WO2019160330A1 - 전기 자동차의 충전 제어 장치 - Google Patents

전기 자동차의 충전 제어 장치 Download PDF

Info

Publication number
WO2019160330A1
WO2019160330A1 PCT/KR2019/001768 KR2019001768W WO2019160330A1 WO 2019160330 A1 WO2019160330 A1 WO 2019160330A1 KR 2019001768 W KR2019001768 W KR 2019001768W WO 2019160330 A1 WO2019160330 A1 WO 2019160330A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
wake
state
control unit
control device
Prior art date
Application number
PCT/KR2019/001768
Other languages
English (en)
French (fr)
Inventor
김형동
Original Assignee
엘지이노텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍 주식회사 filed Critical 엘지이노텍 주식회사
Priority to EP19754793.8A priority Critical patent/EP3753777A4/en
Priority to US16/969,421 priority patent/US11440422B2/en
Priority to CN201980018377.0A priority patent/CN111836740B/zh
Publication of WO2019160330A1 publication Critical patent/WO2019160330A1/ko
Priority to US17/881,349 priority patent/US11787301B2/en
Priority to US18/368,325 priority patent/US20240001784A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • B60L53/18Cables specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/305Communication interfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/66Data transfer between charging stations and vehicles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0036Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using connection detecting circuits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • Embodiments relate to a charging control device and a charging control method for an electric vehicle.
  • Green vehicles such as electric vehicles (EVs) or Plug-In Hybrid Electric Vehicles (PHEVs), use Electric Vehicle Supply Equipment (EVSE) installed at charging stations for battery charging.
  • EVs electric vehicles
  • PHEVs Plug-In Hybrid Electric Vehicles
  • EVSE Electric Vehicle Supply Equipment
  • an electric vehicle charging controller (EVCC) is mounted in the EV, communicates with the EV and the EVSE, and controls the charging of the electric vehicle.
  • EVCC electric vehicle charging controller
  • the EVCC when the EVCC receives a charging sequence signal for starting charging from the EVSE, it may be controlled to start charging. If the EVCC receives a charging sequence signal for stopping charging from the EVSE, the EVCC may control to end charging. have.
  • the electric vehicle had to operate the EVCC's MCU at all times to start charging when it received the charging sequence signal.
  • EVCC MCUs consume a significant amount of battery power. Accordingly, the electric vehicle has a problem of wasting unnecessary current until the charging power is provided from the EVSE.
  • the embodiment is devised to solve the above-described problems of the related art, and an object of the embodiment is to provide a charging control device and a charging control method for an electric vehicle.
  • an embodiment is to provide a charging control device and a charging control method for an electric vehicle that minimizes the current consumed by the charging control device while charging of the electric vehicle is not performed.
  • An apparatus for controlling charging of an electric vehicle includes a charging sequence port through which a charging sequence signal is input from a connector of a charging cable; A first power supply unit providing a first driving voltage; A first controller configured to drive based on the first driving voltage, periodically repeat a wakeup state and a sleep state, and generate a wakeup signal when the charge sequence signal is input to the charge sequence port in a wakeup state; A second control unit operating in a wake-up state when the wake-up signal is generated and controlling a charging operation of the electric vehicle when the wake-up signal is generated; And a second power supply unit disposed between the first control unit and the second control unit and providing a second driving voltage, wherein the second power supply unit generates the second driving voltage when the wakeup signal is generated. It is provided to the second control unit.
  • the period of the first controller may include a first interval and a second interval, wherein the first interval is a period during which the first controller is in a sleep state, and the second interval is a wakeup state of the first controller. Is a period of time.
  • first section is longer than the second section.
  • the apparatus may further include an opto coupler disposed between the charging sequence port and the first power supply and configured to drive based on the first driving voltage.
  • the opto coupler may include the first control unit when the charging sequence signal is input. To provide the charging sequence signal.
  • the optocoupler may provide the charging sequence signal to the second controller when the charging sequence signal is input.
  • the apparatus may further include a coupler switch disposed between the optocoupler and the first power supply and turned on / off under the control of the first controller.
  • the first controller periodically turns on / off the coupler switch.
  • the on / off cycle of the coupler switch and the wake-up / sleep state cycle of the first controller are the same.
  • the embodiment can minimize the current consumed by the charging control device while charging of the electric vehicle is not performed.
  • the embodiment may minimize the current in the sleep state of the MCU of the EVCC.
  • embodiments may slow down the battery discharge rate.
  • 1 to 3 are diagrams illustrating a charging system of an electric vehicle according to an embodiment.
  • FIG. 4 is a block diagram of a charging control device according to an embodiment.
  • FIG. 5 is an example of an operation scenario of a charging control device according to an embodiment.
  • FIG. 6 is a block diagram of a charging control device according to another embodiment.
  • FIG. 7 is an example of an operation scenario of a charging control device according to another embodiment.
  • Combinations of each block and each step of the flowchart in the accompanying drawings may be performed by computer program instructions.
  • These computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment such that the instructions executed by the processor of the computer or other programmable data processing equipment are executed in each block or flowchart of the figure. It will create means for performing the functions described in the steps.
  • These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory.
  • Instructions stored therein may produce an article of manufacture containing instruction means for performing the functions described in each step of each block or flowchart of the figure.
  • Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for executing the functions described in each block of the figures and in each step of the flowchart.
  • each block or step may represent a portion of a module, segment or code that includes one or more executable instructions for executing a specified logical function (s).
  • a specified logical function s.
  • the functions noted in the blocks or steps may occur out of order.
  • the two blocks or steps shown in succession may in fact be executed substantially concurrently or the blocks or steps may sometimes be performed in the reverse order, depending on the functionality involved.
  • 1 to 3 are diagrams illustrating a charging system of an electric vehicle according to an embodiment.
  • an electric vehicle EV 10 may be charged from an electric vehicle supply equipment EVSE 20.
  • the charging cable 22 connected to the EVSE 20 may be connected to the inlet of the EV 10.
  • the EVSE 20 is a facility for supplying AC or DC, and may be disposed in a charging station, in a home, or may be implemented to be portable.
  • the EVSE 20 may be mixed with a supply station, an AC supply station, a DC supply station, a socket-outlet, and the like.
  • An electric vehicle charging controller (EVCC) 100 is mounted in the EV 10 and connected to the EV 10.
  • the charging device 100 may be installed in the trunk of the EV 10, but is not limited thereto.
  • the charging device 100 may communicate with the electric vehicle 10 and the electric vehicle charging facility EVSE 20, respectively.
  • the charging device 100 includes a charging control device 200 and the power supply unit 300.
  • the charging control device 200 is connected to the electric vehicle 10 and the electric vehicle charging facility 20, respectively.
  • the charging control device 200 may be connected to the electric vehicle 10 and the electric vehicle charging facility 20 through a plurality of pins, respectively.
  • the charging control device 200 may include 20 pins connected to the electric vehicle charging facility 20, thereby communicating with the electric vehicle charging facility 20.
  • one of the 20 pins may be a pin for a CP port that receives a control pilot (CP) signal from the electric vehicle charging facility 20, and the other pin may detect proximity of a charging cable connector.
  • CP control pilot
  • It may be a pin for the port, another may be a pin for the CS port for receiving a CS (Charge sequence) signal from the electric vehicle charging facility 20, the other is connected to the ground of the electric vehicle charging facility 20
  • It may be a pin for a PE (Protective Earth) port.
  • Another one of the 20 pins may be a pin for driving the motor to open the filling flap, another may be a pin for sensing the motor, another may be a pin for temperature sensing, and The other may be a pin for LED sensing, and the other may be a pin for CAN communication.
  • the number and function of the pins is not limited thereto, and may be variously modified.
  • the charging control device 200 may include 12 pins connected to the electric vehicle 10, thereby communicating with the electric vehicle 10.
  • one of the 12 pins may be a pin for a voltage line applied from a collision detection sensor in the electric vehicle 10, the other may be a battery pin in the electric vehicle 10, and another may be for can communication. It may be a pin, another may be a pin connected to ground, and another may be a high voltage protection pin.
  • the number and function of the pins is not limited thereto, and may be variously modified.
  • the two high voltage lines of the electric vehicle charging facility 20 supply power to the battery 14 of the electric vehicle 10 through the power supply unit 300 of the charging device 100, where the on and off of the high voltage line It may be controlled by the charging control device 200.
  • the charging control device 200 communicates with the ECU (Elctric Control Unit) 12 of the electric vehicle 10 and charges the electric vehicle according to signals received from the electric vehicle 10 and the electric vehicle charging facility 20, respectively.
  • the power supply unit 300 may transfer the power supplied from the facility 20 to the battery 12 of the electric vehicle 10.
  • FIG. 4 is a block diagram of a charging control device according to an embodiment.
  • the charging control device 200 may include a first control unit 210 and a second control unit 220.
  • the first control unit 210 may be mixed with a submicrocontroller (sub-MCU), an auxiliary control unit, an auxiliary controller, etc.
  • the second control unit 220 may be a main microcontroller (main microcontroller, main-MCU).
  • the main control unit and the main controller can be used interchangeably.
  • the MCU may mean a computer that performs a predetermined function by making a microprocessor and an input / output module into one chip.
  • the MCU When the MCU is applied in a vehicle, it may be implemented as a device called an electronic control unit (ECU), and may allow a computer to control various parts of the engine, the automatic transmission, and the ABS of the vehicle.
  • the MCU according to an embodiment is applied in the charging control device 200 for charging an electric vehicle, and may be divided into a sub MCU and a main MCU.
  • the sub MCU which is the first controller 210
  • the first control unit 210 may operate the second control unit 220 in a wake-up state in a sleep state in which no current is consumed, and when the second control unit 220 operates in the wake-up state, the first control unit 220 may operate using the battery voltage. Charge control is possible.
  • the first controller 210 may periodically detect the charging sequence signal, and when the charging sequence signal is detected, the second controller 220 may operate from the sleep state to the wake up state. More specifically, the first controller 210 can repeat the wake up state and the sleep state periodically.
  • the period can be set arbitrarily.
  • the period may include a first section and a second section.
  • the first section may be a section in which the first control unit 210 is in a sleep state.
  • the second section may be a section in the wake-up state of the first controller 220.
  • the first section may be larger than the second section.
  • the first interval may be 500 ms and the second interval may be 50 ms.
  • the first controller 210 may not drive during the first period in the sleep state and may not perform the charging sequence signal detection operation. That is, during the first period, the first controller 210 may not consume the current.
  • the first controller 210 is driven based on the first driving voltage of the first power supply 230 during the second period in the wake-up state, and performs the charging sequence signal CSS detection operation provided by the optocoupler 250. Can be. That is, during the second period, the first controller 210 can consume a current.
  • the first control unit 210 detects the charging sequence signal CSS while operating for a second period of one period, the first control unit 210 may generate a wake-up signal for waking up the second control unit 220.
  • the first controller 210 can provide a wake up signal to the second power supply 270.
  • the second controller 220 may be in a sleep state before starting the charging control. In the sleep state, the second controller 220 may not consume current.
  • the second control unit 220 may operate in the wake-up state when the first control unit 210 generates the wake-up signal, and overall perform the operation for controlling the charging of the electric vehicle. In the wake-up state, the second controller 220 may consume a current. More specifically, when the first controller 2210 generates the wakeup signal, the wakeup signal may activate the second power supply unit 270.
  • the activated second power supply unit 270 may provide a second driving voltage to the second control unit 220, and the second control unit 220 may operate in a wake-up state by the second driving voltage.
  • the second control unit 220 may check the charging sequence signal CSS provided from the optocoupler 250 to perform a charging control operation.
  • the charging control device 200 may include a first power supply 230.
  • the first power supply 230 may provide a first driving voltage to the first controller 210 based on the power provided by the battery 14.
  • the first power supply 230 may provide a first driving voltage to the optocoupler 250 based on the power provided by the battery 14.
  • the charging control device 200 may include a charging sequence port 240.
  • the charging sequence port 240 may receive a charging sequence signal CSS from a charging cable.
  • the charging control device 200 may include an optocoupler 250.
  • the optocoupler 250 may operate based on the first driving voltage provided from the first power supply unit 230.
  • the optocoupler can be mixed with a photo coupler.
  • the optocoupler includes a light emitting diode and a photo transistor, and when a current is applied to the light emitting diode, the light emitting diode emits light.
  • the phototransistor may be in a conductive state by receiving light emitted from the light emitting diode.
  • the opto coupler 250 may provide the charging sequence signal CSS to the first controller 210.
  • the optocoupler 250 may provide the charging sequence signal CSS to the second controller 220 when the charging sequence signal CSS provided by the charging sequence port 240 is detected.
  • the charging control device 200 may include a diode 260.
  • the diode 260 may be disposed between the first control unit 210 and the second power supply unit 270.
  • the diode 260 allows the wakeup signal provided from the first control unit 210 to be provided to the second power supply unit 270.
  • the diode 260 may prevent the current generated by the second power supply unit 270 from flowing into the first controller 210.
  • the charging control device 200 may include a storage unit 280.
  • the storage unit 280 may include information about a cycle of the first control unit 210. That is, the storage unit 280 may store period information, first period information, and second period information for one period.
  • the embodiment can minimize the current consumed by the charge control device while charging of the electric vehicle is not performed.
  • the embodiment may minimize the current in the sleep state of the MCU of the EVCC.
  • embodiments may slow down the battery discharge rate.
  • FIG. 5 is an example of an operation scenario of a charging control device according to an embodiment.
  • the first control unit 210 which is a sub-MCU, may periodically repeat a wake-up state and a sleep state (S500).
  • the second control unit 220 may be in a sleep state (S510). Accordingly, power consumption in the sub MCU can be reduced, and unnecessary power consumption in the main MCU can be prevented.
  • the first controller 210 may monitor the charging sequence signal in the wakeup state (S520). When the first control unit 210 detects the charging sequence signal, the first control unit 210 may wake up the second control unit 220 (S530 and S540).
  • the second control unit 220 may control the charging operation when the wakeup state is reached (S550).
  • FIG. 6 is a block diagram of a charging control device according to another embodiment.
  • the charging control device 1200 may include a first control unit 1210 and a second control unit 1220.
  • the first control unit 1210 may be mixed with a submicrocontroller (sub-MCU), an auxiliary control unit, an auxiliary controller, etc.
  • the second control unit 1220 may be a main microcontroller (main microcontroller, main-MCU).
  • the main control unit and the main controller can be used interchangeably.
  • the MCU may mean a computer that performs a predetermined function by making a microprocessor and an input / output module into one chip.
  • the MCU When the MCU is applied in a vehicle, it may be implemented as a device called an electronic control unit (ECU), and may allow a computer to control various parts of the engine, the automatic transmission, and the ABS of the vehicle.
  • the MCU according to an embodiment is applied in the charging control apparatus 1200 for charging an electric vehicle, and may be divided into a sub MCU and a main MCU.
  • the sub-controller as the first controller 1210 may be a unit separated from the main MCU as the second controller 1220.
  • the first control unit 1210 may operate the second control unit 1220 in a wake-up state in a sleep state in which no current is consumed, and when the second control unit 1220 operates in the wake-up state, the first control unit 1220 may operate using the battery voltage. Charge control is possible.
  • the first controller 1210 periodically detects the charging sequence signal, and when the charging sequence signal is detected, the second controller 1220 may operate from the sleep state to the wake-up state. More specifically, the first control unit 1210 may repeat the wake up state and the sleep state periodically.
  • the period can be set arbitrarily.
  • the period may include a first section and a second section.
  • the first section may be a section in which the first control unit 1210 is in a sleep state.
  • the second section may be a section in the wake-up state of the first controller 1220.
  • the first section may be larger than the second section.
  • the first interval may be 500 ms and the second interval may be 50 ms.
  • the first controller 1210 may not drive during the first period in the sleep state and may not perform the charging sequence signal detection operation. That is, during the first period, the first controller 1210 may not consume the current.
  • the first controller 1210 is driven based on the first driving voltage of the first power supply 1230 during the second period in the wake-up state, and performs a charging sequence signal (CSS) detection operation provided by the optocoupler 1250. Can be. That is, during the second period, the first controller 1210 may consume a current.
  • the first control unit 1210 detects the charging sequence signal CSS while operating for a second period of one period, the first control unit 1210 may generate a wake-up signal for waking up the second control unit 1220.
  • the first controller 1210 may provide a wakeup signal to the second power supply 1270.
  • the first controller 1210 may periodically wake up the optocoupler 1250. For example, a period in which the first control unit 1210 repeats the wake up state and the sleep state may be the same as a cycle in which the optocoupler 1250 repeats the wake up state and the sleep state. That is, the first control unit 1210 may wake up the opto coupler 1250 in the first section, and may slip the opto coupler 1250 in the second section. As another example, the first control unit 1210 wakes up the optocoupler 1250 after a predetermined time after waking up in the first section, and slips the opto coupler 1250 before a predetermined time before the second section arrives. You can.
  • the first controller 1210 may turn on the coupler switch 1290 to wake up the optocoupler 1250.
  • the first controller 1210 may turn off the coupler switch 1290 by providing a coupler switch signal SW to the coupler switch 1290 to slip the optocoupler 1250.
  • the optocoupler 1250 operates only during the periodic wake up, thereby reducing the current consumption.
  • the first control unit 1210 turns on the coupler switch 1290 at the start time of operating in the wake-up state, and the coupler switch before the end time of the wake-up state (before the start time of the sleep state). (1290) can be turned off.
  • the second control unit 1220 may be in a sleep state before starting the charging control. In the sleep state, the second controller 1220 may not consume the current.
  • the second control unit 1220 may operate in the wake-up state when the first control unit 1210 generates the wake-up signal, and overall perform an operation for controlling charging of the electric vehicle. In the wake-up state, the second controller 1220 may consume a current. More specifically, when the first controller 12210 generates the wakeup signal, the wakeup signal may activate the second power supply 1270.
  • the activated second power supply 1270 may provide a second driving voltage to the second control unit 1220, and the second control unit 1220 may operate in a wake-up state by the second driving voltage.
  • the second control unit 1220 may check the charging sequence signal CSS provided from the optocoupler 1250 to perform a charging control operation.
  • the charging control device 1200 may include a first power supply 1230.
  • the first power supply 1230 may provide a first driving voltage to the first controller 1210 based on the power provided by the battery 14.
  • the first power supply 1230 may provide a first driving voltage to the coupler switch 1290 based on the power provided by the battery 14.
  • the charging control device 1200 may include a charging sequence port 1240.
  • the charging sequence port 1240 may receive a charging sequence signal CSS from a charging cable.
  • the charging control device 200 may include a coupler switch 1290.
  • the coupler switch 1290 may be disposed between the optocouplers 1250 in the first power supply 1230.
  • the coupler switch 1290 may be turned on or off based on the coupler switch signal SW of the first controller 1210.
  • the coupler switch 1290 may be turned on when the coupler switch signal SW is turned on to provide the optocoupler 1250 with a first driving voltage provided by the first power supply 1230.
  • the coupler switch 1290 may be turned off when the coupler switch signal SW for turning off the first driving voltage provided by the first power supply 1230 is not provided to the optocoupler 1250.
  • the charging control device 1200 may include an optocoupler 1250.
  • the optocoupler 1250 may operate based on the first driving voltage provided by the first power supply 1230.
  • the optocoupler can be mixed with a photo coupler.
  • the optocoupler includes a light emitting diode and a photo transistor, and when a current is applied to the light emitting diode, the light emitting diode emits light.
  • the phototransistor may be in a conductive state by receiving light emitted from the light emitting diode. Using this principle, when the charging sequence signal CSS provided by the charging sequence port 1240 is detected, the opto coupler 1250 may provide the charging sequence signal CSS to the first controller 1210.
  • the optocoupler 1250 may be periodically woken up by the control of the first controller 1210.
  • the opto-coupler 1250 may detect the charging sequence signal CSS provided by the charging sequence port 1240 while in the wake-up state, that is, while the first driving voltage is provided, the optocoupler 1250 may transmit the charging sequence signal CSS).
  • the charge control device 1200 may include a diode 1260.
  • the diode 1260 may be disposed between the first controller 1210 and the second power supply 1270.
  • the diode 1260 allows the wakeup signal provided from the first controller 1210 to be provided to the second power supply 1270.
  • the diode 1260 may prevent the current generated by the second power supply 1270 from flowing into the first controller 1210.
  • the charging control device 1200 may include a storage unit 1280.
  • the storage unit 1280 may include information about a cycle of the first control unit 1210. That is, the storage unit 1280 may store period information of the first control unit 1210, first period information, and second period information for one period.
  • the storage unit 1280 may include information about the period of the optocoupler 1250. That is, the storage unit 1280 may store period information of the optocoupler 1210, first period information, and second period information for one period.
  • the embodiment can minimize the current consumed by the charge control device while charging of the electric vehicle is not performed.
  • the embodiment may minimize the current in the sleep state of the MCU of the EVCC.
  • embodiments may slow down the battery discharge rate.
  • FIG. 7 is an example of an operation scenario of a charging control device according to another embodiment.
  • the first control unit 1210 which is a sub-MCU, may periodically repeat a wake-up state and a sleep state (S1500).
  • the second controller 1220 may be in a sleep state (S1510). Accordingly, power consumption in the sub MCU can be reduced, and unnecessary power consumption in the main MCU can be prevented.
  • the first control unit 210 may wake up the optocoupler in the wakeup state (S1520). Accordingly, power consumption in the optocoupler can be reduced.
  • the first controller 1210 may monitor the charging sequence signal in the wakeup state (S1530).
  • the first control unit 1210 may wake up the second control unit 1220 (S540 and S550).
  • the second control unit 1220 may control the charging operation when the wakeup state is reached (S1560).
  • processor-readable code on a medium in which a program is recorded.
  • processor-readable media include ROM, RAM, CD-ROM, magnetic tape, floppy disks, optical data storage systems, and the like, which may be implemented in the form of carrier waves (eg, transmission over the Internet). Include.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

실시 예는 전기 자동차의 충전 제어 장치에 관한 것이다. 실시 예에 따른 전기 자동차 충전 제어 장치는 충전 케이블의 커넥터로부터 충전 시퀀스 신호가 입력되는 충전 시퀀스 포트; 제1 구동전압을 제공하는 제1 전원 공급부; 상기 제1 구동전압에 기초하여 구동하고, 주기적으로 웨이크업 상태와 슬립 상태를 반복하고, 웨이크업 상태에서 상기 충전 시퀀스 포트에 상기 충전 시퀀스 신호가 입력되면 웨이크업 신호를 생성하는 제1 제어부; 슬립 상태를 유지하고, 상기 슬립 상태 유지 중에 상기 웨이크업 신호가 생성되면 웨이크업 상태로 동작하며, 상기 웨이크업 상태에서 상기 전기 자동차의 충전 동작을 제어하는 제2 제어부; 및 상기 제1 제어부와 상기 제2 제어부 사이에 배치되고, 상기 웨이크업 신호가 생성되면 상기 제2 구동 전압을 상기 제2 제어부에 제공하는 제2 전원 공급부;를 포함하며, 상기 충전 시퀀스 신호는, 상기 제1 제어부의 웨이크업 상태에서 선택적으로 수신된다.

Description

전기 자동차의 충전 제어 장치
실시예는 전기 자동차의 충전 제어 장치 및 충전 제어 방법에 관한 것이다.
전기 자동차(Electric Vehicle, EV) 또는 플러그-인 하이브리드 자동차(Plug-In Hybrid Electric Vehicle, PHEV)와 같은 친환경 자동차는 배터리 충전을 위하여 충전소에 설치된 전기 자동차 충전 설비(Electric Vehicle Supply Equipment, EVSE)를 이용한다.
이를 위하여, 전기 자동차 충전 장치(Electric Vehicle Charging Controller, EVCC)는 EV 내에 탑재되며, EV 및 EVSE와 통신하며, 전기 자동차의 충전을 제어한다.
예를 들어, EVSE로부터 EVCC가 충전 시작에 관한 충전 시퀀스 신호를 수신하면, 충전을 시작하도록 제어할 수 있으며, EVSE부터 EVCC가 충전 중단에 관한 충전 시퀀스 신호를 수신하면, 충전을 종료하도록 제어할 수 있다.
그러나, 전기 자동차는 충전 시퀀스 신호를 수신하면 충전을 시작하기 위하여 EVCC의 MCU를 항시 동작하여야 했다. EVCC의 MCU는 배터리의 전력을 상당량 소비한다. 이에, 전기 자동차는 EVSE로부터 충전 전력이 제공되기 전까지 불필요하게 전류를 낭비하는 문제가 있었다.
실시예는 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 실시예의 목적은 전기 자동차의 충전 제어 장치 및 충전 제어 방법을 제공하는 것이다.
또한, 실시예는 전기 자동차의 충전이 수행되지 않는 동안 충전 제어 장치가 소비하는 전류를 최소화하는 전기 자동차의 충전 제어 장치 및 충전 제어 방법을 제공하는 것이다.
실시 예에 따른 전기 자동차의 충전 제어 장치는 충전 케이블의 커넥터로부터 충전 시퀀스 신호가 입력되는 충전 시퀀스 포트; 제1 구동전압을 제공하는 제1 전원 공급부; 상기 제1 구동전압에 기초하여 구동하고, 주기적으로 웨이크업 상태와 슬립 상태를 반복하고, 웨이크업 상태에서 상기 충전 시퀀스 포트에 상기 충전 시퀀스 신호가 입력되면 웨이크업 신호를 생성하는 제1 제어부; 슬립 상태를 유지하다 상기 웨이크업 신호가 생성되면 웨이크업 상태로 동작하고, 상기 웨이크업 상태가 되면 상기 전기 자동차의 충전 동작을 제어하는 제2 제어부; 및 상기 제1 제어부와 상기 제2 제어부 사이에 배치되고, 제2 구동전압을 제공하는 제2 전원 공급부;를 포함하고, 상기 제2 전원 공급부는 상기 웨이크업 신호가 생성되면 상기 제2 구동 전압을 상기 제2 제어부에 제공한다.
또한, 상기 제1 제어부의 주기는 제1 구간과 제2 구간을 포함하고, 상기 제1 구간은 상기 제1 제어부가 슬립 상태가 되는 기간이고, 상기 제2 구간은 상기 제1 제어부가 웨이크업 상태가 되는 기간이다.
또한, 상기 제1 구간은 상기 제2 구간 보다 길다.
또한, 상기 충전 시퀀스 포트와 상기 제1 전원 공급부 사이에 배치되고, 상기 제1 구동전압에 기초하여 구동하는 옵토 커플러;를 더 포함하고, 상기 옵토 커플러는 상기 충전 시퀀스 신호가 입력되면 상기 제1 제어부에 상기 충전 시퀀스 신호를 제공한다.
또한, 상기 옵토 커플러는 상기 충전 시퀀스 신호가 입력되면 상기 제2 제어부에 상기 충전 시퀀스 신호를 제공한다.
또한, 상기 옵토 커플러와 상기 제1 전원 공급부 사이에 배치되고, 상기 제1 제어부의 제어에 따라 온/오프 되는 커플러 스위치;를 더 포함한다.
또한, 상기 제1 제어부는 주기적으로 상기 커플러 스위치를 온/오프 시킨다.
또한, 상기 커플러 스위치의 온/오프 주기와 상기 제1 제어부의 웨이크업/슬립 상태 주기가 서로 동일하다.
실시예에 따른 전기 자동차의 충전 제어 장치 및 충전 제어 방법에 대한 효과를 설명하면 다음과 같다.
또한, 실시예는 전기 자동차의 충전이 수행되지 않는 동안 충전 제어 장치가 소비하는 전류를 최소화할 수 있다.
또한, 실시예는 EVCC의 MCU의 슬립 상태에서의 전류를 최소화할 수 있다.
또한, 실시예는 배터리 방전 속도를 늦출 수 있다.
실시예에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 실시예에 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 실시예에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 실시예에 대한 실시예들을 제공한다. 다만, 실시예의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1 내지 도 3은 실시예에 따른 전기 자동차의 충전 시스템을 나타내는 도면이다.
도 4는 일 실시예에 따른 충전 제어 장치의 블록도이다.
도 5는 일 실시예에 따른 충전 제어 장치의 동작 시나리오의 한 예이다.
도 6은 다른 실시예에 따른 충전 제어 장치의 블록도이다.
도 7은 다른 실시예에 따른 충전 제어 장치의 동작 시나리오의 한 예이다.
이하, 본 발명과 관련된 실시 예에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
첨부된 도면의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 도면의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 도면의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 도면의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시 예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
도 1 내지 도 3은 실시예에 따른 전기 자동차의 충전 시스템을 나타내는 도면이다.
도 1 내지 3을 참조하면, 전기 자동차(Electric Vehicle, EV, 10)는 전기 자동차 충전 설비(Electric Vehicle SupplyEquipment, EVSE, 20)로부터 충전될 수 있다. 이를 위하여, EVSE(20)에 연결된 충전 케이블(22)이 EV(10)의 주입구에 연결 될 수 있다. 여기서, EVSE(20)는 AC 또는 DC를 공급하는 설비이며, 충전소에 배치되거나, 가정 내에 배치될 수 있으며, 휴대 가능하도록 구현될 수도 있다. EVSE(20)는 충전소(supply), AC 충전소(AC supply),DC 충전소(DC supply),소켓-아웃렛(socket-outlet) 등과 혼용될 수 있다.
충전 장치(Electric Vehicle Charging Controller, EVCC, 100)는 EV(10) 내에 탑재되며, EV(10)와 연결된다. 예를 들어, 충전 장치(100)는 EV(10)의 트렁크 내에 설치될 수 있으나, 이로 제한되는 것은 아니다.
여기서, 충전 장치(100)는 전기 자동차(10) 및 전기 자동차 충전 설비(EVSE, 20)와 각각 통신할 수 있다.
실시예에 따르면, 충전 장치(100)는 충전 제어 장치(200) 및 전력 공급부(300)를 포함한다.
충전 제어 장치(200)는 전기 자동차(10) 및 전기 자동차 충전 설비(20)에 각각 연결된다. 충전 제어 장치(200)는 전기 자동차(10) 및 전기 자동차 충전 설비(20)에 각각 복수의 핀을 통하여 연결될 수 있다.
예를 들어, 충전 제어 장치(200)는 전기 자동차 충전 설비(20)와 연결되는 20 핀(pin)을 포함하며, 이를 통하여 전기 자동차 충전 설비(20)와 통신할 수 있다. 예를 들어, 20 핀 중 하나는 전기 자동차 충전 설비(20)로부터 CP(Control Pilot) 신호를 입력 받는 CP 포트용 핀일 수 있고, 다른 하나는 충전 케이블 커넥터의 근접 여부를 감지하는 PD(Proximity Detection) 포트용 핀일 수 있으며, 또 다른 하나는 전기 자동차 충전 설비(20)로부터 CS(Charge sequence) 신호를 입력 받는 CS 포트용 핀일 수 있고, 또 다른 하나는 전기 자동차 충전 설비(20)의 접지와 연결되는 PE(Protective Earth) 포트용 핀일 수 있다. 20 핀 중 또 다른 하나는 주유구 플랩(flap)을 열기 위한 모터를 구동시키기 위한 핀일 수 있고, 또 다른 하나는 모터를 센싱하기 위한 핀일수 있으며, 또 다른 하나는 온도 센싱을 위한 핀일 수 있고, 또 다른 하나는 엘이디 센싱을 위한 핀일 수 있고, 또 다른 하나는 캔(CAN) 통신을 위한 핀일 수 있다. 그러나, 핀의 개수 및 기능은 이로 제한되는 것은 아니며, 다양하게 변형될 수 있다.
그리고, 충전 제어 장치(200)는 전기 자동차(10)와 연결되는 12 핀(pin)을 포함하며, 이를 통하여 전기 자동차(10)와 통신할 수 있다. 예를 들어, 12 핀 중 하나는 전기 자동차(10) 내 충돌 감지 센서로부터 인가되는 전압 라인용 핀일 수 있고, 다른 하나는 전기 자동차(10) 내 배터리 핀일 수 있으며, 또 다른 하나는 캔 통신을 위한 핀일 수 있고, 또 다른 하나는 접지와 연결되는 핀일 수 있으며, 또 다른 하나는 고전압 보호용 핀일 수 있다. 그러나, 핀의 개수 및 기능은 이로 제한되는 것은 아니며, 다양하게 변형될 수 있다.
전기 자동차 충전 설비(20)의 두 개의 고전압 라인은 충전 장치(100)의 전력 공급부(300)를 통하여 전기 자동차(10)의 배터리(14) 내에 전력을 공급하며, 이때, 고전압 라인의 온오프는 충전 제어 장치(200)에 의하여 제어될 수 있다.
즉, 충전 제어 장치(200)는 전기 자동차(10)의 ECU(Elctric Control Unit, 12)와 통신하며, 전기 자동차(10) 및 전기 자동차 충전 설비(20)로부터 각각 수신 한 신호에 따라 전기 자동차 충전 설비(20)로부터 공급되는 전력을 전기 자동차(10)의 배터리(12)로 전달하는 전력 공급부(300)를 제어할 수 있다.
도 4는 일 실시예에 따른 충전 제어 장치의 블록도이다.
도 4를 참조하면, 일 실시예에 따른 충전 제어 장치(200)는 제1 제어부(210) 및 제2 제어부(220)를 포함할 수 있다. 본 명세서에서, 제1 제어부(210)는 서브 마이크로컨트롤러(submicrocontroller, sub-MCU), 보조 제어부, 보조 제어기 등과 혼용될 수 있고, 제2 제어부(220)는 메인 마이크로컨트롤러(main microcontroller, main-MCU), 주 제어부, 주 제어기와 혼용될 수 있다. 여기서, MCU는 마이크로프로세서와 입출력 모듈을 하나의 칩으로 만들어 정해진 기능을 수행하는 컴퓨터를 의미할 수 있다. MCU가 차량 내에 적용되는 경우, 이는 ECU(Electronic Control Unit)라는 장치로 구현될 수 있으며, 자동차의 엔진, 자동 변속기, ABS의 다양한 부품을 컴퓨터로 제어하도록 할 수 있다. 일 실시예에 따른 MCU는 전기 자동차의 충전을 위한 충전 제어 장치(200) 내에 적용되며, 서브 MCU와 메인 MCU로 구분될 수 있다.
일반적으로, 충전 제어 장치(200) 내에 적용되는 MCU는 전기 자동차의 충전을 전반적으로 제어하므로, 전력 소모가 많아질 수 있다. 이러한 MCU는 전기 자동차의 배터리 전압을 이용하므로, MCU의 전력 소모가 매우 큰 이슈가 될 수 있다. 이러한 이슈를 해결하기 위해 실시예에 따르면, 제1 제어부(210)인 서브 MCU는 제2 제어부(220)인 메인 MCU와 분리되는 유닛일 수 있다. 제1 제어부(210)는 제2 제어부(220)를 전류를 소비하지 않는 슬립 상태에서 웨이크업 상태로 동작시킬 수 있고, 제2 제어부(220)는 웨이크업 상태로 동작하면 배터리 전압을 이용하여 전반적인 충전 제어를 할 수 있다.
제1 제어부(210)는 주기적으로 충전 시퀀스 신호를 검출하고, 충전 시퀀스 신호가 검출되면 제2 제어부(220)가 슬립 상태에서 웨이크업 상태로 동작 시킬 수 있다. 보다 구체적으로, 제1 제어부(210)는 주기적으로 웨이크업 상태와 슬립 상태를 반복할 수 있다. 주기는 임의로 설정될 수 있다. 또한, 주기는 제1 구간과 제2 구간을 포함할 수 있다. 제1 구간은 제1 제어부(210)의 슬립 상태인 구간일 수 있다. 제2 구간은 제1 제어부(220)의 웨이크업 상태인 구간일 수 잇다. 제1 구간은 제2 구간 보다 클 수 있다. 예를 들어, 제1 구간은 500ms일 수 있고, 제2 구간은 50ms일 수 있다. 또한, 제1 제어부(210)는 슬립 상태인 제1 구간 동안 구동을 하지 않으며 충전 시퀀스 신호 검출 동작을 하지 않을 수 있다. 즉, 제1 구간 동안, 제1 제어부(210)는 전류를 소비하지 않을 수 있다. 제1 제어부(210)는 웨이크업 상태인 제2 구간 동안 제1 전원 공급부(230)의 제1 구동전압에 기초하여 구동하며 옵토 커플러(250)에서 제공되는 충전 시퀀스 신호(CSS) 검출 동작을 할 수 있다. 즉, 제2 구간 동안, 제1 제어부(210)는 전류를 소비할 수 있다. 또한, 제1 제어부(210)는 한 주기의 제2 구간 동안 동작하면서 충전 시퀀스 신호(CSS)을 검출하면 제2 제어부(220)를 웨이크 업시키기 위한 웨이크업 신호를 생성할 수 있다. 제1 제어부(210)는 웨이크업 신호를 제2 전원공급부(270)에 제공할 수 있다.
제2 제어부(220)는 충전 제어 시작 전 슬립 상태에 있을 수 있다. 슬립 상태에서 제2 제어부(220)는 전류를 소비하지 않을 수 있다. 제2 제어부(220)는 제1 제어부(210)가 웨이크업 신호를 생성하면 웨이크업 상태로 동작할 수 있으며, 전기자동차의 충전을 제어하기 위한 동작을 전반적으로 수행할 수 있다. 웨이크업 상태에서 제2 제어부(220)는 전류를 소비할 수 있다. 보다 구체적으로, 제1 제어부(2210)가 웨이크업 신호를 생성하면, 웨이크업 신호는 제2 전원 공급부(270)를 활성화 시킬 수 있다. 활성화된 제2 전원 공급부(270)는 제2 제어부(220)에 제2 구동전압을 제공하고, 제2 제어부(220)는 제2 구동전압에 의하여 웨이크업 상태로 동작할 수 있다. 또한, 제2 제어부(220)는 웨이크업 상태가 되면 옵토 커플러(250)에서 제공되는 충전 시퀀스 신호(CSS)를 확인하여 충전 제어 동작을 수행할 수 있다.
일 실시예에 따른 충전 제어 장치(200)는 제1 전원 공급부(230)를 포함할 수 있다. 제1 전원 공급부(230)는 배터리(14)에서 제공하는 전원에 기초하여 제1 제어부(210)에 제1 구동전압을 제공할 수 있다. 또한, 제1 전원 공급부(230)는 배터리(14)에서 제공하는 전원에 기초하여 옵토 커플러(250)에 제1 구동전압을 제공할 수 있다.
일 실시예에 따른 충전 제어 장치(200)는 충전 시퀀스 포트(240)를 포함할 수 있다. 충전 시퀀스 포트(240)는 충전 케이블로부터 충전 시퀀스 신호(CSS)를 입력 받을 수 있다.
일 실시예에 따른 충전 제어 장치(200)는 옵토 커플러(250)를 포함할 수 있다. 옵토 커플러(250)는 제1 전원 공긍부(230)에서 제공되는 제1 구동전압에 기초하여 동작할 수 있다. 옵토 커플러는 포토 커플러(photo coupler)와 혼용될 수 있다. 옵토 커플러는 발광 다이오드와 포토 트랜지스터를 포함하며, 발광 다이오드에 전류가 인가되면 발광 다이오드는 광을 방출한다. 포토 트랜지스터는 발광 다이오드가 방출하는 광을 수광 하여 전도 상태가 될 수 있다. 이러한 원리를 이용하여, 옵토 커플러(250)는 충전 시퀀스 포트(240)에서 제공하는 충전 시퀀스 신호(CSS)가 감지되면 제1 제어부(210)에 충전 시퀀스 신호(CSS)를 제공할 수 있다. 또한, 옵토 커플러(250)는 충전 시퀀스 포트(240)에서 제공하는 충전 시퀀스 신호(CSS)가 감지되면 제2 제어부(220)에 충전 시퀀스 신호(CSS)를 제공할 수 있다.
일 실시예에 따른 충전 제어 장치(200)는 다이오드(260)를 포함할 수 있다. 다이오드(260)는 제1 제어부(210)와 제2 전원공급부(270)의 사이에 배치될 수 있다. 다이오드(260)는 제1 제어부(210)에서 제공되는 웨이크업 신호가 제2 전원 공급부(270)로 제공될 수 있도록 한다. 또한, 다이오드(260)는 제2 전원공급부(270)에서 생성된 전류가 제1 제어부(210)로 유입되는 것을 방지할 수 있다.
일 실시예에 따른 충전 제어 장치(200)는 저장부(280)를 포함할 수 있다. 저장부(280)는 제1 제어부(210)의 주기에 관한 정보를 포함할 수 있다. 즉, 저장부(280)는 주기 정보, 한 주기 동안 제1 구간 및 제2 구간 정보를 저장할 수 있다.
따라서, 실시예는 전기 자동차의 충전이 수행되지 않는 동안 충전 제어 장치가 소비하는 전류를 최소화할 수 있다. 또한, 실시예는 EVCC의 MCU의 슬립 상태에서의 전류를 최소화할 수 있다. 또한, 실시예는 배터리 방전 속도를 늦출 수 있다.
도 5는 일 실시예에 따른 충전 제어 장치의 동작 시나리오의 한 예이다.
도 5를 참조하면, 전기 자동차(10)의 충전을 시작하지 않은 상태에서, 서브 MCU인 제1 제어부(210)는 주기적으로 웨이크업 상태와 슬립 상태를 반복할 수 있고(S500), 메인 MCU인 제2 제어부(220)는 슬립 상태에 있을 수 있다(S510). 이에 따라, 서브 MCU에서의 전력 소모를 감소시키고, 메인 MCU에서의 불필요한 전력 소모를 방지할 수 있다.
제1 제어부(210)는 웨이크업 상태에서 충전 시퀀스 신호를 모니터링 할 수 있다(S520). 제1 제어부(210)는 충전 시퀀스 신호를 검출하면 제2 제어부(220)를 웨이크업 시킬 수 있다(S530, S540).
제2 제어부(220)는 웨이크업 상태가되면 충전 동작을 제어할 수 있다(S550).
도 6은 다른 실시예에 따른 충전 제어 장치의 블록도이다.
도 6을 참조하면, 다른 실시예에 따른 충전 제어 장치(1200)는 제1 제어부(1210) 및 제2 제어부(1220)를 포함할 수 있다. 본 명세서에서, 제1 제어부(1210)는 서브 마이크로컨트롤러(submicrocontroller, sub-MCU), 보조 제어부, 보조 제어기 등과 혼용될 수 있고, 제2 제어부(1220)는 메인 마이크로컨트롤러(main microcontroller, main-MCU), 주 제어부, 주 제어기와 혼용될 수 있다. 여기서, MCU는 마이크로프로세서와 입출력 모듈을 하나의 칩으로 만들어 정해진 기능을 수행하는 컴퓨터를 의미할 수 있다. MCU가 차량 내에 적용되는 경우, 이는 ECU(Electronic Control Unit)라는 장치로 구현될 수 있으며, 자동차의 엔진, 자동 변속기, ABS의 다양한 부품을 컴퓨터로 제어하도록 할 수 있다. 일 실시예에 따른 MCU는 전기 자동차의 충전을 위한 충전 제어 장치(1200) 내에 적용되며, 서브 MCU와 메인 MCU로 구분될 수 있다.
일반적으로, 충전 제어 장치(1200) 내에 적용되는 MCU는 전기 자동차의 충전을 전반적으로 제어하므로, 전력 소모가 많아질 수 있다. 이러한 MCU는 전기 자동차의 배터리 전압을 이용하므로, MCU의 전력 소모가 매우 큰 이슈가 될 수 있다. 이러한 이슈를 해결하기 위해 실시예에 따르면, 제1 제어부(1210)인 서브 MCU는 제2 제어부(1220)인 메인 MCU와 분리되는 유닛일 수 있다. 제1 제어부(1210)는 제2 제어부(1220)를 전류를 소비하지 않는 슬립 상태에서 웨이크업 상태로 동작시킬 수 있고, 제2 제어부(1220)는 웨이크업 상태로 동작하면 배터리 전압을 이용하여 전반적인 충전 제어를 할 수 있다.
제1 제어부(1210)는 주기적으로 충전 시퀀스 신호를 검출하고, 충전 시퀀스 신호가 검출되면 제2 제어부(1220)가 슬립 상태에서 웨이크업 상태로 동작 시킬 수 있다. 보다 구체적으로, 제1 제어부(1210)는 주기적으로 웨이크업 상태와 슬립 상태를 반복할 수 있다. 주기는 임의로 설정될 수 있다. 또한, 주기는 제1 구간과 제2 구간을 포함할 수 있다. 제1 구간은 제1 제어부(1210)의 슬립 상태인 구간일 수 있다. 제2 구간은 제1 제어부(1220)의 웨이크업 상태인 구간일 수 있다. 제1 구간은 제2 구간 보다 클 수 있다. 예를 들어, 제1 구간은 500ms일 수 있고, 제2 구간은 50ms일 수 있다. 또한, 제1 제어부(1210)는 슬립 상태인 제1 구간 동안 구동을 하지 않으며 충전 시퀀스 신호 검출 동작을 하지 않을 수 있다. 즉, 제1 구간 동안, 제1 제어부(1210)는 전류를 소비하지 않을 수 있다. 제1 제어부(1210)는 웨이크업 상태인 제2 구간 동안 제1 전원 공급부(1230)의 제1 구동전압에 기초하여 구동하며 옵토 커플러(1250)에서 제공되는 충전 시퀀스 신호(CSS) 검출 동작을 할 수 있다. 즉, 제2 구간 동안, 제1 제어부(1210)는 전류를 소비할 수 있다. 또한, 제1 제어부(1210)는 한 주기의 제2 구간 동안 동작하면서 충전 시퀀스 신호(CSS)을 검출하면 제2 제어부(1220)를 웨이크 업시키기 위한 웨이크업 신호를 생성할 수 있다. 제1 제어부(1210)는 웨이크업 신호를 제2 전원공급부(1270)에 제공할 수 있다. 또한, 제1 제어부(1210)는 주기적으로 옵토 커플러(1250)를 웨이크업 시킬 수 있다. 일 예로, 제1 제어부(1210)가 웨이크업 상태와 슬립 상태를 반복하는 주기와 옵토 커플러(1250)가 웨이크업 상태와 슬립 상태를 반복하는 주기가 동일할 수 있다. 즉, 제1 제어부(1210)은 제1 구간에서 옵토 커플러(1250)를 웨이크업 시키고, 제2 구간에서 옵토 커플러(1250)를 슬립 시킬 수 있다. 다른 예로, 제1 제어부(1210)는 제1 구간에서 웨이크업된 후 소정의 시간 경과 후 옵토 커플러(1250)를 웨이크업 시키고, 제2 구간이 도래하기 소정의 시간 전에 옵토 커플러(1250)를 슬립 시킬 수 있다. 또한, 제1 제어부(1210)는 옵토 커플러(1250)를 웨이크업 시키기 위하여 커플러 스위치(1290)을 온 시킬 수 있다. 또한, 제1 제어부(1210)는 옵토 커플러(1250)를 슬립 시키기 위하여 커플러 스위치(1290)에 커플러 스위치 신호(SW)를 제공하여 커플러 스위치(1290)을 오프 시킬 수 있다. 이에, 옵토 커플러(1250)는 주기적으로 웨이크업되는 동안에만 동작하므로 소비 전류가 감소한다.
바람직하게, 상기 제1 제어부(1210)는, 웨이크업 상태로 동작하는 시작 시점에 상기 커플러 스위치(1290)를 온 시키고, 웨이크업 상태의 종료 시점 이전(슬립 상태의 시작 시점 이전)에 상기 커플러 스위치(1290)를 오프 시킬 수 있다.
제2 제어부(1220)는 충전 제어 시작 전 슬립 상태에 있을 수 있다. 슬립 상태에서 제2 제어부(1220)는 전류를 소비하지 않을 수 있다. 제2 제어부(1220)는 제1 제어부(1210)가 웨이크업 신호를 생성하면 웨이크업 상태로 동작할 수 있으며, 전기자동차의 충전을 제어하기 위한 동작을 전반적으로 수행할 수 있다. 웨이크업 상태에서 제2 제어부(1220)는 전류를 소비할 수 있다. 보다 구체적으로, 제1 제어부(12210)가 웨이크업 신호를 생성하면, 웨이크업 신호는 제2 전원 공급부(1270)를 활성화 시킬 수 있다. 활성화된 제2 전원 공급부(1270)는 제2 제어부(1220)에 제2 구동전압을 제공하고, 제2 제어부(1220)는 제2 구동전압에 의하여 웨이크업 상태로 동작할 수 있다. 또한, 제2 제어부(1220)는 웨이크업 상태가 되면 옵토 커플러(1250)에서 제공되는 충전 시퀀스 신호(CSS)를 확인하여 충전 제어 동작을 수행할 수 있다.
다른 실시예에 따른 충전 제어 장치(1200)는 제1 전원 공급부(1230)를 포함할 수 있다. 제1 전원 공급부(1230)는 배터리(14)에서 제공하는 전원에 기초하여 제1 제어부(1210)에 제1 구동전압을 제공할 수 있다. 또한, 제1 전원 공급부(1230)는 배터리(14)에서 제공하는 전원에 기초하여 커플러 스위치(1290)에 제1 구동전압을 제공할 수 있다.
다른 실시예에 따른 충전 제어 장치(1200)는 충전 시퀀스 포트(1240)를 포함할 수 있다. 충전 시퀀스 포트(1240)는 충전 케이블로부터 충전 시퀀스 신호(CSS)를 입력 받을 수 있다.
다른 실시예에 따른 충전 제어 장치(200)는 커플러 스위치(1290)을 포함할 수 있다. 커플러 스위치(1290)는 제1 전원 공급부(1230)에서 옵토 커플러(1250)의 사이에 배치될 수 있다. 커플러 스위치(1290)는 제1 제어부(1210)의 커플러 스위치 신호(SW)에 기초하여 온 또는 오프 될 수 있다. 일 예로, 커플러 스위치(1290)는 온 시키는 커플러 스위치 신호(SW)가 입력되면 온되어 제1 전원 공급부(1230)에서 제공하는 제1 구동전압을 옵토 커플러(1250)에 제공할 수 있다. 커플러 스위치(1290)는 오프 시키는 커플러 스위치 신호(SW)가 입력되면 오프되어 제1 전원 공급부(1230)에서 제공하는 제1 구동전압이 옵토 커플러(1250)에 제공되지 않도록 차단시킬 수 있다.
다른 실시예에 따른 충전 제어 장치(1200)는 옵토 커플러(1250)를 포함할 수 있다. 옵토 커플러(1250)는 제1 전원 공급부(1230)에서 제공되는 제1 구동전압에 기초하여 동작할 수 있다. 옵토 커플러는 포토 커플러(photo coupler)와 혼용될 수 있다. 옵토 커플러는 발광 다이오드와 포토 트랜지스터를 포함하며, 발광 다이오드에 전류가 인가되면 발광 다이오드는 광을 방출한다. 포토 트랜지스터는 발광 다이오드가 방출하는 광을 수광 하여 전도 상태가 될 수 있다. 이러한 원리를 이용하여, 옵토 커플러(1250)는 충전 시퀀스 포트(1240)에서 제공하는 충전 시퀀스 신호(CSS)가 감지되면 제1 제어부(1210)에 충전 시퀀스 신호(CSS)를 제공할 수 있다. 또한, 옵토 커플러(1250)는 제1 제어부(1210)의 제어에 의해 주기적으로 웨이크업될 수 있다. 옵토 커플러(1250)는 웨이크업 상태인 동안, 즉 제1 구동전압이 제공되는 동안 충전 시퀀스 포트(1240)에서 제공하는 충전 시퀀스 신호(CSS)가 감지되면 제2 제어부(1220)에 충전 시퀀스 신호(CSS)를 제공할 수 있다.
다른 실시예에 따른 충전 제어 장치(1200)는 다이오드(1260)를 포함할 수 있다. 다이오드(1260)는 제1 제어부(1210)와 제2 전원공급부(1270)의 사이에 배치될 수 있다. 다이오드(1260)는 제1 제어부(1210)에서 제공되는 웨이크업 신호가 제2 전원 공급부(1270)로 제공될 수 있도록 한다. 또한, 다이오드(1260)는 제2 전원공급부(1270)에서 생성된 전류가 제1 제어부(1210)로 유입되는 것을 방지할 수 있다.
다른 실시예에 따른 충전 제어 장치(1200)는 저장부(1280)를 포함할 수 있다. 저장부(1280)는 제1 제어부(1210)의 주기에 관한 정보를 포함할 수 있다. 즉, 저장부(1280)는 제1 제어부(1210)의 주기 정보, 한 주기 동안 제1 구간 및 제2 구간 정보를 저장할 수 있다. 또한, 저장부(1280)는 옵토 커플러(1250)의 주기에 관한 정보를 포함할 수 있다. 즉, 저장부(1280)는 옵토 커플러(1210)의 주기 정보, 한 주기 동안 제1 구간 및 제2 구간 정보를 저장할 수 있다.
따라서, 실시예는 전기 자동차의 충전이 수행되지 않는 동안 충전 제어 장치가 소비하는 전류를 최소화할 수 있다. 또한, 실시예는 EVCC의 MCU의 슬립 상태에서의 전류를 최소화할 수 있다. 또한, 실시예는 배터리 방전 속도를 늦출 수 있다.
도 7은 다른 실시예에 따른 충전 제어 장치의 동작 시나리오의 한 예이다.
도 7을 참조하면, 전기 자동차(10)의 충전을 시작하지 않은 상태에서, 서브 MCU인 제1 제어부(1210)는 주기적으로 웨이크업 상태와 슬립 상태를 반복할 수 있고(S1500), 메인 MCU인 제2 제어부(1220)는 슬립 상태에 있을 수 있다(S1510). 이에 따라, 서브 MCU에서의 전력 소모를 감소시키고, 메인 MCU에서의 불필요한 전력 소모를 방지할 수 있다.
제1 제어부(210)는 웨이크업 상태에서 옵토 커플러를 웨이크업 시킬 수 있다(S1520). 이에 따라, 옵토 커플러에서의 전력 소모를 감소시킬 수 있다.
제1 제어부(1210)는 웨이크업 상태에서 충전 시퀀스 신호를 모니터링 할 수 있다(S1530).
제1 제어부(1210)는 충전 시퀀스 신호를 검출하면 제2 제어부(1220)를 웨이크업 시킬 수 있다(S540, S550).
제2 제어부(1220)는 웨이크업 상태가되면 충전 동작을 제어할 수 있다(S1560).
일 실시예에 의하면, 전술한 방법은, 프로그램이 기록된 매체에 프로세서가 읽을 수 있는 코드로서 구현하는 것이 가능하다. 프로세서가 읽을 수 있는 매체의 예로는, ROM, RAM, CD-ROM, 자기 테이프, 플로피 디스크, 광 데이터 저장 시스템 등이 있으며, 캐리어 웨이브(예를 들어, 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
상기와 같이 기재된 실시예들은 설명된 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.

Claims (10)

  1. 전기 자동차의 충전 제어 장치에 있어서,
    충전 케이블의 커넥터로부터 충전 시퀀스 신호가 입력되는 충전 시퀀스 포트;
    제1 구동전압을 제공하는 제1 전원 공급부;
    상기 제1 구동전압에 기초하여 구동하고, 주기적으로 웨이크업 상태와 슬립 상태를 반복하고, 웨이크업 상태에서 상기 충전 시퀀스 포트에 상기 충전 시퀀스 신호가 입력되면 웨이크업 신호를 생성하는 제1 제어부;
    슬립 상태를 유지하고, 상기 슬립 상태 유지 중에 상기 웨이크업 신호가 생성되면 웨이크업 상태로 동작하며, 상기 웨이크업 상태에서 상기 전기 자동차의 충전 동작을 제어하는 제2 제어부; 및
    상기 제1 제어부와 상기 제2 제어부 사이에 배치되고, 상기 웨이크업 신호가 생성되면 상기 제2 구동 전압을 상기 제2 제어부에 제공하는 제2 전원 공급부;를 포함하며,
    상기 충전 시퀀스 신호는,
    상기 제1 제어부의 웨이크업 상태에서 선택적으로 수신되는
    충전 제어 장치.
  2. 제1 항에 있어서,
    상기 제1 제어부는,
    슬립 상태로 동작하는 기간의 제1 구간; 및
    웨이크업 상태로 동작하는 기간의 상기 제2 구간을 포함하는
    충전 제어 장치.
  3. 제2 항에 있어서,
    상기 제1 구간은 상기 제2 구간 보다 긴
    충전 제어 장치.
  4. 제1 항에 있어서,
    상기 충전 시퀀스 포트와 상기 제1 전원 공급부 사이에 배치되고, 상기 제1 구동전압에 기초하여 구동되어 상기 충전 시퀀스 신호를 수신하는 옵토 커플러를 포함하는
    충전 제어 장치.
  5. 제4항에 있어서,
    상기 옵토 커플러는,
    상기 제1 제어부의 웨이크업 상태에서, 상기 충전 시퀀스 신호가 입력되면 상기 제1 제어부에 상기 충전 시퀀스 신호를 제공하는
    충전 제어 장치.
  6. 제4 항에 있어서,
    상기 옵토 커플러는,
    상기 제2 제어부의 웨이크업 상태에서 상기 충전 시퀀스 신호가 입력되면 상기 제2 제어부에 상기 충전 시퀀스 신호를 제공하는 충전 제어 장치.
  7. 제4 항에 있어서,
    상기 옵토 커플러와 상기 제1 전원 공급부 사이에 배치되고, 상기 제1 제어부의 제어에 따라 온/오프 되는 커플러 스위치;를 포함하는
    충전 제어 장치.
  8. 제7 항에 있어서,
    상기 제1 제어부는 주기적으로 상기 커플러 스위치를 온/오프 시키는
    충전 제어 장치.
  9. 제7 항에 있어서,
    상기 커플러 스위치의 온/오프 주기와 상기 제1 제어부의 웨이크업/슬립 상태 주기가 서로 동일한
    충전 제어 장치.
  10. 제7항에 있어서,
    상기 제1 제어부는,
    웨이크업 상태로 동작하는 시작 시점에 상기 커플러 스위치를 온 시키고,
    웨이크업 상태의 종료 시점 이전에 상기 커플러 스위치를 오프 시키는
    충전 제어 장치.
PCT/KR2019/001768 2018-02-13 2019-02-13 전기 자동차의 충전 제어 장치 WO2019160330A1 (ko)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19754793.8A EP3753777A4 (en) 2018-02-13 2019-02-13 CHARGING CONTROL DEVICE FOR AN ELECTRIC VEHICLE
US16/969,421 US11440422B2 (en) 2018-02-13 2019-02-13 Charging control device for electric vehicle
CN201980018377.0A CN111836740B (zh) 2018-02-13 2019-02-13 电动车辆的充电控制装置
US17/881,349 US11787301B2 (en) 2018-02-13 2022-08-04 Charging control device for electric vehicle
US18/368,325 US20240001784A1 (en) 2018-02-13 2023-09-14 Charging control device for electric vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0017829 2018-02-13
KR1020180017829A KR102603886B1 (ko) 2018-02-13 2018-02-13 전기 자동차의 충전 제어 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/969,421 A-371-Of-International US11440422B2 (en) 2018-02-13 2019-02-13 Charging control device for electric vehicle
US17/881,349 Continuation US11787301B2 (en) 2018-02-13 2022-08-04 Charging control device for electric vehicle

Publications (1)

Publication Number Publication Date
WO2019160330A1 true WO2019160330A1 (ko) 2019-08-22

Family

ID=67619503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/001768 WO2019160330A1 (ko) 2018-02-13 2019-02-13 전기 자동차의 충전 제어 장치

Country Status (5)

Country Link
US (3) US11440422B2 (ko)
EP (1) EP3753777A4 (ko)
KR (1) KR102603886B1 (ko)
CN (1) CN111836740B (ko)
WO (1) WO2019160330A1 (ko)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102603886B1 (ko) * 2018-02-13 2023-11-21 엘지이노텍 주식회사 전기 자동차의 충전 제어 장치
KR20220114796A (ko) * 2021-02-09 2022-08-17 엘지이노텍 주식회사 전기 자동차 충전 컨트롤러
CN113561806A (zh) * 2021-07-28 2021-10-29 中国第一汽车股份有限公司 一种控制器、控制方法、车辆及控制系统
DE102021209487A1 (de) 2021-08-20 2023-02-23 Vitesco Technologies GmbH Computerimplementiertes Verfahren und Vorrichtung zum Auslösen einer Kommunikation auf hoher Ebene zwischen einem Elektrofahrzeug und einer Ladestation
WO2023021059A1 (en) * 2021-08-20 2023-02-23 Vitesco Technologies GmbH A computer-implemented method and device for triggering a high-level communication between an electric vehicle and a charging station
CN114148206B (zh) * 2021-12-10 2024-03-29 安徽江淮汽车集团股份有限公司 一种基于欧标充电桩的电动车辆充电系统及方法
CN114253198B (zh) * 2022-02-28 2022-09-02 深圳市地木升能源科技有限公司 一种电动汽车evcc控制系统的控制电路

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018204A2 (ko) * 2010-08-02 2012-02-09 (주)브이이엔에스 전기자동차 및 그 배터리의 충전제어방법
US20120032634A1 (en) * 2010-08-05 2012-02-09 Lear Corporation Proximity detection circuit for on-board vehicle charger
US20130320922A1 (en) * 2012-05-31 2013-12-05 Lear Corporation Wake-by-control pilot circuit for onboard battery charger
US20140232355A1 (en) * 2011-10-11 2014-08-21 Toyota Jidosha Kabushiki Kaisha Vehicle charging control apparatus and vehicle equipped with the same
KR20170094869A (ko) * 2016-02-12 2017-08-22 엘지이노텍 주식회사 전기 자동차의 충전 장치 및 충전 방법

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4654573A (en) * 1985-05-17 1987-03-31 Flexible Manufacturing Systems, Inc. Power transfer device
KR100254434B1 (ko) 1995-12-23 2000-05-01 정몽규 슬립 기능을 갖는 전기차의 에너지 공급 장치 및 제어방법
US6586911B1 (en) * 2002-02-06 2003-07-01 National Semiconductor Corporation Sleep mode power management
KR101029941B1 (ko) 2006-06-22 2011-04-19 주식회사 만도 차량의 대기 전류 관리 장치
DE102013210061B4 (de) * 2012-05-31 2019-06-19 Lear Corporation Aktivierung-durch-Steuerpilot-Schaltung für Bordbatterie-Ladevorrichtung
KR101390911B1 (ko) 2012-09-03 2014-05-07 자동차부품연구원 전기자동차 충전 제어 시스템 및 그 방법
US10286800B2 (en) * 2013-10-09 2019-05-14 Ford Global Technologies, Llc Control pilot latch-out mechanism to reduce off-board energy consumption
CN203690986U (zh) * 2013-12-19 2014-07-02 比亚迪股份有限公司 车载充电器的休眠控制装置
JP6112033B2 (ja) * 2014-02-12 2017-04-12 トヨタ自動車株式会社 電力授受制御装置
JP2015186377A (ja) * 2014-03-25 2015-10-22 株式会社豊田自動織機 送電機器及び非接触電力伝送装置
US9573476B2 (en) * 2014-06-09 2017-02-21 GM Global Technology Operations LLC Method and apparatus for controller wakeup using control pilot signal from charge port
US11180034B2 (en) * 2015-12-04 2021-11-23 Cyberswitchingpatents, Llc Electric vehicle charging system with priority charging
CN108604804A (zh) * 2016-02-15 2018-09-28 三菱电机株式会社 协议转换装置
CN205768723U (zh) * 2016-05-11 2016-12-07 安徽锐能科技有限公司 电池管理系统休眠控制电路
KR101846680B1 (ko) * 2016-06-16 2018-05-21 현대자동차주식회사 차량의 배터리 관리 시스템
KR20180019448A (ko) * 2016-08-16 2018-02-26 엘지이노텍 주식회사 전기 자동차의 충전 장치
CN107487201B (zh) * 2016-12-15 2020-02-14 宝沃汽车(中国)有限公司 充电唤醒方法、电池管理系统及车辆
KR20180092091A (ko) 2017-02-08 2018-08-17 엘지이노텍 주식회사 전기 자동차의 충전을 위한 충전 제어 장치
KR102137759B1 (ko) * 2017-07-06 2020-07-24 주식회사 엘지화학 배터리 팩 관리 장치
KR102516435B1 (ko) * 2017-10-17 2023-03-31 엘지이노텍 주식회사 전기 자동차 충전 장치
US11086315B2 (en) * 2017-10-26 2021-08-10 2KR Systems, LLC Building rooftop intelligence gathering, decision-support and snow load removal system for protecting buildings from excessive snow load conditions, and automated methods for carrying out the same
KR102537564B1 (ko) * 2018-02-09 2023-05-26 엘지이노텍 주식회사 전기 자동차의 충전 제어 장치 및 충전 제어 방법
KR102603886B1 (ko) * 2018-02-13 2023-11-21 엘지이노텍 주식회사 전기 자동차의 충전 제어 장치
KR102529509B1 (ko) * 2018-05-15 2023-05-04 현대자동차주식회사 차량용 예약충전 장치 및 이의 제어 방법
JP7243465B2 (ja) * 2019-06-03 2023-03-22 トヨタ自動車株式会社 車両システム
US11618420B2 (en) * 2020-06-17 2023-04-04 Danko Manufacturing LLC Under-hood installed towed vehicle braking system
US20210394628A1 (en) * 2020-06-23 2021-12-23 Sunvessel Corp. Modular Charging Station For Light Electric Personal Mobility Vehicles And Methods of Use Thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012018204A2 (ko) * 2010-08-02 2012-02-09 (주)브이이엔에스 전기자동차 및 그 배터리의 충전제어방법
US20120032634A1 (en) * 2010-08-05 2012-02-09 Lear Corporation Proximity detection circuit for on-board vehicle charger
US20140232355A1 (en) * 2011-10-11 2014-08-21 Toyota Jidosha Kabushiki Kaisha Vehicle charging control apparatus and vehicle equipped with the same
US20130320922A1 (en) * 2012-05-31 2013-12-05 Lear Corporation Wake-by-control pilot circuit for onboard battery charger
KR20170094869A (ko) * 2016-02-12 2017-08-22 엘지이노텍 주식회사 전기 자동차의 충전 장치 및 충전 방법

Also Published As

Publication number Publication date
KR102603886B1 (ko) 2023-11-21
US20220371460A1 (en) 2022-11-24
KR20190097876A (ko) 2019-08-21
US20210053453A1 (en) 2021-02-25
CN111836740A (zh) 2020-10-27
EP3753777A4 (en) 2021-10-20
US20240001784A1 (en) 2024-01-04
US11440422B2 (en) 2022-09-13
CN111836740B (zh) 2024-04-26
US11787301B2 (en) 2023-10-17
EP3753777A1 (en) 2020-12-23

Similar Documents

Publication Publication Date Title
WO2019160330A1 (ko) 전기 자동차의 충전 제어 장치
WO2018147635A1 (ko) 전기 자동차의 충전을 위한 충전 제어 장치
WO2019156481A1 (ko) 전기 자동차의 충전 제어 장치 및 충전 제어 방법
WO2012018205A2 (ko) 전기자동차 및 그 보조배터리의 충전제어방법
KR102518036B1 (ko) 전기 자동차의 충전 장치 및 충전 방법
WO2018030830A1 (ko) 전기 자동차용 유무선 겸용 충전 장치
WO2013089516A1 (ko) 전기자동차 및 그 제어방법
WO2011052924A2 (ko) 대기전력 저감장치
WO2013154333A1 (ko) 대기전력을 차단하는 기능을 갖는 전원장치 및 그 제어방법
KR102641084B1 (ko) 전기자동차 충전 제어 장치 및 방법
WO2013180404A1 (en) Demand controller, charger, and remote charging control system control method using the same
CN208021224U (zh) 用于车对车充电的充电装置
WO2019164198A1 (ko) 보조 에너지 저장 장치를 이용한 방전 차량 점프 스타트 시스템
WO2024032746A1 (zh) 充放电控制系统
CN114801875A (zh) 一种集成电动汽车通讯控制器的电池管理系统及管理方法
WO2022005176A1 (ko) 배터리 관리 시스템 및 이들의 통신 방법
WO2016104939A1 (ko) 전기 자동차용 배터리 충전 제어 장치
WO2012141344A1 (ko) 회생제동 제어 방법
WO2012141343A1 (ko) 회생제동 제어 시스템
WO2021215569A1 (ko) 외부 신호를 이용한 bms 동작 제어 장치 및 방법
CN208411647U (zh) 一种充电控制器系统及汽车
CN218733297U (zh) 一种多口盲插快充充电电源
CN220483590U (zh) 一种无人机电池充电器、充电系统及飞行器
CN215436024U (zh) 一种具有触摸感应功能的充电枪
WO2023096260A1 (ko) 전기 차량을 위한 차량 진단 디바이스

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019754793

Country of ref document: EP

Effective date: 20200914