WO2019159858A1 - 透光性材料からなる封止用のリッド - Google Patents

透光性材料からなる封止用のリッド Download PDF

Info

Publication number
WO2019159858A1
WO2019159858A1 PCT/JP2019/004772 JP2019004772W WO2019159858A1 WO 2019159858 A1 WO2019159858 A1 WO 2019159858A1 JP 2019004772 W JP2019004772 W JP 2019004772W WO 2019159858 A1 WO2019159858 A1 WO 2019159858A1
Authority
WO
WIPO (PCT)
Prior art keywords
brazing material
lid
sealing
lid body
brazing
Prior art date
Application number
PCT/JP2019/004772
Other languages
English (en)
French (fr)
Inventor
裕之 草森
知宏 島田
剛史 入部
徳行 工藤
克尚 田中
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Priority to KR1020207025192A priority Critical patent/KR102417632B1/ko
Priority to US16/967,207 priority patent/US12002723B2/en
Priority to JP2020500467A priority patent/JP7182596B2/ja
Priority to EP19754079.2A priority patent/EP3754699B1/en
Priority to CN201980013082.4A priority patent/CN111712912B/zh
Priority to AU2019222263A priority patent/AU2019222263B2/en
Publication of WO2019159858A1 publication Critical patent/WO2019159858A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/06Containers; Seals characterised by the material of the container or its electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0016Brazing of electronic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3013Au as the principal constituent
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/023Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used
    • C04B37/026Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles characterised by the interlayer used consisting of metals or metal salts
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/02Alloys based on gold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49866Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers characterised by the materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/12Metallic interlayers
    • C04B2237/125Metallic interlayers based on noble metals, e.g. silver
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/52Pre-treatment of the joining surfaces, e.g. cleaning, machining
    • C04B2237/525Pre-treatment of the joining surfaces, e.g. cleaning, machining by heating
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/59Aspects relating to the structure of the interlayer
    • C04B2237/592Aspects relating to the structure of the interlayer whereby the interlayer is not continuous, e.g. not the whole surface of the smallest substrate is covered by the interlayer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/84Joining of a first substrate with a second substrate at least partially inside the first substrate, where the bonding area is at the inside of the first substrate, e.g. one tube inside another tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations

Definitions

  • the present invention relates to a lid for a package that contains an optical element such as an LED, and relates to a sealing lid made of a material that transmits light. More specifically, the present invention relates to a sealing lid including a lid main body including a brazing material that is joined to a package and hermetically sealed, and is less likely to be damaged such as cracking during a sealing operation.
  • Optical elements such as LEDs (light emitting diodes) and light receiving elements are widely used in the fields of illumination, sensors, optical communication, sterilization, and the like.
  • an optical element is used in the above-described various apparatuses, it is a hermetically sealed package for protecting the optical element from the atmosphere.
  • This package is manufactured by joining a lid serving as a lid to a container-like package main body that accommodates an optical element to ensure airtightness.
  • a lid that can transmit light visible light, infrared light, ultraviolet light, etc.
  • a package of such a light transmissive optical element for example, in Patent Document 1, there is a package in which a metal cap (lid) having a glass window is joined to a package body.
  • a part of the lid is made into a glass window for light transmission, and a joint part with the package body is made into a metal frame.
  • part of a lid and a package main body is a metal, The said site
  • Patent Document 2 describes a light-emitting element package manufactured by using a light-transmitting glass flat plate as a lid and bonding it to a package body containing a semiconductor chip (light-emitting element) with an adhesive.
  • the entire lid is made of translucent glass, and an adhesive is applied to join the lid and the package main body in consideration of different materials.
  • the package using the lid with a glass window of Patent Document 1 has a surface inferior in light utilization efficiency from the element because there is a portion of a metal frame that does not transmit light.
  • the lid of patent document 1 uses the member which consists of an individual different material called a glass window and a metal frame, a number of parts increases and a structure is also complicated. For this reason, it is disadvantageous in terms of manufacturing efficiency and cost, and it is difficult to cope with downsizing of the package.
  • the entire lid as in Patent Document 2 is made of a light-transmitting material such as glass.
  • an adhesive is used for bonding and sealing the lid. Resin materials and organic materials such as adhesives are likely to deteriorate over time, particularly due to ultraviolet rays, and the long-term reliability of the package may be impaired.
  • the present invention has been made based on the background as described above, and provides a lid that serves as a lid for sealing a package containing an optical element, which has not been put into practical use so far. To do. Specifically, unlike a member that combines a glass window and a metal frame, the utilization efficiency of the optical element can be ensured. Further, it is possible to provide a sealing lid capable of effective hermetic sealing at the time of bonding to the package body and capable of forming a stable bonded portion for a long time without deterioration.
  • the lid of the present invention is required to be able to be joined without excessively affecting the translucent material constituting the lid. This is because translucent materials such as glass are brittle materials with poor toughness and may be damaged by thermal stress or the like.
  • the inventors of the present invention have made extensive investigations and configured the lid body with a light-transmitting material such as glass, and applied a brazing material made of a eutectic alloy as a bonding material for sealing and bonding with the package body, The brazing material was appropriately arranged and fused.
  • the sealing lid configured as described above has arrived at the present invention as being capable of solving the above-described problems.
  • the present invention can transmit at least one of visible light, ultraviolet light, and infrared light in a sealing lid for manufacturing a hermetically sealed package bonded to a package body that accommodates an optical element.
  • a lid body made of a light-transmitting material, and the lid body includes a frame-shaped joining area corresponding to the outer peripheral shape of the lid body on a surface to be joined to the package body, and the lid body is formed on the joining area of the lid body.
  • a sealing lid wherein a brazing material made of a plurality of eutectic alloys is fused.
  • the lid body is made of a single material as a translucent material in order to maximize the light use efficiency of the optical elements in the package.
  • the eutectic alloy brazing material is applied as a bonding material for bonding to the package.
  • the eutectic alloy can have a relatively low melting point by setting the alloy composition in the vicinity of the eutectic composition. Because.
  • the brazing material made of a eutectic alloy can control the material structure and shape after fusion by appropriately setting the method and conditions for fixing (fusing) to the lid body.
  • the control of the material structure and shape is an important element in the present invention and will be described in detail later.
  • the lid of the present invention is composed of a lid body made of a translucent material and a brazing material that becomes a bonding material at the time of sealing.
  • the entire surface of the lid is made of a translucent material so that the light emitting / receiving functions of the optical element can be utilized to the maximum.
  • This translucent material is a material that can transmit at least one of visible light, ultraviolet light, and infrared light. There is no particular limitation on the wavelength of light that can be transmitted. Further, the degree of light transmission (transmittance) is not particularly limited. As a specific range of the translucent material, any of glass, quartz, sapphire, silicon, and germanium is preferable. Regarding glass, a material generally referred to as glass and having translucency is shown, and examples thereof include quartz glass (including synthetic glass), borosilicate glass, and the like.
  • the shape and dimensions of the lid body are determined by the usage and specifications of the package to which the optical element is applied.
  • Examples of the shape of the lid include a rectangular (square, rectangular) or circular plate shape as a planar shape.
  • the cross-sectional shape of the lid body is not particularly limited.
  • the plate may be flat on both sides, but unevenness may be provided on both sides or one side.
  • the dome-type or lens-type lid body provided with irregularities may be used for the purpose of increasing the internal volume or for the purpose of collecting light or diverging light.
  • the lid body includes a frame-shaped bonding region corresponding to the outer peripheral shape of the lid body on the bonding surface with the package body.
  • the joining region is a part where a part or all of the joining region is brought into contact with and joined to the package body via the brazing material during hermetic sealing.
  • the joining region is a frame-like region corresponding to the outer peripheral shape of the lid body. If the outer peripheral shape of the lid body is rectangular as shown in FIGS. 1A and 1B, a rectangular frame is formed. If the outer peripheral shape is circular as shown in FIG. 1C, a circular frame (ring) is formed. However, the shape of the joining region does not have to completely match the outer peripheral shape of the lid body. As shown in FIG.
  • the corners of the joint region may be chamfered.
  • the frame-shaped region corresponding to the outer peripheral shape only needs to have at least one of the outer frame and the inner frame along the outer peripheral shape of the lid body.
  • the outer frame is a rectangle along the outer peripheral shape of the lid body, while the inner frame can be a circular joining region.
  • the width of the bonding region is not particularly limited.
  • the width of the joining region is arbitrarily set in consideration of the dimensions of the package body to be joined, for example, the width of the opening end face of the container-like package body. Generally, the width is set to 1/20 or more and 1/8 or less with respect to the long side and diameter dimensions of the lid body.
  • the width of the bonding region need not be uniform as long as it is within the above range.
  • the eutectic alloy is an alloy composed of two or more elements and can exhibit a eutectic reaction.
  • the eutectic reaction is a reaction in which a solid component (solid phase) derived from a constituent element of an alloy is simultaneously crystallized from a molten state (liquid phase).
  • solid phase solid phase
  • liquid phase liquid phase
  • An example of a brazing material applied as a brazing material made of a eutectic alloy in the present invention is an Au-based eutectic brazing material.
  • a preferable Au-based eutectic brazing material is a brazing material made of a eutectic alloy containing 50% or more of Au. Examples of such Au-based eutectic brazing materials include Au—Sn brazing material, Au—Ge brazing material, Au—Ga—In brazing material, Au—Sb brazing material, Au—Si brazing material, Au—Ga brazing material. And Au-In brazing material.
  • these brazing materials In addition to a relatively low melting point, these brazing materials have excellent bonding strength and chemical stability, and can maintain the hermeticity of the package for a long period of time. And unlike these adhesives, these brazing materials are excellent in durability without deterioration due to ultraviolet rays.
  • a particularly preferable brazing material is Au—Sn brazing material.
  • the eutectic alloy serving as the brazing material an alloy in which all the concentrations of the constituent elements are within a range of ⁇ 2% with respect to the composition (mass%) serving as the eutectic composition is preferable. This is because the melting point of the brazing material is suppressed and the precipitation of a coarse solid phase is suppressed by developing a fine eutectic structure.
  • the Sn concentration in the Au—Sn brazing material is 19% by mass or more.
  • Au—Ge brazing material has a Ge concentration of 10 mass% to 14 mass% (remainder Au)
  • Au—Ga—In brazing material has a Ga concentration of 8 mass% to 12 mass%. It is preferable to apply a material having the In concentration of 6 mass% or more and 10 mass% or less (remainder Au).
  • the brazing material made of a eutectic alloy is fixed within the range of the joining region of the lid body by fusion.
  • the brazing material fused on the joining region is melted again when the package is sealed, and spreads in the joining region by contact with the opening edge of the package body.
  • the opening edge end surface of a package main body and a lid main body are joined, and the inside of a package is airtightly sealed.
  • the fusion is an aspect in which the molten brazing material is brought into contact with the lid body and then solidified, and the brazing material and the lid body are joined and fixed in a state of surface contact.
  • a solid brazing material may be placed on the lid body and heated to be melted.
  • a molten brazing material may be supplied to the lid body. A preferred process for fusing the brazing material will be described later.
  • a plurality of pieces of brazing material made of a eutectic alloy are fused on the joining region. This is because the residual stress at the interface between the brazing material and the lid body is divided to prevent cracking of the lid body when the brazing material is fused and when the package is sealed. Since there is a difference in thermal expansion / contraction behavior between the brazing material and the light transmitting material such as glass, residual stress is generated at the joint interface when the brazing material is fused. The residual stress increases as the joining area of the brazing material increases. If the residual stress is excessive, there is a risk that breakage such as cracks may occur in the lid body at the stage of fusion of the brazing material.
  • the residual stress is divided and reduced by making the brazing filler material into a plurality of pieces.
  • the reduction of the residual stress is to suppress breakage of the lid body at the time of fusion in cooperation with the reduction of the thermal stress by the application of the brazing material made of the eutectic alloy.
  • the present invention as a mode of arranging a plurality of pieces of brazing material, it is preferable to continuously fuse a small block of brazing material on the joining region to form a frame shape in appearance (overview). More specifically, as shown in FIG. 2, there is an arrangement in which spherical and dotted brazing materials are aligned and arranged along the shape of the joining region.
  • the upper row of FIG. 2 shows a row of brazing materials arranged in a frame shape.
  • the brazing materials are arranged in a frame shape in a plurality of rows. May be.
  • the continuous arrangement is not limited to the case where the brazing materials are brought into contact with each other and fused.
  • brazing filler metals when a plurality of brazing filler metals are fused as described above, the number of brazing filler metals and the size (volume) of each brazing filler metal are not particularly limited. It is only necessary that the amount of brazing material that can cover the joint area of the lid main body over the entire circumference by wetting and spreading at the time of sealing is dispersed and fused. Regarding the brazing material, the cross-sectional structure and shape affect the quality of the lid body and the sealing quality rather than the size and number of the brazing material.
  • the eutectic alloy brazing material is applied in the present invention because the eutectic alloy can develop a fine eutectic structure.
  • the material structure of the brazing material a fine eutectic structure and eliminating a coarse solid phase, stable sealing becomes possible.
  • the coarse solid phase can cause damage to the lid body made of a light-transmitting material when the brazing material is remelted and solidified at the time of sealing.
  • the coarse solid phase may have a high melting point and may remain undissolved during brazing during sealing. In that case, the thickness of the joint formed after sealing becomes non-uniform, which may affect the airtightness.
  • the melting point of the brazing material is locally increased, and excessive thermal stress may be generated at the site, or the stress distribution may be uneven at the bonding interface.
  • translucent materials such as glass with low toughness, the effect of thermal stress is large, so there is a risk of cracking or cracking during sealing. Therefore, in the present invention, it is preferable that the material structure of the brazing material fused to the lid body is a fine structure.
  • a single phase having a circle equivalent diameter of 5 ⁇ m or less in which the material structure of an arbitrary cross section of at least one brazing material is arbitrarily included in the bonding region, among the plurality of brazing materials fused to the joining region.
  • the eutectic structure is synonymous with a general eutectic structure, and is a form of a material structure in which a plurality of fine solid phases are intricately and complexly mixed.
  • a eutectic structure having a periodic and fine structure is inevitably expressed.
  • a single phase generated and grown separately from such a eutectic structure is expressed. Contains.
  • a single phase is a solid phase that is coarsened and / or deformed when compared to a solid phase that constitutes a eutectic structure.
  • the single phase is distinguished from the solid phase constituting the eutectic structure in appearance.
  • the single phase is not necessarily different in composition from the solid phase constituting the eutectic structure, and may be the same or similar.
  • a particularly preferable material structure of the brazing filler metal in the present invention is a material structure composed only of a eutectic structure substantially free of a single phase. When a plurality of single phases are observed, it is necessary that the average equivalent circle diameter is 5 ⁇ m. In all the brazing materials fused to the lid body, it is preferable that the equivalent-circle diameter of the single phase is 5 ⁇ m.
  • an Au—Sn brazing material near the eutectic composition will be described as an example.
  • two solid phases of ⁇ phase Au-37.6 mass% Sn
  • ⁇ ′ phase Au-10.8 mass% Sn
  • the eutectic structure is composed of a fine ⁇ phase and a fine ⁇ ′ phase, and indicates a material structure in which they are periodically complicated.
  • the single phase generated in the Au—Sn brazing material having this composition is the ⁇ phase or the ⁇ ′ phase, and the composition is the same as each solid phase constituting the eutectic structure.
  • the ⁇ phase and the ⁇ ′ phase may be separated separately as a single phase.
  • This single phase is different from the ⁇ phase and ⁇ ′ phase constituting the eutectic structure in shape and size.
  • the single phase has an appearance different from a eutectic structure such as a block shape or an island shape, and its size is also coarse.
  • the single phase may become coarse depending on the conditions for fusion bonding of the brazing material and may exceed the equivalent circle diameter of 5 ⁇ m.
  • the precipitated solid phase is the ⁇ phase and the ⁇ ′ phase, and therefore, the eutectic structure composed of the ⁇ phase and the ⁇ ′ phase, and optionally equivalent to a circle
  • a material structure including a ⁇ phase or a ⁇ ′ phase having a diameter of 5 ⁇ m or less is preferable.
  • the present invention in which a plurality of brazing materials are fused to the joint region on the lid body, it is preferable to show the above-described material structure in an arbitrary cross section of a brazing material selected at random. Preferably, it is preferable to show the material structure in an arbitrary plurality of cross sections of all brazing materials.
  • the size and shape of the brazing material fused to the joint region of the lid body are not particularly limited.
  • the lid body is further damaged by cracks and cracks at the stage of fusing the brazing material to the lid body and the stage of remelting and solidifying the brazing material for sealing.
  • the brazing material has a suitable shape.
  • the brazing material fused to the lid body preferably has a shape index (I s ) defined by the following formula in a range of 0.9 to 2.5.
  • the above shape index (I s ) is determined based on the relationship between the volume of brazing material (V) and the bonding area (A) between the lid body and the brazing material. This suggests that it is required to be fused. That is, when the joining area is excessive in relation to the volume of the brazing material, the thermal stress when the molten brazing material solidifies becomes relatively large. For translucent materials with low toughness, the effect of thermal stress is significant, and in addition, there are differences in expansion and contraction coefficients with the brazing material and the metal and ceramics that make up the package body. Damage is likely to occur.
  • the parameterization of the brazing material by the shape index (I s ) is for preventing cracking of the lid when the brazing material is fused and when the lid body and the package body are joined. Then, according to the present inventors, if the I s exceeds 2.5, damages such as cracks may occur on the lid. On the other hand, when the I s is less than 0.9, indicating that this is the case too little bonding area of the brazing material. In this case, the lid main body is hardly damaged, but the adhesion of the brazing material to the lid main body is poor. For this reason, the brazing material may fall off during handling, and the brazing material may be misaligned or poorly joined when it is joined to the package body.
  • the preferred range of the shape index (I s ) is set to 0.9 or more and 2.5 or less for the reasons described above.
  • the shape index (I s ) is preferably in the above range for at least one brazing material on the lid body, but the average value of the shape index (I s ) of the brazing material on the lid is in the above range. More preferably, it is more preferable that all brazing materials are provided.
  • the shape of the brazing material is preferably such that the projected shape in the vertical direction is substantially circular.
  • Specific examples of the preferable shape of the brazing material include a spherical shape and a hemispherical shape, and a shape in which two or more spheres are overlapped.
  • FIG. 3 is a diagram illustrating an example of the relationship between the shape / dimension of the brazing filler metal and the shape index (I s ). This illustration shows a cross-sectional view at the central portion of a plurality of brazing materials having the same volume, and explains the relationship between the change in the bonding area with the lid body and the shape index (I s ).
  • FIG. 4 is an example of the shape of the brazing material after fusion. As illustrated in FIGS. 3 and 4, the shape of the brazing material may be a spherical shape or a hemispherical shape, or a shape in which two spheres overlap.
  • the preferred conditions related to the material structure described above eutectic structure and fine single phase
  • the preferred conditions related to shape and dimensions shape index (I s )
  • shape index shape index
  • the sealing lid according to the present invention will be composed of a lid main body made of a light-transmitting material such as glass and a eutectic alloy fused to the lid main body.
  • a lid main body made of a light-transmitting material such as glass and a eutectic alloy fused to the lid main body.
  • the additional component include a metallized film and a functional film formed on one or both surfaces of the lid body.
  • a metallized film of at least one layer made of metal is provided on at least a part of the surface of the lid body to which the brazing material is fused, and the brazing material is fused on the metallized film.
  • the metallized film is mainly applied to improve the adhesion of the brazing material to the lid body. Since the brazing material is a metal (eutectic alloy) and is a different material from a light-transmitting material such as glass, it may not be fixed because of poor adhesion to the lid body depending on the composition. Therefore, by applying a metallized film made of a metal, it is possible to secure the adhesiveness of the brazing material and prevent dropping from the lid body.
  • the metallized film can have a single layer structure or a multilayer structure. As the specific structure of the metallized film, several types of metal layers are assumed depending on the function.
  • first metal layer formed on the brazing material fusion surface As a function of the metallized film, an improvement in adhesion of the brazing material to the lid body can be mentioned.
  • a metallized film for that purpose it is preferable to form a first metal layer made of at least one of Au and Pt on the surface where the brazing material is fused. This is because Au or Pt has good adhesion to the brazing materials of the various specific examples described above.
  • the first metal film can also be a single layer or a multilayer, and may be composed of only Au or Pt, or may be laminated (Au / Pt, Pt / Au). If the first metal film is too thin, the base may be exposed and adhesion may be reduced.
  • the thickness of the first metal film is preferably 0.01 ⁇ m or more and 1 ⁇ m or less.
  • the first metal film formed on the above-described brazing material fusion surface composed of Au and Pt has poor adhesion to the translucent material constituting the lid body. Therefore, Mg, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, as a metallized film that improves the adhesion between the first metal film to which the brazing material is fused and the lid body. It is preferable to form a second metal film made of at least one of Ga, Ge, Zr, Nb, Mo, Ru, Rh, Pd, Ag, In, Sn, Sb, Ta, W, Re, Os, and Ir. .
  • the brazing material can be suitably fixed to the lid body.
  • Cr and Ti are highly active metals, it is possible to form a metallized film having high adhesion to the lid body surface.
  • Ni is excellent in protective performance and can form a metallized film that suppresses oxidation and alteration of the underlying layer. Therefore, it is preferable to form a metallized film having a second metal layer made of at least one of Cr, Ti, and Ni.
  • the second metal layer As a specific and preferable configuration of the second metal layer, a metal layer made of either Cr or Ti having high activity is formed as an adhesion layer, and a metal layer made of Ni is formed thereon as a protective layer. (Cr / Ni, Ti / Ni). Although Cr or Ti has high adhesion, there is a concern about oxidation and alteration due to outside air due to its high activity. By forming a protective layer of Ni on the adhesion layer, oxidation or the like of the adhesion layer serving as a base is prevented.
  • the second metal layer is particularly preferably a metal layer composed of such an adhesion layer and a protective layer.
  • the thickness of the adhesion layer is preferably 0.04 ⁇ m or more and 0.1 ⁇ m or less
  • the thickness of the protective layer is preferably 0.1 ⁇ m or more and 2 ⁇ m or less.
  • both the first metal layer (Au, Pt) serving as the brazing material fusion surface and the second metal layer (Cr, Ti, Ni) on the lid body surface side were formed. Those are preferred. However, Pt is also effective as a constituent metal of the protective layer in the second metal layer. Therefore, a metallized film (Cr / Pt, Ti / Pt) in which an adhesion layer made of Cr or Ti is formed and a protective layer made of Pt is formed can also be applied. In this case, since Pt which is a protective layer can also act as the first metal layer, a brazing material may be fused to the surface of the protective layer made of Pt. Further, Au metal may be formed.
  • the first and second metal films to be the metallized films described above can be formed singly or in combination with known thin film forming techniques such as sputtering, plating, and vapor deposition. Further, the metallized film may be formed over a wide range with respect to the lid body, but may be limited to a portion necessary for increasing the amount of light transmission. For example, the metallized film may have a frame shape corresponding to the outer shape of the lid body, and this may be used as a bonding region of the lid body.
  • the brazing material is fused to the lid body in contact with the metallized film.
  • the metal element constituting the metallized film diffuses into the brazing material at the interface between the brazing material and the metallized film.
  • the width of the diffusion region that can be formed in the brazing material by diffusion is preferably 2 ⁇ m or less.
  • the width of this diffusion region is the presence or absence of a metal that is a constituent metal of the metallized film and is not a constituent metal of the brazing material in the vicinity of the fusion interface (Pt, Ni, etc. are often targeted). It can be measured by an appropriate analysis means.
  • the width of the diffusion region is more preferably 1 ⁇ m or less.
  • the lower limit of the width of the diffusion region is preferably as low as possible, but is preferably 0.001 ⁇ m.
  • a functional film for adjusting transmittance, etc.
  • a functional film is formed on the lid body of the present invention for the purpose of increasing the transmittance or reflectance of a specific wavelength on one or both of the front surface and the back surface. can do.
  • a specific material of this functional film is MgF 2 .
  • the film thickness is desirably 60 to 100 nm.
  • the lid of the present invention can be manufactured by fusing a brazing material made of one or a plurality of pieces of eutectic alloy to a lid body of a light transmitting material.
  • the material structure, shape, and dimensions of the brazing filler metal after fusion are suitable in order to obtain a sealing lid having suitable bondability while taking advantage of the eutectic alloy. ing.
  • the following description will focus on a method for fusing the brazing material to the lid body while making the material structure, shape and dimensions of the brazing material suitable.
  • a translucent material is prepared by molding it into a desired shape and dimensions in advance.
  • the lid is a minute member, a large plate material that can form a plurality of lids may be used.
  • a lid can be cut out separately and it can be set as a product.
  • a metal film to be a metallized film is formed in advance before the brazing material is fused.
  • the brazing material can be fused by melting and solidifying the solid brazing material on the lid body.
  • shape index (I s ) shape index
  • a fusion method for making the shape index suitable for the solid brazing material there is a method in which a plurality of pre-manufactured small-sized and granular brazing materials are placed on the lid body and heated.
  • the brazing filler metal on the spherical or hemisphere can be fused by positioning and fixing the individual brazing filler metal with a jig or the like and heating the brazing filler metal in this state.
  • the size of the brazing material at this time is preferably 0.05 mm or more and 0.25 mm or less.
  • a more preferable method of fusing the brazing material is a method in which a molten brazing material is adhered to the lid body and solidified.
  • the material structure of the brazing material is preferably a material structure mainly composed of a fine eutectic structure and having no coarse single phase.
  • the molten brazing material is attached to the lid body and the atmosphere and cooling by the lid body are used.
  • Adhering the molten brazing material to the lid body is also suitable for adjusting the size and shape of the brazing material. If it is a molten state, the volume of the brazing material to be fused can be suitably adjusted by adjusting the amount of the liquid. Moreover, the shape and joining area at the time of colliding with a lid main body can be changed with the kinetic energy at the time of making the molten brazing material adhere. Thereby, the shape index (I s ) of the brazing material can be adjusted.
  • the shape index and the bonding area of the brazing material at the time of fusion can be adjusted by controlling the volume and speed of the droplet-shaped molten brazing material supplied to the lid body.
  • the brazing material can be fused even if the lid body is left at room temperature. This is because the volume of the brazing material formed into droplets is extremely small with respect to the volume of the lid body, so that the brazing material is instantaneously cooled and solidified when it comes into contact with the lid body.
  • the lid body may be cooled at the time of fusion, but if the brazing material is fused at an excessively low temperature, the lid body may be damaged by a thermal shock due to a temperature difference from the brazing material.
  • the temperature of the lid body when fusing the brazing material into droplets is 100 ° C. or lower than the melting point of the brazing material. This is to obtain a cooling rate necessary for refining the material structure (eutectic structure) of the fused brazing filler metal.
  • the method of fusing the brazing material to the lid body is not limited to the above method.
  • the brazing material can be fused by attaching a brazing material ball to the tip of a capillary capable of discharging gas, melting the brazing material with a laser, and spraying it on the lid body with the gas.
  • the brazing material can be fused by melting a rod-shaped or wire-shaped brazing material with a laser from the tip and simultaneously spraying it on the lid body with gas.
  • a brazing material having a good shape and size can be fused.
  • the brazing material can be fused even when the lid body is at room temperature.
  • the brazing material By attaching the molten brazing material to the lid main body as described above, the brazing material is rapidly solidified and fused. In this method, since a plurality of brazing materials are usually fused to the joining region of the lid body, the discharge and supply of the molten brazing material are continuously fused. Thereby, it can be set as the lid for sealing concerning the present invention.
  • the sealing lid according to the present invention is useful as a lid for a package using an optical element.
  • the entire surface of the lid is made of a light-transmitting material such as glass, so that the light use efficiency of the optical element in the package is improved.
  • a eutectic alloy brazing material is applied as a bonding material for hermetic sealing.
  • This brazing material is effective for strong hermetic sealing, has excellent durability, and does not deteriorate due to ultraviolet rays or the like. Then, by appropriately controlling the material structure and / or shape / dimension of the brazing material, it is fused without damaging the lid main body and functions effectively even during the sealing operation.
  • fused by the brazing material discharge apparatus (process a).
  • a lid body is made of quartz glass, which is a translucent material, and Au—Sn brazing material, which is a eutectic alloy brazing material, is fused to the lid body by various methods for sealing.
  • a lid was manufactured. And the joining test with the package main body was done about the manufactured lid, the presence or absence of damage of a lid main body was evaluated, and also the sealing test was done and the airtightness was confirmed.
  • the lid body used in the present embodiment is a flat plate (3.4 mm ⁇ 3.4 mm thickness 0.3 mm) made of quartz glass or borosilicate glass.
  • a metallized film was formed in a frame-like region (outside dimensions: 3.2 mm ⁇ 3.2 mm, inner dimensions: 2.5 mm ⁇ 2.5 mm) on the surface of the glass lid main body.
  • a thin film of each metal was formed in the order of Cr (60 nm) / Ni (200 nm) / Au (100 nm) from the surface of the lid main body.
  • a metallized film formed in the order of Ti (60 nm) / Pt (200 nm) / Au (100 nm) was also applied.
  • the brazing material was fused to the glass lid body prepared as described above.
  • As the brazing material an Au-22 mass% Sn brazing material was applied.
  • the lid was manufactured by fusing the brazing material to the lid body in three different modes of the following processes a to c.
  • FIG. 5 shows the detailed structure of the brazing material discharging apparatus 101.
  • Discharge device 101 contains brazing material 201 and is temperature-controlled tank 110, chamber 111 communicating with tank 110, diaphragm 112 for discharging brazing material 201 in chamber 111, and An aperture 113 and a piezoelectric element actuator 114 for driving the diaphragm 112 are provided.
  • the brazing material 201 in the chamber 111 is ejected from the nozzle by a predetermined amount by controlling and driving the piezoelectric element actuator 114 with a PC.
  • the size of the aperture 113, the driving amount of the piezoelectric element actuator 114, and the changing speed the volume and flying speed of the discharged brazing material 202 can be adjusted. Then, by setting the lid body on the stage movable in the XYZ directions and driving the stage, the brazing material can be continuously fused in a frame shape on the lid body.
  • the brazing material is continuously fused in a line along the center position of the frame-shaped metallized film to form a frame.
  • the size of the molten metal droplet to be discharged is set to ⁇ 0.1 mm or ⁇ 0.125 mm in terms of the sphere diameter, and the flying speed of the brazing material is set to 1.6 m / second or more. did.
  • the number of brazing materials to be fused was calculated so that the thickness of the brazing material layer when bonded to the package body was 10 to 25 ⁇ m, and the brazing material layers were arranged on the lid body at substantially equal intervals.
  • the temperature of the stage on which the lid main body was set was room temperature.
  • FIG. 7 is an example of the appearance of a lid manufactured by fusing a brazing material in this process a.
  • a small block (ball-shaped) solid brazing material manufactured in advance was fused to the lid body.
  • a ball-shaped brazing material having a diameter of 0.1 mm was prepared, and the brazing material was placed on the frame-shaped metallized film of the lid body at substantially equal intervals.
  • a carbon jig having a hole with a diameter of 0.15 mm drilled in a frame shape was stacked on the lid body, and ball-shaped brazing materials were sequentially inserted into the holes of the jig. Then, the brazing material was fused by heating at 320 ° C.
  • FIG. 8 is an example of the appearance of a lid manufactured by fusing a brazing material in process b.
  • a lid was manufactured by fusing a piece of brazing material previously processed into a frame shape to the lid body.
  • This process is a comparative example for the processes a and b.
  • Au-22 mass% Sn brazing material was punched into a rectangular frame shape (outer dimensions: 3.15 mm ⁇ 3.15 mm, inner dimensions: 2.5 mm ⁇ 2.5 mm, thicknesses: 15 ⁇ m, 25 ⁇ m). Then, this preformed brazing material was placed on the lid body, and reflowed and fused at 305 ° C. in a non-oxidizing atmosphere.
  • a sealing lid was manufactured by fusing a brazing material of various shapes and dimensions to a glass lid body. Ten sealing lids were produced for each. About the lid for sealing after this fusion process, the presence or absence of damage such as cracks or cracks in the lid body is confirmed visually and with an optical microscope, and the number of non-defective products out of 10 is measured and evaluated by the ratio (good product rate). did.
  • the material structure of an arbitrary cross section of the brazing material was observed.
  • a brazing material is selected at random, and the lid body is cut and embedded in the vicinity of the selected brazing material, and the cross section of the brazing material is polished appropriately. Exposed and observed.
  • the lid manufactured in the process c the lid was cut at an arbitrary position, embedded with resin, and appropriately polished, and the material structure of the cross section of the brazing material was observed.
  • the cross section of the entire brazing material was observed to confirm the presence or absence of the eutectic structure and the single phase, and then the main part was magnified to measure the size of the single phase.
  • a eutectic structure was observed in all of the brazing materials fused in processes a to c.
  • processes b and c a solid phase that was clearly coarser than the solid phase constituting the eutectic structure was observed.
  • the equivalent-circle diameter of the single phase was calculated based on an image from 1500 times to 2500 times acquired by SEM (acceleration voltage 15 kV). When multiple single phases were observed, the average value was calculated.
  • the width of the diffusion region of the metallized film component into the brazing material was also measured.
  • the sample used for cross-sectional observation was subjected to elemental analysis while observing the interface between the brazing material and the metallized film by EPMA (electron beam microprobe analysis).
  • EPMA analysis conditions were an acceleration voltage of 20 kV and a measurement magnification of 5000 times.
  • line analysis was performed from the inside of the metallized film toward the inside of the brazing material. Then, while the count number of the metal components (Ni, Pt) in the metallized film is set to 100%, the count number of the component that decreases toward the brazing filler metal side is traced, and the count number of the component becomes 10% or less.
  • the point was the end of the diffusion region. The distance from the interface to the end of the diffusion region was taken as the width.
  • the shape index (I S ) of the fused brazing material was measured for each manufactured lid.
  • the brazing material was peeled off from the manufactured lid, and the volume based on the mass of the brazing material collected and the density and number of the brazing materials was measured.
  • the average value was defined as the volume (V) of one piece of brazing material.
  • the bonding area (A) of the brazing material was obtained by observing the lid main body after peeling the brazing material with a microscope, measuring the area of the bonding surface, and calculating an average value.
  • the volume (V) was obtained from the dimensions of the brazing material before fusion.
  • the outline of the brazing material after fusion was measured, and the joining area (A) was calculated.
  • Table 1 shows the results of observation / measurement of the material structure and shape / dimensions of the brazing filler metal by the manufacturing process and the presence / absence of damage to the lid main body for various sealing lids manufactured in the present embodiment.
  • the number of damages of the lid body was very small for the lid in which the spherical brazing material was continuously fused by the discharge device of process a (No. A1 to A9).
  • the shape index of the brazing filler metal after fusion was 0.9 to 2.1, and all the produced lids were good products (non-defective product rate at fusion 10/10).
  • the shape index of the brazing filler metal after the fusion was 0.7, 2.6, and a part of the lid main body after the fusion was damaged.
  • FIG. 9 is an example of a cross-sectional structure of the brazing material (No. A4) after the molten brazing material is fused by the process a.
  • the brazing material fused to the lid main body of this embodiment was almost entirely composed of a fine eutectic structure.
  • the brazing material fused by this process a is expected to be much less likely to contain a coarse single phase.
  • the single-phase was specified based on the above-mentioned measurement criteria, and the equivalent circle diameter was always 5 ⁇ m or less.
  • the shape of the brazing material is similar to that of the process a, but there is a difference in the material structure.
  • 10 shows the material structure of the brazing material (No. B2) fused in process b.
  • this single phase is estimated to be a ⁇ phase or a ⁇ ′ phase. From the measurement results of the particle size of the single phase shown in Table 1, it can be seen that the brazing material of the lid manufactured in the process b tends to generate a single phase in addition to the eutectic structure.
  • the process b is a method capable of controlling the shape of the brazing material. No. With the lids of B1, B2, and B3, the shape index of the brazing material could be 1.5 to 2.5. Since the lid body is not damaged, it can be used for sealing the package. In this process b, since it is possible to fuse a plurality of brazing materials having a small ball volume, damage to the lid body at the time of fusion can be reduced.
  • the brazing material (No. C1, C2) preformed in the frame shape of process c tends to cause cracks in the glass lid body at the time of fusion.
  • These brazing materials had a large shape index (I S ) of 4.6 to 5.8.
  • the reason why the shape index (I S ) is large is that the frame-shaped preform brazing material has an excessive joining area. Since there is a difference in the behavior of thermal expansion / contraction between the brazing material and the glass, the residual stress when the brazing material solidifies increases as the joining area increases. It is considered that the brazing material having a large joining area such as the frame-shaped brazing material is relatively easily cracked by this residual stress.
  • FIG. It is a cross-sectional structure of a brazing material after fusing a C2 preform brazing material (brazing material thickness: 25 ⁇ m).
  • this brazing filler metal the area occupied by the eutectic structure was small, and a material structure exhibiting a number of coarse single phases having an equivalent circle diameter exceeding 5 ⁇ m in particle diameter was observed.
  • the lid body is heated together with the brazing material by reflow.
  • a sealing test using the package body was performed on the lid body manufactured in processes a and b, in which the lid body was not significantly damaged after the brazing material was fused.
  • a ceramic package body (opening dimension (inner dimensions): 2.4 mm ⁇ 2.4 mm, opening edge end face thickness 0.8 mm) is prepared, and various sealing lids are prepared here.
  • the package was heated to 305 ° C. under a load condition of 0.4 MPa to remelt the brazing material. At this time, the set temperature holding time was 30 seconds, and the heating was stopped and cooled immediately after the passage of time.
  • the number (10) of the lid main bodies at the stage of fusion bonding of the brazing material performed as described above was used as a parameter. That is, those in which the lid main body was damaged at the time of fusion of the brazing material were determined as defective products without performing a sealing test. And about the thing which became a non-defective item at the time of soldering
  • airtightness is evaluated for a package in which no cracks were found in the lid after sealing, and the occurrence rate of non-defective products from the lid manufacturing stage (stage of brazing filler metal) to the package manufacturing stage (sealing stage). Evaluated. The airtightness was evaluated by immersing the package in a florinate solution kept at 120 ° C. and visually confirming whether or not bubbles were generated from inside the package. Also in this airtightness evaluation, the number of lid bodies in the brazing material fusion stage is a parameter. The results of the above sealing test are shown in Table 2.
  • the process a is clearly superior to the process b in terms of the airtight non-defective rate. This result is also thought to be due to the formation of a coarse single phase in process b.
  • the high melting point region generated by the coarse single phase is considered to be the cause of the leak path generation. Therefore, in order to produce a lid that is maximally effective both in the lid manufacturing stage (fusing of the brazing material) and in the package manufacturing stage (remelting and solidification of the brazing material for sealing), It can be said that it is preferable to optimize the material structure together with the optimization of the composition and shape.
  • the sealing lid according to the present invention is made of a light-transmitting material such as glass, and by applying a brazing material made of a eutectic alloy as a bonding material for sealing. , Demonstrate the advantages of each.
  • a brazing material made of a eutectic alloy as a bonding material for sealing.
  • an effective light utilization efficiency is imparted to a package having an optical element, and high durability is also imparted.
  • the present invention is suitable as a sealing material for various devices using light emitting elements such as LEDs and optical elements such as light receiving elements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)
  • Semiconductor Lasers (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

本発明は、光学素子のパッケージの封止用リッドであって、可視光等を透過可能なガラス等の透光性材料を適用するものに関する。本発明は、透光性材料からなるリッド本体を含み、リッド本体にはリッド本体の外周形状に対応した枠状の接合領域を備える。そして、リッド本体の接合領域上には、複数片の共晶合金からなるろう材が融着されている。ろう材の配置状態としては、接合領域に沿った枠状に球状のろう材を連続的に整列配置することが挙げられる。

Description

透光性材料からなる封止用のリッド
 本発明は、LED等の光学素子を収容するパッケージの蓋材であり、光を透過する材料からなる封止用リッドに関する。詳しくは、パッケージに接合して気密封止するためのろう材を備えるリッド本体からなる封止用のリッドであって、封止作業時に割れ等の損傷が発生し難いものに関する。
 LED(発光ダイオード)等の発光素子や受光素子である光学素子が、照明、センサー、光通信、殺菌等の分野で広く利用されている。かかる光学素子を上記の各種装置に利用する際には、光学素子を大気から保護するために気密封止されたパッケージとしている。このパッケージは、光学素子を収容する容器状のパッケージ本体に、蓋体となるリッドを接合して気密性を確保することで作製される。
 光学素子のパッケージ化においては、その本来の機能を利用するため、光(可視光、赤外光、紫外光等)を透過できるリッドを使用することが前提となる。このような光透過性のある光学素子のパッケージとして、例えば、特許文献1では、ガラス窓を有する金属キャップ(リッド)を、パッケージ本体に接合したパッケージがある。この先行技術では、リッドの一部を光透過のためにガラス窓とし、パッケージ本体との接合部分を金属枠としている。そして、リッドとパッケージ本体との接合部位は金属であり、当該部位をシームウエルドで接合して気密性を確保する。
 また、特許文献2では、透光性ガラス平板をリッドとし、これを半導体チップ(発光素子)が収容されたパッケージ本体に接着剤で接合して製造される発光素子パッケージが記載されている。この先行技術では、リッド全体を透光性ガラスで構成しており、リッドとパッケージ本体とが異種材料となることを考慮してそれらの接合に接着剤が適用される。
特開2006-145610号公報 特開2007-242642号公報
 上記した光学素子のパッケージに関し、特許文献1のガラス窓付きのリッドを使用するパッケージは、金属枠という光が透過しない部分があるため、素子からの光利用効率において劣る面がある。また、特許文献1のリッドは、ガラス窓と金属枠という個別の異種材料からなる部材を使用するため、部品点数が多くなり構造も複雑化する。そのため、製造効率やコスト面で不利となり、パッケージの小型化にも対応し難くなる。
 特許文献1のパッケージにおける上記の問題点を考慮すると、特許文献2のようなリッド全体をガラス等の透光性材料で構成することは、光学素子の効率的利用の観点から好適である。しかし、特許文献2のパッケージにおいては、リッドの接合・封止に接着剤が使用されている。接着剤のような樹脂材料・有機材料は、経年劣化、特に紫外線による劣化が懸念され、パッケージの長期信頼性が損なわれるおそれがある。
 本発明は、上記のような背景のもとになされたものであり、光学素子を収容するパッケージを封止するための蓋材となるリッドであって、これまで実用化されていないものを提供する。具体的には、ガラス窓と金属枠とを複合化する部材と異なり、光学素子の利用効率を確保できるものとする。また、パッケージ本体との接合に際して効果的な気密封止が可能であり、劣化なく長期間安定した接合部を形成できる封止用リッドを提供する。
 光学素子の発光・受光による光の利用効率を重視したとき、金属枠のような透光性の無い部位はリッドには不要である。そして、リッド全体を透光性材料で構成することが好ましいといえる。一方、リッド全体をガラスのような透光性材料で構成した場合、セラミックスで構成されることが多いパッケージ本体との接合性を考慮する必要がある。ここで要求される接合性とは、リッドとパッケージ本体とを強固に接合できることを含むことは当然である。本発明のリッドには、これに加えて、リッドを構成する透光性材料へ過大な影響を与えることなく接合できることが求められる。何故ならば、ガラス等の透光性材料は、靭性に乏しい脆性材料が多く、熱応力等により破損するおそれがあるからである。
 本発明者等は、鋭意検討を行い、リッド本体をガラス等の透光性材料で構成すると共に、パッケージ本体との封止接合のための接合材料として共晶合金からなるろう材を適用し、このろう材を適切に配置して融着することとした。このようにして構成される封止用リッドは、上記課題を解決することができるとして本発明に想到した。
 即ち、本発明は、光学素子を収容するパッケージ本体に接合され、気密封止されたパッケージを製造するための封止用リッドにおいて、可視光、紫外光、赤外光の少なくともいずれかを透過可能な透光性材料からなるリッド本体を備え、前記リッド本体は、前記パッケージ本体と接合する面に、リッド本体の外周形状に対応した枠状の接合領域を含み、前記リッド本体の前記接合領域上に複数片の共晶合金からなるろう材が融着されてなることを特徴とする封止用リッドである。
 本発明において、リッド本体を透光性材料として単一の素材で構成するのは、パッケージ内の光学素子の光の利用効率を最大限に高めるためである。一方、パッケージに接合するための接合材料として、共晶合金のろう材を適用するのは、共晶合金はその合金組成を共晶組成近傍に設定することで比較的融点を低下させることができるからである。
 また、共晶合金からなるろう材は、リッド本体に固定(融着)する際の方法・条件を適切に設定することで、融着後の材料組織や形状を制御することができる。この材料組織と形状の制御は、本発明において重要な要素であり後に詳述することとする。
 以下、本発明に係る封止用のリッドについて詳細に説明する。上記の通り、本発明のリッドは、透光性材料からなるリッド本体と、封止の際の接合材料となるろう材とで構成される。
A.リッド本体
A-1.リッド本体の構成材料・形状等
 上記のとおり、本発明は、リッド全面を透光性材料とすることによって光学素子の発光・受光の機能を最大限に利用できるようにしている。この透光性材料とは、可視光、紫外光、赤外光の少なくともいずれかを透過できる材料である。透過可能な光の波長については特に限定されることはない。また、光の透過の程度(透過率)についても特に限定されない。この透光性材料の具体的な範囲として、ガラス、水晶、サファイア、シリコン、ゲルマニウムのいずれかが好ましい。また、ガラスに関しては、一般にガラスと称され透光性を有する材料を示すが、石英ガラス(合成ガラスを含む)、ホウケイ酸ガラス等が挙げられる。
 リッド本体の形状、寸法については特に限定はない。リッドの形状や寸法は、光学素子を適用するパッケージの用途・仕様によって決定される。リッドの形状としては、平面形状として、矩形(正方形、長方形)又は円形の板状のものが挙げられる。また、リッド本体の断面形状についても特に限定されることない。両面が平坦な板状としても良いが、両面又は一方の面に凹凸を付与しても良い。凹凸を付与されたドーム型やレンズ型のリッド本体は、内部容積を高める目的や集光又は光の発散を目的として利用されることがある。
A-2.接合領域
 リッド本体は、パッケージ本体との接合面に、リッド本体の外周形状に対応した枠状の接合領域を含む。接合領域とは、気密封止の際に、その一部又は全部がろう材を介してパッケージ本体に接触し接合される部位である。接合領域は、リッド本体の外周形状に対応する枠状の領域である。図1(a)(b)のようにリッド本体の外周形状が矩形であれば矩形の枠となり、図1(c)のように外周形状が円形であれば円形の枠(リング)となる。但し、接合領域の形状は、リッド本体の外周形状と完全一致する必要はない。図1(b)のように、接合領域の四隅について面取りされた形状としても良い。更に、外周形状に対応する枠状の領域とは、外枠又は内枠の少なくともいずれかがリッド本体の外周形状に沿っていれば良い。図1(d)のように、外枠がリッド本体の外周形状に沿った矩形である一方、内枠を円形とした接合領域とすることができる。接合領域の幅は、特に限定されることはない。接合領域の幅は、接合するパッケージ本体の寸法、例えば、容器状のパッケージ本体の開口部端面の幅等を考慮して任意に設定される。一般的には、リッド本体の長辺、直径の寸法に対して、1/20以上1/8以下の幅で設定される。接合領域の幅は、前記の範囲内であれば一様であることを要しない。
B.共晶合金からなるろう材
B-1.ろう材の構成元素及び組成
 共晶合金とは、2種以上の元素からなる合金であって、共晶反応を発現することができる合金である。共晶反応とは、溶融状態(液相)から、合金の構成元素に由来した固体成分(固相)を同時に晶出させる反応である。上記したように、共晶合金は、共晶組成(共晶点)において比較的低い融点を示すことから、ろう材をリッド本体に融着する段階とリッドをパッケージ本体に接合する段階の双方において、リッド本体に与える熱影響・熱応力を比較的低減することができる。
 本発明で共晶合金からなるろう材として適用されるろう材として、Au系共晶ろう材が挙げられる。好ましいAu系共晶ろう材としては、Auを50%以上含む共晶合金からなるろう材である。このようなAu系共晶ろう材の例としては、Au-Snろう材、Au-Geろう材、Au-Ga-Inろう材、Au-Sbろう材、Au-Siろう材、Au-Gaろう材、Au-Inろう材が挙げられる。これらのろう材は、比較的融点が低いことに加えて、接合強度や化学的安定性に優れ、パッケージの気密性を長期間保持することができる。そして、これらのろう材は、接着剤と異なり紫外線による劣化もなく耐久性に優れる。これらの中で特に好ましいろう材は、Au-Snろう材である。
 また、ろう材となる共晶合金の好ましい組成としては、共晶組成となる組成(質量%)に対して各構成元素の全ての濃度が±2%の範囲内にあるものが好ましい。ろう材の融点を抑制することと、微細な共晶組織を発現させて粗大な固相の析出を抑制するためである。具体的には、上述した特に好ましいろう材である、Au-Snろう材、Au-Geろう材、Au-Ga-Inろう材に関しては、Au-Snろう材では、Sn濃度が19質量%以上23質量%以下(残部Au)とし、Au-Geろう材では、Ge濃度が10質量%以上14質量%以下(残部Au)とし、Au-Ga-Inろう材ではGa濃度が8質量%以上12質量%以下とし、In濃度が6質量%以上10質量%以下としたもの(残部Au)を適用することが好ましい。
B-2.ろう材の固定の態様
 本発明では、リッド本体の接合領域の範囲内に共晶合金からなるろう材が融着によって固定される。接合領域上に融着されたろう材は、パッケージの封止の際に再度溶融し、パッケージ本体の開口縁端部との接触により接合領域内で濡れ広がるようになっている。そして、パッケージ本体の開口縁端面とリッド本体とを接合し、パッケージ内部を気密封止する。融着とは、溶融させたろう材をリッド本体に接触させた後に凝固し、ろう材とリッド本体とを面接触した状態で接合し固定する態様である。リッド本体にろう材を融着するとき、固体のろう材をリッド本体に載置し、加熱して溶融させても良いが、溶融状態のろう材をリッド本体に供給しても良い。ろう材の融着についての好ましい工程については、後述する。
 本発明では、共晶合金からなるろう材を、接合領域上に複数片融着する。ろう材とリッド本体との界面における残留応力を分断し、ろう材融着時及びパッケージ封止時におけるリッド本体の割れを防止するためである。ろう材とガラス等の光透過材料との間には熱膨張・熱収縮の挙動に差異があるので、ろう材を融着するときに接合界面に残留応力が発生する。残留応力は、ろう材の接合面積が大きくなることで増大する。残留応力が過大となると、ろう材融着段階でリッド本体に割れ等の破損が生じるおそれがある。例えば、融着するろう材について、リッド本体の接合領域と略等しい枠形状の1片のろう材を適用すると、接合面積が大きいため、ろう材の凝固時にリッド本体に割れが生じ易いことが確認されている(後述の実施形態参照)。
 そこで、本発明は、融着するろう材を複数片とすることで、残留応力を分断及び低減する。残留応力の低減は、上記した共晶合金からなるろう材の適用による熱応力の低減と協同して融着時のリッド本体の破損を抑制することとしている。
 本発明において、複数片のろう材を配置する態様としては、接合領域上に小塊状のろう材を連続的に融着し、外観上(概観上)で枠形状とすることが好ましい。より具体的な態様としては図2のように、球状、点状のろう材を接合領域の形状に沿って整列配置する配置がある。この例では、図2上段に、一列のろう材が枠状に整列配置したものが記載されているが、図2下段の図のように、複数の列で枠状にろう材を整列配置していても良い。また、連続配置とは、ろう材を相互に接触させて融着する場合に限定されない。連続配置とは、ろう材を離隔させつつ枠状に融着する場合を含む、後述のとおりこのような形式の方が好ましい。本発明において、このように複数片のろう材を融着するとき、ろう材の個数及び個々のろう材の寸法(体積)は特に限定されない。封止時の濡れ広がりによってリッド本体の接合領域を全周にわたって覆うことができる量のろう材が分散して融着されていれば良い。ろう材に関しては、その寸法や個数よりも、その断面組織や形状の方がリッド本体の破損や封止時の品質に影響を及ぼす。
B-3.ろう材の材料組織
 上記したとおり、本発明で共晶合金のろう材が適用されるのは、共晶合金は微細な共晶組織を発現させることができるからである。ろう材の材料組織を微細共晶組織にして粗大な固相を排除することで、安定した封止が可能となる。
 この点について詳細に説明する。粗大な固相は、封止の際にろう材を再溶融し凝固させたとき、透光性材料からなるリッド本体の破損の要因となりうる。粗大な固相は融点が高い場合があり、封止の際のろう付時に溶け残る可能性がある。その場合、封止後に形成される接合部の厚さが不均一となって、気密性に影響を及ぼす可能性がある。また、粗大な固相の存在により、ろう材の融点が局部的に上昇し、当該部位において過度に熱応力が発生するおそれや接合界面における応力分布の不均一性が発生するおそれがある。靭性の低いガラス等の透光性材料にとって、熱応力による影響は大きいため、封止の際にクラックや割れが発生するおそれがある。そのため、本発明では、リッド本体に融着されたろう材の材料組織として、微細組織であることが好ましいとする。
 具体的には、接合領域に融着された複数のろう材のうち、少なくとも1つのろう材の任意断面の材料組織が、共晶組織と任意的に含まれる円相当径5μm以下の単一相とからなる材料組織であることが好ましい。本発明において、共晶組織とは、一般的な共晶組織と同義であり、微細な複数の固相が周期的・複合的に入り組んだ材料組織の一形態である。本発明のろう材の材料組織においては、周期的で微細な構造を有する共晶組織が必須的に発現するが、かかる共晶組織とは別に生成・成長する単一相が発現する可能性を含んでいる。単一相とは、共晶組織を構成する固相と対比したとき、粗大化及び/又は異形化した固相である。単一相は、共晶組織を構成する固相と外観上で区別されるものである。単一相は、組成においては共晶組織を構成する固相と相違するとは限らず、同一又は近似することもある。
 本発明者等の検討では、ろう材中に円相当径で5μmを超える粗大な単一相が存在する場合、封止の際に溶け残りが発生し、リッド本体の損傷や気密性低下に繋がるおそれがある。また、単一相の存在は、任意的なものである。本発明で特に好ましいろう材の材料組織は、実質的に単一相を含まない共晶組織のみで構成されている材料組織である。尚、単一相が複数観察される場合、それらの円相当径の平均が5μmであることを要する。また、リッド本体に融着された全てのろう材において、単一相の円相当径が5μmであることが好ましい。
 本発明のリッド本体に融着されたろう材の材料組織の具体例として、共晶組成近傍のAu-Snろう材を例に説明する。共晶組成近傍のAu-Snろう材においては、δ相(Au-37.6質量%Sn)とζ´相(Au-10.8質量%Sn)の2種の固相が析出する。共晶組織は、微細なδ相と微細なζ´相とで構成され、それらが周期的に入り組んだ材料組織を示す。一方、この組成のAu-Snろう材で発生する単一相は、δ相又はζ´相であり、組成は共晶組織を構成する各固相と同じである。δ相とζ´相が単一相として別々に析出することもある。この単一相は、形状及びサイズにおいて共晶組織を構成するδ相及びζ´相と相違する。単一相は、塊状、島状等の共晶組織とは異なる外観を示し、そのサイズも粗大となっている。ろう材の融着の条件によって単一相は粗大化し、円相当径5μmを超える場合もある。以上のように、共晶組成近傍のAu-Snろう材においては、析出する固相はδ相とζ´相なので、δ相及びζ´相とからなる共晶組織と、任意的に円相当径5μm以下のδ相又はζ´相を含む材料組織が好ましい。
 リッド本体上の接合領域に複数のろう材が融着されている本発明では、不作為に選択したろう材の任意断面で上記した材料組織を示すことが好ましい。好ましくは、全てのろう材の任意の複数の断面で上記材料組織を示すことが好ましい。
B-4.ろう材の形状(形状指数)
 上述のとおり、リッド本体の接合領域に融着されるろう材の寸法・形状は、特に限定されない。但し、本発明者等の検討によれば、ろう材をリッド本体に融着する段階及び封止のためにろう材を再溶融・凝固する段階において、リッド本体にクラックや割れ等の損傷をより高いレベルで抑制する条件として、ろう材に好適な形状があることが確認されている。
 具体的には、リッド本体に融着されたろう材が、下記式で定義される形状指数(I)が0.9以上2.5以下の範囲となっていることが好ましい。
Figure JPOXMLDOC01-appb-M000002
 上記の形状指数(I)は、ろう材の体積(V)とリッド本体とろう材との接合面積(A)との関係において、ある程度の体積のろう材を適切な接合面積(接触面積)をもって融着させることが要求されることを示唆している。つまり、ろう材の体積との関係で接合面積が過剰である場合、溶融状態のろう材が凝固する際の熱応力が比較的大きくなる。靭性の低い透光性材料にとって、熱応力により受ける影響は大きく、加えて、ろう材やパッケージ本体を構成する金属やセラミックスとの膨張・収縮係数の差異もあることから、この場合には割れ等の損傷が生じやすくなる。
 このように、形状指数(I)によるろう材のパラメータ化は、ろう材の融着時とリッド本体とパッケージ本体との接合時におけるリッドの割れ防止のためのものである。そして、本発明者等によれば、Iが2.5を超える場合、リッドにクラック等の損傷が生じ得る。一方、Iが0.9未満となるとき、このような場合はろう材の接合面積が少なすぎることを示す。この場合、リッド本体の損傷は生じ難いが、リッド本体に対するろう材の密着力に乏しくなる。そのため、取扱い時のろう材の脱落のおそれがある他、パッケージ本体との接合時のろう材の位置ズレ、接合不良が生じる可能性もある。本発明は、以上の理由により、形状指数(I)の好適範囲を0.9以上2.5以下と設定する。この形状指数(I)は、リッド本体上のろう材の少なくとも1つのろう材が上記範囲であることが好ましいが、リッド上のろう材の形状指数(I)の平均値が上記範囲であることがより好ましく、全てのろう材が具備することが更に好ましい。
 ろう材の形状は、垂直方向における投影形状が略円形となるものが好ましい。ろう材の好ましい形状の具体的態様としては、球形状、半球形状の他、2つ以上の球が重なった形状等が挙げられる。図3は、ろう材の形状・寸法と形状指数(I)との関係の一例を説明する図である。この例示は、同一体積の複数のろう材の中心部部分での断面図を示し、リッド本体との接合面積の変化と形状指数(I)との関連を説明している。更に、図4は、融着後のろう材の形状の一例である。図3及び図4で例示されているように、ろう材の形状は、球形状、半球形状の他、2つの球が重なった形状が適用できる。
 本発明でリッド本体に融着されるろう材について、以上説明した材料組織に関する好適条件(共晶組織と微細な単一相)と形状・寸法に関する好適条件(形状指数(I))は、いずれか一方を具備しても良いが、双方を具備しても良い。融着方法・条件を調整することで、材料組織と形状指数の双方の条件を具備させることができる。
C.本発明に係る封止用のリッドのその他の構成
 本発明に係る封止用のリッドは、ガラス等の透光性材料からなるリッド本体と、リッド本体に融着された共晶合金からなるろう材とからなることを必須の構成とするが、付加的な構成としてリッド本体の一方又は双方の表面に形成されるメタライズ膜、機能膜等が挙げられる。
C-1.メタライズ膜
 本発明ではリッド本体のろう材が融着される面の表面の少なくとも一部に、金属からなる少なくとも1層のメタライズ膜を備え、このメタライズ膜の上にろう材が融着されたものが好ましい。メタライズ膜は、主に、リッド本体に対するろう材の密着性向上を意図して適用される。ろう材は金属(共晶合金)であり、ガラス等の透光性材料と異種材料であるので、組成によってはリッド本体との密着性に乏しく固定できない場合がある。そこで、金属からなるメタライズ膜を適用することで、ろう材の密着性を確保してリッド本体からの脱落等を防止することができる。メタライズ膜は、単層構造又は多層構造をとることができる。メタライズ膜の具体的な構成は、その機能に応じて数種の金属層が想定されている。
C-1-1.ろう材融着面に形成される第1の金属層 
 メタライズ膜の機能としては、ろう材のリッド本体に対する密着性改善が挙げられる。そのためのメタライズ膜として、ろう材が融着される面に、Au又はPtの少なくともいずれかからなる第1の金属層を形成するのが好ましい。Au又はPtは、上述した各種具体例のろう材に対する密着性が良好だからである。この第1の金属膜も単層又は多層とすることができ、Au又はPtのいずれかのみで構成しても良く、双方を積層(Au/Pt、Pt/Au)させても良い。この第1の金属膜は、薄すぎると下地が露出して密着性が低下することがある。一方、厚すぎると接合時にろう材と反応することで、接合不良や接合強度低下を起こすことがある。そこで、第1の金属膜の膜厚は、0.01μm以上1μm以下とすることが好ましい。
C-1-2.リッド本体表面に形成される第2の金属層 
 上述したAu、Ptで構成されるろう材融着面に形成される第1の金属膜は、リッド本体を構成する透光性材料に対して密着性に乏しい場合がある。そこで、ろう材が融着される第1の金属膜とリッド本体との密着性を向上させるメタライズ膜として、Mg、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Sb、Ta、W、Re、Os、Irの少なくともいずれかよりなる第2の金属膜を形成することが好ましい。これらの金属は、透光性材料及びAu、Ptの双方に対する密着性が良好なので、ろう材をリッド本体に好適に固定することができる。特に、Cr、Tiは活性の高い金属であるため、リッド本体表面との密着性が高いメタライズ膜を形成できる。また、Niは保護性能に優れ、下地の酸化・変質を抑制するメタライズ膜を形成できる。よって、好ましくは、Cr、Ti、Niの少なくともいずれかからなる第2の金属層を有するメタライズ膜を形成することが好ましい。
 第2の金属層の具体的且つ好適な構成としては、活性が高いCr又はTiのいずれかよりなる金属層を密着層として形成し、その上に、Niからなる金属層を保護層として形成する(Cr/Ni、Ti/Ni)。Cr又はTiは密着性が高いが、高活性故に外気による酸化や変質が懸念される。密着層の上にNiによる保護層を形成することで、下地となる密着層の酸化等を防止する。第2の金属層は、このような密着層と保護層とで構成された金属層が特に好ましい。この構成の第2の金属層では、密着層の膜厚を0.04μm以上0.1μm以下とすることが好ましく、保護層の膜厚を、0.1μm以上2μm以下とすることが好ましい。
 以上説明したメタライズ膜に関しては、ろう材融着面となる第1の金属層(Au、Pt)と、リッド本体表面側の第2の金属層(Cr、Ti、Ni)の双方が形成されたものが好ましい。但し、第2の金属層における保護層の構成金属として、Ptも有効である。そこで、Cr又はTiからなる密着層を形成し、Ptからなる保護層を形成したメタライズ膜(Cr/Pt、Ti/Pt)も適用できる。この場合、保護層であるPtは、第1の金属層としても作用できるので、このPtからなる保護層の表面にろう材を融着しても良い。また、更にAuの金属を形成しても良い。
 以上説明したメタライズ膜となる第1、第2の金属膜は、スパッタリング法、めっき法、蒸着法等の公知の薄膜形成技術を単独又は組み合わせて形成することができる。また、メタライズ膜は、リッド本体に対して広範囲に形成しても良いが、光の透過量を増やすために必要な部位に限定しても良い。例えば、メタライズ膜をリッド本体の外形に対応させた枠状にして、これをリッド本体の接合領域としても良い。
C-1-3.メタライズ膜による拡散領域
 本発明に係る封止用のリッドにおいてメタライズ膜を採用するとき、ろう材はメタライズ膜に接触した状態でリッド本体に融着されることとなる。このとき、ろう材とメタライズ膜との界面において、メタライズ膜を構成する金属元素がろう材中に拡散する可能性がある。本発明においては、このろう材中へ拡散する金属元素量を最低限にすることが好ましい。具体的には、拡散によってろう材内に形成され得る拡散領域の幅が2μm以下であることが好ましい。ろう材内部に金属元素の過度の拡散が生じた場合、界面付近におけるろう材の組成変動や化合物生成が生じている可能性がある。ろう材の組成変動や化合物生成は、融点の変化や、接合強度の低下や、リークの原因となる可能性がある。従って、過度の拡散がない状態が好ましい。この拡散領域の幅とは、融着界面付近のろう材内部について、メタライズ膜の構成金属であってろう材の構成金属ではない金属(Pt、Ni等が対象となることが多い)の有無を適宜の分析手段により測定することができる。拡散領域の幅は、1μm以下がより好ましい。拡散領域の幅の下限は、低いほど好ましいが好ましくは0.001μmとする。
C-2.透過率等調整のための機能膜
 上記のメタライズ膜のほか、本発明のリッド本体には表面と裏面の一方又は双方について、特定波長の透過率又は反射率を上昇させる目的で、機能膜を形成することができる。この機能膜の具体的な材質としては、MgFが挙げられる。例えば波長250nm~400nmの紫外線の透過率を上昇させたい場合には,膜厚は60~100nmとすることが望ましい。
D.本発明に係る封止用のリッドの製造方法
 次に本発明に係る封止用のリッドの製造方法について説明する。本発明のリッドは、透光性材料のリッド本体に1片又は複数片の共晶合金からなるろう材を融着することで製造できる。
 そして、本発明においては、共晶合金の利点を活かしつつ、好適な接合性を有する封止用リッドとするため、融着後のろう材の材料組織や形状・寸法を好適することが意図されている。以下、ろう材の材料組織や形状・寸法を好適にしつつ、リッド本体にろう材を融着する方法を中心に説明する。
 ろう材を融着するリッド本体としては、透光性材料を予め所望の形状、寸法に成型して用意する。また、リッドは微小な部材であることから、複数のリッドを形成することができる大判の板材を対象としても良い。この場合、ろう材融着後、個別的にリッドを切り出して製品とすることができる。また、メタライズ膜を形成する場合には、予め、ろう材融着前にメタライズ膜となる金属膜を形成しておく。
 ろう材の融着は、リッド本体の上で固体状のろう材を溶融・凝固させることで可能である。但し、ろう材の形状(形状指数(I))を考慮し、形状が良好なろう材を融着することが好ましい。固体状のろう材について、形状指数を好適にする融着方法としては、予め製造した所定サイズの小塊状、粒状のろう材を、リッド本体上に複数載置して加熱する方法がある。粒状ろう材の載置の際には、治具等により個々のろう材を位置決め固定し、この状態でろう材を加熱することで、球状、半球上のろう材を融着することができる。このときのろう材のサイズは、直径0.05mm以上0.25mm以下とするのが好ましい。
 但し、より好ましいろう材の融着方法は、溶融状態のろう材をリッド本体に付着させて、凝固させる方法である。本発明では、ろう材の材料組織として、微細な共晶組織を主体とし粗大な単一相の無い材料組織が好ましいとする。微細な共晶組織の形成のためには、ろう材組成の調整に加えて、ろう材を溶融状態から急冷することが好ましい。このろう材の急冷のためには、溶融したろう材をリッド本体に付着し、雰囲気及びリッド本体による冷却を利用することが好ましい。
 溶融状態のろう材をリッド本体に付着させることは、ろう材の寸法・形状を調整する上でも好適である。溶融状態であれば、その液量を調整することで融着させるろう材の体積を好適に調整できる。また、溶融したろう材を付着させるときの運動エネルギーによって、リッド本体に衝突するときの形状や接合面積を変化することができる。これにより、ろう材の形状指数(I)の調整ができる。
 溶融状態のろう材をリッド本体に供給して融着する方法としては、予め溶融したろう材を液滴状にして付勢手段によりリッド本体に付着させる方法がある。この方法では、液滴状の溶融ろう材が、リッド本体に付着すると同時に急冷され、瞬時に融着が完了する。そして、この方法によれば、リッド本体に供給する液滴状の溶融ろう材の体積や速度を制御することで、融着時のろう材の形状指数や接合面積を調整することができる。
 また、この方法においては、リッド本体を常温のままにしていても、ろう材を融着することができる。液滴化したろう材の体積はリッド本体の体積に対して極めて小さいので、ろう材はリッド本体と接触したときに瞬時に冷却され凝固するからである。融着時にリッド本体を冷却しても良いが、過度に低温にしてろう材を融着すると、ろう材との温度差による熱衝撃によってリッド本体が損傷するおそれがある。尚、液滴化したろう材を融着するときのリッド本体の温度はろう材融点よりも100℃以下の温度にすることが好ましい。融着されたろう材の材料組織(共晶組織)の微細化に必要な冷却速度を得るためである。
 本発明のリッドの製造に際し、リッド本体にろう材を融着する方法は上記の方法に限定されない。例えば、ガスを吐出可能なキャピラリー先端にろう材球を取り付け、ろう材をレーザーで溶かしてガスでリッド本体に吹き付けることで、ろう材を融着することができる。また、棒状・ワイヤ状のろう材を先端からレーザーで溶かし、同時にガスでリッド本体に吹き付けることも、ろう材を融着することができる。これらの方法でも、溶融状態のろう材をリッド本体に融着することができるので良好な形状・寸法のろう材を融着できる。また、これらの方法でも、リッド本体が常温でもろう材を融着することができる。
 以上のように溶融状態のろう材をリッド本体に付着させることで、ろう材が急冷凝固し融着がなされる。この手法では、通常、リッド本体の接合領域に複数のろう材を融着させるので、溶融したろう材の吐出・供給を連続して融着する。これにより本発明に係る封止用リッドとすることができる。
 以上説明したように、本発明に係る封止用リッドは、光学素子を利用するパッケージのリッドとして有用なものである。本発明は、リッド全面をガラス等の透光性材料で構成することにより、パッケージ内の光学素子の光利用効率を良好にする。そして、気密封止のための接合材料として共晶合金のろう材を適用する。このろう材は、強固な気密封止に有効であり、耐久性に優れ紫外線等による劣化もない。そして、ろう材の材料組織及び/又は形状・寸法を適切に制御することで、リッド本体にダメージを与えることなく融着され封止作業時も有用に機能する。
本発明に係るリッド本体に含まれる接合領域の例を示す図。 本発明に係るリッド本体に融着された複数片のろう材の配列を例示する図。 リッド本体に融着されたろう材の形状・寸法と形状指数(I)との関係を例示する図。 リッド本体に融着されたろう材の形状(半球形状、2段形状)を例示する図。 ろう材を融着させるためのろう材吐出装置(プロセスa)の構成を説明する図。 ろう材吐出装置(プロセスa)によるろう材の融着位置を説明する図。 ろう材吐出装置(プロセスa)によって融着されたろう材の外観を示す図。 プロセスbによってボール状ろう材を融着した後のろう材の外観を示す図。 プロセスaによって融着されたろう材(No.A4)の材料組織を示す図。 プロセスbによって融着されたろう材の材料組織を示す図。 プロセスcによって融着されたプリフォームろう材(No.C2)の材料組織を示す図。織を示す図。
 以下、本発明の実施形態について説明する。本実施形態では、透光性材料である石英ガラスでリッド本体を製作し、このリッド本体に共晶合金のろう材であるAu-Snろう材を各種の方法で融着して封止用のリッドを製造した。そして、製造したリッドについてパッケージ本体との接合試験を行って、リッド本体の損傷の有無を評価し、更に、封止試験を行って気密性の確認を行った。
 本実施形態で使用したリッド本体は、石英ガラス又はホウケイ酸ガラスからなる平板(3.4mm×3.4mm 厚さ0.3mm)である。本実施形態では、このガラス製のリッド本体表面の枠状領域(外寸:3.2mm×3.2mm、内寸:2.5mm×2.5mm)にメタライズ膜を形成した。
メタライズ膜は、リッド本体表面からCr(60nm)/Ni(200nm)/Au(100nm)の順序で各金属の薄膜を形成した。また、一部の実施例では、Ti(60nm)/Pt(200nm)/Au(100nm)の順序で形成したメタライズ膜も適用した。
 上記のようにして用意したガラス製のリッド本体にろう材を融着した。ろう材は、Au-22質量%Snろう材を適用した。本実施形態では、下記のプロセスa~cの3種の異なる態様でろう材をリッド本体に融着し、リッドを製造した。
・プロセスa:このプロセスでは、予め溶融させたろう材を収容するろう材吐出装置を用いてろう材を融着してリッドを製造した。図5は、このろう材吐出装置101の詳細な構造を示す。吐出装置101は、ろう材201を収容し、溶融状態が維持されるように温度制御されたタンク110、タンク110と連通するチャンバ111、チャンバ111内のろう材201を吐出するためのダイアフラム112及びアパーチャー113、ダイアフラム112を駆動する圧電素子アクチュエーター114を備える。
 この吐出装置101によるろう材の融着では、圧電素子アクチュエーター114をPCで制御・駆動することで、チャンバ111内のろう材201を一定量ノズルから吐出する。アパーチャー113の大きさと圧電素子アクチュエーター114の駆動量と変化速度の制御により、吐出されるろう材202の体積と飛行速度が調整できる。そして、XYZ方向に可動するステージにリッド本体をセットし、ステージを駆動することでリッド本体の上に連続的に枠状にろう材を融着することができる。
 本実施形態では、図6に示すように、枠形状のメタライズ膜の中心位置に沿って連続的に列状にろう材を融着して枠状にした。本実施形態ではこのプロセスaにおいて、吐出する溶融金属液滴の大きさを球径換算でφ0.1mm又はφ0.125mmと設定すると共に、ろう材の飛行速度が、1.6m/秒以上に設定した。また、パッケージ本体に接合したときのろう材層の厚みが10~25μmとなるように、融着するろう材の個数を計算して、リッド本体に略均等間隔で配置した。尚、リッド本体をセットしたステージの温度は常温とした。図7は、このプロセスaでろう材を融着して製造したリッドの外観の例である。
・プロセスb:このプロセスでは、予め製造した小塊状(ボール状)の固体のろう材をリッド本体に融着した。本実施形態では、直径φ0.1mmのボール状ろう材を用意し、このろう材をリッド本体の枠状メタライズ膜に略等間隔で載置した。このとき、直径φ0.15mmの孔が枠状に穿孔されたカーボン製の治具をリッド本体に重ねて、治具の孔にボール状ろう材を順次挿入した。そして、リッド本体から治具がずれないように重ねた状態で、非酸化雰囲気の電気炉中で320℃で1分以上加熱してろう材を融着した。このプロセスbでは、プロセスaと同様にろう材が配置されたリッドを作製した。図8は、プロセスbでろう材を融着して製造したリッドの外観の例である。
・プロセスc:このプロセスでは、予め枠状に加工された1片のろう材をリッド本体に融着してリッドを製造した。このプロセスは、上記プロセスa、bに対する比較例となる。まず、Au-22質量%Snろう材を、矩形の枠形状(外寸:3.15mm×3.15mm 内寸:2.5mm×2.5mm、厚さ:15μm、25μm)に打ち抜き加工した。そして、このプリフォームされたろう材をリッド本体に載置し、非酸化雰囲気中305℃でリフローして融着した
 以上のプロセスa~cの方法に基づき、ガラス製リッド本体に各種形状・寸法のろう材を融着して封止用のリッドを製造した。封止用リッドは、それぞれ10個製造した。この融着工程後の封止用リッドについて、リッド本体の割れ・クラック等の損傷の有無を目視及び光学顕微鏡で確認し、10個中の良品個数を測定してその割合(良品率)で評価した。
 また、ろう材の任意断面の材料組織を観察した。組織観察は、プロセスa、bで製造したリッドに関しては、不作為にろう材を選定し、選定したろう材近傍でリッド本体を切断し樹脂埋め込みして、適宜に研磨をしてろう材の断面を露出させ観察を行った。また、プロセスcで製造したリッドに関しては、リッドを任意の箇所で切断し、樹脂埋め込みをし適宜に研磨してろう材断面の材料組織を観察した。
 材料組織観察においては、まず、ろう材全体の断面を観察して共晶組織及び単一相の有無を確認した後に、要部を拡大観察して単一相のサイズを測定した。本実施形態では、プロセスa~cで融着したろう材の全てにおいて共晶組織が観察された。そして、プロセスb、cでは、共晶組織を構成する固相よりも、明確に粗大となっている固相が観察された。単一相の円相当径は、SEM(加速電圧15kV)で取得した1500倍から2500倍の画像に基づき算出した。単一相が複数観察されたときは、それらの平均値を算出した。また、単一相と特定できる固相が明瞭に観察されない場合、即ち、実質的に共晶組織しか観察されなかったろう材に関しては、任意の部位の拡大画像を取得しランダムに5個の固相を抽出してそれらの円相当径を求め、全てが5μm以下であることを確認し、単一相の円相当径が5μm以下であると判定した。尚、円相当径とは、観察された単一相の面積と等しい面積の円の直径である。
 ろう材中へのメタライズ膜成分の拡散領域の幅の測定も行った。この測定は、断面観察に使用したサンプルをEPMA(電子線マイクロプローブ分析)により、ろう材とメタライズ膜との界面を観察しつつ元素分析を行った。EPMAの分析条件は、加速電圧20kV、測定倍率5000倍とした。この元素分析では、メタライズ膜内部からろう材内部に向かってライン分析した。そして、メタライズ膜内における金属成分(Ni、Pt)のカウント数を100%としつつ、ろう材側へ向かって減少する当該成分のカウント数を追跡し、当該成分のカウント数が10%以下となったポイントを拡散領域の端部とした。そして、界面から拡散領域端部までの距離を幅とした。
 更に、製造した各リッドについて、融着したろう材の形状指数(I)を測定した。形状指数の測定にあたっては、プロセスa、bで製造したリッドのろう材については、製造後のリッドからろう材を剥離し、採取したろう材の質量及びろう材の密度と個数に基づいた体積の平均値をろう材1片分の体積(V)とした。また、ろう材の接合面積(A)は、ろう材を剥離した後のリッド本体を顕微鏡観察し、接合面の面積を測定し、平均値を求めた。一方、プロセスcで製造したリッドに関しては、融着前のろう材寸法から体積(V)を求めた。また、融着後のろう材の輪郭を測定し接合面積(A)を算出した。
 本実施形態で製造した各種の封止用リッドについて、その製造プロセスによるろう材の材料組織及び形状・寸法の観察・測定結果と、リッド本体の損傷の有無を表1に示す。
Figure JPOXMLDOC01-appb-T000003
 表1から、プロセスaの吐出装置により球状のろう材を連続的に融着したリッドについては、リッド本体の損傷数は極僅かであった(No.A1~A9)。特に、No.A2~A8のリッドでは、融着後のろう材の形状指数が0.9~2.1となっており、製造した全てのリッドが良品であった(融着時良品率10/10)。一方、No.A1、A9のリッドは、融着後のろう材の形状指数が0.7、2.6であり、融着後のリッド本体の一部に損傷がみられた。
 図9は、プロセスaにより溶融ろう材を融着した後のろう材(No.A4)の断面組織の例である。この実施形態のリッド本体に融着されたろう材は、ほぼ全体が微細な共晶組織で構成されていた。このプロセスaにより融着したろう材は、粗大な単一相を含む可能性はかなり低いと予測される。このプロセスaにより融着したろう材について、上記した測定基準に基づき単一相を特定したところ、その円相当径は常に5μm以下であった。
 プロセスbによってろう材を融着したリッドに関しては、ろう材の形状はプロセスaのろう材に類似しているものの、材料組織において相違が見られる。図10は、プロセスbで融着したろう材(No.B2)の材料組織である。共晶組織に加えて、共晶組織に属さない単一相が生成していることが確認された。本実施形態では、Au-Snろう材を適用したので、この単一相はδ相又はζ´相と推定される。そして、表1の単一相の粒子径の測定結果から、プロセスbで製造したリッドのろう材には、共晶組織に加えて単一相が生成する傾向にあることがわかる。プロセスbのろう材の融着方法においては、ろう材を治具に挿入した状態でリッド全体を加熱する必要があり、冷却時間が長くなり単一相の生成そ成長が生じたと考察される。
 もっとも、プロセスbは、ろう材の形状制御は可能な方法である。No.B1、B2、B3のリッドでは、ろう材の形状指数を1.5~2.5とすることができた。そして、リッド本体に損傷はないので、パッケージの封止には利用可能であると考えられる。このプロセスbは、ボール状のボリュームの小さいろう材を複数融着させることは可能であるので、融着時のリッド本体の損傷は低減できる。
 これらのプロセスa、bの実施例に対して、プロセスcの枠形状にプリフォームされたろう材(No.C1、C2)は、融着時にガラス製リッド本体に割れを生じさせやすい傾向にあることが分かる。これらのろう材は、形状指数(I)が4.6~5.8と大きくなっていた。形状指数(I)が大きくなったのは、枠形状のプリフォームろう材は、接合面積が過大であることが要因である。ろう材とガラスとの間には熱膨張・熱収縮の挙動に関して差異があるため、接合面積が大きくなると、ろう材が凝固したときの残留応力も大きくなる。これら枠形状のろう材のように接合面積が大きいろう材は、この残留応力によって割れが比較的発生し易いと考えられる。
 また、これらの枠状プリフォームろう材の材料組織に関してみると、共晶組織のみからなる好適な材料組織の発現は難しいと考えられる。図11は、No.C2のプリフォームろう材(ろう材厚さ25μm)を融着した後のろう材の断面組織である。このろう材においては、共晶組織が占める領域が少なく、円相当径で粒径5μmを超える粗大な単一相を多数呈する材料組織が観察された。このプロセスでは、ろう材の融着の際、リフローによりろう材と共にリッド本体も加熱される。そのため、ろう材が融点以上の温度である時間が長くなって冷却速度が遅くなり、単一相が析出し易かったためと考えられる。この枠形状のプリフォームろう材は、融着段階でリッド本体を破損させたので、以降の封止試験に供することはできないが、仮に割れが軽微で封止試験ができるようであったとしても、粗大な単一相が気密性に影響を及ぼす可能性があると考えられる。
 次に、ろう材融着後にリッド本体に顕著に損傷が発生しなかった、プロセスa、bで製造したリッド本体について、パッケージ本体を用いた封止試験を行った。この封止試験では、セラミック製のパッケージ本体(開口部の寸法(内寸):2.4mm×2.4mm 開口縁端面の厚さ0.8mm)を用意し、ここに各種の封止用リッドを接合した。パッケージの製造方法は、リッドをパッケージ本体に重ねて位置合わせした後、0.4MPaの荷重条件下でパッケージを305℃に加熱してろう材を再溶融させた。このとき、設定温度の保持時間を30秒とし、時間経過後速やかに加熱ストップ、冷却した。パッケージの封止後、ガラス製リッドにクラックの発生がないかを実体顕微鏡(20倍)で判定した。この評価においては、上記で行ったろう材の融着段階におけるリッド本体の数(10個)を母数とした。即ち、ろう材融着時にリッド本体に損傷が生じたものについては、封止試験を行うことなく不良品とした。そして、ろう材融着時に良品となったものについて、封止試験を行い良品率を評価した。
 更に、封止後のリッドにクラックが見られなかったパッケージについて気密性の評価を行い、リッドの製造段階(ろう材融着の段階)からパッケージ製造段階(封止段階)まで間における良品発生率を評価した。気密性の評価は、パッケージを120℃に保温したフロリナート液に浸漬し、パッケージ内からの気泡の発生の有無を目視で確認し、気密性を評価した。この気密性評価も、ろう材の融着段階におけるリッド本体の数が母数である。以上の封止試験の結果を表2に示す。
Figure JPOXMLDOC01-appb-T000004
 封止時の良品率の結果から、プロセスaがプロセスbより優れていることが確認された。この結果は、プロセスbのろう材中で生成した5μm超の粗大な単一相に基づくものであると考えられる。プロセスbのろう材では、粗大単一相が生成したことでろう材内部に部分的な組成変動が生じ、それによる融点の偏差が発生し、封止の際に完全に溶融・流動しない領域が形成されたことが原因であると推測する。
 また、気密性の良品率においては、プロセスaがプロセスbより明らかに優れていることがわかる。この結果も、プロセスbにおける粗大な単一相の生成によると考えられる。粗大単一相によって生じた高融点の領域が、リークパス生成の原因になったためであると考えられる。従って、リッドの製造段階(ろう材の融着)とパッケージ製造段階(封止のためのろう材の再溶融・凝固)の双方において最大限に有効なリッドを製造するためには、ろう材の組成・形状の最適化と共に、材料組織を好適なものとすることが好ましいといえる。
 以上説明したように、本発明に係る封止用リッドは、ガラス等の透光性材料で構成したこと、及び、封止のための接合材料として共晶合金からなるろう材を適用したことにより、それぞれの利点を発揮する。本発明では、光学素子を有するパッケージについて、有効な光利用効率を付与し、高い耐久性も与える。本発明は、LED等の発光素子や受光素子の光学素子を利用する各種装置の封止材料として好適である。

Claims (15)

  1.  光学素子を収容するパッケージ本体に接合され、気密封止されたパッケージを製造するための封止用リッドにおいて、
     可視光、紫外光、赤外光の少なくともいずれかを透過可能な透光性材料からなるリッド本体を備え、
     前記リッド本体は、前記パッケージ本体と接合する面に、リッド本体の外周形状に対応した枠状の接合領域を含み、
     前記リッド本体の前記接合領域上に複数片の共晶合金からなるろう材が融着されてなることを特徴とする封止用リッド。
  2.  複数片のろう材が、接合領域上に連続的に融着され枠形状を形成している請求項1記載の封止用リッド。
  3.  複数片のろう材のうち、少なくとも一つのろう材の任意断面の材料組織が、共晶組織と任意的に含まれる円相当径5μm以下の単一相とからなる材料組織である請求項1又は請求項2記載の封止用リッド。
  4.  複数片のろう材のうち、少なくとも一つのろう材の投影形状が略円形である請求項1~請求項3のいずれかに記載の封止用リッド。
  5.  複数片のろう材のうち、少なくとも一つのろう材について、下記式で定義される形状指数(I)が0.9以上2.5以下である請求項1~請求項4のいずれかに記載の封止用リッド。
    Figure JPOXMLDOC01-appb-M000001
  6.  リッド本体を構成する透光性材料は、ガラス、水晶、サファイア、シリコン、ゲルマニウムのいずれかよりなる請求項1~請求項5のいずれかに記載の封止用リッド。
  7.  共晶合金からなるろう材は、Au系共晶ろう材である請求項1~請求項6のいずれかに記載の封止用リッド。
  8.  共晶合金からなるろう材は、Au-Snろう材である請求項1~請求項7のいずれかに記載の封止用リッド。
  9.  リッド本体表面の少なくとも一部に、金属からなる少なくとも1層のメタライズ膜を有し、前記メタライズ膜の上にろう材が融着されてなる請求項1~請求項8のいずれかに記載の封止用リッド。
  10.  メタライズ膜は、ろう材が融着される面にAu又はPtの少なくともいずれかからなる第1の金属層を有する請求項9記載の封止用リッド。
  11.  メタライズ膜は、リッド本体の表面上にMg、Al、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、Nb、Mo、Ru、Rh、Pd、Ag、In、Sn、Sb、Ta、W、Re、Os、Irの少なくともいずれかからなる第2の金属層を有する請求項9又は請求項11記載の封止用リッド。
  12.  メタライズ膜を構成する金属元素がろう材内部へ拡散することで形成される拡散領域の幅が、2μm以下である請求項9~請求項11のいずれか1項に記載の封止用リッド。
  13.  リッド本体は、片面もしくは両面に透過率又は反射率を上昇させる機能膜を有する請求項1~請求項12のいずれかに記載の封止用リッド。
  14.  パッケージ本体に封止用リッドを接合する工程を含む気密封止方法において、
     前記封止用リッドとして請求項1~請求項13のいずれかに記載の封止用リッドを接合する気密封止方法。
  15.  請求項1~請求項13のいずれかに記載の封止用リッドが接合されたパッケージ。
     
PCT/JP2019/004772 2018-02-13 2019-02-12 透光性材料からなる封止用のリッド WO2019159858A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020207025192A KR102417632B1 (ko) 2018-02-13 2019-02-12 투광성 재료를 포함하는 밀봉용 리드
US16/967,207 US12002723B2 (en) 2018-02-13 2019-02-12 Sealing lid formed from translucent material
JP2020500467A JP7182596B2 (ja) 2018-02-13 2019-02-12 透光性材料からなる封止用のリッド
EP19754079.2A EP3754699B1 (en) 2018-02-13 2019-02-12 Sealing lid formed from translucent material
CN201980013082.4A CN111712912B (zh) 2018-02-13 2019-02-12 由透光性材料构成的密封用盖
AU2019222263A AU2019222263B2 (en) 2018-02-13 2019-02-12 Sealing lid formed from translucent material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-023249 2018-02-13
JP2018023249 2018-02-13

Publications (1)

Publication Number Publication Date
WO2019159858A1 true WO2019159858A1 (ja) 2019-08-22

Family

ID=67619447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004772 WO2019159858A1 (ja) 2018-02-13 2019-02-12 透光性材料からなる封止用のリッド

Country Status (8)

Country Link
US (1) US12002723B2 (ja)
EP (1) EP3754699B1 (ja)
JP (1) JP7182596B2 (ja)
KR (1) KR102417632B1 (ja)
CN (1) CN111712912B (ja)
AU (1) AU2019222263B2 (ja)
TW (1) TWI713990B (ja)
WO (1) WO2019159858A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7554694B2 (ja) 2021-03-12 2024-09-20 スタンレー電気株式会社 半導体発光装置及びその製造方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127474A (ja) * 1982-01-25 1983-07-29 Hitachi Ltd 固体撮像装置
JPH07249750A (ja) * 1994-03-08 1995-09-26 Toshiba Corp 固体撮像装置の封止方法
JPH0936690A (ja) * 1995-07-20 1997-02-07 S I I Quartz Techno:Kk 薄型水晶振動子
JP2004146392A (ja) * 2002-08-30 2004-05-20 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
JP2006145610A (ja) 2004-11-16 2006-06-08 Shinko Electric Ind Co Ltd 光学部品収納用パッケージ
US20060164631A1 (en) * 2005-01-21 2006-07-27 Samsung Electronics Co., Ltd. Optical scanner package having heating dam
JP2007242642A (ja) 2004-04-27 2007-09-20 Matsushita Electric Ind Co Ltd 受光素子、光ヘッド装置、及び光情報処理装置
JP2008147234A (ja) * 2006-12-06 2008-06-26 Denso Corp 半導体基板のキャップ固着方法
JP2008311456A (ja) * 2007-06-15 2008-12-25 Mitsubishi Electric Corp 半導体装置及びその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000311993A (ja) * 1999-04-28 2000-11-07 Matsushita Electronics Industry Corp 固体撮像装置の製造方法
JP2003142621A (ja) * 2001-11-02 2003-05-16 Kyocera Corp 半導体装置
US6627814B1 (en) * 2002-03-22 2003-09-30 David H. Stark Hermetically sealed micro-device package with window
JP2007317787A (ja) * 2006-05-24 2007-12-06 Citizen Electronics Co Ltd 発光装置およびその製造方法
WO2008140033A1 (ja) * 2007-05-11 2008-11-20 Tanaka Kikinzoku Kogyo K.K. 封止パッケージ用のリッド又はケース及びそれらの製造方法
CN102473813B (zh) * 2009-07-30 2015-02-04 日亚化学工业株式会社 发光装置及其制造方法
US8393526B2 (en) * 2010-10-21 2013-03-12 Raytheon Company System and method for packaging electronic devices
JP2015131340A (ja) * 2013-12-10 2015-07-23 住友金属鉱山株式会社 Au−Sn−Ag系はんだ合金並びにこのAu−Sn−Ag系はんだ合金を用いて封止された電子部品及び電子部品搭載装置
JP6787662B2 (ja) * 2015-12-22 2020-11-18 京セラ株式会社 シールリング、電子部品収納用パッケージ、電子デバイスおよびこれらの製造方法
US20190081218A1 (en) * 2016-01-28 2019-03-14 Corning Incorporated Methods for dispensing quantum dot materials

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58127474A (ja) * 1982-01-25 1983-07-29 Hitachi Ltd 固体撮像装置
JPH07249750A (ja) * 1994-03-08 1995-09-26 Toshiba Corp 固体撮像装置の封止方法
JPH0936690A (ja) * 1995-07-20 1997-02-07 S I I Quartz Techno:Kk 薄型水晶振動子
JP2004146392A (ja) * 2002-08-30 2004-05-20 Kyocera Corp 半導体素子収納用パッケージおよび半導体装置
JP2007242642A (ja) 2004-04-27 2007-09-20 Matsushita Electric Ind Co Ltd 受光素子、光ヘッド装置、及び光情報処理装置
JP2006145610A (ja) 2004-11-16 2006-06-08 Shinko Electric Ind Co Ltd 光学部品収納用パッケージ
US20060164631A1 (en) * 2005-01-21 2006-07-27 Samsung Electronics Co., Ltd. Optical scanner package having heating dam
JP2008147234A (ja) * 2006-12-06 2008-06-26 Denso Corp 半導体基板のキャップ固着方法
JP2008311456A (ja) * 2007-06-15 2008-12-25 Mitsubishi Electric Corp 半導体装置及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3754699A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7554694B2 (ja) 2021-03-12 2024-09-20 スタンレー電気株式会社 半導体発光装置及びその製造方法

Also Published As

Publication number Publication date
US20200365474A1 (en) 2020-11-19
KR20200116485A (ko) 2020-10-12
CN111712912A (zh) 2020-09-25
JP7182596B2 (ja) 2022-12-02
TWI713990B (zh) 2020-12-21
EP3754699A1 (en) 2020-12-23
JPWO2019159858A1 (ja) 2021-01-28
CN111712912B (zh) 2023-12-22
EP3754699C0 (en) 2023-11-22
KR102417632B1 (ko) 2022-07-07
AU2019222263B2 (en) 2022-02-24
AU2019222263A1 (en) 2020-09-24
TW202005049A (zh) 2020-01-16
EP3754699A4 (en) 2021-01-13
EP3754699B1 (en) 2023-11-22
US12002723B2 (en) 2024-06-04

Similar Documents

Publication Publication Date Title
KR100442830B1 (ko) 저온의 산화방지 허메틱 실링 방법
TWI784013B (zh) 窗材、光學封裝
WO2006098454A1 (ja) サブマウントおよびその製造方法
JP7435460B2 (ja) 窓材、光学パッケージ
JP2003050341A (ja) 光学部品複合体およびその製造方法
WO2019159858A1 (ja) 透光性材料からなる封止用のリッド
JP2005101481A (ja) 半導体装置用キャップ
KR20150088811A (ko) Au-Sn-Bi 합금 분말 페이스트, Au-Sn-Bi 합금 박막 및 그 성막 방법
WO2020022278A1 (ja) 光学パッケージ
JP7473877B2 (ja) 蓋部材の製造方法
CN105026099A (zh) 用于块状金属玻璃的接合方法
WO2023067860A1 (ja) 保護キャップ、電子装置及び保護キャップの製造方法
JP2006066645A (ja) 蓋体およびこれを用いた光素子収納用パッケージ
WO2023149250A1 (ja) 複合体、及びこの複合体を備えた気密パッケージ
JP2020065052A (ja) パッケージ用蓋材及びパッケージ
TW202025520A (zh) 封裝用蓋材之製造方法及封裝之製造方法
JP2006013355A (ja) 蓋体およびこれを用いた電子装置
JPH02296754A (ja) ハンダ付け固定のためのガラス素子構造
JP2010027434A (ja) 蛍光表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19754079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020500467

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207025192

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019754079

Country of ref document: EP

Effective date: 20200914

ENP Entry into the national phase

Ref document number: 2019222263

Country of ref document: AU

Date of ref document: 20190212

Kind code of ref document: A