WO2012141344A1 - 회생제동 제어 방법 - Google Patents

회생제동 제어 방법 Download PDF

Info

Publication number
WO2012141344A1
WO2012141344A1 PCT/KR2011/002518 KR2011002518W WO2012141344A1 WO 2012141344 A1 WO2012141344 A1 WO 2012141344A1 KR 2011002518 W KR2011002518 W KR 2011002518W WO 2012141344 A1 WO2012141344 A1 WO 2012141344A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
energy
mcu
power
driving
Prior art date
Application number
PCT/KR2011/002518
Other languages
English (en)
French (fr)
Inventor
조동호
서인수
유병역
강대준
정윤
설동균
김중귀
이준호
양학진
김철현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to PCT/KR2011/002518 priority Critical patent/WO2012141344A1/ko
Publication of WO2012141344A1 publication Critical patent/WO2012141344A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/427Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/429Current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1415Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with a generator driven by a prime mover other than the motor of a vehicle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a regenerative braking control method, and more particularly, to a regenerative braking control method for controlling regenerative braking in one or two directions through a regulator and a battery in a moving body having a non-contact magnetic induction charging method.
  • An electric vehicle refers to a vehicle that operates by using electricity as a power source, and includes a battery that can be charged as a power source in the vehicle itself, and refers to a vehicle that operates by using power supplied from the mounted battery.
  • the configuration of the electric vehicle is composed of a driving motor for driving the vehicle driven largely by electricity, and a battery for supplying electricity to the driving motor, together with the basic functional parts of a vehicle having the same components as a general vehicle. .
  • the battery of the electric vehicle takes a long time to charge, and also the driving distance on a single charge is very limited. Therefore, since the electric vehicle must be frequently charged to secure the desired moving distance, the installation of the charging station and the charging system to solve these problems in the operation of the electric vehicle is a very important technical field.
  • the charging system of an electric vehicle uses a plug-in charging method in which a wire connected to a commercial power source is directly connected to an electric vehicle for charging.
  • the charging method can be charged only at a designated place, a long time is required for charging, and charging is impossible while driving.
  • the charging of the electric vehicle using the plug-in charging method takes about 1 to 8 hours, and this long charging time limits the driving of the vehicle, and to protect the vehicle from the external environment for a long charging time. Since it has to be managed, there are many restrictions and inconveniences associated with charging.
  • a charging system suitable for this problem must be constructed. That is, the charging time, the external environmental influence and hassle in charging using the cable, the space problem occupied by the vehicle during the charging time, the charging efficiency should be solved.
  • the present invention has been made to solve the above problems, the regenerative braking energy from the drive motor of the moving body having a non-contact magnetic induction charging method first stores the regenerative braking energy in the energy storage unit through the appropriate control signal
  • the purpose of the present invention is to provide a regenerative braking control method that can ensure the energy efficiency and safety of the system by charging the battery.
  • Another object of the present invention is to control the energy stored in the battery in both directions of the regulator and regenerative braking in a mobile body having a non-contact magnetic induction charging method to be stored as a single energy storage unit to eliminate the overcharge current introduced into the battery By providing the regenerative braking control method to ensure the energy efficiency and safety of the system.
  • Another object of the present invention is to increase the life of the battery by using the characteristic that the energy generated in both directions of the regulator and regenerative braking side integrated into one energy storage unit to provide the battery in the case of a mobile body having a non-contact magnetic induction charging method In addition, to provide a one-way regenerative braking control method that can increase the energy efficiency.
  • the regenerative braking control method comprises the steps of (A) receiving the energy for driving the drive motor, (B) receiving the required power of the drive motor from the MCU to supply the supply energy to the drive motor (C) comparing the supply energy with the required power energy of the driving motor; and (D) comparing the battery with the MCU when the supply energy is smaller than the required power energy for driving the driving motor.
  • the step (D) includes checking the power discharged from the battery in real time and generating a control signal according to the battery discharge stop from the MCU to cut off the driving motor power when the battery discharge power is greater than a predetermined value. It features.
  • the step (E) is characterized in that it is determined that the surplus energy is generated when the required power for driving the drive motor is not requested or when the supply energy is larger than the required power energy for driving the drive motor. do.
  • the step (E) comprises: searching for an available storage capacity of the energy storage unit, removing the surplus energy when there is no available storage capacity in the search result, and the search result and energy storage. And storing the surplus energy in the energy storage unit by inputting a control signal of the MCU when there is an available storage capacity in the unit.
  • the step (F) is characterized in that the battery is charged with the surplus energy stored in the energy storage only in the case of not overcharging the battery by checking the power charged from the battery in real time.
  • the step (F) is characterized in that the surplus energy charged by the battery is charged using CV (fixed voltage) charging or CP (fixed power) charging according to the battery pack voltage.
  • CV fixed voltage
  • CP fixed power
  • the step (F) includes checking the power charged from the battery in real time to generate a control signal according to the stop of the battery charging from the MCU to cut off the battery power when the battery is overcharging. It is done.
  • the step (D) includes checking the power discharged from the battery in real time and generating a control signal according to the battery discharge stop from the MCU to cut off the driving motor power when the battery discharge power is greater than a predetermined value. It features.
  • the step (E) is characterized in that it is determined that the surplus energy is generated when the required power for driving the drive motor is not requested or when the supply energy is larger than the required power energy for driving the drive motor. do.
  • the step (E) is characterized in that the energy charged by the battery is charged using CV (fixed voltage) charging or CP (fixed power) charging according to the battery pack (pack) voltage.
  • CV fixed voltage
  • CP fixed power
  • the step (E) includes checking the power charged from the battery in real time to generate a control signal according to the stop of the battery charging from the MCU to cut off the battery power when the battery is overcharging. It is done.
  • the regenerative braking control method according to the present invention as described above has the following effects.
  • the regenerative braking energy is not directly introduced into the battery. Instead, the regenerative braking energy is first stored in a separate energy storage unit and then charged with the battery through an appropriate control signal, thereby reducing the number of charges of the battery and excessive current generated through the motor. Can prevent the battery from flowing into the battery, which can increase the battery life and ensure the safety of the system.
  • the regenerative braking energy and regulator energy generated are stored in a separate energy storage unit instead of being directly introduced into the battery, thereby reducing energy discarded even when the battery is already fully charged, thereby increasing energy efficiency.
  • the energy from the motor and the battery is integrated and controlled through a single energy storage unit in both the regulator and the regenerative braking side to increase the life of the battery and increase the energy efficiency. You can.
  • FIG. 1 is a block diagram showing the structure of a unidirectional regenerative braking control system for an electric vehicle having a non-contact magnetic induction charging method according to an embodiment of the present invention.
  • FIG. 2 is a flowchart illustrating a unidirectional regenerative braking control method of an electric vehicle having a non-contact magnetic induction charging method according to an embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of a bidirectional regenerative braking control system for an electric vehicle having a non-contact magnetic induction charging method according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a bidirectional regenerative braking control method for an electric vehicle having a non-contact magnetic induction charging method according to an embodiment of the present invention.
  • FIG. 1 is a block diagram showing the structure of a unidirectional regenerative braking control system of an electric vehicle having a non-contact magnetic induction charging method according to an embodiment of the present invention.
  • the unidirectional regenerative braking control system includes a driving motor 100, a regenerative braking processor 200, a battery processor 300, a magnetic induction processor 400, and a MCU (Motor Controller Unit) 500. It consists of.
  • the battery processor 300 includes a battery 310 for storing energy, charges energy input from the outside, and discharges charged energy as needed to supply power to drive the driving motor 100. .
  • the non-contact magnetic induction processing unit 400 drives the drive motor 100 by using the energy supplied by collecting the non-contact method through a magnetic field from the feed line 600, the surplus remaining after driving the drive motor 100 The energy is output to the regenerative braking processor 200.
  • the regenerative braking processor 200 stores the regenerative braking energy from the driving motor 100 and the surplus energy output from the non-contact magnetic induction processor 400, and stores the regenerative braking energy based on the state of charge of the battery.
  • the battery 310 is charged by supplying the battery 310 in the battery processor 300.
  • the MCU 500 outputs a driving signal of the driving motor 100 through a control signal of the driving motor 100 input from the non-contact magnetic induction processor 400 or the battery processor 300.
  • the driving motor 100 is driven by a power supplied from at least one of the non-contact magnetic induction processing unit 400 and the battery processing unit 300 by using the driving signal output from the MCU 500.
  • the non-contact magnetic induction processor 400 includes a current collector module 410, a regulator 420, and a regulator controller 430.
  • the current collector module 410 receives the AC current supplied in the form of a magnetic field from the power supply line 600 to collect current to receive the energy required to drive the drive motor 100.
  • the regulator 420 converts the AC current collected by the current collector module 410 into a DC current and supplies it to the driving motor 100 and the regenerative braking processor 200.
  • the regulator controller 430 controls the supply of the current converted by the regulator 420 under the control of the MCU 500 according to the driving state of the driving motor 100 or the energy storage state of the regenerative braking processor 100. To control.
  • the regenerative braking processor 200 includes a DC-DC converter 210, an energy storage unit 220, and a regeneration controller 230.
  • the DC-DC converter 210 boosts and outputs the energy regenerated from the driving motor 100
  • the energy storage unit 220 boosts and outputs the regenerative braking energy boosted by the DC-DC converter 210.
  • At least one of the surplus energy supplied from the magnetic induction processing unit 400 is stored.
  • the regeneration controller 230 controls the energy stored in the energy storage 220 to be supplied to the battery processor 300 under the control of the MCU 500 according to the charging state of the battery 310.
  • the battery processor 300 includes a battery 310 and a battery management system (BMS) 320.
  • the battery 310 charges the energy input from the regenerative braking processor 200, discharges the charged energy and supplies it to the driving motor 100 as a power source for driving.
  • the BMS 320 communicates with the regeneration controller 230 under the control of the MCU 500 so that the energy supplied from the energy storage unit 220 is supplied to the battery 310 so as to be appropriately supplied to the battery 310.
  • SOC state of charge
  • a system in which regenerative braking energy is directly introduced into a battery has been used, and a system in which the regenerative braking system is charged with the battery 310 by using a power source other than regenerative braking is a system that has not been conventionally used.
  • the regenerative braking processor 200 by controlling the energy coming directly from the drive motor 100 to the battery processing unit 300 through the regenerative braking processor 200, the overcharge current coming into the battery 310 to solve the safety of the system
  • the surplus energy discarded by the regenerative braking processor 200 and the magnetic induction processor 400 may be integrated into and stored in one energy storage unit 220 to be efficiently secured.
  • FIG. 2 is a flowchart illustrating a unidirectional regenerative braking control method of an electric vehicle having a non-contact magnetic induction charging method according to an embodiment of the present invention.
  • the current collector module 410 in the non-contact magnetic induction processor 400 is supplied in the form of a magnetic field from the feed line 600. It collects AC current and collects current. Then, the regulator 420 converts the AC current collected by the current collector module 410 into a DC current to generate energy for driving the driving motor 100 (S20).
  • the regulator controller 430 in the non-contact magnetic induction processing unit 400 receives the required power of the driving motor 100 from the MCU 500 and drives the magnetic induction energy collected by the magnetic induction processing unit 400 to the driving motor 100. Supply to (S30).
  • the regulator controller 430 determines whether the required power for driving the driving motor 100 is requested from the MCU 500 (first determination) (S40), and when the required power is requested, the magnetic induction The magnetic induction energy supplied from the processing unit 400 and the required power energy of the driving motor are compared with each other (first comparison) (S50).
  • the battery processing unit 400 when the magnetic induction energy supplied from the magnetic induction processing unit 400 is less than the required power energy for driving the driving motor 100, the battery processing unit is insufficient.
  • the BMS 320 in the 300 discharges the battery 310 by checking the state of charge (SOC) of the battery 310 under the control of the MCU 500 (S60).
  • the BMS 320 checks the power discharged from the battery 310 in real time, and when the battery discharge power is 10C or more (S70), the BMS 320 transmits a request signal for requesting to stop the battery discharge to the MCU (500). Then, the MCU 500 stops the driving motor 100 to stop the discharge of the battery 310 (S80).
  • the surplus energy is generated from the magnetic induction energy supplied from the magnetic induction processing unit 400
  • whether the surplus energy is generated is not required power for driving the driving motor 100 in the first determination result (S40) or the first comparison result (S50) in the magnetic induction processing unit 400.
  • the supplied magnetic induction energy is larger than the required power energy for driving the driving motor 100, it is determined that surplus energy is generated.
  • the determination of whether the surplus energy is stored is determined based on the available storage capacity of the energy storage unit 220 retrieved through the regeneration controller 230.
  • the energy storage unit 220 When there is no available storage capacity in the second storage result S150, the energy storage unit 220 removes the generated surplus energy (S180), and when there is an available storage capacity in the energy storage unit 220.
  • the surplus energy is stored in the energy storage unit 220 as a control signal of the MCU 500 through the regeneration controller 230 (S160).
  • the BMS 320 checks the power charged from the battery 310 in real time and checks whether the battery is overcharging (S170), and the BMS 320 is the MCU 500 only when the battery is not overcharging. In accordance with the control of the) check the state of charge (SOC) of the battery 310 to charge the surplus energy stored in the energy storage unit 220 to the battery 310 (S90).
  • SOC state of charge
  • the energy charged by the battery 310 is different in the charging method according to the battery pack (pack) voltage (S100), if the battery pack is larger than the fixed voltage using CV (fixed voltage) charging ( S110), when the battery pack is smaller than the fixed voltage, the battery is charged using CP (fixed power) charging (S120).
  • the BMS 320 checks the power charged by the battery 310 in real time and transmits a request signal to the MCU 500 to stop charging the battery when the battery is overcharged (S130). Then, the MCU 500 stops charging the battery 310 by stopping the power of the battery 310 (S140).
  • the present invention provides the power to the regenerative braking processor 200, the magnetic induction processor 400, and the battery processor 300 to the drive motor 100 through the communication with the MCU 500 and the battery is charged with the battery. It can be controlled efficiently.
  • the driving power distribution control is composed of only a circuit, and in the case of an overcurrent, the system is formed by cutting a current in a fuse or a power distribution unit (PDU). Therefore, when a current is cut off from a conventional fuse or PDU on a circuit, a sudden electric shock may cause a breakdown of components, and there is a problem because it is directly connected to the safety of an automobile. The energy efficiency and safety of the electric vehicle system are secured.
  • the bidirectional regenerative braking control system includes a driving motor 1100, a regenerative braking processor 1200, a battery processor 1300, a magnetic induction processor 1400, and a MCU (Motor Controller Unit) 1500. It consists of.
  • the battery processor 1300 includes a battery 1310 for storing energy, charges energy input from the outside, and discharges the charged energy as needed to supply power to drive the driving motor 1100. .
  • the regenerative braking processor 1200 stores the regenerative braking energy from the driving motor 1100 and supplies the stored regenerative braking energy to the battery 1310 in the battery processor 1300 based on the state of charge of the battery. Charge 1310.
  • the non-contact magnetic induction processing unit 1400 drives the driving motor 1100 by using the energy supplied from the feed line 1600 in a non-contact manner through a magnetic field, and the surplus remaining after driving the driving motor 1100.
  • the battery 1310 is charged by supplying energy to the battery 1310 in the battery processor 1300.
  • the MCU 1500 outputs a driving signal of the driving motor 1100 through a control signal of the driving motor 1100 input from the non-contact magnetic induction processor 1400 or the battery processor 1300.
  • the driving motor 1100 is driven by a power supplied from at least one of the non-contact magnetic induction processor 1400 and the battery processor 1300 by using the driving signal output from the MCU 1500.
  • the regenerative braking processor 1200 includes a DC-DC converter 1210, an energy storage unit 1220, and a regeneration controller 1230.
  • the DC-DC converter 1210 boosts and outputs the energy regenerated from the driving motor 1100
  • the energy storage unit 1220 stores the regenerative braking energy boosted by the DC-DC converter 1210. do.
  • the regeneration controller 1230 controls the MCU 1500 to supply energy stored in the energy storage unit 1220 to the battery processor 1300 according to the charging state of the battery 1310.
  • the non-contact magnetic induction processor 1400 includes a current collector module 1410, a regulator 1420, and a regulator controller 1430.
  • the current collector module 1410 receives the AC current supplied from the feed line 1600 in the form of a magnetic field and collects the current to receive energy required for driving the driving motor 1100.
  • the regulator 1420 converts the AC current collected by the current collector module 1410 into a DC current and supplies it to the driving motor 1100 and the battery processor 1300.
  • the regulator controller 1430 controls the supply of the current converted by the regulator 1420 under the control of the MCU 1500 according to the driving state of the driving motor 1100.
  • the battery processor 1300 includes a battery 1310 and a battery management system (BMS) 1320.
  • the battery 1310 charges energy input from the outside, discharges the charged energy and supplies the driving motor 1100 as a power for driving.
  • the BMS 1320 is in communication with the regulator controller 1430 under the control of the MCU 1500 so that the energy supplied from the regulator 1420 is properly supplied to the battery 1310 to charge the battery 1310.
  • the battery charge / discharge operation is controlled by checking a state of charge (SOC) of the battery 1310.
  • SOC state of charge
  • a flowchart for describing a bidirectional regenerative braking control method for a vehicle is shown.
  • the current collector module 1410 in the non-contact magnetic induction processor 1400 is supplied in the form of a magnetic field from the feed line 1600. It collects AC current and collects current. Then, the regulator 1420 converts the AC current collected by the current collector module 1410 into a DC current to generate energy for driving the driving motor 1100 (S220).
  • the regulator controller 1430 in the non-contact magnetic induction processing unit 1400 receives the required power of the driving motor 1100 from the MCU 1500 and supplies the magnetic induction energy collected by the magnetic induction processing unit 1400 to the driving motor 1100. Supply to (S230).
  • the regulator controller 1430 determines whether the required power for driving the driving motor 1100 is requested from the MCU 1500 (first determination) (S240), and when the required power is requested, the magnetic induction The magnetic induction energy supplied from the processing unit 1400 and the required power energy of the driving motor are compared with each other (first comparison) (S250).
  • the magnetic induction energy supplied from the magnetic induction processing unit 1400 is less than the required power energy for driving the driving motor 1100 is insufficient energy due to the driving of the driving motor 1100.
  • the BMS 1320 in the 1300 checks the state of charge (SOC) of the battery 1310 under the control of the MCU 1500 to discharge the battery 1310 (S260).
  • the BMS 1320 checks the power discharged from the battery 1310 in real time and transmits a request signal to the MCU 1500 to stop the battery discharge when the battery discharge power is 10C or more (S270). Then, the MCU 1500 stops the driving motor 1100 to stop the discharge of the battery 1310 (S280).
  • the BMS 1320 is controlled by the MCU 1500 to check the state of charge (SOC) of the battery 1310 Charge 1310 (S290). In this case, whether the surplus energy is generated is not required power for driving the driving motor 1100 in the first determination result (S240) or in the first comparison result (S250) of the magnetic induction processor 1400. When the supplied magnetic induction energy is larger than the required power energy for driving the driving motor 1100, it is determined that surplus energy is generated.
  • the energy charged by the battery 1310 is different in the charging method according to the battery pack (pack) voltage (S300), when the battery pack is larger than the fixed voltage using CV (fixed voltage) charging ( S310), when the battery pack is smaller than the fixed voltage, the battery is charged using CP (fixed power) charging (S320).
  • the BMS 1320 checks the power charged by the battery 1310 in real time and transmits a request signal to the MCU 1500 to stop charging the battery when the battery is overcharged (S330). Then, the MCU 1500 stops charging the battery 1310 to stop the charging of the battery 1310 (S340).
  • the regenerative braking processor 1200, the magnetic induction processor 1400, and the battery processor 1300 are each discharged to the driving motor 1100 and the battery is charged with the battery through communication with the MCU 1500. It can be controlled efficiently.
  • the driving power distribution control is composed of only a circuit, and in the case of an overcurrent, the system is formed by cutting a current in a fuse or a power distribution unit (PDU). Therefore, when a current is cut off from a conventional fuse or PDU on a circuit, a sudden electric shock may cause a breakdown of components, and there is a problem because it is directly connected to the safety of an automobile. The energy efficiency and safety of the electric vehicle system are secured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

본 발명은 비접촉 자기 유도 충전 방식을 갖는 이동체의 구동모터에서 나오는 회생제동 에너지를 에너지 저장부에 먼저 저장한 후 적절한 제어신호를 통해 배터리로 충전시킴으로서 시스템의 에너지 효율성과 안전성을 확보하기 위한 회생제동 제어 방법에 관한 것으로서, 급전 선로로부터 자기장의 형태로 공급되는 AC 전류를 입력받아 집전하고, 집전한 AC 전류를 DC 전류로 변환하여 구동모터 구동을 위한 자기유도 에너지를 생성하는 단계와, MCU로부터 구동모터의 요구전력을 입력받아 상기 생성된 자기유도 에너지를 구동모터로 공급하는 단계와, 상기 공급되는 자기유도 에너지와 구동모터의 요구전력 에너지를 비교하는 비교단계와, 상기 비교결과, 자기유도 에너지가 구동모터 구동을 위한 요구전력 에너지보다 작은 경우 MCU의 제어로 배터리의 SOC를 체크하여 배터리를 방전하는 단계와, 상기 자기유도 에너지에서 잉여 에너지가 발생되는 경우 MCU의 제어를 받아 에너지 저장부로 상기 잉여 에너지를 저장하는 단계와, MCU의 제어로 배터리의 SOC(State Of Charge)를 체크하여 상기 에너지 저장부에 저장된 잉여 에너지를 배터리로 충전하는 단계를 포함하는데 있다.

Description

회생제동 제어 방법
본 발명은 회생제동 제어 방법에 관한 것으로, 특히 비접촉 자기 유도 충전 방식을 갖는 이동체에서 레귤레이터와 배터리를 통해 단방향 또는 양방향에서 회생제동을 제어하는 회생제동 제어 방법에 관한 것이다.
경제 발전에 따라 자동차에 대한 수요가 폭발적인 증가세를 보이고 있다. 이와 같이 자동차 수요가 늘어남에 따라 자동차에서 배출되는 배기가스가 환경오염의 주요 원인이 되고 있다.
따라서 자동차의 배출가스를 줄이기 위한 다양한 연구들이 지속적으로 진행되고 있으며, 업계에서는 배출가스를 줄일 수 있는 자동차의 개발이 진행되고 있다. 이러한 연구들과 개발의 결과로서 배출가스를 발생하지 않는 전기자동차의 상용화가 부분적으로 시도되고 있다.
전기자동차는 전기를 전력공급원으로 하여 운행하는 차량을 의미하며, 차량 자체에 전력공급원으로 충전이 가능한 배터리를 탑재하고, 탑재된 배터리에서 공급되는 전력을 이용하여 운행하는 자동차를 말한다.
이러한 전기자동차의 구성은 크게 일반 자동차와 동일한 구성요소를 갖는 자동차의 기본적인 기능부와 함께, 크게 전기에 의해 구동되어 자동차를 운행시키기 위한 구동모터와, 그 구동모터에 전기를 공급하는 배터리로 구성된다.
그러나 전기자동차에 구성되는 배터리는 충전시간이 오래 걸리며, 또한 한번 충전으로 주행하는 거리가 매우 제한적이다. 따라서 전기자동차는 목적한 이동거리를 확보하기 위해서 자주 충전을 해주어야만 하므로, 전기자동차의 운행에 있어서 이러한 문제점들을 해소하기 위한 충전소의 설치 및 충전시스템은 아주 중요한 기술 분야이다.
현재 제시되고 있는 전기자동차의 충전 시스템은 상용 전원에 연결된 전선을 전기자동차에 직접 연결하여 충전하는 플러그 인 충전 방식을 사용하고 있다. 이러한 플러그 인 충전 방식은 충전 방식은 지정된 장소에서만 충전이 가능하고 충전에 소요되는 시간이 길고, 주행 중에는 충전이 불가하다.
또한, 이러한 플러그 인 충전 방식을 이용한 전기자동차의 충전은 1 ~ 8시간정도 소요되는데, 이와 같은 긴 충전 시간으로 인해 자동차 운행에 제한을 받게 되며, 긴 충전 시간 동안 차량을 외부환경으로부터 안전하게 보호하기 위해 관리되어야 하기 때문에 충전에 따른 많은 제약과 불편함을 가지게 된다.
따라서 전기 자동차의 상용화를 위해서는 이러한 문제점들을 해소할 수 있는 그에 적합한 충전 시스템이 구축되어야 한다. 즉, 충전 시간, 케이블을 이용한 충전에서의 외부 환경 영향 및 번거로움, 충전 시간 동안의 차량이 점유하는 공간 문제, 충전 효율 등의 문제가 해결되어야 한다.
따라서 본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 비접촉 자기 유도 충전 방식을 갖는 이동체의 구동모터에서 나오는 회생제동 에너지를 에너지 저장부에 먼저 회생 제동 에너지를 저장한 후 적절한 제어신호를 통해 배터리로 충전시킴으로서 시스템의 에너지 효율성과 안전성을 확보할 수 있는 회생제동 제어 방법을 제공하는데 그 목적이 있다.
본 발명의 다른 목적은 비접촉 자기 유도 충전 방식을 갖는 이동체에서 레귤레이터와 회생제동 측의 양방향에서 배터리로 들어오는 에너지를 하나의 에너지 저장부로 통합 저장되도록 제어하여 배터리로 인입되는 과충전 전류(overcharge current)를 해소하여 시스템의 에너지 효율성과 안전성을 확보할 수 있는 회생제동 제어 방법을 제공하는데 있다.
본 발명의 또 다른 목적은 비접촉 자기 유도 충전 방식을 갖는 이동체의 경우 레귤레이터와 회생제동 측의 양방향에서 발생되는 에너지를 하나의 에너지 저장부로 통합 저장하여 배터리로 제공하는 특성을 이용하여 배터리의 수명을 증가시키고, 아울러 에너지 효율성을 높일 수 있는 단방향 회생제동 제어 방법을 제공하는데 있다.
본 발명의 일 실시예에 따른 회생제동 제어 방법은 (A) 구동모터 구동을 위한 에너지를 공급받는 단계와, (B) MCU로부터 구동모터의 요구전력을 입력받아 상기 공급 에너지를 구동모터로 공급하는 단계와, (C) 상기 공급 에너지와 구동모터의 요구전력 에너지를 비교하는 비교단계와, (D) 상기 비교결과, 공급 에너지가 구동모터 구동을 위한 요구전력 에너지보다 작은 경우 MCU의 제어로 배터리의 SOC(State Of Charge)를 체크하여 배터리를 방전하는 단계와, (E) 상기 공급 에너지에서 잉여 에너지가 발생되는 경우 MCU의 제어를 받아 에너지 저장부로 상기 잉여 에너지를 저장하는 단계와, (F) MCU의 제어로 배터리의 SOC(State Of Charge)를 체크하여 상기 에너지 저장부에 저장된 잉여 에너지를 배터리로 충전하는 단계를 포함한다.
바람직하게 상기 (D) 단계는 배터리에서 방전되는 전력을 실시간으로 체크하여 배터리 방전 전력이 소정 수치 이상인 경우, MCU로부터 배터리 방전 중지에 따른 제어 신호를 생성하여 구동모터 전원을 차단시키는 단계를 포함하는 것을 특징으로 한다.
바람직하게 상기 (E) 단계는 구동모터의 구동을 위한 요구전력이 요청되지 않았거나, 또는 상기 공급 에너지가 구동모터 구동을 위한 요구전력 에너지보다 큰 경우에 잉여 에너지가 발생되는 것으로 판단하는 것을 특징으로 한다.
바람직하게 상기 (E) 단계는 에너지 저장부의 가용 저장용량 여부를 검색하는 단계와, 상기 검색결과, 에너지 저장부에 가용 저장용량이 없는 경우 상기 잉여 에너지를 제거하는 단계와, 상기 검색결과, 에너지 저장부에 가용 저장용량이 있는 경우 MCU의 제어신호를 입력으로 상기 잉여 에너지를 에너지 저장부에 저장하는 단계를 포함하는 것을 특징으로 한다.
바람직하게 상기 (F) 단계는 배터리에서 충전되는 전력을 실시간으로 체크하여 배터리의 과충전(overcharging)이 아닌 경우에 한해서 에너지 저장부에 저장된 잉여 에너지를 배터리로 충전하는 것을 특징으로 한다.
바람직하게 상기 (F) 단계는 배터리로 충전되는 잉여 에너지는 배터리 팩(pack) 전압에 따라 CV(고정전압) 충전 또는 CP(고정파워) 충전을 이용하여 충전하는 것을 특징으로 한다.
바람직하게 상기 (F) 단계는 배터리에서 충전되는 전력을 실시간으로 체크하여 배터리가 과충전(overcharging)되는 경우, MCU로부터 배터리 충전 중지에 따른 제어신호를 생성하여 배터리 전원을 차단시키는 단계를 포함하는 것을 특징으로 한다.
본 발명의 다른 일 실시예에 따른 회생제동 제어 방법은 (A) 구동모터 구동을 위한 에너지를 공급받는 단계와, (B) MCU로부터 구동모터의 요구전력을 입력받아 상기 공급 에너지를 구동모터로 공급하는 단계와, (C) 상기 공급 에너지와 구동모터의 요구전력 에너지를 비교하는 비교단계와, (D) 상기 비교결과, 공급 에너지가 구동모터 구동을 위한 요구전력 에너지보다 작은 경우 MCU의 제어로 배터리의 SOC(State Of Charge)를 체크하여 배터리를 방전하는 단계와, (E) 상기 공급 에너지에서 잉여 에너지가 발생되는 경우 MCU의 제어를 받아 배터리의 SOC(State Of Charge)를 체크하여 배터리를 충전하는 단계를 포함한다.
바람직하게 상기 (D) 단계는 배터리에서 방전되는 전력을 실시간으로 체크하여 배터리 방전 전력이 소정 수치 이상인 경우, MCU로부터 배터리 방전 중지에 따른 제어 신호를 생성하여 구동모터 전원을 차단시키는 단계를 포함하는 것을 특징으로 한다.
바람직하게 상기 (E) 단계는 구동모터의 구동을 위한 요구전력이 요청되지 않았거나, 또는 상기 공급 에너지가 구동모터 구동을 위한 요구전력 에너지보다 큰 경우에 잉여 에너지가 발생되는 것으로 판단하는 것을 특징으로 한다.
바람직하게 상기 (E) 단계는 배터리로 충전되는 에너지는 배터리 팩(pack) 전압에 따라 CV(고정전압) 충전 또는 CP(고정파워) 충전을 이용하여 충전하는 것을 특징으로 한다.
바람직하게 상기 (E) 단계는 배터리에서 충전되는 전력을 실시간으로 체크하여 배터리가 과충전(overcharging)되는 경우, MCU로부터 배터리 충전 중지에 따른 제어신호를 생성하여 배터리 전원을 차단시키는 단계를 포함하는 것을 특징으로 한다.
이상에서 설명한 바와 같은 본 발명에 따른 회생제동 제어 방법은 다음과 같은 효과가 있다.
첫째, 회생제동 에너지가 배터리로 바로 인입되지 않고 별도의 에너지 저장부에 먼저 회생 제동 에너지를 저장한 후 적절한 제어신호를 통해 배터리로 충전시킴으로서, 배터리의 충전횟수를 줄이고, 모터를 통해 발생되는 과도한 전류를 배터리로 흐르는 것을 방지할 수 있어 배터리의 수명을 증가시킬 수 있으며, 아울러 시스템의 안전성을 확보할 수 있다.
둘째, 발생되는 회생제동 에너지 및 레귤레이터 에너지를 배터리로 바로 인입하지 않고 별도의 에너지 저장부에 저장하고 있어 배터리가 이미 충분히 충전되어 있는 경우에도 버려지는 에너지를 줄일 수 있어 에너지의 효율성을 높일 수 있다.
셋째, 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 경우 레귤레이터와 회생제동 측의 양방향에서 모터 및 배터리로 들어오는 에너지를 하나의 에너지 저장부를 통해 통합하여 제어함으로써 배터리의 수명을 증가시키고, 에너지의 효율성을 증가시킬 수 있다.
넷째, 종래의 동력분배 시스템과 달리 레귤레이터, BMS, MCU 통신을 통해 구동모터로 나가는 전력과 배터리로 충전되는 전력을 효율적으로 제어하여 시스템의 에너지 효율성과 안전성을 확보할 수 있다.
도 1 은 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식을 갖는 전기 자동차의 단방향 회생제동 제어 시스템의 구조를 나타낸 블록도
도 2 는 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 방법을 설명하기 위한 흐름도
도 3 은 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 시스템의 구조를 나타낸 블록도
도 4 는 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 방법을 설명하기 위한 흐름도
본 발명의 다른 목적, 특성 및 이점들은 첨부한 도면을 참조한 실시예들의 상세한 설명을 통해 명백해질 것이다.
본 발명에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 방법의 바람직한 실시예에 대하여 첨부한 도면을 참조하여 설명하면 다음과 같다. 그러나 본 발명은 이하에서 개시되는 실시예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예는 본 발명의 개시가 완전하도록하며 통상의 지식을 가진자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1 은 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 시스템의 구조를 나타낸 블록도이다.
도 1과 같이, 단방향 회생제동 제어 시스템은 구동모터(100)와, 회생제동 처리부(200)와, 배터리 처리부(300)와, 자기유도 처리부(400)와, MCU(Motor Controller Unit)(500)로 구성된다.
상기 배터리 처리부(300)는 에너지를 저장하기 위한 배터리(310)를 포함하고, 외부에서 입력되는 에너지를 충전하고, 필요에 따라 충전된 에너지를 방전하여 구동모터(100)를 구동시키는 전원을 공급한다.
상기 비접촉 자기유도 처리부(400)는 급전 선로(600)로부터 자기장을 통한 비접촉 방식으로 집전하여 공급받은 에너지를 이용하여 상기 구동모터(100)를 구동하고, 상기 구동모터(100)를 구동하고 남은 잉여 에너지를 상기 회생제동 처리부(200)로 출력한다.
상기 회생제동 처리부(200)는 상기 구동모터(100)에서 나오는 회생제동 에너지 및 상기 비접촉 자기유도 처리부(400)에서 출력되는 잉여 에너지를 저장하고, 배터리의 충전상태를 기반으로 저장된 회생제동 에너지를 상기 배터리 처리부(300) 내의 배터리(310)로 공급하여 배터리(310)를 충전시킨다.
상기 MCU(500)는 상기 비접촉 자기유도 처리부(400) 또는 배터리 처리부(300)에서 입력되는 구동모터(100)의 제어신호를 통해 구동모터(100)의 구동신호를 출력한다.
상기 구동모터(100)는 상기 MCU(500)에서 출력되는 구동신호를 입력으로 상기 비접촉 자기유도 처리부(400) 및 배터리 처리부(300) 중 적어도 하나 이상으로부터 공급되는 전원으로 구동된다.
이와 같이 구성된 본 발명에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 시스템의 각 구성요소를 좀 더 상세히 설명하면 다음과 같다.
먼저, 상기 비접촉 자기 유도 처리부(400)는 집전장치 모듈(pick-up module)(410)과, 레귤레이터(420)와, 레귤레이터 제어기(430)를 포함한다. 이때, 집전장치 모듈(410)은 급전 선로(600)로부터 자기장의 형태로 공급되는 AC 전류를 입력받아 집전하여 구동모터(100)의 구동에 필요한 에너지를 공급받는다. 그리고 상기 레귤레이터(420)는 상기 집전장치 모듈(410)이 집전한 AC 전류를 DC 전류로 변환하여 구동모터(100) 및 회생제동 처리부(200)로 공급한다. 이때, 상기 레귤레이터 제어기(430)는 구동모터(100)의 구동상태 또는 상기 회생제동 처리부(100)의 에너지 저장 상태에 따라 MCU(500)의 제어로 상기 레귤레이터(420)에서 변환된 전류의 공급을 제어한다.
다음으로 상기 회생제동 처리부(200)는 DC-DC 컨버터(210)와, 에너지 저장부(220)와, 재생 제어기(230)를 포함한다. 이때, 상기 DC-DC 컨버터(210)는 구동모터(100)로부터 회생되는 에너지를 승압시켜 출력하며, 상기 에너지 저장부(220)는 상기 DC-DC 컨버터(210)에서 승압된 회생제동 에너지 및 비접촉 자기 유도 처리부(400)에서 공급되는 잉여 에너지 중 적어도 하나 이상을 저장한다. 그리고 상기 재생 제어기(230)는 배터리(310)의 충전상태에 따라 MCU(500)의 제어로 상기 에너지 저장부(220)에 저장된 에너지를 배터리 처리부(300)로 공급되도록 제어한다.
이어 상기 배터리 처리부(300)는 배터리(310)와, BMS(Battery Management System)(320)를 포함한다. 이때, 상기 배터리(310)는 상기 회생제동 처리부(200)에서 입력되는 에너지를 충전하고, 충전된 에너지를 방전하여 구동모터(100)에 구동을 위한 전원으로 공급한다. 그리고 상기 BMS(320)는 MCU(500)의 제어로 상기 재생 제어기(230)와 통신을 하여 에너지 저장부(220)로부터 공급되는 에너지를 상기 배터리(310)에 적합하게 공급되도록 하여 배터리(310)를 충전시키고, 배터리(310)의 SOC(State Of Charge)를 체크하여 배터리 충/방전 동작을 제어한다.
참고로 종래에 회생제동에 관한 기술은 회생제동 에너지가 바로 배터리로 인입되는 시스템이 사용되고 있었고, 또한 회생 제동 외에 다른 전력원을 사용하여 배터리(310)로 충전되는 시스템은 종래에 없었던 시스템이다.
따라서 본 발명과 같이 회생제동 처리부(200)를 통해 구동모터(100)에서 배터리 처리부(300)로 직접 들어오는 에너지를 제어하여 배터리(310)로 들어오는 과충전 전류(overcharge current)를 해소하여 시스템의 안전성을 제공함과 함께, 회생제동 처리부(200) 및 자기유도 처리부(400)의 구성으로 버려지는 잉여 에너지를 하나의 에너지 저장부(220)로 통합하여 저장함으로써, 효율적으로 확보할 수 있게 된다.
이와 같이 구성된 본 발명에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 시스템의 동작을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다. 도 1과 동일한 참조부호는 동일한 기능을 수행하는 동일한 부재를 지칭한다.
도 2 는 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 방법을 설명하기 위한 흐름도이다.
도 2를 참조하여 설명하면 먼저, 급전 선로(600)에 전원이 공급되면(S10), 비접촉 자기유도 처리부(400) 내의 집전장치 모듈(410)은 상기 급전 선로(600)로부터 자기장의 형태로 공급되는 AC 전류를 입력받아 집전한다. 그러면 레귤레이터(420)는 상기 집전장치 모듈(410)이 집전한 AC 전류를 DC 전류로 변환하여 구동모터(100) 구동을 위한 에너지로 생성한다(S20).
이어 상기 비접촉 자기유도 처리부(400) 내의 레귤레이터 제어기(430)는 MCU(500)로부터 구동모터(100)의 요구전력을 입력받아 자기유도 처리부(400)에서 집전된 자기유도 에너지를 구동모터(100)로 공급한다(S30).
이때, 상기 레귤레이터 제어기(430)는 MCU(500)로부터 상기 구동모터(100)의 구동을 위한 요구전력이 요청되었는지 여부를 판단한 후(제 1 판단)(S40), 요구전력이 요청되면 상기 자기유도 처리부(400)에서 공급되는 자기유도 에너지와 구동모터의 요구전력 에너지를 서로 비교한다(제 1 비교)(S50).
상기 제 1 비교결과(S50), 자기유도 처리부(400)에서 공급된 자기유도 에너지가 구동모터(100) 구동을 위한 요구전력 에너지보다 작아 구동모터(100)의 구동에 따른 에너지가 부족한 경우 배터리 처리부(300)내의 BMS(320)는 MCU(500)의 제어를 받아 배터리(310)의 SOC(State Of Charge)를 체크하여 배터리(310)를 방전시킨다(S60).
이때, 상기 BMS(320)는 상기 배터리(310)에서 방전되는 전력을 실시간으로 체크하여 배터리 방전 전력이 10C이상인 경우(S70), MCU(500)로 배터리 방전 중지를 요청하는 요청신호를 전송한다. 그러면 상기 MCU(500)는 구동모터(100) 전원을 차단시켜 배터리(310)의 방전을 중지시킨다(S80).
한편, 상기 자기유도 처리부(400)에서 공급되는 자기유도 에너지에서 잉여에너지가 발생되는 경우, 발생되는 잉여 에너지를 에너지 저장부(220)로의 저장여부를 판단한다(제 2 판단)(S150). 이때, 잉여 에너지의 발생여부는 상기 제 1 판단 결과(S40) 상기 구동모터(100)의 구동을 위한 요구전력이 요청되지 않았거나, 또는 상기 제 1 비교결과(S50) 자기유도 처리부(400)에서 공급된 자기유도 에너지가 구동모터(100) 구동을 위한 요구전력 에너지보다 큰 경우에 잉여 에너지가 발생되는 것으로 판단된다. 또한, 잉여 에너지의 저장여부 판단(제 2 판단)은 재생 제어기(230)를 통해 검색되는 에너지 저장부(220)의 가용 저장용량을 기반으로 판단된다.
그리고 상기 제 2 판단 결과(S150), 에너지 저장부(220)에 가용 저장용량이 없는 경우는 발생된 잉여 에너지를 제거하고(S180), 상기 에너지 저장부(220)에 가용 저장용량이 있는 경우는 재생 제어기(230)를 통해 MCU(500)의 제어신호를 입력으로 상기 잉여 에너지를 에너지 저장부(220)에 저장한다(S160).
이후, BMS(320)는 배터리(310)에서 충전되는 전력을 실시간으로 체크하며 배터리의 과충전(overcharging) 여부를 확인하고(S170), 배터리의 과충전이 아닌 경우에 한해서 BMS(320)는 MCU(500)의 제어를 받아 배터리(310)의 SOC(State Of Charge)를 체크하여 에너지 저장부(220)에 저장된 잉여 에너지를 배터리(310)로 충전시킨다(S90).
이때, 상기 배터리(310)로 충전되는 에너지는 배터리 팩(pack) 전압에 따라 그 충전 방식을 달리하는데(S100), 상기 배터리 팩이 고정전압 보다 큰 경우는 CV(고정전압) 충전을 이용하고(S110), 상기 배터리 팩이 고정전압 보다 작은 경우는 CP(고정파워) 충전을 이용하여 배터리를 충전한다(S120).
그리고 상기 BMS(320)는 상기 배터리(310)에서 충전되는 전력을 실시간으로 체크하여 배터리가 과충전(overcharging)되는 경우(S130), MCU(500)로 배터리 충전중지를 요청하는 요청신호를 전송한다. 그러면 상기 MCU(500)는 배터리(310) 전원을 차단시켜 배터리(310)의 충전을 중지시킨다(S140).
이처럼, 본 발명은 회생제동 처리부(200)와, 자기유도 처리부(400)와, 배터리 처리부(300)가 각각 MCU(500)와의 통신을 통해 구동모터(100)로 나가는 전력과 배터리로 충전되는 전력을 효율적으로 제어하게 된다. 이는 종래에 구동동력 분배 제어가 회로로만 이루어져 있으며, 과전류 시에는 퓨즈나 PDU(Power Distribution Unit)에서 전류를 컷(cut)하는 방식으로 시스템이 이루어졌었다. 따라서 종래의 퓨즈나 PDU에서 회로 상으로 전류를 끊어주는 경우 갑작스런 전기적 충격으로 부품들의 고장의 원인이 될 수 있고, 자동차의 안전과 직결되기 때문에 문제가 있었는데, 본 발명은 이러한 문제를 위에서 설명한 것과 같이 해결하여 전기자동차 시스템의 에너지 효율성, 안전성을 확보하고 있다.
도 3 은 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식을 갖는 전기
자동차의 양방향 회생제동 제어 시스템의 구조를 나타낸 블록도이다.
도 3과 같이, 양방향 회생제동 제어 시스템은 구동모터(1100)와, 회생제동 처리부(1200)와, 배터리 처리부(1300)와, 자기유도 처리부(1400)와, MCU(Motor Controller Unit)(1500)로 구성된다.
상기 배터리 처리부(1300)는 에너지를 저장하기 위한 배터리(1310)를 포함하고, 외부에서 입력되는 에너지를 충전하고, 필요에 따라 충전된 에너지를 방전하여 구동모터(1100)를 구동시키는 전원을 공급한다.
상기 회생제동 처리부(1200)는 상기 구동모터(1100)에서 나오는 회생제동 에너지를 저장하고, 배터리의 충전상태를 기반으로 저장된 회생제동 에너지를 상기 배터리 처리부(1300) 내의 배터리(1310)로 공급하여 배터리(1310)를 충전시킨다.
상기 비접촉 자기유도 처리부(1400)는 급전 선로(1600)로부터 자기장을 통한 비접촉 방식으로 집전하여 공급받은 에너지를 이용하여 상기 구동모터(1100)를 구동하고, 상기 구동모터(1100)를 구동하고 남은 잉여 에너지를 상기 배터리 처리부(1300) 내의 배터리(1310)로 공급하여 배터리(1310)를 충전한다.
상기 MCU(1500)는 상기 비접촉 자기유도 처리부(1400) 또는 배터리 처리부(1300)에서 입력되는 구동모터(1100)의 제어신호를 통해 구동모터(1100)의 구동신호를 출력한다.
상기 구동모터(1100)는 상기 MCU(1500)에서 출력되는 구동신호를 입력으로 상기 비접촉 자기유도 처리부(1400) 및 배터리 처리부(1300) 중 적어도 하나 이상으로부터 공급되는 전원으로 구동된다.
이와 같이 구성된 본 발명에 따른 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 시스템의 각 구성요소를 좀 더 상세히 설명하면 다음과 같다.
먼저, 상기 회생제동 처리부(1200)는 DC-DC 컨버터(1210)와, 에너지 저장부(1220)와, 재생 제어기(1230)를 포함한다. 이때, 상기 DC-DC 컨버터(1210)는 구동모터(1100)로부터 회생되는 에너지를 승압시켜 출력하며, 상기 에너지 저장부(1220)는 상기 DC-DC 컨버터(1210)에서 승압된 회생제동 에너지를 저장한다. 그리고 상기 재생제어기(1230)는 배터리(1310)의 충전상태에 따라 MCU(1500)의 제어로 상기 에너지 저장부(1220)에 저장된 에너지를 배터리 처리부(1300)로 공급되도록 제어한다.
다음으로 상기 비접촉 자기 유도 처리부(1400)는 집전장치 모듈(pick-up module)(1410)과, 레귤레이터(1420)와, 레귤레이터 제어기(1430)를 포함한다. 이때, 상기 집전장치 모듈(1410)은 급전 선로(1600)로부터 자기장의 형태로 공급되는 AC 전류를 입력받아 집전하여 구동모터(1100)의 구동에 필요한 에너지를 공급받는다. 그리고 상기 레귤레이터(1420)는 상기 집전장치 모듈(1410)이 집전한 AC 전류를 DC 전류로 변환하여 구동모터(1100) 및 배터리 처리부(1300)로 공급한다. 이때, 상기 레귤레이터 제어기(1430)는 구동모터(1100)의 구동상태에 따라 MCU(1500)의 제어로 상기 레귤레이터(1420)에서 변환된 전류의 공급을 제어한다.
이어 상기 배터리 처리부(1300)는 배터리(1310)와, BMS(Battery Management System)(1320)를 포함한다. 이때, 상기 배터리(1310)는 외부에서 입력되는 에너지를 충전하고, 충전된 에너지를 방전하여 구동모터(1100)에 구동을 위한 전원으로 공급한다. 그리고 상기 BMS(1320)는 MCU(1500)의 제어로 상기 레귤레이터 제어기(1430)와 통신을 하여 레귤레이터(1420)로부터 공급되는 에너지를 상기 배터리(1310)에 적합하게 공급되도록 하여 배터리(1310)를 충전시키고, 배터리(1310)의 SOC(State Of Charge)를 체크하여 배터리 충/방전 동작을 제어한다.
참고로 종래에 회생제동에 관한 기술은 회생제동 에너지가 바로 배터리로 인입되는 시스템이 사용되고 있었고, 또한 에너지가 회생제동 처리부(1200)와 자기유도 처리부(1400) 양쪽에서 배터리(1310)로 충전되는 시스템은 종래에 없었던 시스템이다.
따라서 본 발명과 같이 회생제동 처리부(1200)를 통해 구동모터(1100)에서 배터리 처리부(1300)로 직접 들어오는 에너지를 제어하여 배터리(1310)로 들어오는 과충전 전류(overcharge current)를 해소하여 시스템의 안전성을 제공함과 함께, 회생제동 처리부(1200) 및 자기유도 처리부(1400)의 구성으로 버려지는 잉여 에너지를 효율적으로 확보할 수 있게 된다.
이와 같이 구성된 본 발명에 따른 비접촉 자기 유도 충전 방식을 갖는 전기 자동차의 양방향 회생제동 제어 시스템의 동작을 첨부한 도면을 참조하여 상세히 설명하면 다음과 같다. 도 3과 동일한 참조부호는 동일한 기능을 수행하는 동일한 부재를 지칭한다.
도 4 는 본 발명의 실시예에 따른 비접촉 자기 유도 충전 방식을 갖는 전기
자동차의 양방향 회생제동 제어 방법을 설명하기 위한 흐름도이다.
도 4를 참조하여 설명하면 먼저, 급전 선로(1600)에 전원이 공급되면(S210), 비접촉 자기유도 처리부(1400) 내의 집전장치 모듈(1410)은 상기 급전 선로(1600)로부터 자기장의 형태로 공급되는 AC 전류를 입력받아 집전한다. 그러면 레귤레이터(1420)는 상기 집전장치 모듈(1410)이 집전한 AC 전류를 DC 전류로 변환하여 구동모터(1100) 구동을 위한 에너지로 생성한다(S220).
이어 상기 비접촉 자기유도 처리부(1400) 내의 레귤레이터 제어기(1430)는 MCU(1500)로부터 구동모터(1100)의 요구전력을 입력받아 자기유도 처리부(1400)에서 집전된 자기유도 에너지를 구동모터(1100)로 공급한다(S230).
이때, 상기 레귤레이터 제어기(1430)는 MCU(1500)로부터 상기 구동모터(1100)의 구동을 위한 요구전력이 요청되었는지 여부를 판단한 후(제 1 판단)(S240), 요구전력이 요청되면 상기 자기유도 처리부(1400)에서 공급되는 자기유도 에너지와 구동모터의 요구전력 에너지를 서로 비교한다(제 1 비교)(S250).
상기 제 1 비교결과(S250), 자기유도 처리부(1400)에서 공급된 자기유도 에너지가 구동모터(1100) 구동을 위한 요구전력 에너지보다 작아 구동모터(1100)의 구동에 따른 에너지가 부족한 경우 배터리 처리부(1300)내의 BMS(1320)는 MCU(1500)의 제어를 받아 배터리(1310)의 SOC(State Of Charge)를 체크하여 배터리(1310)를 방전시킨다(S260).
이때, 상기 BMS(1320)는 상기 배터리(1310)에서 방전되는 전력을 실시간으로 체크하여 배터리 방전 전력이 10C이상인 경우(S270), MCU(1500)로 배터리 방전 중지를 요청하는 요청신호를 전송한다. 그러면 상기 MCU(1500)는 구동모터(1100) 전원을 차단시켜 배터리(1310)의 방전을 중지시킨다(S280).
한편, 상기 자기유도 처리부(1400)에서 공급되는 자기유도 에너지에서 잉여 에너지가 발생되는 경우 BMS(1320)는 MCU(1500)의 제어를 받아 배터리(1310)의 SOC(State Of Charge)를 체크하여 배터리(1310)를 충전시킨다(S290). 이때, 잉여 에너지의 발생여부는 상기 제 1 판단결과(S240) 상기 구동모터(1100)의 구동을 위한 요구전력이 요청되지 않았거나, 또는 상기 제 1 비교결과(S250) 자기유도 처리부(1400)에서 공급된 자기유도 에너지가 구동모터(1100) 구동을 위한 요구전력 에너지보다 큰 경우에 잉여 에너지가 발생되는 것으로 판단된다.
이때, 상기 배터리(1310)로 충전되는 에너지는 배터리 팩(pack) 전압에 따라 그 충전 방식을 달리하는데(S300), 상기 배터리 팩이 고정전압 보다 큰 경우는 CV(고정전압) 충전을 이용하고(S310), 상기 배터리 팩이 고정전압 보다 작은 경우는 CP(고정파워) 충전을 이용하여 배터리를 충전한다(S320).
그리고 상기 BMS(1320)는 상기 배터리(1310)에서 충전되는 전력을 실시간으로 체크하여 배터리가 과충전(overcharging)되는 경우(S330), MCU(1500)로 배터리 충전 중지를 요청하는 요청신호를 전송한다. 그러면 상기 MCU(1500)는 배터리(1310) 전원을 차단시켜 배터리(1310)의 충전을 중지시킨다(S340).
이처럼, 본 발명은 회생제동 처리부(1200)와, 자기유도 처리부(1400)와, 배터리 처리부(1300)가 각각 MCU(1500)와의 통신을 통해 구동모터(1100)로 나가는 전력과 배터리로 충전되는 전력을 효율적으로 제어하게 된다. 이는 종래에 구동동력 분배 제어가 회로로만 이루어져 있으며, 과전류 시에는 퓨즈나 PDU(Power Distribution Unit)에서 전류를 컷(cut)하는 방식으로 시스템이 이루어졌었다. 따라서 종래의 퓨즈나 PDU에서 회로 상으로 전류를 끊어주는 경우 갑작스런 전기적 충격으로 부품들의 고장의 원인이 될 수 있고, 자동차의 안전과 직결되기 때문에 문제가 있었는데, 본 발명은 이러한 문제를 위에서 설명한 것과 같이 해결하여 전기자동차 시스템의 에너지 효율성, 안전성을 확보하고 있다.
상기에서 설명한 본 발명의 기술적 사상은 바람직한 실시예에서 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술적 분야의 통상의 지식을 가진자라면 본 발명의 기술적 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다. 따라서 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.

Claims (13)

  1. (A) 구동모터 구동을 위한 에너지를 공급받는 단계와,
    (B) MCU로부터 구동모터의 요구전력을 입력받아 상기 공급 에너지를 구동모터로 공급하는 단계와,
    (C) 상기 공급 에너지와 구동모터의 요구전력 에너지를 비교하는 비교단계와,
    (D) 상기 비교결과, 공급 에너지가 구동모터 구동을 위한 요구전력 에너지보다 작은 경우 MCU의 제어로 배터리의 SOC(State Of Charge)를 체크하여 배터리를 방전하는 단계와,
    (E) 상기 공급 에너지에서 잉여 에너지가 발생되는 경우 MCU의 제어를 받아 에너지 저장부로 상기 잉여 에너지를 저장하는 단계와,
    (F) MCU의 제어로 배터리의 SOC(State Of Charge)를 체크하여 상기 에너지 저장부에 저장된 잉여 에너지를 배터리로 충전하는 단계를 포함하는 것을 특징으로 하는 회생제동 제어 방법.
  2. 제 1 항에 있어서, 상기 (A) 단계는
    급전 선로로부터 자기장의 형태로 공급되는 AC 전류를 입력받아 집전하고, 집전한 AC 전류를 DC 전류로 변환하여 상기 구동모터를 구동하기 위한 공급 에너지로 공급하는 것을 특징으로 하는 회생제동 제어 방법.
  3. 제 1 항에 있어서, 상기 (D) 단계는
    배터리에서 방전되는 전력을 실시간으로 체크하여 배터리 방전 전력이 소정의 수치 이상인 경우, MCU로부터 배터리 방전 중지에 따른 제어신호를 생성하여 구동모터 전원을 차단시키는 단계를 포함하는 것을 특징으로 하는 회생제동 제어 방법.
  4. 제 1 항에 있어서, 상기 (E) 단계는
    구동모터의 구동을 위한 요구전력이 요청되지 않았거나, 또는 상기 공급 에너지가 구동모터 구동을 위한 요구전력 에너지보다 큰 경우에 잉여 에너지가 발생되는 것으로 판단하는 것을 특징으로 하는 회생제동 제어 방법.
  5. 제 1 항에 있어서, 상기 (E) 단계는
    에너지 저장부의 가용 저장용량 여부를 검색하는 단계와,
    상기 검색결과, 에너지 저장부에 가용 저장용량이 없는 경우 상기 잉여 에너
    지를 제거하는 단계와,
    상기 검색결과, 에너지 저장부에 가용 저장용량이 있는 경우 MCU의 제어신호를 입력으로 상기 잉여 에너지를 에너지 저장부에 저장하는 단계를 포함하는 것을 특징으로 하는 회생제동 제어 방법.
  6. 제 1 항에 있어서, 상기 (F) 단계는
    배터리에서 충전되는 전력을 실시간으로 체크하여 배터리의 과충전(overcharging)이 아닌 경우에 한해서 에너지 저장부에 저장된 잉여 에너지를 배터리로 충전하는 것을 특징으로 하는 회생제동 제어 방법.
  7. 제 1 항에 있어서, 상기 (F) 단계는
    배터리로 충전되는 잉여 에너지는 배터리 팩(pack) 전압에 따라 CV(고정전압) 충전 또는 CP(고정파워) 충전을 이용하여 충전하는 것을 특징으로 하는 회생제동 제어 방법.
  8. 제 1 항에 있어서, 상기 (F) 단계는
    배터리에서 충전되는 전력을 실시간으로 체크하여 배터리가 과충전(overcharging)되는 경우, MCU로부터 배터리 충전 중지에 따른 제어신호를 생성하여 배터리 전원을 차단시키는 단계를 포함하는 것을 특징으로 하는 회생제동 제어 방법.
  9. (A) 구동모터 구동을 위한 에너지를 공급받는 단계와,
    (B) MCU로부터 구동모터의 요구전력을 입력받아 상기 공급 에너지를 구동모터로 공급하는 단계와,
    (C) 상기 공급 에너지와 구동모터의 요구전력 에너지를 비교하는 비교단계와,
    (D) 상기 비교결과, 공급 에너지가 구동모터 구동을 위한 요구전력 에너지보다 작은 경우 MCU의 제어로 배터리의 SOC(State Of Charge)를 체크하여 배터리를 방전하는 단계와,
    (E) 상기 공급 에너지에서 잉여 에너지가 발생되는 경우 MCU의 제어를 받아 배터리의 SOC(State Of Charge)를 체크하여 배터리를 충전하는 단계를 포함하는 것을 특징으로 하는 회생제동 제어 방법.
  10. 제 9 항에 있어서, 상기 (D) 단계는
    배터리에서 방전되는 전력을 실시간으로 체크하여 배터리 방전 전력이 소정 수치 이상인 경우, MCU로부터 배터리 방전 중지에 따른 제어신호를 생성하여 구동모터 전원을 차단시키는 단계를 포함하는 것을 특징으로 하는 회생제동 제어 방법.
  11. 제 9 항에 있어서, 상기 (E) 단계는
    구동모터의 구동을 위한 요구전력이 요청되지 않았거나, 또는 상기 공급 에너지가 구동모터 구동을 위한 요구전력 에너지보다 큰 경우에 잉여 에너지가 발생되는 것으로 판단하는 것을 특징으로 하는 회생제동 제어 방법.
  12. 제 9 항에 있어서, 상기 (E) 단계는
    배터리로 충전되는 에너지는 배터리 팩(pack) 전압에 따라 CV(고정전압) 충전 또는 CP(고정파워) 충전을 이용하여 충전하는 것을 특징으로 하는 회생제동 제어 방법.
  13. 제 9 항에 있어서, 상기 (E) 단계는
    배터리에서 충전되는 전력을 실시간으로 체크하여 배터리가 과충전(overcharging)되는 경우, MCU로부터 배터리 충전 중지에 따른 제어신호를 생성하여 배터리 전원을 차단시키는 단계를 포함하는 것을 특징으로 하는 회생제동 제어 방법.
PCT/KR2011/002518 2011-04-11 2011-04-11 회생제동 제어 방법 WO2012141344A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/002518 WO2012141344A1 (ko) 2011-04-11 2011-04-11 회생제동 제어 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2011/002518 WO2012141344A1 (ko) 2011-04-11 2011-04-11 회생제동 제어 방법

Publications (1)

Publication Number Publication Date
WO2012141344A1 true WO2012141344A1 (ko) 2012-10-18

Family

ID=47009494

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/002518 WO2012141344A1 (ko) 2011-04-11 2011-04-11 회생제동 제어 방법

Country Status (1)

Country Link
WO (1) WO2012141344A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104802646A (zh) * 2015-04-20 2015-07-29 株洲时代装备技术有限责任公司 基于超级电容的储能型再生制动能量回收方法及系统
CN108215929A (zh) * 2018-04-12 2018-06-29 福泰动力有限公司 电动汽车和充电控制方法
CN112590619A (zh) * 2020-12-24 2021-04-02 中通客车控股股份有限公司 一种双源无轨电动客车供电控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865814A (ja) * 1994-08-25 1996-03-08 Honda Motor Co Ltd 電気自動車用充電制御装置
KR20040045743A (ko) * 2002-11-25 2004-06-02 현대자동차주식회사 연료 전지 하이브리드 전기 차량의 동력 분배 제어방법
KR20050036663A (ko) * 2003-10-16 2005-04-20 한국철도기술연구원 비접촉 급전방식을 이용한 전기 차량 운행 시스템
KR20060030211A (ko) * 2004-10-05 2006-04-10 현대자동차주식회사 차량의 회생 제동 제어방법
KR20110073127A (ko) * 2009-12-23 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 방법
KR20110073128A (ko) * 2009-12-23 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0865814A (ja) * 1994-08-25 1996-03-08 Honda Motor Co Ltd 電気自動車用充電制御装置
KR20040045743A (ko) * 2002-11-25 2004-06-02 현대자동차주식회사 연료 전지 하이브리드 전기 차량의 동력 분배 제어방법
KR20050036663A (ko) * 2003-10-16 2005-04-20 한국철도기술연구원 비접촉 급전방식을 이용한 전기 차량 운행 시스템
KR20060030211A (ko) * 2004-10-05 2006-04-10 현대자동차주식회사 차량의 회생 제동 제어방법
KR20110073127A (ko) * 2009-12-23 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 단방향 회생제동 제어 방법
KR20110073128A (ko) * 2009-12-23 2011-06-29 한국과학기술원 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 방법

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104802646A (zh) * 2015-04-20 2015-07-29 株洲时代装备技术有限责任公司 基于超级电容的储能型再生制动能量回收方法及系统
CN108215929A (zh) * 2018-04-12 2018-06-29 福泰动力有限公司 电动汽车和充电控制方法
CN112590619A (zh) * 2020-12-24 2021-04-02 中通客车控股股份有限公司 一种双源无轨电动客车供电控制方法及系统

Similar Documents

Publication Publication Date Title
WO2012018204A2 (ko) 전기자동차 및 그 배터리의 충전제어방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2010087661A2 (ko) 자동차용 휴대용 보조 전원 장치
WO2012128445A1 (ko) 배터리 팩 연결 제어 장치 및 방법
WO2015016600A1 (ko) 배터리 제어 장치 및 방법
WO2015034262A1 (ko) 멀티 bms에 대한 통신 식별자 할당 시스템 및 방법
WO2018021664A1 (ko) 배터리 밸런싱 장치 및 방법
WO2014104676A1 (ko) 하이브리드 건설기계용 전원 공급 장치 및 그 방법
JPH11164494A (ja) ハイブリッド電気自動車
WO2016032131A1 (ko) Dc-dc 전압 변환기의 입력 파워 한도를 조절하기 위한 파워 제어 시스템 및 방법
WO2014123350A1 (ko) 저발열 무선 전력 수신 장치 및 방법
WO2020071682A1 (ko) Bms 간 통신 시스템 및 방법
WO2013089517A1 (ko) 전기자동차 및 그 제어방법
WO2019164198A1 (ko) 보조 에너지 저장 장치를 이용한 방전 차량 점프 스타트 시스템
WO2016064224A1 (ko) 전류 제어 장치 및 방법
WO2012141344A1 (ko) 회생제동 제어 방법
WO2020013614A1 (ko) Ess 충방전 운전 방법
WO2013047973A1 (ko) 외부 배터리 셀을 이용하여 셀 밸런싱을 수행하는 전원 공급 장치 및 그의 셀 밸런싱 방법
JP7119481B2 (ja) 車両用電力システム
KR101187449B1 (ko) 비접촉 자기 유도 충전 방식을 갖는 전기자동차의 양방향 회생제동 제어 방법
WO2022197040A1 (ko) 전기자동차의 충전 장치 및 방법
WO2011099704A2 (ko) 배터리 충전기능이 구비된 전기 자동차의 구동시스템
WO2022014953A1 (ko) 배터리 관리 방법 및 그 방법을 제공하는 배터리 시스템
WO2012141343A1 (ko) 회생제동 제어 시스템
WO2012144663A1 (ko) 충전 전력 분배 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863529

Country of ref document: EP

Kind code of ref document: A1