machine that compresses or expands a fluid by meshing a fixed scroll member provided with a spiral wall on an end plate and a orbiting scroll member and performing a revolving orbiting motion.
  • a so-called stepped scroll compressor as shown in Patent Document 1 is known.
  • This stepped scroll compressor is provided with stepped portions at positions along the spiral direction of the tooth tip surface and the tooth bottom surface of the spiral wall body of the fixed scroll and the orbiting scroll, and the outer periphery of the wall body with each step portion as a boundary.
  • the height on the side is higher than the height on the inner peripheral side.
  • the stepped scroll compressor is compressed not only in the circumferential direction of the wall but also in the height direction (three-dimensional compression), so compared to a general scroll compressor (two-dimensional compression) that does not have a stepped portion.
  • the displacement can be increased and the compressor capacity can be increased.
  • the stepped scroll compressor has a problem of large fluid leakage at the stepped portion.
  • the stress is concentrated due to the stress concentrated at the base of the stepped portion.
  • the inventors are considering providing a continuous inclined part instead of the step part provided in the wall body and the end plate.
  • the inclination angle of the inclined portion may be changed.
  • the processing accuracy may be reduced.
  • the shape changes discontinuously at a position where the inclination angle of the inclined portion changes, and machining becomes difficult, so that burrs and sagging are likely to occur at the tooth tip and the tooth bottom. If burrs or sagging occurs in the tooth tip or the tooth bottom, it will deviate from the desired shape, and will protrude to the opposite tooth bottom side or tooth tip side, which may cause excessive contact between the tooth tip and the tooth bottom.
  • the present invention has been made in view of such circumstances, and provides a scroll fluid machine that can improve machining accuracy even when there are a plurality of inclined portions on the wall and end plate of the scroll member.
  • the purpose is to do.
  • a scroll fluid machine employs the following means. That is, a scroll fluid machine according to an aspect of the present invention includes a first scroll member having a spiral first wall provided on a first end plate, and a first scroll member disposed so as to face the first end plate. A second scroll member that is provided with a spiral second wall on the two end plates and relatively revolves so that the second wall engages with the first wall to form a compression chamber; And at least one of the first wall body and the second wall body has a plurality of wall bodies whose height continuously changes in a spiral direction of the first wall body or the second wall body.
  • At least one of the first end plate and the second end plate has a plurality of teeth whose bottom surfaces facing the tooth tips of the wall body inclined portion are inclined according to the inclination of the wall body inclined portion.
  • a wall flat portion having an end plate inclined portion and having a constant height between the wall inclined portions is provided between the adjacent wall inclined portions. Vignetting, between the end plate inclined portion adjacent the end plate flat portion is provided corresponding to the wall flats.
  • the wall sloping part and end plate sloping part change continuously, and less fluid leakage compared to the conventional scroll fluid machine with a step provided on the wall and tooth bottom. Can do. “Continuously changing” is not limited to the case where the connection is smooth, but small steps that are inevitable in production are connected in a staircase shape, and the inclination is continuously inclined as a whole. The thing which is doing is also included. A plurality of wall body inclined portions are provided, and a wall body flat portion having a constant height is provided between adjacent wall body inclined portions. Thereby, since the flat process which can ensure a process precision can be introduced between an inclination process and an inclination process, a process precision can be improved.
  • a plurality of end plate inclined portions are provided, and an end plate flat portion is provided between adjacent end plate inclined portions.
  • the wall body flat portion is a first wall body in which the height of the wall body continuously increases from the outer peripheral side in the spiral direction toward the inner peripheral side. Between the inclined portion and the second wall inclined portion where the height of the wall continuously decreases from the outer peripheral side to the inner peripheral side in the spiral direction, from the outer peripheral side to the inner peripheral side in the spiral direction. Between the two first wall inclined portions where the height of the wall body increases toward each other, or two second walls where the height of the wall body decreases from the outer peripheral side to the inner peripheral side in the spiral direction. It is provided between wall inclined parts.
  • the first wall inclined portion in which the height of the wall continuously increases from the outer peripheral side to the inner peripheral side in the spiral direction, and from the outer peripheral side to the inner peripheral side in the spiral direction.
  • tip tips of the first wall body and the second wall body are provided with tip seals that contact the opposite tooth bottoms and seal the fluid,
  • the tip seal is provided over the adjacent wall body inclined portion and the wall body flat portion.
  • a plurality of the flat wall portions are provided, and at least two of the flat wall portions have the same height.
  • the dimension of the scroll member is preferably measured by setting at least two of the wall body flat portions that are easy to ensure measurement accuracy to the same height as the wall body inclined portion. Can do.
  • the end plate flat portion includes a first end plate in which the height of the end plate continuously increases from the outer peripheral side in the spiral direction toward the inner peripheral side.
  • the second end plate inclined portion in which the height of the end plate continuously decreases from the outer peripheral side to the inner peripheral side in the spiral direction, from the outer peripheral side to the inner peripheral side in the spiral direction.
  • the two second end plates decrease in height from the outer peripheral side to the inner peripheral side in the spiral direction between the two first end plate inclined portions where the end plate height increases toward the inner side. It is provided between the end plate inclined portions.
  • the end plate inclined portion includes a first end plate inclined portion in which the height of the end plate continuously increases from the outer peripheral side in the spiral direction toward the inner peripheral side, and from the outer peripheral side in the spiral direction toward the inner peripheral side.
  • the dimension of the spiral direction of the end plate flat portion is equal to or greater than the width of the root, which is the dimension between the wall bodies adjacent in the radial direction.
  • the dimension in the spiral direction of the flat part of the end plate is not less than the root width. Thereby, only a significant dimension can be ensured for the end plate flat portion in the spiral direction. For example, when the diameter of the end mill is equal to the root width, the end plate flat portion can be processed with high accuracy by setting the dimension in the spiral direction of the end plate flat portion to be equal to or larger than the bottom width.
  • a plurality of the end plate flat portions are provided, and at least two of the end plate flat portions have the same height.
  • the dimension of the scroll member is suitably measured by setting at least two of the end plate flat portions that are easy to ensure measurement accuracy to the same height as the end plate inclined portion. be able to.
  • FIG. 1 is a schematic configuration diagram illustrating a refrigeration cycle in which a scroll compressor according to an embodiment of the present invention is used. It is the fragmentary longitudinal cross-section which showed the principal part of the scroll compressor which concerns on one Embodiment of this invention. It is a longitudinal cross-sectional view of the fixed scroll of the scroll compressor of FIG. 2, and is a III-III line arrow view of FIG. It is a top view of the fixed scroll of the scroll compressor of FIG. It is the top view which showed the wall body and end plate of the fixed scroll of the scroll compressor of FIG. It is the side view which expanded and showed the wall and end plate of the fixed scroll of FIG. 4 in the spiral direction. It is a longitudinal cross-sectional view of the turning scroll of the scroll compressor of FIG.
  • FIG. 2 is the VII-VII line arrow view of FIG. It is the top view which showed the turning scroll of the scroll compressor of FIG. It is the top view which showed the wall body and end plate of the fixed scroll of the scroll compressor of FIG. It is the side view which expanded and showed the wall body and end plate of the turning scroll of FIG. 8 in the spiral direction. It is the side view which showed the chip seal gap and showed the state where the chip seal gap is relatively small. It is the side view which showed the chip seal gap and showed the state where the chip seal gap is relatively large. It is the graph which showed the volume and pressure with respect to the turning angle of a scroll compressor.
  • the refrigeration cycle 10 includes a scroll compressor (scroll fluid machine) 1 that compresses refrigerant (fluid), a condenser 2 that radiates heat of the compressed refrigerant to the outside, and a condenser 2.
  • a scroll compressor scroll fluid machine 1 that compresses refrigerant (fluid)
  • a condenser 2 that radiates heat of the compressed refrigerant to the outside
  • a condenser 2 that radiates heat of the compressed refrigerant to the outside
  • the first expansion valve 3 provided on the high pressure side for decompressing the refrigerant that has flowed out, the economizer (gas-liquid separator) 4 for separating the decompressed refrigerant into liquid refrigerant and gas refrigerant, and the low pressure side for further decompressing the liquid refrigerant
  • a second expansion valve 5 provided in the evaporator, an evaporator 6 that absorbs heat by the decompressed refrigerant, an injection passage 7 that guides the gas refrigerant from the economizer 4 to the scroll compressor 1, and the like.
  • the scroll compressor 1 is a hermetic compressor, and as illustrated in FIG. 2, a scroll 11 that compresses a housing 11 having a sealed space therein and a refrigerant that is disposed in the housing 11 and is taken into the sealed space.
  • the main elements are a mechanism 12, a rotating shaft that transmits a rotational force to the scroll compression mechanism 12, and an electric motor that orbits the revolving scroll 19 of the scroll compression mechanism 12 via the rotating shaft.
  • the bottom of the housing 11 is sealed by a lower cover, and a cylindrical intermediate cover 13 that is long in the vertical direction is provided on the upper portion of the lower cover.
  • a discharge cover 14 and an upper cover 15 are provided on the upper portion of the intermediate cover 13, and the housing 11 is hermetically sealed.
  • a discharge of compressed high-pressure gas is discharged between the discharge cover 14 and the upper cover 15.
  • a chamber 16 is formed.
  • a scroll compression mechanism 12 is incorporated, and an electric motor including a stator and a rotor is installed below the scroll compression mechanism 12.
  • the electric motor is incorporated by fixing the stator to the housing 11, and the rotating shaft is fixed to the rotor.
  • the scroll compression mechanism 12 is slidably supported by a fixed scroll (first scroll member) 18 fixedly installed with respect to the housing 11, and is swung to form a compression chamber 20 by being engaged with the fixed scroll 18.
  • a scroll (second scroll member) 19 is provided.
  • a suction port (not shown) for sucking refrigerant is formed on the side surface of the housing 11 so as to communicate with the sealed space, and the top cover 15 communicates with the discharge chamber 16 and compressed on the top side.
  • a discharge port 15a is formed through which the discharged refrigerant gas is discharged.
  • the scroll compression mechanism 12 sucks the refrigerant gas sucked into the housing 11 through the suction pipe and the suction port into the compression chamber 20 through the suction port 21 on the outer peripheral side opened to the inside of the housing 11 and compresses the refrigerant gas. To do.
  • the compressed refrigerant gas is discharged into the discharge chamber 16 through the discharge port 22 provided in the center of the fixed scroll 18 and the discharge port 23 provided in the discharge cover 14, and further to the upper cover 15. It is provided and sent out of the compressor via a discharge pipe 24 communicating with the discharge chamber 16.
  • the discharge cover 14 is provided with an injection pipe 25 through which the intermediate pressure refrigerant is introduced from the outside into the compression chamber 20 of the scroll compression mechanism 12 through the upper cover 15.
  • the refrigerant is supplied to the compression chamber 20 through the injection pipe 25 and the injection port 26.
  • the reed valve 27 is a thin plate member and is provided at the outlet of the discharge port 22 to open and close the discharge port 22.
  • the reed valve 27 regulates the flow of the refrigerant in only one direction. By providing the reed valve 27, the refrigerant flows from the compression chamber 20 to the discharge chamber 16 side.
  • the fixed scroll 18 includes a substantially disc-shaped end plate (first end plate) 18 a and a spiral wall body (first plate) standing on one side surface of the end plate 18 a. 1 wall) 18b.
  • the orbiting scroll 19 includes a substantially disc-shaped end plate (second end plate) 19 a and a spiral wall body (first plate) erected on one side surface of the end plate 19 a. 2 walls) 19b.
  • the spiral shape of each wall 18b, 19b is defined using, for example, an involute curve or an Archimedean curve.
  • the fixed scroll 18 and the orbiting scroll 19 are meshed with their centers O1 and O2 separated by the orbiting radius ⁇ and the phases of the wall bodies 18b and 19b shifted by 180 °, and the tooth tips of the wall bodies 18b and 19b of the scrolls 18 and 19 are engaged. And the tooth bottom are assembled so as to have a slight height clearance (chip clearance) at room temperature. Accordingly, a plurality of pairs of compression chambers 20 formed between the scrolls 18 and 19 and surrounded by the end plates 18a and 19a and the wall bodies 18b and 19b are formed symmetrically with respect to the scroll center.
  • the orbiting scroll 19 revolves around the fixed scroll 18 by a rotation prevention mechanism such as an Oldham ring (not shown).
  • the distance L between the opposed surfaces 18 a and 19 a facing each other is continuously decreased or increased from the outer peripheral side to the inner peripheral side of the spiral wall bodies 18 b and 19 b.
  • the inclination of the tooth tips in the wall bodies 18b and 19b and the inclination of the tooth bottom surface in the end plates 18a and 19a are set.
  • the wall body 18 b of the fixed scroll 18 has a wall body flat part 18 b 1, a second wall body inclined part 18 b 2, and a wall body flat part from the outer peripheral side toward the inner peripheral side.
  • a portion 18b3, a first wall body inclined portion 18b4, a wall body flat portion 18b5, a second wall body inclined portion 18b6, and a wall body flat portion 18b7 are provided in this order.
  • an end plate flat portion 18 a 1, a second end plate inclined portion 18 a 2, and an end plate are formed on the tooth bottom surface of the fixed scroll 18 from the outer peripheral side toward the inner peripheral side.
  • the flat portion 18a3, the first end plate inclined portion 18a4, the end plate flat portion 18a5, the second end plate inclined portion 18a6, and the end plate flat portion 18a7 are provided in this order.
  • the dimensions in the spiral direction of the end plate flat portions 18a3 and 18a5 are equal to or greater than the root width which is the dimension between the wall bodies 18b adjacent in the radial direction.
  • the wall body 19 b of the orbiting scroll 19 has a wall body flat part 19 b 1, a second wall body inclined part 19 b 2, and a wall body flat part from the outer peripheral side toward the inner peripheral side.
  • a portion 19b3, a first wall body inclined portion 19b4, a wall body flat portion 19b5, a second wall body inclined portion 19b6, and a wall body flat portion 19b7 are provided in this order.
  • the end plate flat portion 19 a 1, the second end plate inclined portion 19 a 2, and the end plate are formed on the tooth bottom surface of the orbiting scroll 19 from the outer peripheral side toward the inner peripheral side.
  • the flat portion 19a3, the first end plate inclined portion 19a4, the end plate flat portion 19a5, the second end plate inclined portion 19a6, and the end plate flat portion 19a7 are provided in this order.
  • the dimensions in the spiral direction of the end plate flat portions 19a3 and 19a5 are equal to or greater than the root width which is the dimension between the wall bodies 19b adjacent in the radial direction.
  • the wall flat portions 19b1, 19b3, 19b5, 19b7 provided on the wall 19b of the orbiting scroll 19 have a constant height from the outer peripheral side toward the inner peripheral side. That is, the dimension in the axial direction passing through the center O2 (see FIG. 2) of the orbiting scroll 19 is constant.
  • the height of the wall body and the tooth bottom means the dimension in the axial direction passing through the centers O1 and O2.
  • wall body flat portions 19b1 and 19b7 having a constant height are provided on the outermost and innermost sides of the wall body 19b of the orbiting scroll 19, respectively. . As shown in FIG. 8, these wall body flat portions 19b1 and 19b7 cover a region of 180 ° (for example, 180 ° to 360 °, preferably 210 ° or less) around the center O2 (see FIG. 2) of the orbiting scroll 19. Is provided.
  • end plate flat portions 19a1 and 19a7 having a constant height.
  • the end plate flat portions 19a1 and 19a7 are also provided over a region of 180 ° (for example, 180 ° to 360 °, preferably 210 ° or less) around the center of the orbiting scroll 19.
  • the fixed scroll 18 is also provided with wall body flat portions 18 b 1 and 18 b 7 and end plate flat portions 18 a 1 and 18 a 7 in the same manner as the orbiting scroll 19.
  • the wall body flat portions 18b1 and 18b7 and the end plate flat portions 18a1 and 18a7 are also provided over a region of 180 ° (for example, 180 ° to 360 °, preferably 210 ° or less) around the center of the fixed scroll 18.
  • the height of the first wall inclined portion 19b4 provided on the wall 19b of the orbiting scroll 19 increases continuously from the outer peripheral side toward the inner peripheral side.
  • the tooth bottom surface on the end plate 18a of the fixed scroll 18 where the tooth tips of the first wall inclined portion 19b4 face each other is inclined according to the inclination of the first wall inclined portion 19b4.
  • One end plate inclined portion 18a4 is provided.
  • the first wall inclined portion 18b4 provided on the wall 18b of the fixed scroll 18 also increases continuously from the outer peripheral side toward the inner peripheral side, as shown in FIG.
  • a first end plate inclined portion inclined according to the inclination of the first wall inclined portion 18b4. 19a4 is provided.
  • the length in the spiral direction of the first wall inclined portions 18b4 and 19b4 and the first end plate inclined portions 18a4 and 19a4 is set to a length corresponding to 20 ° or more, preferably 180 ° or more around the centers O1 and O2. .
  • the width of the compression chamber 20 decreases according to the spiral shape of the wall bodies 18b and 19b, and the height of the compression chamber 20, that is, the facing between the end plates 18a and 19a.
  • the distance between surfaces increases. Therefore, the volume change of the compression chamber 20 is moderate or slow depending on the position and shape of the first wall body inclined portions 18b4 and 19b4 and the first end plate inclined portions 18a4 and 19a4 in the spiral direction (for example, the inclination angle and the length in the spiral direction).
  • At least a part of the first region that is substantially constant is set. As the fluid sucked in from the suction port 21 on the outer peripheral side moves toward the inner peripheral side, the pressure in the compression chamber 20 is maintained substantially constant in the first region.
  • the first region may be set by providing only one first wall inclined portion 18b4, 19b4 or first end plate inclined portion 18a4, 19a4 over the spiral direction, or may include a plurality of first walls.
  • the body inclined portions 18b4 and 19b4 or the first end plate inclined portions 18a4 and 19a4 may be set in series.
  • the respective inclination angles are different, or the wall body flat portion or the end plate flat portion is interposed therebetween. It is realized by providing.
  • An injection port 26 for supplying a refrigerant having a pressure higher than the fluid pressure in the compression chamber 20 into the compression chamber 20 is provided on the end plate 18 a of the fixed scroll 18.
  • the orbiting scroll 19 revolves and the tooth tip of the wall 19b of the orbiting scroll 19 moves onto the injection port 26 and overlaps, the communication between the compression chamber 20 and the injection port 26 is closed.
  • the tooth tip of the wall 19b of the orbiting scroll 19 moves from the injection port 26 and the injection port 26 opens, the compression chamber 20 and the injection port 26 communicate with each other.
  • the injection port 26 is provided in the first region where the volume change of the compression chamber 20 described above is gradual or substantially constant.
  • the refrigerant can be supplied to the compression chamber 20 while maintaining the pressure difference with the refrigerant supplied from the injection port 26 at a predetermined level or more in a process in which the pressure change in the compression chamber 20 is moderate or substantially constant.
  • an intermediate pressure refrigerant injection step is performed.
  • the second wall body inclined portions 19b2 and 19b6 provided on the wall body 19b of the orbiting scroll 19 continuously decrease in height from the outer peripheral side toward the inner peripheral side.
  • Inclined portions 18a2 and 18a6 are provided.
  • the second wall body inclined portions 18b2 and 18b6 provided on the wall body 18b of the fixed scroll 18 also continuously decrease from the outer peripheral side toward the inner peripheral side, and the second wall body inclined portions 18b2 and 18b6.
  • Second end plate inclined portions 19a2 and 19a6 that are inclined in accordance with the inclination of the second wall body inclined portions 18b2 and 18b6 are provided on the tooth bottom surface of the end plate 19a of the orbiting scroll 19 that faces the tooth tips. .
  • the width of the compression chamber 20 decreases according to the spiral shape of the wall bodies 18b and 19b, and the height of the compression chamber 20, that is, the facing between the end plates 18a and 19a.
  • the distance between surfaces decreases. Therefore, the second wall body inclined portions 18b2, 18b6, 19b2, 19b6 and the second end plate inclined portions 18a2, 18a6, 19a2, 19a6 are compressed depending on the positions and shapes (for example, the inclination angle and the length in the spiral direction) of the second end plate inclined portions At least a part of each of the second region and the third region in which the volume of the chamber 20 decreases is set.
  • the refrigerant sucked from the suction port 21 on the outer peripheral side goes toward the inner peripheral side, the refrigerant is not only compressed by the reduction in the width of the compression chamber 20 according to the spiral shape of the wall bodies 18b and 19b, but also the compression chamber 20 Further compression is caused by a decrease in height, that is, a distance between the opposing surfaces between the end plates 18a and 19a. As a result, three-dimensional compression is possible, and downsizing can be realized.
  • the second region in which the volume of the compression chamber 20 decreases is set in front of the first region in the movement direction of the compression chamber 20 associated with the revolving orbiting motion of the orbiting scroll 19, and the third region is in the movement direction of the compression chamber 20. It is set after the first area.
  • the second region is a region from when the wall bodies 18b and 19b are engaged with each other on the outer peripheral side to form the compression chamber 20 and shut down until the first region starts.
  • the third region is a region from the end of the first region to the end of discharge of the compressed refrigerant from the discharge port 22.
  • a two-stage compression refrigeration cycle is realized in which refrigerant is introduced from the economizer 4 through the injection flow path 7 and the injection port 26 into the compression process of the scroll compression mechanism 12. Further, a first region in which the volume change of the compression chamber 20 is moderately or substantially constant is provided between the second region and the third region where the volume of the compression chamber 20 decreases, and only one scroll compression mechanism 12 is provided. In the single-stage scroll compressor 1, an intermediate pressure refrigerant can be introduced from the economizer 4 during the compression process of the scroll compression mechanism 12.
  • 19a2 and 19a6 are not limited to smoothly connected slopes, but small steps that inevitably occur during fabrication by machining or additive manufacturing (AM) are connected in a staircase pattern. If the inclined portion is viewed as a whole, it may be continuously inclined. However, large steps such as so-called stepped scrolls are not included.
  • a coating may be applied.
  • the coating include manganese phosphate treatment and nickel phosphorus plating.
  • the tooth tip heights at the outer peripheral side end portions 18b8 and 19b8 of the second wall inclined portions 18b2 and 19b2 arranged on the outer peripheral side with respect to the first wall inclined portions 18b4 and 19b4 are as follows.
  • the tooth tip heights at the inner peripheral side end portions 18b9 and 19b9 of the first wall body inclined portions 18b4 and 19b4 may be the same.
  • measurement can be performed at one end 18b8, 19b8 and the other end 18b9, 19b9 with the first wall inclined portions 18b4, 19b4 and the second wall inclined portions 18b2, 19b2 interposed therebetween.
  • the dimension measurement of the fixed scroll 18 or the orbiting scroll 19 can be suitably performed.
  • 19a8 may be the same as the bottom surface height at the inner peripheral side end portions 18a9, 19a9 of the first end plate inclined portions 18a4, 19a4.
  • a tip seal is provided on the tooth tip of the wall 18b of the fixed scroll 18.
  • the tip seal is made of resin and seals the fluid by contacting the tooth bottom of the end plate 19a of the orbiting scroll 19 facing the tip seal.
  • the tip seal is accommodated in a tip seal groove 18d formed in the tooth tip of the wall 18b over the circumferential direction.
  • a tip seal groove 19d is formed on the tooth tip of the wall 19b of the orbiting scroll 19, and a tip seal is provided in the tip seal groove 19d.
  • FIG. 11A shows that the tip clearance T is small
  • FIG. 11B shows that the tip clearance T is large. Even if the tip clearance T changes due to the turning motion, the tip seal 28 is pressed from the back to the tooth bottom side of the end plate 19a by the compressed fluid, so that it can be followed and sealed.
  • the distance from the tooth bottom does not change as much as the wall body inclined portions 18b2, 18b4, 18b6, 19b2, 19b4, and 19b6 when turning.
  • the tip seal 28 is provided continuously extending in the longitudinal direction in the spiral direction of the wall body flat portions 18b3, 18b5, 19b3, 19b5.
  • the scroll compressor 1 described above operates as follows.
  • the orbiting scroll 19 revolves around the fixed scroll 18 by a driving source such as an electric motor (not shown).
  • a driving source such as an electric motor (not shown).
  • the fluid is sucked from the outer peripheral side of the scrolls 18 and 19, and the refrigerant is taken into the compression chamber 20 surrounded by the wall bodies 18b and 19b and the end plates 18a and 19a.
  • the refrigerant in the compression chamber 20 is compressed as it moves from the outer peripheral side to the inner peripheral side in the second region.
  • the pressure in the compression chamber 20 increases.
  • the compressed refrigerant moves to the first region, and in the first region, the refrigerant moves toward the inner peripheral side.
  • an intermediate pressure refrigerant is supplied from the economizer 4 to the compression chamber 20 via the injection pipe 25 and the injection port 26.
  • the pressure change in the compression chamber 20 is moderate or substantially constant, and the fluid is supplied to the compression chamber while maintaining the pressure difference with the refrigerant supplied from the economizer 4 at a predetermined level or more. 20 can be supplied.
  • the refrigerant moves to the third region, and in the third region, the refrigerant is compressed as it goes to the inner peripheral side, and the pressure in the compression chamber 20 rises again as shown in FIG.
  • the compressed refrigerant is finally discharged from the discharge port 22 formed in the fixed scroll 18.
  • a plurality of wall body inclined portions 18b2, 18b4, 18b6, 19b2, 19b4, 19b6 are provided, and a wall body flat with a constant height between adjacent wall body inclined portions 18b2, 18b4, 18b6, 19b2, 19b4, 19b6
  • the portions 18b3, 18b5, 19b3, 19b5 are provided.
  • a plurality of end plate inclined portions 18a2, 18a4, 18a6, 19a2, 19a4, 19a6 are provided, and end plate flat portions 18a3, 18a5, 19a3 are provided between adjacent end plate inclined portions 18a2, 18a4, 18a6, 19a2, 19a4, 19a6.
  • 19a5 was provided.
  • the chip seal 28 is provided over the adjacent wall inclined portions 18b2, 18b4, 18b6, 19b2, 19b4, 19b6 and the wall flat portions 18b3, 18b5, 19b3, 19b5.
  • the distance from the tooth bottom does not change as much as the wall body inclined portions 18b2, 18b4, 18b6, 19b2, 19b4, 19b6 when turning, so the wall body flat portions 18b3, 18b5, 19b3
  • the chip seal can be stably held at 19b5.
  • the wall body flat portions 18b3, 18b5, 19b3, which are easy to ensure measurement accuracy as compared with the wall body inclined portions 18b2, 18b4, 18b6, 19b2, 19b4, 19b6.
  • the wall body inclined portions 18b2, 18b4, 18b6, 19b2, 19b4, 19b6 By setting at least two of 19b5 to the same height, it is possible to suitably measure the dimensions of the scroll members 18 and 19.
  • the end plate flat portions 18a3, 18a5, 19a3 are more easily secured than the end plate inclined portions 18a2, 18a4, 18a6, 19a2, 19a4, 19a6.
  • the end plate inclined portions 18a2, 18a4, 18a6, 19a2, 19a4, 19a6 By setting at least two of 19a5 to the same height, it is possible to suitably measure the dimensions of the scroll members 18 and 19.
  • the dimensions in the spiral direction of the end plate flat portions 18a3, 18a5, 19a3, 19a5 are set to be equal to or greater than the root width.
  • the end plate flat portions 18a3, 18a5, 19a3, and 19a5 can be ensured by a significant dimension in the spiral direction.
  • the end plate flat portion 18a3 is set by setting the dimensions in the spiral direction of the end plate flat portions 18a3, 18a5, 19a3, and 19a5 to be equal to or larger than the root width.
  • 18a5, 19a3, 19a5 can be processed with high accuracy.
  • first wall body inclined portions 18b4, 19b4, the first end plate inclined portions 18a4, 19a4, the second wall body inclined portions 18b2, 18b6, 19b2, 19b6, and the second end plate inclined portions 18a2, 18a6, 19a2 are used.
  • 19a6 are provided on both scrolls 18, 19, but may be provided on either one of them.
  • the first wall body inclined portion 19b4 and the second wall body inclined portions 19b2 and 19b6 are provided on one wall body (for example, the wall body 19b of the orbiting scroll 19), and the other end plate (for example, the fixed scroll 18 of the fixed scroll 18).
  • the other wall body 18b and the one end plate 19a are flat.
  • the shape combined with the conventional stepped shape, that is, the end plate 18a4 of the fixed scroll 18 is provided with the first end plate inclined portion 18a4 and the second end plate inclined portions 18a2, 18a6, while the end plate of the orbiting scroll 19 is provided. You may combine with the shape in which the step part was provided in 19a.
  • the wall flat portions 18b1, 18b7, 19b1, 19b7 and the end plate flat portions 18a1, 18a7, 19a1, 19a7 are provided, but the inner peripheral side and / or the outer peripheral side flat portions are omitted. You may make it provide the 2nd wall body inclination part 18b2, 19b2 extending in the whole wall body 18b, 19b.
  • the scroll compressor has been described, but the present invention can also be applied to a scroll expander used as an expander.
  • Discharge cover 15 Upper cover 15a: Discharge port 16: Discharge chamber 18: Fixed Scroll (first scroll member) 18a: end plate (first end plate) 18a1: end plate flat portion 18a2: second end plate inclined portion 18a3: end plate flat portion 18a4: first end plate inclined portion 18a5: end plate flat portion 18a6: second end plate inclined portion 18a7: end plate flat portion 18a8: Outer peripheral end 18a9: Inner peripheral end 18b: Wall (first wall) 18b1: Wall body flat part 18b2: Second wall body inclined part 18b3: Wall body flat part 18b4: First wall body inclined part 18b5: Wall body flat part 18b6: Second wall body inclined part 18b7: Wall body flat part 18b8: Outer

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

壁体(18b)は、壁体(18b)の渦巻き方向に壁体(18b)の高さが連続的に変化する複数の壁体傾斜部(18b2,18b4,18b6)を有し、端板(18a)は、壁体傾斜部(18b2,18b4,18b6)の歯先に対向する歯底面が壁体傾斜部(18b2,18b4,18b6)の傾斜に応じて傾斜する複数の端板傾斜部(18a2,18a4,18a6)を有し、隣り合う壁体傾斜部(18b2,18b4,18b6)の間には、壁体(18b)の高さが一定とされた壁体平坦部(18b3,18b5)が設けられ、隣り合う端板傾斜部(18a2,18a4,18a6)の間には、壁体平坦部(18b3,18b5)に対応した端板平坦部(18a3,18a5)が設けられている。

Description

スクロール流体機械
 本発明は、スクロール流体機械に関するものである。
 一般に、端板上に渦巻状の壁体が設けられた固定スクロール部材と旋回スクロール部材とを噛み合わせ、公転旋回運動を行わせて流体を圧縮または膨張するスクロール流体機械が知られている。
 このようなスクロール流体機械として、特許文献1に示すようないわゆる段付きスクロール圧縮機が知られている。この段付きスクロール圧縮機は、固定スクロールおよび旋回スクロールの渦巻状の壁体の歯先面および歯底面の渦巻き方向に沿う位置に各々段部が設けられ、各段部を境に壁体の外周側の高さが内周側の高さよりも高くされている。段付きスクロール圧縮機は、壁体の周方向だけでなく、高さ方向にも圧縮(三次元圧縮)されるため、段部を備えていない一般的なスクロール圧縮機(二次元圧縮)に比べ、押しのけ量を大きくし、圧縮機容量を増加することができる。
特開2015-55173号公報
 しかし、段付きスクロール圧縮機は、段部における流体漏れが大きいという問題がある。また、段部の根元部分に応力が集中して強度が低下するという問題がある。
 これに対して、発明者等は、壁体及び端板に設けられた段部に代えて連続的な傾斜部を設けることを検討している。そして、圧縮行程を任意に設定するために、傾斜部の傾斜角度を変更する場合がある。この場合、傾斜部の傾斜角度が変化する位置では、加工精度が低下するおそれがある。例えば、傾斜部の傾斜角度が変化する位置では形状が不連続に変化することになり、加工が困難になるため、歯先や歯底にバリやダレが生じやすい。歯先や歯底にバリやダレが生じると、所望形状から外れ、対向する歯底側や歯先側に凸となるので、歯先と歯底との間で過剰な接触が生じるおそれがある。
 本発明は、このような事情に鑑みてなされたものであって、スクロール部材の壁体や端板に傾斜部が複数ある場合であっても加工精度を向上させることができるスクロール流体機械を提供することを目的とする。
 上記課題を解決するために、本発明のスクロール流体機械は以下の手段を採用する。
 すなわち、本発明の一態様に係るスクロール流体機械は、第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って圧縮室を形成するように相対的に公転旋回運動を行う第2スクロール部材と、備え、前記第1壁体および前記第2壁体の少なくとも一方は、該第1壁体又は該第2壁体の渦巻き方向に該壁体の高さが連続的に変化する複数の壁体傾斜部を有し、前記第1端板および前記第2端板の少なくとも一方は、前記壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する複数の端板傾斜部を有し、隣り合う前記壁体傾斜部の間には、前記壁体の高さが一定とされた壁体平坦部が設けられ、隣り合う前記端板傾斜部の間には、前記壁体平坦部に対応した端板平坦部が設けられている。
 壁体傾斜部及び端板傾斜部が連続的に変化するようになっており、従来の壁体及び歯底に段部が設けられた段付きスクロール流体機械に比べて、流体漏れを少なくすることができる。
 「連続的に変化する」とは、滑らかに接続された場合に限定されるものではなく、製作上不可避的に小さな段差が階段状に接続されており、傾斜を全体としてみれば連続的に傾斜しているものも含まれる。
 複数の壁体傾斜部を設け、隣り合う壁体傾斜部の間に高さが一定とされた壁体平坦部を設けることとした。これにより、傾斜加工と傾斜加工との間に加工精度を確保できる平坦加工を導入することができるので、加工精度を向上させることができる。
 複数の端板傾斜部を設け、隣り合う端板傾斜部の間に端板平坦部を設けることとした。これにより、傾斜加工と傾斜加工との間に加工精度を確保できる平坦加工を導入することができるので、加工精度を向上させることができる。
 さらに、本発明の一態様に係るスクロール流体機械では、前記壁体平坦部は、前記渦巻き方向の外周側から内周側に向かって前記壁体の高さが連続的に増大する第1壁体傾斜部と、前記渦巻き方向の外周側から内周側に向かって前記壁体の高さが連続的に減少する第2壁体傾斜部との間、前記渦巻き方向の外周側から内周側に向かって前記壁体の高さが増大する2つの第1壁体傾斜部の間、又は、前記渦巻き方向の外周側から内周側に向かって前記壁体の高さが減少する2つの第2壁体傾斜部の間、に設けられている。
 壁体傾斜部としては、渦巻き方向の外周側から内周側に向かって壁体の高さが連続的に増大する第1壁体傾斜部と、渦巻き方向の外周側から内周側に向かって壁体の高さが連続的に減少する第2壁体傾斜部とがある。第1壁体傾斜部と第2壁体傾斜部との間に壁体平坦部を設けることで、加工精度を向上させることができる。
 また、2つの第1壁体傾斜部の間に壁体平坦部を設けることで、加工精度を向上させることができる。この場合、2つの第1壁体傾斜部の傾斜角度は同一であっても良いし、異なっていても良い。
 また、2つの第2壁体傾斜部の間に壁体平坦部を設けることで、加工精度を向上させることができる。この場合、2つの第2壁体傾斜部の傾斜角度は同一であっても良いし、異なっていても良い。
 さらに、本発明の一態様に係るスクロール流体機械では、前記第1壁体及び前記第2壁体の歯先には、対向する歯底に接触して流体をシールするチップシールが設けられ、該チップシールは、隣り合う壁体傾斜部と前記壁体平坦部とにわたって設けられている。
 隣り合う壁体傾斜部と壁体平坦部とにわたってチップシールを設けることとした。壁体平坦部では歯底との距離が旋回時に壁体傾斜部ほど変化しないので、壁体平坦部にてチップシールを安定して保持することができる。
 さらに、本発明の一態様に係るスクロール流体機械では、前記壁体平坦部は、複数設けられ、少なくとも2つの前記壁体平坦部の高さが同一とされている。
 壁体高さの寸法管理を行う場合に、壁体傾斜部に比べて測定精度を確保しやすい壁体平坦部の少なくとも2つを同じ高さとすることで、スクロール部材の寸法測定を好適に行うことができる。
 さらに、本発明の一態様に係るスクロール流体機械では、前記端板平坦部は、前記渦巻き方向の外周側から内周側に向かって前記端板の高さが連続的に増大する第1端板傾斜部と、前記渦巻き方向の外周側から内周側に向かって前記端板の高さが連続的に減少する第2端板傾斜部との間、前記渦巻き方向の外周側から内周側に向かって前記端板の高さが増大する2つの第1端板傾斜部の間、又は、前記渦巻き方向の外周側から内周側に向かって前記端板の高さが減少する2つの第2端板傾斜部の間、に設けられている。
 端板傾斜部としては、渦巻き方向の外周側から内周側に向かって端板の高さが連続的に増大する第1端板傾斜部と、渦巻き方向の外周側から内周側に向かって端板の高さが連続的に減少する第2端板傾斜部とがある。第1端板傾斜部と第2端板傾斜部との間に端板平坦部を設けることで、加工精度を向上させることができる。
 また、2つの第1端板傾斜部の間に端板平坦部を設けることで、加工精度を向上させることができる。この場合、2つの第1端板傾斜部の傾斜角度は同一であっても良いし、異なっていても良い。
 また、2つの第2端板傾斜部の間に端板平坦部を設けることで、加工精度を向上させることができる。この場合、2つの第2端板傾斜部の傾斜角度は同一であっても良いし、異なっていても良い。
 さらに、本発明の一態様に係るスクロール流体機械では、前記端板平坦部の前記渦巻き方向の寸法が、半径方向に隣り合う前記壁体の間の寸法である歯底幅以上とされている。
 端板平坦部の渦巻き方向の寸法が、歯底幅以上とされている。これにより、渦巻き方向に端板平坦部を有意な寸法だけ確保することができる。例えば、エンドミルの直径が歯底幅に等しい場合には、端板平坦部の渦巻き方向の寸法を歯底幅以上とすることによって、端板平坦部を精度良く加工することができる。
 さらに、本発明の一態様に係るスクロール流体機械では、前記端板平坦部は、複数設けられ、少なくとも2つの前記端板平坦部の高さが同一とされている。
 端板高さの寸法管理を行う場合に、端板傾斜部に比べて測定精度を確保しやすい端板平坦部の少なくとも2つを同じ高さとすることで、スクロール部材の寸法測定を好適に行うことができる。
 スクロール部材の隣り合う傾斜部の間に高さが一定とされた平坦部を設けることとしたので、傾斜加工と傾斜加工との間に加工精度を確保できる平坦加工を導入することができ、加工精度を向上させることができる。
本発明の一実施形態に係るスクロール圧縮機が用いられる冷凍サイクルを示した概略構成図である。 本発明の一実施形態に係るスクロール圧縮機の要部を示した部分縦断面図である。 図2のスクロール圧縮機の固定スクロールの縦断面図であり、図4のIII-III線矢視図である。 図2のスクロール圧縮機の固定スクロールの平面図である。 図2のスクロール圧縮機の固定スクロールの壁体及び端板を示した平面図である。 図4の固定スクロールの壁体及び端板を渦巻き方向に展開して示した側面図である。 図2のスクロール圧縮機の旋回スクロールの縦断面図であり、図8のVII-VII線矢視図である。 図2のスクロール圧縮機の旋回スクロールを示した平面図である。 図2のスクロール圧縮機の固定スクロールの壁体及び端板を示した平面図である。 図8の旋回スクロールの壁体及び端板を渦巻き方向に展開して示した側面図である。 チップシール隙間を示し、チップシール隙間が相対的に小さい状態を示した側面図である。 チップシール隙間を示し、チップシール隙間が相対的に大きい状態を示した側面図である。 スクロール圧縮機の旋回角に対する容積と圧力を示したグラフである。
 以下に、本発明に係る実施形態について、図面を参照して説明する。
 冷凍サイクル10は、図1に示すように、冷媒(流体)を圧縮するスクロール圧縮機(スクロール流体機械)1と、圧縮された冷媒の熱を外部に放熱する凝縮器2と、凝縮器2から流出した冷媒を減圧する高圧側に設けられる第1膨張弁3と、減圧された冷媒を液冷媒とガス冷媒とに分離するエコノマイザ(気液分離器)4と、液冷媒を更に減圧する低圧側に設けられる第2膨張弁5と、減圧された冷媒に熱を吸収させる蒸発器6と、エコノマイザ4からガス冷媒をスクロール圧縮機1に導くインジェクション流路7などを備える。
 スクロール圧縮機1は、密閉型圧縮機であり、図2に示すように、内部に密閉空間を有するハウジング11と、ハウジング11内に配置され、密閉空間内に取り込まれた冷媒を圧縮するスクロール圧縮機構12と、スクロール圧縮機構12に回転力を伝達する回転軸と、回転軸を介してスクロール圧縮機構12の旋回スクロール19を公転旋回運動させる電動モータを主たる要素として構成されている。
 ハウジング11は、底部が下部カバーによって密閉され、下部カバーの上部には、上下方向に長い円筒状の中間カバー13を備えている。中間カバー13の上部には、ディスチャージカバー14及び上部カバー15が設けられて、ハウジング11が密閉されており、このディスチャージカバー14と上部カバー15間に、圧縮された高圧のガスが吐出される吐出チャンバー16が形成されている。
 ハウジング11内には、スクロール圧縮機構12が組み込まれるとともに、その下方にステータとロータとからなる電動モータが設置されている。電動モータは、ステータがハウジング11に固定設置されることによって組み込まれ、ロータには、回転軸が固定されている。
 スクロール圧縮機構12は、ハウジング11に対して固定設置されている固定スクロール(第1スクロール部材)18と、摺動自在に支持され、固定スクロール18と噛み合わされることにより圧縮室20を形成する旋回スクロール(第2スクロール部材)19などを備える。
 ハウジング11の側面には、冷媒を吸入する吸入口(図示せず。)が、密閉空間に連通するように形成されており、上部カバー15の頭頂側には、吐出チャンバー16と連通し、圧縮された冷媒ガスを吐出する吐出口15aが形成されている。
 スクロール圧縮機構12は、吸入配管及び吸入口を介してハウジング11内に吸い込まれた冷媒ガスを、ハウジング11内部に対して開口されている外周側の吸入口21から圧縮室20内に吸い込み、圧縮する。圧縮された冷媒ガスは、固定スクロール18の中心部に設けられている吐出ポート22及びディスチャージカバー14に設けられている吐出口23を介して吐出チャンバー16内に吐出され、更に、上部カバー15に設けられ、吐出チャンバー16と連通している吐出管24を介して圧縮機の外部へと送出されるようになっている。
 また、ディスチャージカバー14には、外部からスクロール圧縮機構12の圧縮室20の内部へ中間圧の冷媒を導入するインジェクション管25が上部カバー15を貫通して設けられる。インジェクション管25及びインジェクションポート26を介して冷媒が圧縮室20へ供給される。
 リード弁27は、薄板状部材であって、吐出ポート22の出口部に設けられ、吐出ポート22を開閉する。リード弁27は、冷媒の流れを一方向のみに規定する。リード弁27が設けられることによって、冷媒は、圧縮室20から吐出チャンバー16側に流れる。
 固定スクロール18は、図2に示されているように、略円板形状の端板(第1端板)18aと、端板18aの一側面上に立設された渦巻状の壁体(第1壁体)18bとを備えている。旋回スクロール19は、図2に示されているように、略円板形状の端板(第2端板)19aと、端板19aの一側面上に立設された渦巻状の壁体(第2壁体)19bとを備えている。各壁体18b,19bの渦巻形状は、例えば、インボリュート曲線やアルキメデス曲線を用いて定義されている。
 固定スクロール18と旋回スクロール19は、その中心O1,O2を旋回半径ρだけ離し、壁体18b,19bの位相を180°ずらして噛み合わされ、両スクロール18,19の壁体18b、19bの歯先と歯底間に常温で僅かな高さ方向のクリアランス(チップクリアランス)を有するように組み付けられている。これにより、両スクロール18,19間に、その端板18a,19aと壁体18b、19bとにより囲まれて形成される複数対の圧縮室20がスクロール中心に対して対称に形成される。旋回スクロール19は、図示しないオルダムリング等の自転防止機構によって固定スクロール18の周りを公転旋回運動する。
 図2に示すように、向かい合う両端板18a,19a間の対向面間距離Lが、渦巻状の壁体18b,19bの外周側から内周側に向かって、連続的に減少又は増大するように、壁体18b,19bにおける歯先の傾斜や端板18a,19aにおける歯底面の傾斜が設定されている。
 図3,図5及び図6に示すように、固定スクロール18の壁体18bには、外周側から内周側に向かって、壁体平坦部18b1、第2壁体傾斜部18b2、壁体平坦部18b3、第1壁体傾斜部18b4、壁体平坦部18b5、第2壁体傾斜部18b6、壁体平坦部18b7が順に設けられている。また、図3,図4及び図6に示すように、固定スクロール18の歯底面には、外周側から内周側に向けて、端板平坦部18a1、第2端板傾斜部18a2、端板平坦部18a3、第1端板傾斜部18a4、端板平坦部18a5、第2端板傾斜部18a6、端板平坦部18a7の順に設けられている。端板平坦部18a3,18a5の渦巻き方向の寸法は、半径方向に隣り合う壁体18bの間の寸法である歯底幅以上とされている。
 図7,図9及び図10に示すように、旋回スクロール19の壁体19bには、外周側から内周側に向かって、壁体平坦部19b1、第2壁体傾斜部19b2、壁体平坦部19b3、第1壁体傾斜部19b4、壁体平坦部19b5、第2壁体傾斜部19b6、壁体平坦部19b7が順に設けられている。また、図7,図8及び図10に示すように、旋回スクロール19の歯底面には、外周側から内周側に向けて、端板平坦部19a1、第2端板傾斜部19a2、端板平坦部19a3、第1端板傾斜部19a4、端板平坦部19a5、第2端板傾斜部19a6、端板平坦部19a7の順に設けられている。端板平坦部19a3,19a5の渦巻き方向の寸法は、半径方向に隣り合う壁体19bの間の寸法である歯底幅以上とされている。
 旋回スクロール19の壁体19bに設けられた壁体平坦部19b1,19b3,19b5,19b7は、それぞれ、外周側から内周側に向かって、高さが一定である。すなわち、旋回スクロール19の中心O2(図2参照)を通る軸線方向の寸法が一定とされている。以下、壁体や歯底の高さは、中心O1,O2を通る軸線方向の寸法を意味する。
 図10に示されているように、旋回スクロール19の壁体19bの最外周側と最内周側には、それぞれ、高さが一定とされた壁体平坦部19b1,19b7が設けられている。これら壁体平坦部19b1,19b7は、図8に示すように、旋回スクロール19の中心O2(図2参照)まわりに180°(例えば180°以上360°以下、好ましくは210°以下)の領域にわたって設けられている。
 旋回スクロール19の端板19aの歯底についても同様に、高さが一定とされた端板平坦部19a1,19a7が設けられている。これら端板平坦部19a1,19a7についても、旋回スクロール19の中心まわりに180°(例えば180°以上360°以下、好ましくは210°以下)の領域にわたって設けられている。
 図4に示すように、固定スクロール18についても、旋回スクロール19と同様に、壁体平坦部18b1,18b7及び端板平坦部18a1,18a7が設けられている。壁体平坦部18b1,18b7及び端板平坦部18a1,18a7についても、固定スクロール18の中心まわりに180°(例えば180°以上360°以下、好ましくは210°以下)の領域にわたって設けられている。
 図10に示すように、旋回スクロール19の壁体19bに設けられた第1壁体傾斜部19b4は、外周側から内周側に向かって高さが連続的に増加する。図6に示すように、この第1壁体傾斜部19b4の歯先が対向する固定スクロール18の端板18a上の歯底面には、第1壁体傾斜部19b4の傾斜に応じて傾斜する第1端板傾斜部18a4が設けられている。同様に、図6に示すように、固定スクロール18の壁体18bに設けられた第1壁体傾斜部18b4も、外周側から内周側に向かって連続的に増加し、図10に示すように、この第1壁体傾斜部18b4の歯先に対向する旋回スクロール19の端板19a上の歯底面には、第1壁体傾斜部18b4の傾斜に応じて傾斜する第1端板傾斜部19a4が設けられている。第1壁体傾斜部18b4,19b4及び第1端板傾斜部18a4,19a4の渦巻き方向の長さは、中心O1,O2回りに20°以上、好ましくは180°以上に相当する長さとされている。
 これにより、旋回スクロール19の公転旋回運動時、壁体18b,19bの渦巻形状に応じて圧縮室20の幅が減少すると共に、圧縮室20の高さ、すなわち、端板18a,19a間の対向面間距離が増加する。したがって、第1壁体傾斜部18b4,19b4及び第1端板傾斜部18a4,19a4の渦巻方向の位置及び形状(例えば傾斜角度や渦巻方向の長さ)によって、圧縮室20の容積変化が緩やか又は略一定となる第1領域の少なくとも一部が設定される。外周側の吸入口21から吸い込まれた流体が内周側に向かうにしたがい、第1領域では、圧縮室20内の圧力が略一定に維持される。
 なお、第1領域は、渦巻方向にわたって、1つの第1壁体傾斜部18b4,19b4又は第1端板傾斜部18a4,19a4のみが設けられることによって設定されてもよいし、複数の第1壁体傾斜部18b4,19b4又は第1端板傾斜部18a4,19a4が直列に配置されることによって設定されてもよい。複数の第1壁体傾斜部18b4,19b4又は第1端板傾斜部18a4,19a4が直列に配置される場合は、それぞれの傾斜角度を異ならせたり、間に壁体平坦部又は端板平坦部を設けたりすることによって実現される。
 固定スクロール18の端板18aには、圧縮室20内の流体圧力よりも高圧の冷媒を圧縮室20内に供給するインジェクションポート26が設けられる。旋回スクロール19が公転旋回運動をして、旋回スクロール19の壁体19bの歯先が、インジェクションポート26上へ移動して両者が重なると、圧縮室20とインジェクションポート26の連通が閉じられる。反対に、旋回スクロール19の壁体19bの歯先が、インジェクションポート26上から移動してインジェクションポート26が開口すると、圧縮室20とインジェクションポート26とが連通する。インジェクションポート26は、上述した圧縮室20の容積変化が緩やか又は略一定となる第1領域に設けられる。これにより、圧縮室20内の圧力変化が緩やか又は略一定の過程において、インジェクションポート26から供給される冷媒との圧力差を所定以上に維持したまま、冷媒を圧縮室20へ供給できる。第1領域では、中間圧冷媒のインジェクション工程が行われる。
 旋回スクロール19の壁体19bに設けられた第2壁体傾斜部19b2,19b6は、外周側から内周側に向かって高さが連続的に減少する。この第2壁体傾斜部19b2,19b6の歯先が対向する固定スクロール18の端板18a上の歯底面には、第2壁体傾斜部19b2,19b6の傾斜に応じて傾斜する第2端板傾斜部18a2,18a6が設けられている。同様に、固定スクロール18の壁体18bに設けられた第2壁体傾斜部18b2,18b6も、外周側から内周側に向かって連続的に減少し、この第2壁体傾斜部18b2,18b6の歯先に対向する旋回スクロール19の端板19a上の歯底面には、第2壁体傾斜部18b2,18b6の傾斜に応じて傾斜する第2端板傾斜部19a2,19a6が設けられている。
 これにより、旋回スクロール19の公転旋回運動時、壁体18b,19bの渦巻形状に応じて圧縮室20の幅が減少すると共に、圧縮室20の高さ、すなわち、端板18a,19a間の対向面間距離が減少する。したがって、第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6の渦巻方向の位置及び形状(例えば傾斜角度や渦巻方向の長さ)によって、圧縮室20の容積が減少する第2領域及び第3領域のそれぞれの少なくとも一部が設定される。外周側の吸入口21から吸い込まれた冷媒は内周側に向かうにしたがい、壁体18b,19bの渦巻形状に応じた圧縮室20の幅の減少によって圧縮されるだけでなく、圧縮室20の高さ、すなわち、端板18a,19a間の対向面間距離の減少によって更に圧縮されることになる。これにより、三次元圧縮が可能となり、小型化を実現することができる。
 圧縮室20の容積が減少する第2領域は、旋回スクロール19の公転旋回運動に伴う圧縮室20の移動方向において第1領域の前に設定され、第3領域は、圧縮室20の移動方向において第1領域の後に設定される。第2領域は、外周側にて壁体18b,19b同士が噛み合って圧縮室20を形成して締め切った後から、第1領域が開始するまでの領域である。第3領域は、第1領域が終了した後から、圧縮された冷媒の吐出ポート22からの吐出が終了するまでの領域である。
 圧縮室20の容積が減少する第2領域が第1領域の前において設定されることによって、第1領域の前の第2領域において、冷媒が内周側に向かうにしたがい、圧縮室20内の圧力が上昇する。圧力が上昇した冷媒は、第1領域では、内周側に向かうが、圧縮室20内の圧力が略一定に維持される。そして、圧縮室20の容積が減少する第3領域が第1領域の後において設定されることによって、第1領域の後の第3領域において、冷媒が内周側に向かうにしたがい、圧縮室20内の圧力が再び上昇する。第2領域では、低段圧縮工程が行われ、第3領域では、高段圧縮工程が行われる。
 以上より、エコノマイザ4からインジェクション流路7及びインジェクションポート26を介してスクロール圧縮機構12の圧縮過程の途中へ冷媒を導入する2段圧縮冷凍サイクルが実現される。また、圧縮室20の容積が減少する第2領域と第3領域の間に、圧縮室20の容積変化が緩やか又は略一定となる第1領域が設けられ、スクロール圧縮機構12を一つのみ備える単段のスクロール圧縮機1において、エコノマイザ4からスクロール圧縮機構12の圧縮工程途中に中間圧の冷媒を導入できる。
 なお、本実施形態でいう第1壁体傾斜部18b4,19b4、第1端板傾斜部18a4,19a4、第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6における連続的という意味は、滑らかに接続された傾斜に限定されるものではなく、機械加工又は積層造形(AM)などによる製作時に不可避的に生じるような小さな段差が階段状に接続されており、傾斜部を全体としてみれば連続的に傾斜しているものも含まれる。ただし、いわゆる段付きスクロールのような大きな段差は含まれない。
 第1壁体傾斜部18b4,19b4、第1端板傾斜部18a4,19a4、第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6には、コーティングが施されてもよい。コーティングとしては、例えば、リン酸マンガン処理やニッケルリンめっき等が挙げられる。
 図6及び図10に示すように、第1壁体傾斜部18b4,19b4よりも外周側に配置される第2壁体傾斜部18b2,19b2の外周側端部18b8,19b8における歯先高さは、第1壁体傾斜部18b4,19b4の内周側端部18b9,19b9における歯先高さと同一であるとよい。これにより、第1壁体傾斜部18b4,19b4及び第2壁体傾斜部18b2,19b2を間に挟んで、一方の端部18b8,19b8と他方の端部18b9,19b9で測定を行うことができ、固定スクロール18又は旋回スクロール19の寸法測定を好適に行うことができる。
 端板18a,19aについても、図6及び図10に示すように、第1端板傾斜部18a4,19a4よりも外周側に配置される第2端板傾斜部18a2,19a2の外周側端部18a8,19a8における歯底面高さは、第1端板傾斜部18a4,19a4の内周側端部18a9,19a9における歯底面高さと同一であるとよい。これにより、第1端板傾斜部18a4,19a4及び第2端板傾斜部18a2,19a2を間に挟んで、一方の端部18a8,19a8と他方の端部18a9,19a9で測定を行うことで、固定スクロール18又は旋回スクロール19の寸法測定を好適に行うことができる。
 固定スクロール18の壁体18bの歯先には、チップシールが設けられる。チップシールは樹脂製とされており、対向する旋回スクロール19の端板19aの歯底に接触して流体をシールする。チップシールは、壁体18bの歯先に周方向にわたって形成されたチップシール溝18d内に収容されている。なお、旋回スクロール19の壁体19bの歯先に対しても同様に、チップシール溝19dが形成され、チップシール溝19d内にチップシールが設けられる。
 両スクロール18,19が相対的に公転旋回運動を行うと、旋回直径(旋回半径ρ×2)分だけ歯先と歯底の位置が相対的にずれる。この歯先と歯底の位置ずれに起因して、傾斜部では、歯先と歯底との間のチップクリアランスが変化する。例えば、図11AではチップクリアランスTが小さく、図11BではチップクリアランスTが大きいことを示している。チップシール28は、このチップクリアランスTが旋回運動によって変化しても、背面から圧縮流体によって端板19aの歯底側に押圧されるので、追従してシールできるようになっている。
 一方で、壁体平坦部18b3,18b5,19b3,19b5では歯底との距離が旋回時に壁体傾斜部18b2,18b4,18b6,19b2,19b4,19b6ほど変化しない。チップシール28は、壁体平坦部18b3,18b5,19b3,19b5の渦巻き方向における長手方向にわたって延長して連続して設けられている。
 上述したスクロール圧縮機1は、以下のように動作する。
 図示しない電動モータ等の駆動源によって、旋回スクロール19が固定スクロール18回りに公転旋回運動を行う。これにより、各スクロール18,19の外周側から流体を吸い込み、各壁体18b,19b及び各端板18a,19aによって囲まれた圧縮室20に冷媒を取り込む。
 まず、外周側にて壁体18b,19b同士が噛み合って圧縮室を形成して締め切った後に、第2領域において、圧縮室20内の冷媒は外周側から内周側に移動するにしたがい圧縮され、図12に示すように、圧縮室20内の圧力が上昇する。圧縮された冷媒は、第1領域へ移動し、第1領域では、冷媒は内周側に向かう。そして、インジェクション管25及びインジェクションポート26を介して、エコノマイザ4から中間圧の冷媒が圧縮室20へ供給される。第1領域では、図12に示すように、圧縮室20内の圧力変化が緩やか又は略一定であり、エコノマイザ4から供給される冷媒との圧力差を所定以上に維持したまま、流体を圧縮室20へ供給できる。
 その後、冷媒は第3領域へ移動し、第3領域において、冷媒が内周側に向かうにしたがい圧縮され、図12に示すように、圧縮室20内の圧力が再び上昇する。圧縮された冷媒は、最終的に固定スクロール18に形成された吐出ポート22から吐出される。
 以上の通り、本実施形態のスクロール圧縮機1によれば、以下の作用効果を奏する。
 複数の壁体傾斜部18b2,18b4,18b6,19b2,19b4,19b6を設け、隣り合う壁体傾斜部18b2,18b4,18b6,19b2,19b4,19b6の間に高さが一定とされた壁体平坦部18b3,18b5,19b3,19b5を設けることとした。これにより、傾斜加工と傾斜加工との間に加工精度を確保できる平坦加工を導入することができるので、加工精度を向上させることができる。
 複数の端板傾斜部18a2,18a4,18a6,19a2,19a4,19a6を設け、隣り合う端板傾斜部18a2,18a4,18a6,19a2,19a4,19a6の間に端板平坦部18a3,18a5,19a3,19a5を設けることとした。これにより、傾斜加工と傾斜加工との間に加工精度を確保できる平坦加工を導入することができるので、加工精度を向上させることができる。
 隣り合う壁体傾斜部18b2,18b4,18b6,19b2,19b4,19b6と壁体平坦部18b3,18b5,19b3,19b5とにわたってチップシール28を設けることとした。壁体平坦部18b3,18b5,19b3,19b5では歯底との距離が旋回時に壁体傾斜部18b2,18b4,18b6,19b2,19b4,19b6ほど変化しないので、壁体平坦部18b3,18b5,19b3,19b5にてチップシールを安定して保持することができる。
 壁体18b、19bの高さの寸法管理を行う場合に、壁体傾斜部18b2,18b4,18b6,19b2,19b4,19b6に比べて測定精度を確保しやすい壁体平坦部18b3,18b5,19b3,19b5の少なくとも2つを同じ高さとすることで、スクロール部材18,19の寸法測定を好適に行うことができる。
 端板18a,19aの高さの寸法管理を行う場合に、端板傾斜部18a2,18a4,18a6,19a2,19a4,19a6に比べて測定精度を確保しやすい端板平坦部18a3,18a5,19a3,19a5の少なくとも2つを同じ高さとすることで、スクロール部材18,19の寸法測定を好適に行うことができる。
 端板平坦部18a3,18a5,19a3,19a5の渦巻き方向の寸法が、歯底幅以上とされている。これにより、渦巻き方向に端板平坦部18a3,18a5,19a3,19a5を有意な寸法だけ確保することができる。例えば、加工時に使用するエンドミルの直径が歯底幅に等しい場合には、端板平坦部18a3,18a5,19a3,19a5の渦巻き方向の寸法を歯底幅以上とすることによって、端板平坦部18a3,18a5,19a3,19a5を精度良く加工することができる。
 本実施形態では、第1壁体傾斜部18b4,19b4、第1端板傾斜部18a4,19a4、第2壁体傾斜部18b2,18b6,19b2,19b6及び第2端板傾斜部18a2,18a6,19a2,19a6を両スクロール18,19に設けることとしたが、いずれか一方に設けてもよい。
 具体的には、一方の壁体(例えば旋回スクロール19の壁体19b)に第1壁体傾斜部19b4及び第2壁体傾斜部19b2,19b6を設け、他方の端板(例えば固定スクロール18の端板18a)に第1端板傾斜部19a4及び第2端板傾斜部19a2,19a6を設けた場合には、他方の壁体18bと一方の端板19aは平坦とする。
 また、従来の段付き形状と組み合わせた形状、すなわち、固定スクロール18の端板18aに第1端板傾斜部18a4及び第2端板傾斜部18a2,18a6を設ける一方で、旋回スクロール19の端板19aに段部が設けられた形状と組み合わせてもよい。
 本実施形態では、壁体平坦部18b1,18b7,19b1,19b7及び端板平坦部18a1,18a7,19a1,19a7を設けることとしたが、内周側及び/又は外周側の平坦部を省略して第2壁体傾斜部18b2,19b2を壁体18b,19bの全体に延長して設けるようにしてもよい。
 本実施形態では、スクロール圧縮機として説明したが、膨張機として用いるスクロール膨張機に対しても本発明を適用することができる。
1    :スクロール圧縮機(スクロール流体機械)
2    :凝縮器
3    :第1膨張弁
4    :エコノマイザ(気液分離器)
5    :第2膨張弁
6    :蒸発器
7    :インジェクション流路
10   :冷凍サイクル
11   :ハウジング
12   :スクロール圧縮機構
13   :中間カバー
14   :ディスチャージカバー
15   :上部カバー
15a  :吐出口
16   :吐出チャンバー
18   :固定スクロール(第1スクロール部材)
18a  :端板(第1端板)
18a1 :端板平坦部
18a2 :第2端板傾斜部
18a3 :端板平坦部
18a4 :第1端板傾斜部
18a5 :端板平坦部
18a6 :第2端板傾斜部
18a7 :端板平坦部
18a8 :外周側端部
18a9 :内周側端部
18b  :壁体(第1壁体)
18b1 :壁体平坦部
18b2 :第2壁体傾斜部
18b3 :壁体平坦部
18b4 :第1壁体傾斜部
18b5 :壁体平坦部
18b6 :第2壁体傾斜部
18b7 :壁体平坦部
18b8 :外周側端部
18b9 :内周側端部
18d  :チップシール溝
19   :旋回スクロール(第2スクロール部材)
19a  :端板(第2端板)
19a1 :端板平坦部
19a2 :第2端板傾斜部
19a3 :端板平坦部
19a4 :第1端板傾斜部
19a5 :端板平坦部
19a6 :第2端板傾斜部
19a7 :端板平坦部
19a8 :外周側端部
19a9 :内周側端部
19b  :壁体(第2壁体)
19b1 :壁体平坦部
19b2 :第2壁体傾斜部
19b3 :壁体平坦部
19b4 :第1壁体傾斜部
19b5 :壁体平坦部
19b6 :第2壁体傾斜部
19b7 :壁体平坦部
19b8 :外周側端部
19b9 :内周側端部
20   :圧縮室
21   :吸入口
22   :吐出ポート
23   :吐出口
24   :吐出管
25   :インジェクション管
26   :インジェクションポート
27   :リード弁
28   :チップシール

Claims (7)

  1.  第1端板上に渦巻状の第1壁体が設けられた第1スクロール部材と、
     前記第1端板に向かい合うように配置された第2端板上に渦巻状の第2壁体が設けられ、該第2壁体が前記第1壁体と噛み合って圧縮室を形成するように相対的に公転旋回運動を行う第2スクロール部材と、
    を備え、
     前記第1壁体および前記第2壁体の少なくとも一方は、該第1壁体又は該第2壁体の渦巻き方向に該壁体の高さが連続的に変化する複数の壁体傾斜部を有し、
     前記第1端板および前記第2端板の少なくとも一方は、前記壁体傾斜部の歯先に対向する歯底面が該壁体傾斜部の傾斜に応じて傾斜する複数の端板傾斜部を有し、
     隣り合う前記壁体傾斜部の間には、前記壁体の高さが一定とされた壁体平坦部が設けられ、
     隣り合う前記端板傾斜部の間には、前記壁体平坦部に対応した端板平坦部が設けられているスクロール流体機械。
  2.  前記壁体平坦部は、
     前記渦巻き方向の外周側から内周側に向かって前記壁体の高さが連続的に増大する第1壁体傾斜部と、前記渦巻き方向の外周側から内周側に向かって前記壁体の高さが連続的に減少する第2壁体傾斜部との間、
     前記渦巻き方向の外周側から内周側に向かって前記壁体の高さが増大する2つの第1壁体傾斜部の間、又は、
     前記渦巻き方向の外周側から内周側に向かって前記壁体の高さが減少する2つの第2壁体傾斜部の間、
    に設けられている請求項1に記載のスクロール流体機械。
  3.  前記第1壁体及び前記第2壁体の歯先には、対向する歯底に接触して流体をシールするチップシールが設けられ、
     該チップシールは、隣り合う壁体傾斜部と前記壁体平坦部とにわたって設けられている請求項1又は2に記載のスクロール流体機械。
  4.  前記壁体平坦部は、複数設けられ、
     少なくとも2つの前記壁体平坦部の高さが同一とされている請求項1から3のいずれかに記載のスクロール流体機械。
  5.  前記端板平坦部は、
     前記渦巻き方向の外周側から内周側に向かって前記端板の高さが連続的に増大する第1端板傾斜部と、前記渦巻き方向の外周側から内周側に向かって前記端板の高さが連続的に減少する第2端板傾斜部との間、
     前記渦巻き方向の外周側から内周側に向かって前記端板の高さが増大する2つの第1端板傾斜部の間、又は、
     前記渦巻き方向の外周側から内周側に向かって前記端板の高さが減少する2つの第2端板傾斜部の間、
     に設けられている請求項1から4のいずれかに記載のスクロール流体機械。
  6.  前記端板平坦部の前記渦巻き方向の寸法が、半径方向に隣り合う前記壁体の間の寸法である歯底幅以上とされている請求項1から5のいずれかに記載のスクロール流体機械。
  7.  前記端板平坦部は、複数設けられ、
     少なくとも2つの前記端板平坦部の高さが同一とされている請求項1から6のいずれかに記載のスクロール流体機械。
PCT/JP2019/000735 2018-02-21 2019-01-11 スクロール流体機械 WO2019163321A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-028954 2018-02-21
JP2018028954A JP7102164B2 (ja) 2018-02-21 2018-02-21 スクロール流体機械

Publications (1)

Publication Number Publication Date
WO2019163321A1 true WO2019163321A1 (ja) 2019-08-29

Family

ID=67688231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/000735 WO2019163321A1 (ja) 2018-02-21 2019-01-11 スクロール流体機械

Country Status (2)

Country Link
JP (1) JP7102164B2 (ja)
WO (1) WO2019163321A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862395A (ja) * 1981-10-12 1983-04-13 Sanden Corp スクロ−ル型圧縮機
JP2002303281A (ja) * 2001-02-02 2002-10-18 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2012533028A (ja) * 2009-07-14 2012-12-20 エドワーズ リミテッド スクロール圧縮機
JP2014080940A (ja) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
CN204003446U (zh) * 2014-06-04 2014-12-10 恒升精密科技股份有限公司 压缩机涡卷

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5862395A (ja) * 1981-10-12 1983-04-13 Sanden Corp スクロ−ル型圧縮機
JP2002303281A (ja) * 2001-02-02 2002-10-18 Mitsubishi Heavy Ind Ltd スクロール圧縮機
JP2012533028A (ja) * 2009-07-14 2012-12-20 エドワーズ リミテッド スクロール圧縮機
JP2014080940A (ja) * 2012-10-18 2014-05-08 Mitsubishi Heavy Ind Ltd スクロール型圧縮機
CN204003446U (zh) * 2014-06-04 2014-12-10 恒升精密科技股份有限公司 压缩机涡卷

Also Published As

Publication number Publication date
JP2019143545A (ja) 2019-08-29
JP7102164B2 (ja) 2022-07-19

Similar Documents

Publication Publication Date Title
US9181945B2 (en) Scroll compressor with channels intermittently communicating internal and external compression chambers with back pressure chamber
CN105190044B (zh) 涡旋式压缩机
JP5954453B1 (ja) スクロール型圧縮機
JPS6037320B2 (ja) スクロ−ル型圧縮機
JP2003269346A (ja) スクロール型流体機械
US7497674B2 (en) Scroll compressor having shoulder and rotation-preventing portions positioned as different phases
JP4576306B2 (ja) スクロール圧縮機および空気調和機
WO2015194119A1 (ja) スクロール圧縮機
US8475149B2 (en) Scroll fluid machine having multiple discharge ports
CN103635692A (zh) 涡旋式压缩机
JP2019203475A (ja) 圧縮機
WO2019163516A1 (ja) スクロール流体機械
WO2019163628A1 (ja) スクロール流体機械
WO2019163321A1 (ja) スクロール流体機械
JP5914810B2 (ja) スクロール型圧縮機
WO2019163309A1 (ja) スクロール流体機械
US10190586B2 (en) Scroll compressor and air conditioner
JP4423024B2 (ja) スクロール圧縮機
WO2019163537A1 (ja) スクロール流体機械
JP7023738B2 (ja) スクロール流体機械
JP6679633B2 (ja) スクロール流体機械
JP5791316B2 (ja) スクロール型流体機械
JP6996267B2 (ja) スクロール圧縮機
KR101727498B1 (ko) 분리식 선회스크롤을 갖는 스크롤 압축기
CN111742142B (zh) 涡旋流体机械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19757563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19757563

Country of ref document: EP

Kind code of ref document: A1