WO2015194119A1 - スクロール圧縮機 - Google Patents

スクロール圧縮機 Download PDF

Info

Publication number
WO2015194119A1
WO2015194119A1 PCT/JP2015/002856 JP2015002856W WO2015194119A1 WO 2015194119 A1 WO2015194119 A1 WO 2015194119A1 JP 2015002856 W JP2015002856 W JP 2015002856W WO 2015194119 A1 WO2015194119 A1 WO 2015194119A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
fixed
swirl
wrap
fitting portion
Prior art date
Application number
PCT/JP2015/002856
Other languages
English (en)
French (fr)
Inventor
山田 定幸
雄司 尾形
悠介 今井
淳 作田
森本 敬
哲広 林
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014126892A external-priority patent/JP6454863B2/ja
Priority claimed from JP2014137824A external-priority patent/JP6454865B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP15809073.8A priority Critical patent/EP3159542B1/en
Priority to CN201580010407.5A priority patent/CN106030112A/zh
Priority to US15/120,871 priority patent/US10655625B2/en
Publication of WO2015194119A1 publication Critical patent/WO2015194119A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0215Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form where only one member is moving
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0253Details concerning the base
    • F04C18/0261Details of the ports, e.g. location, number, geometry
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
    • F04C18/0207Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents both members having co-operating elements in spiral form
    • F04C18/0246Details concerning the involute wraps or their base, e.g. geometry
    • F04C18/0269Details concerning the involute wraps
    • F04C18/0292Ports or channels located in the wrap
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C27/00Sealing arrangements in rotary-piston pumps specially adapted for elastic fluids
    • F04C27/005Axial sealings for working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/10Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber
    • F04C28/16Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by changing the positions of the inlet or outlet openings with respect to the working chamber using lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C28/00Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids
    • F04C28/24Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • F04C28/26Control of, monitoring of, or safety arrangements for, pumps or pumping installations specially adapted for elastic fluids characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves using bypass channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2210/00Fluid
    • F04C2210/22Fluid gaseous, i.e. compressible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft

Definitions

  • the present invention relates to a scroll compressor.
  • a partition plate is provided in a compression vessel, and a compression element having a fixed scroll and a turning scroll in a low-pressure side chamber partitioned by the partition plate and an electric element that drives the turning scroll to turn are sealed.
  • a type scroll compressor is known.
  • the fixed scroll boss is fitted in the holding hole of the partition plate, and the refrigerant compressed by the compression element is separated by the partition plate through the discharge port of the fixed scroll.
  • the thing provided with the structure discharged to the chamber of the side is proposed (for example, refer patent document 1).
  • a tip seal is often used to enhance the sealing performance of the compression chamber formed by the orbiting scroll and the fixed scroll.
  • Patent Document 2 can improve the sealing performance of the compression chamber while applying the back pressure to the fixed scroll and pressing the fixed scroll against the orbiting scroll while eliminating the tip seal.
  • the present invention provides a scroll compressor with improved reliability.
  • the scroll compressor of the present invention is meshed with a partition plate that partitions a sealed container into a high-pressure space and a low-pressure space, a fixed scroll that is adjacent to the partition plate and has a fixed spiral wrap, and a fixed spiral wrap of the fixed scroll. It has a swirl spiral wrap.
  • the scroll compressor includes a orbiting scroll that forms a compression chamber between the wraps (fixed spiral wrap and orbiting spiral wrap), a rotation suppression member that prevents rotation of the orbiting scroll, and a main bearing that supports the orbiting scroll.
  • the fixed scroll, the orbiting scroll, the rotation suppressing member, and the main bearing are arranged in the low pressure space, and the fixed scroll can move in the axial direction between the partition plate and the main bearing.
  • the scroll compressor has a bearing-side fitting portion formed on the main bearing, a scroll-side fitting portion formed on the fixed scroll, a lower portion inserted into the bearing-side fitting portion, and an upper portion fitted on the scroll side.
  • a columnar member inserted into the portion.
  • the lower end surface of the fitting portion between the columnar member and the scroll side fitting portion is positioned above the wrap end surface of the fixed spiral wrap in the axial direction.
  • FIG. 1 is a longitudinal sectional view showing a configuration of a hermetic scroll compressor according to a first embodiment of the present invention.
  • FIG. 2A is a side view showing the orbiting scroll of the hermetic scroll compressor according to the first embodiment.
  • 2B is a cross-sectional view taken along line XX of FIG. 2A.
  • FIG. 3 is a bottom view showing the fixed scroll of the hermetic scroll compressor according to the first embodiment.
  • FIG. 4 is a perspective view of the fixed scroll of the hermetic scroll compressor according to the first embodiment viewed from the bottom surface side.
  • FIG. 5 is a perspective view of the fixed scroll of the hermetic scroll compressor according to the first embodiment as viewed from the upper surface side.
  • FIG. 1 is a longitudinal sectional view showing a configuration of a hermetic scroll compressor according to a first embodiment of the present invention.
  • FIG. 2A is a side view showing the orbiting scroll of the hermetic scroll compressor according to the first embodiment.
  • 2B is a cross
  • FIG. 6 is a perspective view showing a main bearing of the hermetic scroll compressor according to the first embodiment.
  • FIG. 7 is a top view showing the rotation suppressing member of the hermetic scroll compressor according to the first embodiment.
  • FIG. 8 is a cross-sectional view of a main part showing a partition plate and a fixed scroll of the hermetic scroll compressor according to the first embodiment.
  • FIG. 9 is a partial cross-sectional perspective view showing a main part of the hermetic scroll compressor according to the first embodiment.
  • FIG. 10 is a combination diagram showing the relative positions of the orbiting scroll and the fixed scroll at each rotation angle of the hermetic scroll compressor according to the first embodiment.
  • FIG. 11 is a longitudinal sectional view showing a positional relationship between a fitting position of the hermetic scroll compressor according to the first embodiment and a fixed scroll spiral wrap.
  • FIG. 12 is a diagram illustrating the relationship between the phase angle of the rotating shaft and the rollover reaction force in the first embodiment.
  • FIG. 13 is a longitudinal cross-sectional view which shows the positional relationship of the horizontal surface A and the fitting part area
  • FIG. 1 is a longitudinal sectional view showing a configuration of a hermetic scroll compressor according to a first embodiment.
  • the hermetic scroll compressor includes a hermetic container 10 formed in a cylindrical shape extending in the vertical direction.
  • a partition plate 20 for partitioning the inside of the hermetic container 10 up and down is provided in the upper part of the hermetic container 10.
  • the partition plate 20 divides the sealed container 10 into a high-pressure space 11 and a low-pressure space 12.
  • the closed container 10 is provided with a refrigerant suction pipe 13 for introducing a refrigerant into the low pressure space 12 and a refrigerant discharge pipe 14 for discharging the compressed refrigerant from the high pressure space 11.
  • the bottom of the low-pressure space 12 forms an oil reservoir 15 in which lubricating oil is stored.
  • the low-pressure space 12 includes a fixed scroll 30 and a turning scroll 40 as a compression mechanism.
  • the fixed scroll 30 is adjacent to the partition plate 20.
  • the orbiting scroll 40 is engaged with the fixed scroll 30 to form a compression chamber 50.
  • the main bearing 60 that supports the orbiting scroll 40 is provided below the fixed scroll 30 and the orbiting scroll 40.
  • a bearing portion 61 and a boss housing portion 62 are formed in the approximate center of the main bearing 60.
  • the main bearing 60 is formed with a return pipe 63 (see FIG. 6) having one end opened in the boss housing 62 and the other end opened on the lower surface of the main bearing 60.
  • One end of the return pipe 63 may be opened on the upper surface of the main bearing 60. Further, the other end of the return pipe 63 may be opened on the side surface of the main bearing 60.
  • the bearing portion 61 supports the rotary shaft 70.
  • the rotating shaft 70 is supported by the bearing portion 61 and the auxiliary bearing 16.
  • An eccentric shaft 71 that is eccentric with respect to the axis of the rotation shaft 70 is formed at the upper end of the rotation shaft 70.
  • An oil path 72 through which the lubricating oil passes is formed inside the rotary shaft 70.
  • a lubricating oil suction port 73 is provided at the lower end of the rotating shaft 70.
  • a paddle 74 is formed on the upper portion of the suction port 73.
  • the oil passage 72 communicates with the suction port 73 and the paddle 74 and is formed in the axial direction of the rotary shaft 70.
  • the oil passage 72 includes an oil supply port 75 for supplying oil to the bearing portion 61, an oil supply port 76 for supplying oil to the auxiliary bearing 16, and an oil supply port 77 for supplying oil to the boss housing portion 62.
  • the electric element 80 includes a stator 81 fixed to the hermetic container 10 and a rotor 82 arranged inside the stator 81.
  • the rotor 82 is fixed to the rotating shaft 70.
  • Balance weights 17 a and 17 b are attached to the rotating shaft 70 above and below the rotor 82.
  • the balance weight 17a and the balance weight 17b are arranged at positions shifted by 180 °.
  • the balance between the centrifugal force generated by the balance weights 17a and 17b and the centrifugal force generated by the revolving motion of the orbiting scroll 40 is balanced.
  • the balance weights 17a and 17b may be fixed to the rotor 82.
  • the rotation suppression member (Oldham ring) 90 prevents the orbiting scroll 40 from rotating.
  • the orbiting scroll 40 is supported by the fixed scroll 30 via the rotation suppression member 90. Thereby, the orbiting scroll 40 performs the orbiting motion without rotating with respect to the fixed scroll 30.
  • the columnar member 100 prevents the fixed scroll 30 from rotating and moving in the radial direction, and allows the fixed scroll 30 to move in the axial direction.
  • the fixed scroll 30 is supported by the main bearing 60 by the columnar member 100 and can move in the axial direction between the partition plate 20 and the main bearing 60.
  • the fixed scroll 30, the orbiting scroll 40, the electric element 80, the rotation suppressing member 90, and the main bearing 60 are disposed in the low pressure space 12, and the fixed scroll 30 and the orbiting scroll 40 are disposed between the partition plate 20 and the main bearing 60. Be placed.
  • Rotation shaft 70 is rotated together with rotor 82 by driving electric element 80.
  • the orbiting scroll 40 orbits by the eccentric shaft 71 and the refrigerant is compressed in the compression chamber 50.
  • the refrigerant is introduced into the low-pressure space 12 from the refrigerant suction pipe 13.
  • the refrigerant in the low pressure space 12 on the outer periphery of the orbiting scroll 40 is guided to the compression chamber 50.
  • the refrigerant is compressed in the compression chamber 50 and then discharged from the refrigerant discharge pipe 14 via the high-pressure space 11.
  • the lubricating oil stored in the oil reservoir 15 enters the oil passage 72 from the suction port 73 and is pumped upward along the paddle 74 of the oil passage 72.
  • the pumped-up lubricating oil is supplied to the bearing portion 61, the auxiliary bearing 16, and the boss accommodating portion 62 from the oil supply ports 75, 76, and 77, respectively.
  • the lubricating oil pumped up to the boss accommodating portion 62 is guided to the sliding surface between the main bearing 60 and the orbiting scroll 40 and is discharged through the return pipe 63 and returned to the oil reservoir 15 again.
  • FIG. 2A is a side view showing the orbiting scroll of the hermetic scroll compressor according to the first embodiment
  • FIG. 2B is a sectional view taken along line XX of FIG. 2A.
  • the orbiting scroll 40 includes a disc-like orbiting scroll end plate 41, a spiral orbiting swirl wrap 42 erected on the upper surface of the orbiting scroll end plate 41, and a cylindrical shape formed substantially at the center of the lower surface of the orbiting scroll end plate 41.
  • the boss 43 is provided.
  • the thickness of the inner wall and the outer wall of the swirl spiral wrap 42 is formed so as to gradually decrease from the winding start end 42a to the end end 42b of the swirl spiral wrap 42. In this way, by gradually thinning the swirl spiral wrap 42 toward the end 42b, it is possible to increase the confinement volume of the intake gas, and the swirl spiral wrap 42 can be reduced in weight, so that the centrifugal force around the touch can be decreased.
  • a pair of first key grooves 91 are formed in the orbiting scroll end plate 41.
  • FIG. 3 is a bottom view showing the fixed scroll of the hermetic scroll compressor according to the first embodiment.
  • FIG. 4 is a perspective view of the fixed scroll viewed from the bottom side.
  • FIG. 5 is a perspective view of the fixed scroll as viewed from the upper surface side.
  • the fixed scroll 30 includes a disk-shaped fixed scroll end plate 31, a spiral fixed spiral wrap 32 erected on the lower surface (bottom surface) of the fixed scroll end plate 31, and the periphery of the fixed spiral wrap 32.
  • a peripheral wall 33 standing upright and a flange 34 provided around the peripheral wall 33 are provided.
  • the thickness of the inner wall and the outer wall of the fixed spiral wrap 32 is formed so as to gradually decrease from the winding start end 32a to the end 32b of the fixed spiral wrap 32.
  • the terminal end 32b is a portion where the fixed spiral wrap 32 is formed from the inner wall and the outer wall, and the fixed spiral wrap 32 is further extended only by the inner wall from the terminal end 32b to the innermost wall outermost peripheral portion 32c by about 340 °. .
  • the confined volume of the suction gas can be increased, and since the fixed spiral wrap 32 can be reduced in weight, the centrifugal force around the touch can be reduced.
  • a first discharge port 35 is formed at a substantially central portion of the fixed scroll end plate 31.
  • the fixed scroll end plate 31 is provided with a bypass port 36 and an intermediate pressure port 37.
  • the bypass port 36 is located in the vicinity of the first discharge port 35 and in a high pressure region immediately before completion of compression.
  • the intermediate pressure port 37 is located in the intermediate pressure region in the middle of compression near the terminal end 32b.
  • the fixed scroll end plate 31 protrudes above the flange 34.
  • a suction portion 38 for taking in the refrigerant into the compression chamber 50 is formed on the peripheral wall 33 and the flange 34 of the fixed scroll 30.
  • a second keyway 92 is formed in the flange 34.
  • the flange 34 is formed with a scroll side fitting portion 101 into which the upper end portion of the columnar member 100 is inserted.
  • a boss portion 39 is formed at the center on the upper surface (the surface on the partition plate 20 side) of the fixed scroll 30.
  • a discharge space 30H (see FIG. 8) is formed by a recess, and the first discharge port 35 and the bypass port 36 are formed in the discharge space 30H.
  • an intermediate pressure space 30M is formed on the upper surface of the fixed scroll 30 by a ring-shaped recess between the peripheral wall 33 and the boss portion 39.
  • An intermediate pressure port 37 is formed in the intermediate pressure space 30M.
  • the intermediate pressure port 37 is configured with a diameter smaller than the thickness of the inner wall and the outer wall of the swirl spiral wrap 42.
  • bypass check valve 121 In the discharge space 30H, a bypass check valve 121 and a bypass check valve stop 122 that can close the bypass port 36 are provided.
  • the bypass check valve 121 can be made compact in height by using a reed valve. Further, the bypass check valve 121 uses a V-shaped reed valve so that the bypass port 36 communicating with the compression chamber 50 formed on the outer wall side of the swirl spiral wrap 42 and the inner wall side of the swirl spiral wrap 42 are provided. The bypass port 36 communicating with the compression chamber 50 to be formed can be closed.
  • the fixed scroll 30 and the orbiting scroll 40 can be reduced in weight.
  • the orbiting scroll 40 can reduce the load on the bearing portion 61 due to the effect of reducing the centrifugal force during the orbiting drive due to the weight reduction, and the balance weights 17a and 17b provided on the rotary shaft 70 can be reduced in size. Therefore, the degree of freedom in design can be improved.
  • the extension angle can be designed to be larger than that of the conventional spiral wrap shape, higher efficiency and smaller size can be realized by increasing the compression ratio and increasing the volume.
  • FIG. 6 is a perspective view showing a main bearing of the hermetic scroll compressor according to the first embodiment.
  • the bearing portion 61 and the boss accommodating portion 62 are formed in the approximate center of the main bearing 60.
  • a bearing side fitting portion 102 into which the lower end portion of the columnar member 100 is inserted is formed on the outer peripheral portion of the main bearing 60.
  • the bottom surface of the bearing side fitting portion 102 communicates with a return pipe 63 having one end opened on a sliding surface with the orbiting scroll 40. Therefore, the lubricating oil is supplied to the bearing side fitting portion 102 through the return pipe 63.
  • FIG. 7 is a top view showing the rotation suppressing member of the hermetic scroll compressor according to the first embodiment.
  • the rotation restraining member (Oldham ring) 90 is formed with a first key 93 and a second key 94.
  • the first key 93 engages with the first key groove 91 of the orbiting scroll 40
  • the second key 94 engages with the second key groove 92 of the fixed scroll 30. Therefore, the orbiting scroll 40 can perform the orbiting movement without rotating with respect to the fixed scroll 30.
  • the fixed scroll 30, the orbiting scroll 40, and the Oldham ring 90 are arranged in this order from above in the axial direction of the rotary shaft 70.
  • the first key 93 and the second key 94 of the Oldham ring 90 are formed on the same plane of the ring portion 95. Therefore, when the Oldham ring 90 is processed, the first key 93 and the second key 94 can be processed from the same direction, and the number of times the Oldham ring 90 is detached from the processing apparatus can be reduced. Improvement in accuracy and reduction in machining costs can be obtained.
  • FIG. 8 is a cross-sectional view of a main part showing a partition plate and a fixed scroll of the hermetic scroll compressor according to the first embodiment.
  • a second discharge port 21 is formed at the center of the partition plate 20.
  • the second discharge port 21 is provided with a discharge check valve 131 and a discharge check valve stop 132.
  • a discharge space 30 ⁇ / b> H communicating with the first discharge port 35 is formed between the partition plate 20 and the fixed scroll 30.
  • the second discharge port 21 communicates the discharge space 30 ⁇ / b> H with the high-pressure space 11.
  • the discharge check valve 131 closes the second discharge port 21.
  • a high pressure is applied to the discharge space 30H formed between the partition plate 20 and the fixed scroll 30 to press the fixed scroll 30 against the orbiting scroll 40.
  • a gap with the orbiting scroll 40 can be eliminated, and a highly efficient operation can be performed.
  • the compression chamber 50 and the discharge space 30 ⁇ / b> H are communicated with each other by the bypass port 36 separately from the first discharge port 35.
  • a bypass check valve 121 is provided in the bypass port 36.
  • the discharge check valve 131 is configured to be thicker than the bypass check valve 121.
  • the first discharge port 35 has a smaller volume than the second discharge port 21. This is for reducing the loss of the discharge pressure from the compression chamber 50.
  • the loss of discharge pressure can be reduced.
  • the hermetic scroll compressor according to the first embodiment includes a ring-shaped first seal member 141 disposed on the outer periphery of the discharge space 30H between the partition plate 20 and the fixed scroll 30, and the partition plate 20.
  • a ring-shaped second seal member 142 is provided between the fixed scroll 30 and the outer periphery of the first seal member 141.
  • first seal member 141 and the second seal member 142 for example, polytetrafluoroethylene, which is a fluororesin, is suitable in terms of sealability and assemblability.
  • first seal member 141 and the second seal member 142 improve the reliability of the seal by mixing the fiber material with the fluororesin.
  • the first seal member 141 and the second seal member 142 are sandwiched between the partition plates 20 by the closing member 150.
  • the closing member 150 can be caulked with the partition plate 20 by using an aluminum material.
  • An intermediate pressure space 30M is formed between the first seal member 141 and the second seal member 142. Since the intermediate pressure space 30M communicates with the compression chamber 50 in the intermediate pressure region in the middle of compression by the intermediate pressure port 37, a pressure lower than the pressure of the discharge space 30H and higher than the pressure of the low pressure space 12 is applied.
  • the intermediate pressure space 30M is formed between the partition plate 20 and the fixed scroll 30 in addition to the high-pressure discharge space 30H, so that the fixed scroll 30 is connected to the orbiting scroll 40. Easy to adjust the pressing force.
  • the discharge space 30H and the intermediate pressure space 30M are formed by the first seal member 141 and the second seal member 142, the high pressure discharge space 30H to the intermediate pressure space 30M. It is possible to reduce the refrigerant leakage to the medium and the refrigerant leakage from the intermediate pressure space 30M to the low pressure space 12.
  • the first seal member 141 and the second seal member 142 are sandwiched between the partition plates 20 by the closing member 150. For this reason, since the partition plate 20, the first seal member 141, the second seal member 142, and the closing member 150 can be assembled and placed in the sealed container 10, the number of parts can be reduced and the scroll compressor can be assembled. Easy.
  • FIG. 9 is a partial cross-sectional perspective view showing the main part of the hermetic scroll compressor according to the first embodiment.
  • the closing member 150 described in FIG. 8 includes a ring-shaped member 151 and a plurality of protrusions 152 formed on one surface of the ring-shaped member 151.
  • the first seal member 141 has an outer peripheral portion sandwiched between the inner peripheral upper surface of the ring-shaped member 151 and the partition plate 20. Further, the second seal member 142 is sandwiched between the inner peripheral portion between the outer peripheral upper surface of the ring-shaped member 151 and the partition plate 20.
  • the ring-shaped member 151 is attached to the partition plate 20 with the first seal member 141 and the second seal member 142 sandwiched therebetween.
  • the closing member 150 is attached to the partition plate 20 by inserting the protrusion 152 into the hole 22 formed in the partition plate 20 and pressing the ring-shaped member 151 against the lower surface of the partition plate 20. Clamp the part and fix it.
  • the inner peripheral portion of the first seal member 141 protrudes toward the inner peripheral side of the ring-shaped member 151, and the outer peripheral portion of the second seal member 142 is the outer periphery of the ring-shaped member 151. Projects to the outer periphery.
  • the lower end portion of the columnar member 100 is inserted and fixed (for example, press-fitted) into the bearing side fitting portion 102, and the upper end portion is slidably fitted into the scroll side fitting portion 101.
  • FIG. 10 is a combination diagram showing the relative positions of the orbiting scroll and the fixed scroll at each rotation angle of the hermetic scroll compressor according to the first embodiment.
  • FIG. 10A shows a state in which the compression chamber 50A formed by the outer wall of the swirl spiral wrap 42 of the orbiting scroll 40 and the inner wall of the fixed swirl wrap 32 of the fixed scroll 30 is immediately after the completion of the suction confinement. Yes.
  • FIG. 10B shows a state where 90 ° rotation has progressed from FIG. 10A
  • FIG. 10C shows a state where 90 ° rotation has progressed from FIG. 10B
  • FIG. 10D shows FIG. ) Shows a state where the 90 ° rotation has progressed from FIG. 10D, and the 90 ° rotation advances from FIG. 10D to return to the state of FIG. 10A.
  • FIG. 10C shows a state in which the compression chamber 50 (B) formed by the inner wall of the swirl spiral wrap 42 of the orbiting scroll 40 and the outer wall of the fixed swirl wrap 32 of the fixed scroll 30 is immediately after the suction is closed. Show.
  • the compression chamber 50A in which the suction confinement is completed in FIG. 10 (A) is the center of the fixed scroll 30 while reducing the volume as shown in FIGS. 10 (B), 10 (C), and 10 (D). It communicates with the first discharge port 35 from FIG. 10 (C) to FIG.
  • the bypass port 36A allows the compression chamber 50A to communicate with the discharge space 30H before the compression chamber 50A, which has been closed by suction in FIG. 10A, communicates with the first discharge port 35. Therefore, when the pressure in the compression chamber 50A becomes a pressure that pushes up the bypass check valve 121, the refrigerant in the compression chamber 50A passes through the bypass port 36A before the compression chamber 50A communicates with the first discharge port 35. To the discharge space 30H.
  • the compression chamber 50B in which the suction confinement is completed in FIG. 10C is the center of the fixed scroll 30 while reducing the volume, as shown in FIGS. 10D, 10A, and 10B.
  • the first discharge port 35 communicates with the first discharge port 35 from FIG. 10C to FIG.
  • the bypass port 36B allows the compression chamber 50B to communicate with the discharge space 30H before the compression chamber 50B, which has been completely closed in FIG. 10C, communicates with the first discharge port 35. Therefore, when the pressure in the compression chamber 50B becomes a pressure for pushing up the bypass check valve 121, the refrigerant in the compression chamber 50B is bypassed by the bypass port 36B before the compression chamber 50B communicates with the first discharge port 35. To the discharge space 30H.
  • the compression chambers 50A, 50B and the discharge space 30H are communicated by the bypass ports 36A, 36B separately from the first discharge port 35, and the bypass check valve 121 is provided in the bypass ports 36A, 36B.
  • the bypass check valve 121 is provided in the bypass ports 36A, 36B.
  • the intermediate pressure port 37 is connected to the compression chamber 50A after the suction closing is completed in FIG. 10 (A), or in the suction closed state in FIG. 10 (C). It is provided at a position communicating with the compression chamber 50B after the completion of the insertion.
  • the inner wall of the fixed spiral wrap 32 of the fixed scroll 30 is formed to the vicinity of the end 32b of the orbiting spiral wrap 42 of the orbiting scroll 40.
  • the closed volume of one compression chamber 50A formed by the inner wall of the fixed spiral wrap 32 and the outer wall of the swirl spiral wrap 42, and the outer wall of the fixed spiral wrap 32 and the inner wall of the swirl spiral wrap 42 are formed.
  • the confining volume of the other compression chamber 50B is made different.
  • the compression ratio can be increased by ensuring the maximum confined volume of the intake gas
  • the height of the fixed spiral wrap 32 and the swirl spiral wrap 42 can be reduced. Therefore, the fixed scroll 30 can move in the axial direction between the partition plate 20 and the main bearing 60. Further, in a scroll compressor that presses the fixed scroll 30 against the orbiting scroll 40 by the pressure of the discharge space 30H to ensure the hermeticity between the fixed scroll 30 and the orbiting scroll 40, the height of the fixed spiral wrap 32 and the orbiting spiral wrap 42 is high. The lower one can stabilize the fixed scroll 30.
  • the suction refrigerant passage can be minimized by providing the suction closed position in the compression chamber 50A and the suction closed position in the compression chamber 50B in the vicinity of the suction portion 38, and the heat receiving loss. Can be reduced.
  • FIG. 11 is a longitudinal sectional view showing the positional relationship between the fitting position of the hermetic scroll compressor according to the first embodiment and the fixed scroll spiral wrap.
  • the lower end of the fitting portion between the columnar member 100 and the scroll-side fitting portion 101 and the tip of the fixed spiral wrap 32 are uneven.
  • the gas compression force on the columnar member 100 acts on the center position of the spiral wrap height.
  • the gas compression force is supported by the fitting portion between the fixed scroll 30 and the columnar member 100.
  • the distance between the point of application of the gas compression force on the columnar member 100 and the fulcrum is shortened and the rollover moment can be reduced, so that the rollover strength can be improved.
  • the lower end of the columnar member and the fitting portion of the scroll-side fitting portion 101 is at a height of 1 ⁇ 4 or more of the height H of the fixed spiral wrap 32 from the tip (end surface) of the fixed spiral wrap 32.
  • FIG. 12 shows the relationship between the phase angle of the rotating shaft 70 and the rollover reaction force when the first compression chamber (compression chamber 50A in FIG. 10A) is closed at 0 °.
  • the lower end of the fitting portion of the columnar member and the scroll-side fitting portion 101 is set to a quarter or more of the height of the fixed spiral wrap 32 from the tip (end surface) of the fixed spiral wrap 32 so that the total phase angle is
  • the rollover reaction force becomes a positive value at. That is, the fixed scroll does not roll over at all phase angles.
  • the inner wall of the fixed spiral wrap 32 of the fixed scroll 30 is formed to the vicinity of the end of the rotational spiral wrap 42 of the orbiting scroll 40.
  • the chamber has a different confinement volume.
  • the scroll compressor according to the first embodiment includes a bypass port 36 that is formed in the fixed scroll 30 and communicates the compression chamber 50 with the discharge space 30H, and a bypass check valve 121 that can close the bypass port 36 freely. Yes. Thereby, since it can guide to discharge space when the predetermined pressure is reached, the gas compression force can be reduced and the rollover resistance can be further improved.
  • the rollover strength of the scroll compressor can be improved, and the reliability can be improved.
  • FIG. 13 is a longitudinal sectional view showing a positional relationship between the horizontal plane A passing through the center of the spiral wrap height H of the hermetic scroll compressor according to the second embodiment and the fitting portion region.
  • a bearing side fitting portion 102 is formed on the outer periphery of the main bearing 60, and a scroll side fitting portion 101 is formed on the fixed scroll 30.
  • the lower end portion of the columnar member 100 is inserted and fixed (eg, press-fitted) into the bearing side fitting portion 102, and the upper end portion is slidably fitted into the scroll side fitting portion 101.
  • the upper end surface T of the bearing side fitting portion 102 is located above the wrap end surface of the fixed spiral wrap 32.
  • the fitting region 101 a that supports the gas combined force in the radial direction and the tangential direction of the fixed scroll 30 and the bearing-side fitting portion 102 of the main bearing 60 that fits and fixes the lower end portion of the columnar member 100.
  • the distance in the axial direction from the upper end surface T can be shortened. Thereby, the rotation moment concerning the horizontal direction of the columnar member 100 can be minimized, and the reliability is improved. Further, since the swing of the fixed scroll 30 can be prevented, the performance can be stabilized.
  • the positional relationship (the approximate center of the main bearing 60 or the bearing portion 61 or the boss of the main bearing 60 is accommodated).
  • the positional relationship By disposing at an interval of about 180 ° with respect to the center of the portion 62, it is possible to efficiently prevent the fixed scroll from swinging.
  • the columnar member 100 by comprising the columnar member 100 with two, the number of parts can be reduced to the minimum necessary, and cost reduction can be achieved.
  • the number of columnar members is not limited to two, and the effect of the present invention can be achieved with three or more columns. In that case, however, substantially equal angles (in the case of three columnar members, intervals of about 120 °, 4 In the case of a book, it is desirable to arrange them at intervals of about 90 °.
  • the scroll compressor according to the first aspect of the present invention includes a partition plate that divides the sealed container into a high-pressure space and a low-pressure space, a fixed scroll that is adjacent to the partition plate and has a fixed spiral wrap. And a swirl spiral wrap meshed with a fixed spiral wrap of a fixed scroll.
  • the scroll compressor includes a orbiting scroll that forms a compression chamber between the wraps (fixed spiral wrap and orbiting spiral wrap), a rotation suppression member that prevents rotation of the orbiting scroll, and a main bearing that supports the orbiting scroll.
  • the fixed scroll, the orbiting scroll, the rotation suppressing member, and the main bearing are arranged in the low pressure space, and the fixed scroll can move in the axial direction between the partition plate and the main bearing.
  • the scroll compressor has a bearing-side fitting portion formed on the main bearing, a scroll-side fitting portion formed on the fixed scroll, a lower portion inserted into the bearing-side fitting portion, and an upper portion fitted on the scroll side.
  • a columnar member inserted into the portion.
  • the lower end surface of the fitting portion between the columnar member and the scroll side fitting portion is positioned above the wrap end surface of the fixed spiral wrap in the axial direction.
  • a highly reliable scroll compressor can be provided.
  • the upper end surface of the fitting portion between the columnar member and the scroll side fitting portion is positioned below the lap bottom surface of the fixed spiral wrap in the axial direction. is there.
  • the columnar member in addition to the first aspect and the second aspect, is inserted and fixed in the bearing side fitting portion, and is slidably inserted in the scroll side fitting portion.
  • the upper end surface of the joint portion is located above the wrap end surface of the fixed spiral wrap in the axial direction.
  • the lower end surface of the fitting portion between the columnar member and the scroll side fitting portion is fixed vortex in the axial direction from the wrap end surface of the fixed vortex wrap. It is located above 1/4 of the height of the wrap.
  • the inner wall of the fixed spiral wrap is formed to the vicinity of the end of the swirl spiral wrap.
  • the confinement volumes of the are different.
  • the sixth aspect of the present invention is provided with a bypass port that is formed in a fixed scroll and allows the compression chamber to communicate with the discharge space and a bypass check valve that can close the bypass port. is there.
  • the present invention is useful for a compressor of a refrigeration cycle apparatus that can be used for electrical products such as a water heater, a hot water heater, and an air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Rotary Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

スクロール圧縮機は、固定スクロール(30)に形成したスクロール側嵌合部(101)に挿入される柱状部材(100)を備え、柱状部材(100)とスクロール側嵌合部(101)との嵌合部の下端面は、軸方向において、固定渦巻きラップ(32)のラップ端面より上方側に位置していることを特徴とする。

Description

スクロール圧縮機
 本発明は、スクロール圧縮機に関する。
 近年、圧縮容器内に仕切板を設けるとともに、この仕切板で仕切られた低圧側の室に固定スクロール及び旋回スクロールを有した圧縮要素と、この旋回スクロールを旋回駆動する電動要素とを配置した密閉型スクロール圧縮機が知られている。この種の密閉型スクロール圧縮機では、仕切板の保持孔に固定スクロールのボス部を嵌合し、圧縮要素で圧縮した冷媒を、固定スクロールの吐出ポートを介して、仕切板で仕切られた高圧側の室に吐出する構成を備えるものが提案されている(例えば、特許文献1参照)。
 特許文献1に代表されるようなスクロール圧縮機は、圧縮要素の周囲が低圧空間であるため、旋回スクロールと固定スクロールとにはお互いが離間する方向に力が加わる。
 従って、旋回スクロールと固定スクロールとで形成される圧縮室の密閉性を高めるために、チップシールを用いる場合が多い。
 しかし、高効率な運転を行うためには、旋回スクロール又は固定スクロールに背圧を加えることが好ましい。例えば、特許文献2は、固定スクロールに背圧を加えて、旋回スクロールに対して固定スクロールを押し付けることでチップシールを廃止しつつも圧縮室の密閉性を高めることを可能したものである。
 しかし、従来のスクロール圧縮機においては、圧縮室内のガス力によって、固定スクロールが転覆してしまう、あるいは固定スクロールが揺動して性能が低下してしまうなどの信頼性が高くないという問題点があった。
特開平11-182463号公報 特開平4-255586号公報
 本発明は、信頼性を高めたスクロール圧縮機を提供する。
 本発明のスクロール圧縮機は、密閉容器内を高圧空間と低圧空間に区画する仕切板と、仕切板に隣接すると共に、固定渦巻きラップを有する固定スクロールと、固定スクロールの固定渦巻きラップと噛み合わされた旋回渦巻きラップを有する。また、スクロール圧縮機は、それらのラップ(固定渦巻きラップ及び旋回渦巻きラップ)間で圧縮室を形成する旋回スクロールと、旋回スクロールの自転を防止する自転抑制部材と、旋回スクロールを支持する主軸受とを有する。またスクロール圧縮機は、固定スクロール、旋回スクロール、自転抑制部材、及び主軸受を、低圧空間に配置し、固定スクロールが、仕切板と主軸受との間で軸方向に動くことができる。また、スクロール圧縮機は、主軸受に形成した軸受側嵌合部と、固定スクロールに形成したスクロール側嵌合部と、下方部が軸受側嵌合部に挿入され、上方部がスクロール側嵌合部に挿入される柱状部材と、を備える。またスクロール圧縮機は、柱状部材とスクロール側嵌合部との嵌合部の下端面は、軸方向において、固定渦巻きラップのラップ端面より上方側に位置している。
図1は、本発明の第1の実施の形態にかかる密閉型スクロール圧縮機の構成を示す縦断面図である。 図2Aは、第1の実施の形態にかかる密閉型スクロール圧縮機の旋回スクロールを示す側面図である。 図2Bは、図2AのX-X線断面図である。 図3は、第1の実施の形態にかかる密閉型スクロール圧縮機の固定スクロールを示す底面図である。 図4は、第1の実施の形態にかかる密閉型スクロール圧縮機の固定スクロールを底面側から見た斜視図である。 図5は、第1の実施の形態にかかる密閉型スクロール圧縮機の固定スクロールを上面側から見た斜視図である。 図6は、第1の実施の形態にかかる密閉型スクロール圧縮機の主軸受を示す斜視図である。 図7は、第1の実施の形態にかかる密閉型スクロール圧縮機の自転抑制部材を示す上面図である。 図8は、第1の実施の形態にかかる密閉型スクロール圧縮機の仕切板と固定スクロールを示す要部断面図である。 図9は、第1の実施の形態にかかる密閉型スクロール圧縮機の要部を示す一部断面斜視図である。 図10は、第1の実施の形態にかかる密閉型スクロール圧縮機の各回転角度における旋回スクロールと固定スクロールとの相対位置を示す組合せ図である。 図11は、第1の実施の形態にかかる密閉型スクロール圧縮機の嵌合位置と固定スクロール渦巻きラップとの位置関係を示す縦断面図である。 図12は、第1の実施の形態における回転軸の位相角と転覆反力との関係を示す図である。 図13は、第2の実施の形態にかかる密閉型スクロール圧縮機の渦巻きラップ高さの中心を通る水平面Aと嵌合部領域との位置関係を示す縦断面図である。
 (第1の実施の形態)
 以下、本発明の第1の実施の形態について、図面を参照しながら説明する。なお、以下の実施の形態によって本発明が限定されるものではない。
 図1は、第1の実施の形態にかかる密閉型スクロール圧縮機の構成を示す縦断面図である。この密閉型スクロール圧縮機は、図1に示すように、上下方向に沿って延びる円筒状に形成された密閉容器10を備えている。
 密閉容器10内の上部には、密閉容器10内を上下に仕切る仕切板20が設けられている。仕切板20は、密閉容器10内を高圧空間11と低圧空間12に区画している。
 密閉容器10には、低圧空間12に冷媒を導入する冷媒吸込管13と、圧縮された冷媒を高圧空間11から吐出する冷媒吐出管14とを設けている。低圧空間12の底部は、潤滑油が貯留される油溜まり15を形成している。
 低圧空間12には、圧縮機構として、固定スクロール30と旋回スクロール40とを備えている。固定スクロール30は仕切板20に隣接する。旋回スクロール40は固定スクロール30と噛み合わされて圧縮室50を形成する。
 固定スクロール30及び旋回スクロール40の下方には、旋回スクロール40を支持する主軸受60を設けている。主軸受60の略中央には、軸受部61とボス収容部62とを形成している。主軸受60には、ボス収容部62に一端を開口し、主軸受60の下面に他端を開口した返送管63(図6参照)を形成している。なお、返送管63の一端は、主軸受60の上面に開口してもよい。また、返送管63の他端は、主軸受60の側面に開口してもよい。
 軸受部61は、回転軸70を軸支する。
 回転軸70は、軸受部61と副軸受16とで支持されている。回転軸70の上端には、回転軸70の軸心に対して偏心した偏心軸71を形成している。
 回転軸70の内部には、潤滑油が通過する油路72を形成している。回転軸70の下端には、潤滑油の吸込口73を備えている。吸込口73の上部には、パドル74が形成されている。油路72は、吸込口73、パドル74と連通し、回転軸70の軸方向に形成される。油路72は、軸受部61に給油する給油口75、副軸受16に給油する給油口76、ボス収容部62に給油する給油口77を備えている。
 電動要素80は、密閉容器10に固定されるステータ81と、このステータ81の内側に配置されたロータ82とから構成される。
 ロータ82は、回転軸70に固定される。回転軸70には、ロータ82の上方と下方にバランスウェイト17a、17bを取り付けている。バランスウェイト17aとバランスウェイト17bとは、180°ずれた位置に配置している。バランスウェイト17a、17bによる遠心力と、旋回スクロール40の公転運動により発生する遠心力とでバランスを取っている。なお、バランスウェイト17a、17bは、ロータ82に固定してもよい。
 自転抑制部材(オルダムリング)90は、旋回スクロール40の自転を防止する。旋回スクロール40は、自転抑制部材90を介して固定スクロール30に支持されている。これにより、旋回スクロール40は、固定スクロール30に対して、自転しないで旋回運動をする。
 柱状部材100は、固定スクロール30の回転と半径方向の動きを阻止し、固定スクロール30の軸方向への動きを許容する。固定スクロール30は、柱状部材100によって主軸受60で支持され、仕切板20と主軸受60との間で軸方向に動くことができる。
 固定スクロール30、旋回スクロール40、電動要素80、自転抑制部材90、及び主軸受60は、低圧空間12に配置され、固定スクロール30及び旋回スクロール40は、仕切板20と主軸受60との間に配置される。
 電動要素80の駆動により、ロータ82とともに回転軸70が回転する。偏心軸71によって旋回スクロール40が旋回運動し、圧縮室50にて冷媒が圧縮される。
 冷媒は、冷媒吸込管13から低圧空間12に導入される。圧縮室50には、旋回スクロール40外周の低圧空間12にある冷媒が導かれる。冷媒は、圧縮室50で圧縮された後に、高圧空間11を経由して、冷媒吐出管14から吐出される。
 回転軸70の回転によって、油溜まり15に貯留されている潤滑油は、吸込口73から油路72に入り、この油路72のパドル74に沿って上方に汲み上げられる。汲み上げられた潤滑油は、給油口75、76、77からそれぞれ軸受部61、副軸受16、及びボス収容部62に供給される。ボス収容部62まで汲み上げられた潤滑油は、主軸受60と旋回スクロール40との摺動面に導かれるとともに、返送管63を通じて排出されて再び油溜まり15に戻される。
 図2Aは、第1の実施の形態にかかる密閉型スクロール圧縮機の旋回スクロールを示す側面図、図2Bは図2AのX-X線断面図である。
 旋回スクロール40は、円板状の旋回スクロール鏡板41と、この旋回スクロール鏡板41の上面に立設された渦巻状の旋回渦巻きラップ42と、旋回スクロール鏡板41の下面略中央に形成された円筒状のボス43とを備えている。
 旋回渦巻きラップ42における内壁と外壁との厚みは、旋回渦巻きラップ42の巻き始め端42aから終端42bにかけて徐々に薄くなるように形成している。このように、旋回渦巻きラップ42を終端42bにかけて徐々に薄くすることで、吸入ガスの閉じ込み容積を大きくでき、また旋回渦巻きラップ42が軽量化できるために触れ回りの遠心力を小さくできる。
 旋回スクロール鏡板41には、一対の第1のキー溝91を形成している。
 図3は、第1の実施の形態にかかる密閉型スクロール圧縮機の固定スクロールを示す底面図である。図4は同固定スクロールを底面側から見た斜視図である。図5は同固定スクロールを上面側から見た斜視図である。
 固定スクロール30は、円板状の固定スクロール鏡板31と、この固定スクロール鏡板31の下面(底面)に立設された渦巻状の固定渦巻きラップ32と、この固定渦巻きラップ32の周囲を取り囲むように立設した周壁33と、この周壁33の周囲に設けられたフランジ34とを備えている。
 固定渦巻きラップ32における内壁と外壁との厚みは、固定渦巻きラップ32の巻き始め端32aから終端32bにかけて徐々に薄くなるように形成している。ここでの終端32bは、内壁と外壁とから固定渦巻きラップ32が形成される部分であり、固定渦巻きラップ32は、終端32bから内壁最外周部32cまで更に340°程度内壁だけで延長されている。このように、固定渦巻きラップ32を終端32bにかけて徐々に薄くすることで、吸入ガスの閉じ込み容積を大きくでき、また固定渦巻きラップ32が軽量化できるために触れ回りの遠心力を小さくできる。
 固定スクロール鏡板31の略中心部には、第1吐出ポート35を形成している。また、固定スクロール鏡板31には、バイパスポート36と中圧ポート37を形成している。バイパスポート36は、第1吐出ポート35近傍で、圧縮完了間際の高圧圧力領域に位置する。中圧ポート37は、終端32b近傍で、圧縮途中の中間圧力領域に位置する。
 固定スクロール鏡板31は、フランジ34よりも上方に突出している。
 固定スクロール30の周壁33及びフランジ34には、冷媒を圧縮室50に取り込むための吸入部38が形成されている。フランジ34には、第2のキー溝92を形成している。
 また、フランジ34には、柱状部材100の上端部が挿入されるスクロール側嵌合部101を形成している。
 図5に示すように、固定スクロール30の上面(仕切板20側の面)には、中央にボス部39を形成している。ボス部39には、凹部によって吐出空間30H(図8参照)が形成され、第1吐出ポート35とバイパスポート36とは、この吐出空間30Hに形成している。
 また、固定スクロール30の上面には、周壁33とボス部39との間に、リング状の凹部によって中圧空間30Mが形成される。中圧空間30Mには、中圧ポート37を形成している。中圧ポート37は、旋回渦巻きラップ42における内壁と外壁との厚みより小さい径で構成する。中圧ポート37の径を、旋回渦巻きラップ42における内壁と外壁との厚みより小さくすることで、旋回渦巻きラップ42の内壁側に形成される圧縮室50と、旋回渦巻きラップ42の外壁側に形成される圧縮室50との連通を防止できる。
 吐出空間30Hには、バイパスポート36を閉塞自在なバイパス逆止弁121、及びバイパス逆止弁ストップ122を設ける。バイパス逆止弁121は、リードバルブを用いることでその高さ方向をコンパクトにできる。また、バイパス逆止弁121は、V字型のリードバルブを用いることで、旋回渦巻きラップ42の外壁側に形成される圧縮室50と連通するバイパスポート36と、旋回渦巻きラップ42の内壁側に形成される圧縮室50と連通するバイパスポート36とを閉塞することができる。
 本発明では、固定渦巻きラップ32及び旋回渦巻きラップ42の巻き終り厚みを小さくすることができるので、固定スクロール30及び旋回スクロール40を軽量化することができる。特に旋回スクロール40は軽量化による旋回駆動時の遠心力低減効果によって軸受部61の負荷を軽減することができるのに加え、回転軸70に設けられるバランスウェイト17a、17bの小型化が可能となるため、設計自由度を向上させることができる。また、従来の渦巻きラップ形状と比べて伸開角を大きく設計できるため、高圧縮比化及び高容積化により、より高効率、小型化を実現することができる。
 図6は、第1の実施の形態にかかる密閉型スクロール圧縮機の主軸受を示す斜視図である。
 軸受部61とボス収容部62とは、主軸受60の略中央に形成している。
 主軸受60の外周部には、柱状部材100の下端部が挿入される軸受側嵌合部102を形成している。
 軸受側嵌合部102の底面は、旋回スクロール40との摺動面に一端を開口した返送管63と連通している。従って、軸受側嵌合部102には、返送管63によって、潤滑油が供給される。
 図7は、第1の実施の形態にかかる密閉型スクロール圧縮機の自転抑制部材を示す上面図である。
 自転抑制部材(オルダムリング)90には、第1のキー93と第2のキー94とが形成されている。第1のキー93は、旋回スクロール40の第1のキー溝91と係合し、第2のキー94は、固定スクロール30の第2のキー溝92と係合する。従って、旋回スクロール40は、固定スクロール30に対して自転することなく旋回運動が可能となる。また、図1に示すように、回転軸70の軸方向に、上方から固定スクロール30、旋回スクロール40、オルダムリング90の順に配置している。固定スクロール30、旋回スクロール40、オルダムリング90の順に配置するため、オルダムリング90の第1のキー93と第2のキー94とはリング部95の同一平面に形成している。このため、オルダムリング90の加工時に、第1のキー93と第2のキー94を同一方向から加工することが可能となり、加工装置からオルダムリング90を脱着する回数を減らすことができるので、加工精度の向上及び加工費の削減効果を得ることができる。
 図8は、第1の実施の形態にかかる密閉型スクロール圧縮機の仕切板と固定スクロールを示す要部断面図である。
 仕切板20の中心部には、第2吐出ポート21を形成している。第2吐出ポート21には、吐出逆止弁131、及び吐出逆止弁ストップ132を設けている。
 仕切板20と固定スクロール30との間には、第1吐出ポート35と連通する吐出空間30Hが形成される。第2吐出ポート21は、吐出空間30Hを高圧空間11に連通する。吐出逆止弁131は、第2吐出ポート21を閉塞する。
 第1の実施の形態によれば、仕切板20と固定スクロール30との間に形成された吐出空間30Hに高圧圧力が加わることで、固定スクロール30を旋回スクロール40に押し付けるため、固定スクロール30と旋回スクロール40との隙間を無くすことができ、高効率な運転を行うことができる。
 また、第1の実施の形態によれば、圧縮室50と吐出空間30Hとは、第1吐出ポート35とは別に、バイパスポート36によって連通している。バイパスポート36にはバイパス逆止弁121を設けている。これらにより、吐出空間30Hからの逆流を防止しつつ、所定の圧力に到達した時点で吐出空間30Hへと導くことができるので、広い運転範囲で高効率を実現することができる。
 吐出逆止弁131は、バイパス逆止弁121より厚く構成している。
 第1吐出ポート35は、第2吐出ポート21よりも小さな容積としている。圧縮室50からの吐出圧力の損失を低減するためである。
 また、第2吐出ポート21の流入側にテーパを形成することで、吐出圧力の損失を低減できる。
 第1の実施の形態にかかる密閉型スクロール圧縮機は、仕切板20と固定スクロール30との間で、吐出空間30Hの外周に配置されるリング状の第1シール部材141と、仕切板20と固定スクロール30との間で、第1シール部材141の外周に配置されるリング状の第2シール部材142とを備えている。
 第1シール部材141及び第2シール部材142には、例えばフッ素樹脂であるポリテトラフルオロエチレンが、シール性と組み立て性の面で適している。また、第1シール部材141及び第2シール部材142は、フッ素樹脂に繊維材を混合させることでシールの信頼性が向上する。
 第1シール部材141と第2シール部材142とは、閉塞部材150によって仕切板20に挟み込まれる。閉塞部材150には、アルミ材を用いることで仕切板20とのかしめを行える。
 第1シール部材141と第2シール部材142との間には中圧空間30Mが形成される。中圧空間30Mは、中圧ポート37によって、圧縮途中の中間圧力領域にある圧縮室50と連通しているため、吐出空間30Hの圧力より低く、低圧空間12の圧力よりも高い圧力が加わる。
 第1の実施の形態によれば、仕切板20と固定スクロール30との間に、高圧である吐出空間30H以外に、中圧空間30Mを形成することで、固定スクロール30の旋回スクロール40への押し付け力を調整しやすい。
 また、第1の実施の形態によれば、第1シール部材141と第2シール部材142とで吐出空間30Hと中圧空間30Mとを形成するため、高圧である吐出空間30Hから中圧空間30Mへの冷媒の漏れ、中圧空間30Mから低圧空間12への冷媒の漏れを低減できる。
 また、第1の実施の形態によれば、第1シール部材141と第2シール部材142とを閉塞部材150によって仕切板20に挟み込む。このため、仕切板20、第1シール部材141、第2シール部材142、及び閉塞部材150を組み立てた後に、密閉容器10内に配置できるので、少ない部品点数にできるとともに、スクロール圧縮機の組み立てが容易である。
 図9は、第1の実施の形態にかかる密閉型スクロール圧縮機の要部を示す一部断面斜視図である。
 図8で説明した閉塞部材150は、図9に示すように、リング状部材151とリング状部材151の一方の面に形成される複数の突出部152とで構成されている。
 第1シール部材141は、外周部をリング状部材151の内周側上面と仕切板20とで挟み込まれる。また、第2シール部材142は、内周部をリング状部材151の外周側上面と仕切板20とで挟み込まれる。
 リング状部材151は、第1シール部材141と第2シール部材142とを挟み込んだ状態で仕切板20に取り付ける。
 仕切板20への閉塞部材150の取り付けは、突出部152を仕切板20に形成した孔22に挿入して、リング状部材151を仕切板20の下面に押圧した状態で、突出部152の端部をかしめて固定する。
 仕切板20に閉塞部材150を取り付けた状態では、第1シール部材141の内周部は、リング状部材151の内周側に突出し、第2シール部材142の外周部は、リング状部材151の外周側に突出している。
 そして、閉塞部材150を取り付けた仕切板20を密閉容器10内に装着することで、第1シール部材141の内周部は、固定スクロール30のボス部39の外周面に押圧され、第2シール部材142の外周部は、固定スクロール30の周壁33の内周面に押圧される。
 柱状部材100は、下端部が軸受側嵌合部102に挿入固定(例えば圧入)され、上端部がスクロール側嵌合部101に摺動自在に嵌合されている。
 図10は、第1の実施の形態にかかる密閉型スクロール圧縮機の各回転角度における旋回スクロールと固定スクロールとの相対位置を示す組合せ図である。
 図10(A)は、旋回スクロール40の旋回渦巻きラップ42の外壁と、固定スクロール30の固定渦巻きラップ32の内壁とで形成される圧縮室50Aが吸入閉じ込み完了直後となった状態を示している。
 図10(B)は図10(A)から90°回転が進んだ状態、図10(C)は図10(B)から90°回転が進んだ状態、図10(D)は図10(C)から90°回転が進んだ状態を示し、図10(D)から90°回転が進んで図10(A)の状態に戻る。
 図10(C)は、旋回スクロール40の旋回渦巻きラップ42の内壁と、固定スクロール30の固定渦巻きラップ32の外壁とで形成される圧縮室50(B)が吸入閉じ込み直後となった状態を示している。
 図10(A)で吸入閉じ込みが完了した圧縮室50Aは、図10(B)、図10(C)、図10(D)に示すように、容積を減少させながら、固定スクロール30の中心に向かって移動し、540°回転が進んだ図10(C)から図10(D)に至るまでに第1吐出ポート35に連通する。バイパスポート36Aは、図10(A)で吸入閉じ込みが完了した圧縮室50Aが第1吐出ポート35に連通する前から圧縮室50Aを吐出空間30Hに連通させている。従って、圧縮室50A内の圧力が、バイパス逆止弁121を押し上げる圧力となった場合には、圧縮室50Aが第1吐出ポート35に連通する前に、圧縮室50A内の冷媒はバイパスポート36Aから吐出空間30Hに導出される。
 図10(C)で吸入閉じ込みが完了した圧縮室50Bは、図10(D)、図10(A)、図10(B)に示すように、容積を減少させながら、固定スクロール30の中心に向かって移動し、360°回転が進んだ図10(C)から図10(D)に至るまでに第1吐出ポート35に連通する。バイパスポート36Bは、図10(C)で吸入閉じ込みが完了した圧縮室50Bが第1吐出ポート35に連通する前から圧縮室50Bを吐出空間30Hに連通させている。従って、圧縮室50B内の圧力が、バイパス逆止弁121を押し上げる圧力となった場合には、圧縮室50Bが第1吐出ポート35に連通する前に、圧縮室50B内の冷媒はバイパスポート36Bから吐出空間30Hに導出される。
 このように、第1吐出ポート35とは別にバイパスポート36A、36Bによって圧縮室50A、50Bと吐出空間30Hとを連通し、バイパスポート36A、36Bにはバイパス逆止弁121を設けている。これにより、吐出空間30Hからの逆流を防止しつつ、所定の圧力に到達した時点で吐出空間30Hへと導くことができるので、広い運転範囲で高効率を実現することができる。
 図10(A)から図10(D)までに示すように、中圧ポート37は、図10(A)で吸入閉じ込みが完了した後の圧縮室50A、又は図10(C)で吸入閉じ込みが完了した後の圧縮室50Bと連通する位置に設けている。
 また、第1の実施の形態では、固定スクロール30の固定渦巻きラップ32の内壁を、旋回スクロール40の旋回渦巻きラップ42の終端32b近くまで形成している。これにより、固定渦巻きラップ32の内壁と旋回渦巻きラップ42の外壁とで形成される一方の圧縮室50Aの閉じ込み容積と、固定渦巻きラップ32の外壁と旋回渦巻きラップ42の内壁とで形成される他方の圧縮室50Bの閉じ込み容積とを異ならせている。
 第1の実施の形態によれば、最大限の吸入ガスの閉じ込み容積を確保することで、圧縮比を高めることができるので、固定渦巻きラップ32及び旋回渦巻きラップ42の高さを低くできる。従って、固定スクロール30が、仕切板20と主軸受60との間で軸方向に動くことができる。また、吐出空間30Hの圧力によって固定スクロール30を旋回スクロール40に押し付けて、固定スクロール30と旋回スクロール40との密閉性を確保するスクロール圧縮機においては、固定渦巻きラップ32及び旋回渦巻きラップ42の高さが低い方が固定スクロール30を安定させることができる。
 また、第1の実施の形態では、圧縮室50Aにおける吸入閉じ込み位置と、圧縮室50Bにおける吸入閉じ込み位置とを、吸入部38近傍に設けることで、吸入冷媒通路を最短化でき、受熱損失を低減できる。
 図11は第1の実施の形態にかかる密閉型スクロール圧縮機の嵌合位置と固定スクロール渦巻きラップとの位置関係を示す縦断面図である。
 柱状部材100とスクロール側嵌合部101との嵌合部の下端と、固定渦巻きラップ32先端とが段違いである。柱状部材100上のガス圧縮力は渦巻きラップ高さの中心位置に作用する。そのガス圧縮力は固定スクロール30と柱状部材100の嵌合部で支持される。
 そのため第1の実施の形態では、柱状部材100上のガス圧縮力の作用点と支点との距離が短くなり転覆モーメントを小さくすることができため、転覆耐力を向上させることができる。
 柱状部材とスクロール側嵌合部101の嵌合部との下端が、固定渦巻きラップ32先端(端面)から固定渦巻きラップ32の高さHの1/4以上の高さにある。
 図12は、第一の圧縮室(図10(A)の圧縮室50A)の閉じ込み時を0°とした回転軸70の位相角と転覆反力との関係を示したものである。この図に示すように柱状部材とスクロール側嵌合部101の嵌合部の下端が固定渦巻きラップ32先端(端面)から固定渦巻きラップ32の高さの1/4以上にすることで全位相角において転覆反力が正の値になる。すなわち、全位相角において固定スクロールが転覆しないことになる。
 第1の実施の形態のスクロール圧縮機は、固定スクロール30の固定渦巻きラップ32の内壁を、旋回スクロール40の旋回渦巻きラップ42の終端近くまで形成している。これにより、固定渦巻きラップ32の内壁と旋回渦巻きラップ42の外壁とで形成される一方の圧縮室の閉じ込み容積と、固定渦巻きラップの外壁と旋回渦巻きラップの内壁とで形成される他方の圧縮室の閉じ込み容積とを異ならせたものである。これにより、最大限の吸入ガスの閉じ込み容積を確保することで、圧縮比を高めることができるので、渦巻きラップの高さを低くできる。従って、柱状部材100上のガス圧縮力の作用点と支点との距離を小さくできるので、転覆耐力をさらに向上させることができる。
 第1の実施の形態のスクロール圧縮機は、固定スクロール30に形成され、圧縮室50を吐出空間30Hに連通するバイパスポート36と、バイパスポート36を閉塞自在なバイパス逆止弁121とを備えている。これにより、所定の圧力に到達した時点で吐出空間へと導くことができるため、ガス圧縮力を低減することができ、転覆耐力をさらに向上させることができる。
 以上に説明したように、本発明の第1の実施の形態によれば、スクロール圧縮機の転覆耐力を向上させることができ、信頼性の高めることができる。
 (第2の実施の形態)
 以下、本発明の第2の実施の形態について説明する。第2の実施の形態において、特に言及しない点については、第1の実施の形態と同様であるので、説明を省略する。
 図13は、第2の実施の形態にかかる密閉型スクロール圧縮機の渦巻きラップ高さHの中心を通る水平面Aと嵌合部領域との位置関係を示す縦断面図である。
 主軸受60の外周には軸受側嵌合部102が形成され、固定スクロール30にはスクロール側嵌合部101が形成されている。
 柱状部材100は、下端部が軸受側嵌合部102に挿入固定(例:圧入)され、上端部がスクロール側嵌合部101に摺動自在に嵌合されている。
 固定スクロール30の固定渦巻きラップ32の高さをHとしたとき、柱状部材100とスクロール側嵌合部101との嵌合領域101aと、高さHの中心を通る水平面とが交差する位置関係にある。
 第2の実施の形態では、軸受側嵌合部102の上端面Tが、固定渦巻きラップ32のラップ端面より上方に位置するものである。
 このような構成によれば、固定スクロール30の半径方向および接線方向のガス合力を支持する嵌合領域101aと、柱状部材100の下端部を嵌合固定する主軸受60の軸受側嵌合部102の上端面Tとの軸方向の距離を短くできる。これにより、柱状部材100の水平方向にかかる回転モーメントを最小にでき、信頼性が向上する。また固定スクロール30の揺動を防止することができることから性能の安定化を図ることができる。
 また、本発明の第2の実施の形態では、柱状部材を2本で構成する場合、それらの柱状部材を対向する位置関係(主軸受60の略中央または主軸受60の軸受部61もしくはボス収容部62の中央に対して約180°の間隔)に配することによって、固定スクロールの揺動を効率良く防止することができる。また、柱状部材100を2本で構成することで、部品点数を必要最小限に削減でき、低コスト化を図ることができる。
 なお、柱状部材の本数は2本に限られず、3本以上でも本発明の効果を達成することができるが、その場合、略均等角度(柱状部材が3本の場合、約120°間隔、4本の場合、約90°間隔)に配することが望ましい。
 以上に説明したように、本発明の第2の実施の形態によれば、固定スクロールの揺動を効率良く防止することができ、スクロール圧縮機の信頼性の高めることができる。
 以上に説明したように、本発明の第1態様のスクロール圧縮機は、密閉容器内を高圧空間と低圧空間に区画する仕切板と、仕切板に隣接すると共に、固定渦巻きラップを有する固定スクロールと、固定スクロールの固定渦巻きラップと噛み合わされた旋回渦巻きラップを有する。また、スクロール圧縮機は、それらのラップ(固定渦巻きラップ及び旋回渦巻きラップ)間で圧縮室を形成する旋回スクロールと、旋回スクロールの自転を防止する自転抑制部材と、旋回スクロールを支持する主軸受とを有する。またスクロール圧縮機は、固定スクロール、旋回スクロール、自転抑制部材、及び主軸受を、低圧空間に配置し、固定スクロールが、仕切板と主軸受との間で軸方向に動くことができる。また、スクロール圧縮機は、主軸受に形成した軸受側嵌合部と、固定スクロールに形成したスクロール側嵌合部と、下方部が軸受側嵌合部に挿入され、上方部がスクロール側嵌合部に挿入される柱状部材と、を備える。またスクロール圧縮機は、柱状部材とスクロール側嵌合部との嵌合部の下端面は、軸方向において、固定渦巻きラップのラップ端面より上方側に位置している。
 第1態様によれば、信頼性の高いスクロール圧縮機を提供することができる。
 本発明の第2態様は、第1態様に加え、柱状部材とスクロール側嵌合部との嵌合部の上端面は、軸方向において、固定渦巻きラップのラップ底面より下方側に位置するものである。
 本発明の第3態様は、第1態様、第2態様に加え、柱状部材は、軸受側嵌合部に挿入固定され、スクロール側嵌合部に摺動自在に挿入されており、軸受側嵌合部の上端面は、軸方向において、固定渦巻きラップのラップ端面より上方側に位置するものである。
 本発明の第4態様は、第1態様から第3態様に加え、柱状部材とスクロール側嵌合部との嵌合部の下端面は、軸方向において、固定渦巻きラップのラップ端面から、固定渦巻きラップの高さの1/4以上上方側に位置するものである。
 本発明の第5態様は、第1態様から第4態様に加え、固定渦巻きラップの内壁が、旋回渦巻きラップの終端近くまで形成されたものである。またその結果、固定渦巻きラップの内壁と旋回渦巻きラップの外壁とで形成される一方の圧縮室の閉じ込み容積と、固定渦巻きラップの外壁と旋回渦巻きラップの内壁とで形成される他方の圧縮機の閉じ込み容積を異ならせたものである。
 本発明の第6態様は、第1態様から第5態様に加え、固定スクロールに形成され、圧縮室を吐出空間に連通させるバイパスポートとバイパスポートを閉塞自在なバイパス逆止弁を備えたものである。
 本発明は、給湯機、温水暖房装置、空気調和装置などの電気製品に利用できる冷凍サイクル装置の圧縮機に有用である。
 10 密閉容器
 11 高圧空間
 12 低圧空間
 20 仕切板
 21 第2吐出ポート
 30 固定スクロール
 30H 吐出空間
 30M 中圧空間
 31 固定スクロール鏡板
 32 固定渦巻きラップ
 33 周壁
 34 フランジ
 35 第1吐出ポート
 36,36A,36B バイパスポート
 37 中圧ポート
 38 吸入部
 39 ボス部
 40 旋回スクロール
 41 旋回スクロール鏡板
 42 旋回渦巻きラップ
 43 ボス
 50,50A,50B 圧縮室
 60 主軸受
 61 軸受部
 62 ボス収容部
 63 返送管
 70 回転軸
 71 偏心軸
 72 油路
 73 吸込口
 74 パドル
 75,76,77 給油口
 80 電動要素
 90 自転抑制部材(オルダムリング)
 100 柱状部材
 101 スクロール側嵌合部
 102 軸受側嵌合部
 121 バイパス逆止弁
 131 吐出逆止弁
 141 第1シール部材
 142 第2シール部材
 150 閉塞部材

Claims (6)

  1. 密閉容器内を高圧空間と低圧空間に区画する仕切板と、
    前記仕切板に隣接すると共に、固定渦巻きラップを有する固定スクロールと、
    前記固定スクロールの前記固定渦巻きラップと噛み合わされた旋回渦巻きラップを有すると共に、前記固定渦巻きラップ及び前記旋回渦巻きラップ間で圧縮室を形成する旋回スクロールと、
    前記旋回スクロールの自転を防止する自転抑制部材と、
    前記旋回スクロールを支持する主軸受と
    を有し、
    前記固定スクロール、前記旋回スクロール、前記自転抑制部材、及び前記主軸受を、前記低圧空間に配置し、
    前記固定スクロールが、前記仕切板と前記主軸受との間で軸方向に動くことができるスクロール圧縮機であって、
    前記主軸受に形成した軸受側嵌合部と、
    前記固定スクロールに形成したスクロール側嵌合部と、
    下方部が前記軸受側嵌合部に挿入され、上方部が前記スクロール側嵌合部に挿入される柱状部材と、
    を備え、
    前記柱状部材と前記スクロール側嵌合部との嵌合部の下端面は、前記軸方向において、前記固定渦巻きラップのラップ端面より上方側に位置していることを特徴するスクロール圧縮機。
  2. 前記柱状部材と前記スクロール側嵌合部との前記嵌合部の上端面は、前記軸方向において、前記固定渦巻きラップのラップ底面より下方側に位置することを特徴する請求項1に記載のスクロール圧縮機。
  3. 前記柱状部材は、前記軸受側嵌合部に挿入固定され、前記スクロール側嵌合部に摺動自在に挿入されており、前記軸受側嵌合部の上端面は、前記軸方向において、前記固定渦巻きラップの前記ラップ端面より上方側に位置することを特徴とする請求項1または2に記載のスクロール圧縮機。
  4. 前記柱状部材と前記スクロール側嵌合部との前記嵌合部の前記下端面は、前記軸方向において、前記固定渦巻きラップの前記ラップ端面から、前記固定渦巻きラップの高さの1/4以上上方側に位置することを特徴する請求項2に記載のスクロール圧縮機。
  5. 前記固定渦巻きラップの内壁を、前記旋回渦巻きラップの終端近くまで形成することで、前記固定渦巻きラップの前記内壁と前記旋回渦巻きラップの外壁とで形成される一方の圧縮室の閉じ込み容積と、前記固定渦巻きラップの外壁と前記旋回渦巻きラップの内壁とで形成される他方の圧縮機の閉じ込み容積を異ならせたことを特徴とする請求項3に記載のスクロール圧縮機。
  6. 前記固定スクロールに形成され、圧縮室を吐出空間に連通させるバイパスポートと前記バイパスポートを閉塞自在なバイパス逆止弁を備えたことを特徴とする請求項3項に記載のスクロール圧縮機。
PCT/JP2015/002856 2014-06-20 2015-06-08 スクロール圧縮機 WO2015194119A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15809073.8A EP3159542B1 (en) 2014-06-20 2015-06-08 Scroll compressor
CN201580010407.5A CN106030112A (zh) 2014-06-20 2015-06-08 涡旋式压缩机
US15/120,871 US10655625B2 (en) 2014-06-20 2015-06-08 Scroll compressor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014126892A JP6454863B2 (ja) 2014-06-20 2014-06-20 スクロール圧縮機
JP2014-126892 2014-06-20
JP2014-137824 2014-07-03
JP2014137824A JP6454865B2 (ja) 2014-07-03 2014-07-03 スクロール圧縮機

Publications (1)

Publication Number Publication Date
WO2015194119A1 true WO2015194119A1 (ja) 2015-12-23

Family

ID=54935130

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/002856 WO2015194119A1 (ja) 2014-06-20 2015-06-08 スクロール圧縮機

Country Status (4)

Country Link
US (1) US10655625B2 (ja)
EP (1) EP3159542B1 (ja)
CN (1) CN106030112A (ja)
WO (1) WO2015194119A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021058A1 (ja) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 スクロール圧縮機

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10844855B2 (en) * 2016-12-30 2020-11-24 Trane International Inc. Austempered grey iron scroll and method of making thereof
JP6709971B2 (ja) * 2017-01-27 2020-06-17 パナソニックIpマネジメント株式会社 スクロール圧縮機
JP6485500B2 (ja) * 2017-07-07 2019-03-20 ダイキン工業株式会社 スクロール圧縮機
FR3070446B1 (fr) * 2017-08-29 2020-02-07 Danfoss Commercial Compressors Un compresseur a spirales ayant un orifice de refoulement principal central et un orifice de refoulement auxiliaire

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09177683A (ja) * 1995-12-27 1997-07-11 Daikin Ind Ltd スクロール形流体機械
JPH09507548A (ja) * 1994-01-26 1997-07-29 シマオ ニ 高い固有容積比を有するスクロール型流体排出装置およびセミ・コンプライアント・バイアス機構
JPH10153183A (ja) * 1986-08-22 1998-06-09 Copeland Corp スクロール式機械
JPH1122660A (ja) * 1997-07-07 1999-01-26 Toshiba Corp スクロール式圧縮機
JP2000097171A (ja) * 1998-09-21 2000-04-04 Hitachi Ltd スクロール圧縮機およびそれを使用した冷凍システム

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102316A (en) 1986-08-22 1992-04-07 Copeland Corporation Non-orbiting scroll mounting arrangements for a scroll machine
JPH0756274B2 (ja) * 1987-03-20 1995-06-14 サンデン株式会社 スクロール式圧縮機
CA2046548C (en) * 1990-10-01 2002-01-15 Gary J. Anderson Scroll machine with floating seal
US6056523A (en) * 1996-02-09 2000-05-02 Kyungwon-Century Co., Ltd. Scroll-type compressor having securing blocks and multiple discharge ports
JPH11182463A (ja) 1997-12-17 1999-07-06 Sanyo Electric Co Ltd スクロール型圧縮機
US6039549A (en) * 1998-04-02 2000-03-21 Rechi Precision Co., Ltd. Volute compressor
US6146118A (en) * 1998-06-22 2000-11-14 Tecumseh Products Company Oldham coupling for a scroll compressor
CN100374726C (zh) * 2003-12-12 2008-03-12 乐金电子(天津)电器有限公司 涡旋式压缩机定涡旋的固定结构
US7070401B2 (en) * 2004-03-15 2006-07-04 Copeland Corporation Scroll machine with stepped sleeve guide
US8568118B2 (en) * 2009-05-29 2013-10-29 Emerson Climate Technologies, Inc. Compressor having piston assembly
CN102444580B (zh) * 2010-09-30 2016-03-23 艾默生电气公司 带有直接起动无刷永磁电动机的数字压缩机
US9267501B2 (en) * 2011-09-22 2016-02-23 Emerson Climate Technologies, Inc. Compressor including biasing passage located relative to bypass porting
KR102374062B1 (ko) * 2015-06-23 2022-03-14 삼성전자주식회사 압축기

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10153183A (ja) * 1986-08-22 1998-06-09 Copeland Corp スクロール式機械
JPH09507548A (ja) * 1994-01-26 1997-07-29 シマオ ニ 高い固有容積比を有するスクロール型流体排出装置およびセミ・コンプライアント・バイアス機構
JPH09177683A (ja) * 1995-12-27 1997-07-11 Daikin Ind Ltd スクロール形流体機械
JPH1122660A (ja) * 1997-07-07 1999-01-26 Toshiba Corp スクロール式圧縮機
JP2000097171A (ja) * 1998-09-21 2000-04-04 Hitachi Ltd スクロール圧縮機およびそれを使用した冷凍システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3159542A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021058A1 (ja) * 2016-07-29 2018-02-01 パナソニックIpマネジメント株式会社 スクロール圧縮機
CN109496253A (zh) * 2016-07-29 2019-03-19 松下知识产权经营株式会社 涡旋式压缩机
JPWO2018021058A1 (ja) * 2016-07-29 2019-05-09 パナソニックIpマネジメント株式会社 スクロール圧縮機
EP3492744A4 (en) * 2016-07-29 2019-07-31 Panasonic Intellectual Property Management Co., Ltd. SCROLL COMPRESSORS
CN109496253B (zh) * 2016-07-29 2021-01-15 松下知识产权经营株式会社 涡旋式压缩机
US11085445B2 (en) 2016-07-29 2021-08-10 Panasonic Intellectual Property Management Co., Ltd. Scroll compressor with integral driving shaft and eccentric shaft

Also Published As

Publication number Publication date
EP3159542A1 (en) 2017-04-26
CN106030112A (zh) 2016-10-12
EP3159542B1 (en) 2022-04-13
US10655625B2 (en) 2020-05-19
US20160363121A1 (en) 2016-12-15
EP3159542A4 (en) 2017-09-13

Similar Documents

Publication Publication Date Title
JP6344574B2 (ja) スクロール圧縮機
JP6484796B2 (ja) スクロール圧縮機
US20130078128A1 (en) Compressor including biasing passage located relative to bypass porting
WO2015194119A1 (ja) スクロール圧縮機
US11739752B2 (en) Scroll compressor with bypass portions
US11293442B2 (en) Scroll compressor having discharge cover providing a space to guide a discharge flow from a discharge port to a discharge passgae formed by a plurality of discharge holes
JP6555543B2 (ja) スクロール圧縮機
JP6757898B2 (ja) スクロール圧縮機
JP6454865B2 (ja) スクロール圧縮機
JP6767640B2 (ja) スクロール圧縮機
JP6454863B2 (ja) スクロール圧縮機
JP6582244B2 (ja) スクロール圧縮機
JP2019143548A (ja) スクロール流体機械
WO2018021058A1 (ja) スクロール圧縮機
JP2019143544A (ja) スクロール流体機械

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15809073

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015809073

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15120871

Country of ref document: US

Ref document number: 2015809073

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE