WO2019156192A1 - 電力変換装置、発電システム、モータドライブシステム及び電力連系システム - Google Patents

電力変換装置、発電システム、モータドライブシステム及び電力連系システム Download PDF

Info

Publication number
WO2019156192A1
WO2019156192A1 PCT/JP2019/004516 JP2019004516W WO2019156192A1 WO 2019156192 A1 WO2019156192 A1 WO 2019156192A1 JP 2019004516 W JP2019004516 W JP 2019004516W WO 2019156192 A1 WO2019156192 A1 WO 2019156192A1
Authority
WO
WIPO (PCT)
Prior art keywords
star
unit
star conversion
conversion
power
Prior art date
Application number
PCT/JP2019/004516
Other languages
English (en)
French (fr)
Inventor
加藤 修治
哲郎 遠藤
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2019571158A priority Critical patent/JP7177500B2/ja
Priority to EP19750640.5A priority patent/EP3758213A4/en
Publication of WO2019156192A1 publication Critical patent/WO2019156192A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0095Hybrid converter topologies, e.g. NPC mixed with flying capacitor, thyristor converter mixed with MMC or charge pump mixed with buck
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/10Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the present invention relates to a power conversion device, a power generation system, a motor drive system, and a power interconnection system.
  • a modular multi-level converter in which unit converters are connected in series in a cascade is known as a power converter that outputs a voltage close to a sine wave without a filter.
  • MMC has the merit that a high voltage exceeding the withstand voltage of the switching element can be output (Non-Patent Document 1), and is widely used for DC power transmission of several hundred kV class.
  • high-voltage power can be converted by connecting unit converters that can output at least two voltages of zero and a predetermined voltage by switching and adding the output voltages of the unit converters together.
  • Each unit converter of MMC has a capacitor and outputs the capacitor voltage or zero voltage by switching.
  • the output of the unit converter fluctuates, and there is a possibility that the MMC cannot convert power with high accuracy.
  • fluctuations in the output voltage of the capacitor are suppressed by increasing the capacitance of the capacitor. Therefore, it is necessary to use a large capacitor having a large capacity, and there is a problem that it is difficult to reduce the size of the MMC.
  • the application range of the MMC has been practically limited to voltage applications more than ten times the element breakdown voltage, such as direct current power transmission of several hundred kV class.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a small-sized power conversion device, a power generation system, a motor drive system, and a power interconnection system.
  • a power conversion device is a power conversion device having a configuration in which each phase of a three-phase alternating current is star-connected, and includes three star conversion legs including two switches connected in series, and at least one capacitor And a unit converter connected in series with each star conversion leg of the star conversion unit, and the star conversion unit includes three star conversion legs and the capacitor in parallel.
  • each phase of the three-phase AC is connected via the unit converter, and the three star conversion legs are connected.
  • the connection point is a neutral point of the star connection, and the unit converter is connected to the switch connection point of each star conversion leg.
  • a power conversion device is a power conversion device having a configuration in which each phase of a three-phase alternating current is star-connected, and includes three star conversion legs including two switches connected in series, and at least one capacitor Including a positive-side star conversion unit and a negative-side star conversion unit, wherein the positive-side star conversion unit includes three star conversion legs and the capacitor connected in parallel, and each of the star conversion legs has 2
  • Each phase of the three-phase AC is connected to a switch connection point between the two switches, and a connection point where the three star conversion legs are connected is a first neutral point of the star connection, and each star A first predetermined voltage or zero is output between the switch connection point of the conversion leg and the first neutral point
  • the negative star conversion unit includes three star conversion legs and the capacitor in parallel.
  • the power generation system connects a generator and a power system via the power conversion device according to any one of claims 1 to 25.
  • the motor drive system connects a power source and a motor via the power conversion device according to any one of claims 1 to 25.
  • the power interconnection system according to the present invention connects power systems through the power conversion device according to any one of claims 1 to 25.
  • the star conversion unit is configured such that three star conversion legs and at least one capacitor are connected in parallel, and the connection point of the three star conversion legs is a neutral point.
  • the total value of the alternating current flowing through each star conversion leg of the conversion unit is zero, and ideally, the amount of fluctuation of the alternating current power can be made almost zero, and the fluctuation of the voltage of the capacitor can be suppressed. Therefore, in the power conversion device, since the fluctuation of the voltage of the capacitor of the star conversion unit can be suppressed, a capacitor having a small capacity can be used as the capacitor of the star conversion unit, the size can be reduced, and the small power conversion device, power generation system, A motor drive system and a power interconnection system can be provided.
  • FIG. 2A and 2B are schematic diagrams illustrating a unit converter according to an embodiment of the present invention
  • FIG. 2C is a schematic diagram illustrating a unit converter according to another embodiment of the present invention. It is a figure which shows the output voltage waveform of the power converter device of this invention, a star conversion leg, and a unit converter.
  • FIG. 14A is a graph showing a voltage waveform of a voltage desired to be output between the terminal 102R and the terminal P and a voltage waveform of an output voltage of the star conversion leg 153R of the positive side star conversion unit 1500P, and FIG.
  • the power converter 101 has terminals 102R, 102S, and 102T via a transformer (not shown in FIG. 1). It is connected to the three-phase AC R phase, S phase, and T phase, respectively, and is linked to the three-phase AC system 111.
  • a DC device 110 is connected between a terminal P and a terminal N.
  • the DC device 110 is drawn as a representative of a DC load such as a resistor, a DC power supply, another power conversion device, and the like.
  • the power conversion device 101 converts the AC power of the three-phase AC system 111 into DC power and supplies it to the DC device 110, or converts the DC power output from the DC device 110 into AC power and converts it into three-phase AC. It is a power conversion device that can be supplied to the system 111 or supplied to a three-phase AC motor, and can output a voltage close to a sine wave as in the MMC.
  • the power converter 101 includes a positive power converter 130P and a negative power converter 130N.
  • the positive side power conversion unit 130P and the negative side power conversion unit 130N are connected to each phase of the three-phase AC via terminals 102R, 102S, and 102T as AC connection units.
  • the positive power converter 130P includes a positive star converter 150P and three unit converters 108
  • the negative power converter 130N includes a negative star converter 150N and three unit converters 109. I have.
  • the positive-side star conversion unit 150P is a power converter having a three-phase full bridge configuration, and includes three star conversion legs 153R, 153S, and 153T, and a capacitor 159, which are connected between the connection point NP1 and the connection point NP3. (In the case of the negative star conversion unit 150N, the connection is made in parallel between the connection point NP4 and the connection point NP2).
  • Each of the star conversion legs 153R, 153S, and 153T includes a high-side switch 200H and a low-side switch 200L, and these are connected in series.
  • the positive side star conversion unit 150P is configured such that a switch connection point 151R between the high side switch 200H of the star conversion leg 153R and the low side switch 200L is a unit converter 108 (unit conversion unit 109 in the negative side star conversion unit 150N described later). ) And the reactor 112, the terminal 102R is connected to the R phase of the three-phase alternating current. Between the connection point of the three star conversion legs and the switch connection point to which the unit converter is connected is also called an arm, and one arm is provided for each arm.
  • the positive-side star conversion unit 150P includes a switch connection point 151S that is intermediate between the high-side switch 200H and the low-side switch 200L of the star conversion leg 153S, the unit converter 108, the reactor 112, and the terminal 102S. And a switch connection point 151T between the high-side switch 200H of the star conversion leg 153T and the low-side switch 200L, the unit converter 108, the reactor 112, and the terminal It is connected to the T phase of three-phase alternating current through 102T.
  • the star conversion leg 153R, the unit converter 108, the reactor 112, the terminal 102R, the reactor 112, the unit converter 109, and the star conversion leg 153R are connected between the connection point NP1 and the connection point NP2. They are connected in series in this order.
  • the star conversion leg 153S, the unit converter 108, the reactor 112, the terminal 102S, the reactor 112, the unit converter 109, and the star conversion leg 153S are connected in series between the connection point NP1 and the connection point NP2.
  • Conversion leg 153T, unit converter 108, reactor 112, terminal 102T, reactor 112, unit converter 109, and star conversion leg 153T are connected in series.
  • the unit converters 108 and 109 are connected in series between the star conversion legs 153R, 153S, and 153T of the positive side star conversion unit 150P and the star conversion legs 153R, 153S, and 153T of the negative side star conversion unit 150N. It is connected.
  • these component groups connected in series between the connection point NP1 and the connection point NP2 are also referred to as a leg 107R, a leg 107S, and a leg 107T.
  • the leg 107R, leg 107S, and leg 107T are connected in parallel.
  • each phase of the three-phase AC is connected at the connection point NP1 of the star conversion legs 153R, 153S, and 153T, and each phase of the three-phase AC is star-connected. It is. This is the same in the negative power conversion unit 130N, and each phase of the three-phase alternating current is star-connected at the connection point NP2.
  • the connection points NP1 and NP2 are not only the connection points of the star conversion legs 153R, 153S, and 153T (leg 107R, leg 107S, leg 107T) connected in parallel, but also the neutral point of the star connection (hereinafter referred to as “the connection point”).
  • the connection point NP1 is also referred to as a first neutral point NP1
  • the connection point NP2 is also referred to as a second neutral point NP2.
  • the current flowing between the terminal 102R and the first neutral point NP1 is the arm current IRP
  • the current flowing between the terminal 102S and the first neutral point NP1 is the arm current ISP
  • the terminal 102T and the first neutral point NP1 Is the arm current ITP, on the positive power conversion unit 130P side of the power converter 101, each phase of the three-phase alternating current is star-connected at the first neutral point NP1, so the positive power
  • the current flowing between the terminal 102R and the second neutral point NP2 is the arm current IRN
  • the current flowing between the terminal 102S and the second neutral point NP2 is the arm current ISN
  • the terminal 102T and the second neutral point NP2 Is the arm current ITN, on the negative power converter 130N side of the power converter 101, each phase of the three-phase alternating current is star-connected at the second neutral point NP2, so the negative power
  • the terminal P is drawn from the first neutral point NP1, and the terminal N is drawn from the second neutral point NP2.
  • the terminal P and the terminal N are drawn from a location having the same potential as that of the first neutral point NP1 or the second neutral point NP2.
  • the unit converter 108 includes a high-side switch 200H including a high-side switching element 201H made of, for example, IGBT and a high-side free-wheeling diode 202H, and a low-side switching element 201L and low-side free-wheeling diode, made of, for example, an IGBT.
  • the bidirectional chopper circuit includes a low-side switch 200 ⁇ / b> L configured by 202 ⁇ / b> L and a capacitor 204.
  • the high-side switch 200H is connected to the positive side (collector for IGBT) side of the high-side switching element 201H and the negative side of the high-side reflux diode 202H, and to the negative side (emitter for IGBT) side of the high-side switching element 201H and the high-side reflux side.
  • the high-side switching element 201H and the high-side freewheeling diode 202H are connected in antiparallel with the positive electrode side of the diode 202H being connected.
  • the low-side switch 200L has a configuration in which the low-side switching element 201L and the low-side freewheeling diode 202L are connected in antiparallel.
  • the high-side switch 200H and the low-side switch 200L are connected to the high-side switching element 201H and the low-side switching element 201L by connecting the high-side freewheeling diode 202H and the low-side freewheeling diode 202L in antiparallel, so that the negative electrode side of the IGBT is positively connected.
  • a voltage is applied to the side, current flows through the high-side freewheeling diode 202H and low-side freewheeling diode 202L, preventing current from flowing from the negative electrode to the positive electrode of the IGBT, thereby protecting the IGBT.
  • the positive sides of the high side switching element 201H and the low side switching element 201L are the positive sides of the high side switch 200H and the low side switch 200L, respectively.
  • the high-side switch 200H and the low-side switch 200L of the positive-side star conversion unit 150P and the negative-side star conversion unit 150N have the same configuration as the high-side switch 200H and the low-side switch 200L of the unit converter 108.
  • the negative side of the high-side switch 200H and the positive side of the low-side switch 200L are connected, and the high-side switch 200H and the low-side switch 200L are connected in series.
  • the high side switch 200H and the low side switch 200L are connected to a control circuit (not shown), and are turned on / off by a control signal from the control circuit.
  • the capacitor 204 is connected in parallel with the high-side switch 200H and the low-side switch 200L connected in series.
  • a positive terminal is drawn from a connection point X between the capacitor 204 and the high side switch 200H, and a negative terminal is drawn from a switch connection point Y between the high side switch 200H and the low side switch 200L.
  • the unit converter 108 depends on the arm currents IRP, ISP, and ITP between the positive terminal and the negative terminal (both ends of the legs in the unit converter). A voltage substantially equal to the voltage of the capacitor 204 is output. This state is referred to herein as unit converter 108 being high.
  • the capacitor voltage refers to the capacitor voltage when the capacitor is charged
  • the unit converter output voltage refers to the output when the capacitor is high.
  • the unit converter 108 When the high-side switch 200H is on and the low-side switch 200L is off, the unit converter 108 is short-circuited between the positive terminal and the negative terminal, and the inter-terminal voltage is substantially zero independent of the arm currents IRP, ISP, and ITP. Is equal to This state is referred to herein as unit converter 108 being low.
  • the unit converter 108 when both the high-side switch 200H and the low-side switch 200L are off, the voltage between the positive terminal and the negative terminal depends on the polarity of the current flowing through the unit converter 108. When the current is positive (when current flows from the positive terminal to the negative terminal), the output voltage is approximately equal to the voltage of the capacitor 204. When the current is negative (when the current flows from the negative terminal to the positive terminal), the output voltage between the terminals is approximately equal to zero. As described above, the unit converter 108 can be controlled to be high and low by the control of the switch.
  • the unit converter 109 shown in FIG. 2B differs from the unit converter 108 only in the position where the positive electrode terminal and the negative electrode terminal are drawn, and the other configuration is the same as that of the unit converter 108.
  • the positive terminal is drawn from the switch connection point Y
  • the negative terminal is drawn from the connection point Z between the low-side switch 200L and the capacitor 204.
  • the unit converter 109 can also be controlled to high and low by a switching operation.
  • the unit converter 109 depends on the arm currents IRN, ISN, and ITN between the positive terminal and the negative terminal (both ends of the legs in the unit converter) when the high side switch 200H is on and the low side switch 200L is off. First, a voltage substantially equal to the voltage of the capacitor 204 is output and becomes high.
  • the unit converter 109 when the high-side switch 200H is off and the low-side switch 200L is on, the positive electrode terminal and the negative electrode terminal are short-circuited, and the inter-terminal voltage is substantially zero regardless of the arm currents IRN, ISN, and ITN. Equals and goes low.
  • the operation when both switches are both on and when both switches are off is the same as that of the unit converter 108.
  • the unit converter 108 From 109, the free-wheeling diodes (high-side freewheeling diode 202H, low-side free-wheeling diode 202L) can be omitted.
  • the unit converter 108 has a positive terminal connected to the switch connection points 151R, 151S, and 151T of the positive star conversion unit 150P and a negative terminal connected to the reactor 112.
  • the unit converter 109 has a positive terminal connected to the reactor 112 and a negative terminal connected to the switch connection points 151R, 151S, and 151T of the negative star conversion unit 150N.
  • the high-side switch 200H and the low-side switch 200L of the star conversion legs 153R, 153S, and 153T are connected to a control circuit (not shown) and can be controlled on / off by the control circuit. Since the operations of the star conversion legs 153R, 153S, and 153T are the same, the star conversion leg 153R will be described as a representative.
  • the operation of the star conversion leg 153R is the same as that of the unit converter 108.
  • the star conversion leg 153R has a first neutral point NP1 and a switch connection point 151R (a switch connection point 151S in the star conversion leg 153S and a star conversion leg 153T in the star conversion leg 153T).
  • the first predetermined voltage approximately equal to the voltage of the capacitor 159 is output without depending on the arm current IRP (arm current ISP in the star conversion leg 153S, arm current ITP in the star conversion leg 153T) between the switch connection point 151T) and the switch connection point 151T. , Become high.
  • the star conversion leg 153R When the high-side switch 200H is on and the low-side switch 200L is off, the star conversion leg 153R has a first neutral point NP1 and a switch connection point 151R (a switch connection point 151S in the star conversion leg 153S and a star conversion leg 153T in the star conversion leg 153T).
  • the switch connection point 151T) is short-circuited and becomes low.
  • the operation when the high-side switch 200H and the low-side switch 200L are in other states is the same as that of the unit converter 108.
  • the operations of the star conversion legs 153R, 153S, and 153T of the negative side star conversion unit 150N are the same as those of the unit converter 109. That is, when the high side switch 200H is on and the low side switch 200L is off, the star conversion leg 153R has a switch connection point 151R (a switch connection point 151S for the star conversion leg 153S and a switch connection point 151T for the star conversion leg 153T). Between the first neutral point NP2 and the second neutral point NP2, a second predetermined voltage that is substantially equal to the voltage of the capacitor 159 regardless of the arm current IRN (the arm current ISN for the star conversion leg 153S and the arm current ITN for the star conversion leg 153T). Output and goes high.
  • the star conversion leg 153R When the high-side switch 200H is off and the low-side switch 200L is on, the star conversion leg 153R is connected to the switch connection point 151R (the switch connection point 151S for the star conversion leg 153S and the switch connection point 151T for the star conversion leg 153T). Between the two neutral points NP2 is short-circuited and becomes low.
  • the operation when the high-side switch 200H and the low-side switch 200L are in other states is the same as that of the unit converter 109.
  • the same capacitor 159 of the positive side star conversion unit 150P and negative side star conversion unit 150N and the capacitor 204 of the unit converters 108 and 109 are used. 2
  • the output voltages when the predetermined voltage and the unit converters 108 and 109 are high are approximately equal.
  • the first neutral point NP1 is a positive terminal
  • the switch connection points 151R, 151S, and 151T are negative terminals
  • the switch connection points 151R and 151S. 151T serves as a positive electrode terminal
  • the second neutral point NP2 serves as a negative electrode terminal.
  • the unit converter 108 is connected to the switch connection points 151R, 151S, 151T of the positive side star conversion unit 150P
  • the unit converter 109 is connected to the switch connection points 151R, 151S, 151T of the negative side star conversion unit 150N.
  • each leg 107R, 107S, 107T all the components are connected in series in the forward direction.
  • “in the forward direction” means that when a component has a distinction between a positive electrode and a negative electrode, the positive electrode terminal of one component and the negative electrode terminal of another component are connected, and the positive terminals of the components are Or, it means that the negative terminals of the constituent elements are not connected to each other.
  • the capacitor of the MMC unit converter when the current flowing through the capacitor fluctuates, the power flowing into the capacitor also fluctuates, and the output voltage of the capacitor fluctuates accordingly. Therefore, conventionally, in the MMC, the capacitance of the unit converter is increased, and the fluctuation of the output voltage is suppressed by reducing the ratio of the fluctuation amount of the charge to the total charge accumulated in the capacitor.
  • the power conversion device 101 of the present invention the total value of the arm currents IRP, ISP, and ITP flowing through the positive star conversion unit 150P and the arm currents IRN and ISN flowing through the negative star conversion unit 150N.
  • the ITN total value is ideally zero (the sum of AC fundamental phase positive phase components is zero)
  • the amount of AC power fluctuation can be ideally reduced to almost zero, and fluctuations in capacitor voltage can be suppressed. Can do. Therefore, in the positive side star conversion unit 150P and the negative side star conversion unit 150N, fluctuations in the voltage of the capacitor 159 can be suppressed, so that a capacitor having a small capacity can be used as the capacitor 159. Therefore, the positive-side star conversion unit 150P and the negative-side star conversion unit 150N have a smaller capacitor than the MMC unit converter, and can reduce the size of the device.
  • Reactor 112 is connected to leg 107R, 107S, 107T in a period in which leg voltages VR, VS, VT, which are voltages between first neutral point NP1 and second neutral point NP2 of each leg 107R, 107S, 107T, do not match. In order to prevent an overcurrent from flowing in the leg 107R, 107S, 107T, respectively. Further, the reactor 112 attenuates the signal of the switching frequency generated in the legs 107R, 107S, and 107T.
  • the reactor 112 is provided between the unit converters 108 and 109 and the terminals 102R, 102S, and 102T, but the switch connection points 151R and 151S of the unit converters 108 and 109 and the star conversion legs 153R, 153S, and 153T. , 151T.
  • the operation of the power conversion apparatus 101 will be described separately for the case of converting from direct current to alternating current and the case of converting from alternating current to direct current.
  • the DC device 110 is assumed to be a DC power transmission line (when the power conversion device 101 is a power conversion device on the power receiving side when viewed from the DC power transmission line), a DC power supply, a regenerative braking motor drive inverter, or the like. doing.
  • leg 107R Since the operation of each leg is the same, here, the explanation will be made focusing on the leg 107R.
  • FIG. 3 shows the voltage waveform 1112 of the voltage output from the terminal 102R (provided that the impedance of the external circuit connected to the terminal 102R is sufficiently large. If the impedance is small, the impedance is separated from the external AC voltage source.
  • a voltage waveform 1111 ns of the output voltage of the leg 153R and a voltage waveform 1111 nc of the output voltage of the unit converter 109 are shown.
  • the horizontal direction in FIG. 3 is time, and the vertical direction is output voltage.
  • the output voltage value (AC phase voltage) from the terminal 102R is calculated from the total value of the output voltage value of the star conversion leg 153R of the negative side star conversion unit 150N and the output voltage value of the unit converter 109, and the positive side star conversion unit 150P.
  • the total value of the output voltage value of the star conversion leg 153R and the output voltage value of the unit converter 108 is subtracted.
  • the power converter 101 can output + V at the terminal 102R, and the star conversion leg 153R of the negative star conversion unit 150N and the unit converter 109 are high. At this time, + 2V can be output from the terminal 102R.
  • the power converter 101 can output ⁇ V at the terminal 102R, and when the star conversion leg 153R of the positive side star conversion unit 150P and the unit converter 109 are high. , ⁇ 2V can be output from the terminal 102R.
  • the star conversion legs 153R and the unit converters 108 and 109 of the positive side star conversion unit 150P and the negative side star conversion unit 150N are all high or all low, the power conversion device 101 outputs 0 from the terminal 102R.
  • the star conversion leg 153R of the positive side star conversion unit 150P, the unit converter 108, the star conversion leg 153R of the negative side star conversion unit 150N, and the unit converter 109 have the voltage waveforms 1111ps, 1111pc shown in FIG. 1111 ns, 1111 nc, the star conversion leg 153R of the positive side star conversion unit 150P, the unit converter 108, the star conversion leg 153R of the negative side star conversion unit 150N, and the high and low of the unit converter 109
  • the power converter 101 can output an alternating voltage like the voltage waveform 1112 of FIG. 3 from the terminal 102R.
  • the output voltage of the converter 109 can be obtained by PWM (Pulse Width Modulation) control.
  • the DC device 110 is assumed to be a DC power transmission line (when the power conversion device 101 is a power conversion device on the power transmission side as viewed from the DC power transmission line), a DC load, a motor drive inverter being driven, or the like. ing.
  • the DC voltage applied to the DC device 110 includes the output voltage of the star conversion leg 153R of the positive side star conversion unit 150P, the output voltage of the unit converter 108, the output voltage of the star conversion leg 153R of the negative side star conversion unit 150N, This is the total value with the output voltage of the unit converter 109. Therefore, the DC voltage applied to the DC device 110 can be adjusted by controlling the high and low of the star conversion leg 153R of the positive side star conversion unit 150P and the negative side star conversion unit 150N and the unit converters 108 and 109.
  • the current flowing through the DC device 110 is the sum of the arm currents flowing through the legs 107R, 107S, and 107T.
  • the DC voltage components of the leg voltages VR, VS, VT are adjusted, and the zero-phase components of the arm currents IRP, ISP, ITP, IRN, ISN, ITN, especially the DC current components. To control.
  • the power conversion device 101 has a configuration in which each phase of the three-phase alternating current (R phase, S phase, T phase) is star-connected, and the two connected in series Star conversion units (positive side star conversion unit 150P and negative side star conversion unit 150N) including a star conversion leg (153R, 153S, 153T) including switches (high side switch 200H and low side switch 200L) and at least one capacitor 159 ) And unit converters 108 and 109 connected in series with each star conversion leg of the star conversion unit, and the positive side star conversion unit 150P and the negative side star conversion unit 150N include three star conversion legs 153R and 153S.
  • 153T and a capacitor 159 are connected in parallel, and two switches of each star conversion leg 153R, 153S, 153T
  • Each of the three-phase AC phases is connected to the switch connection points 151R, 151S, and 151T through the unit converters 108 and 109, and the connection point NP1 to which the three star conversion legs 153R, 153S, and 153T are connected is provided.
  • the unit converters 108 and 109 connected to the R phase which are neutral points of the star connection, are connected to the switch connection point 151R of the star conversion leg 153R, and the unit converters 108 and 109 connected to the S phase are the star conversions.
  • the unit converters 108 and 109 connected to the switch connection point 151S of the leg 153S and connected to the T phase are connected to the switch connection point 151T of the star conversion leg 153T.
  • the total value of the arm currents IRP, ISP, and ITP flowing through the positive star conversion unit 150P and the total value of the arm currents IRN, ISN, and ITN flowing through the negative star conversion unit 150N are zero. Therefore, ideally, the fluctuation amount of the AC power of the capacitor 159 of the positive side star conversion unit 150P and the negative side star conversion unit 150N can be almost zero, and the fluctuation of the voltage of the capacitor 159 can be suppressed. Therefore, in the power conversion device 101, fluctuations in the voltage of the capacitor 159 of the positive side star conversion unit 150P and the negative side star conversion unit 150N can be suppressed, so that the capacitors of the positive side star conversion unit 150P and the negative side star conversion unit 150N have capacitance. A small capacitor can be used. Therefore, it is possible to reduce the size by using a small capacitor. If the amount of the capacitor is reduced, the pedestal that supports the capacitor can also be reduced, and the power conversion device 101 can be reduced in size.
  • the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the gist of the present invention.
  • the positive star conversion unit 150P and the negative star conversion unit 150N have a configuration in which three star conversion legs 153R, 153S, and 153T and a capacitor 159 are connected in parallel.
  • the present invention is not limited to this, and like the power conversion device 1010 shown in FIG. 4, the positive side star conversion unit 160P of the positive side power conversion unit 131P and the negative side star of the negative side power conversion unit 131N.
  • the conversion unit 160N may have a configuration in which three star conversion legs 153R, 153S, and 153T and three capacitors 203 are connected in parallel.
  • the power conversion device 1010 is substantially equivalent to the power conversion device 101 by setting the voltage of the capacitor 203 to the voltage of the capacitor 159 of the power conversion device 101.
  • the positive side of the capacitor 203 is connected to the high-side switch 200H side terminals of the star conversion legs 153R, 153S, 153T, and the capacitor 203 is connected to the low-side switch 200L side terminals of the star conversion legs 153R, 153S, 153T.
  • the star conversion leg 153R and the capacitor 203 connected in parallel, the star conversion leg 153S and the capacitor 203 connected in parallel, and the star conversion leg 153T and the capacitor 203 connected in parallel. Furthermore, they are connected in parallel. In this way, the star conversion legs 153R, 153S, 153T and the capacitors 203 are alternately arranged in parallel.
  • the star conversion leg 153R, the capacitor 203, the star conversion leg 153S, the capacitor 203, the star conversion leg 153T, and the capacitor 203 are connected in parallel so that they are in the vicinity of each star conversion leg 153R, 153S, 153T.
  • Each of the capacitors 203 can be arranged in the circuit.
  • each capacitor 203 and each star conversion leg 153R, 153S, 153T can be arranged close to each other, so that the parasitic inductance between each capacitor 203 and each star conversion leg 153R, 153S, 153T can be reduced, There is an advantage that surge voltage at the time of switching the high side switch 200H and the low side switch 200L of each star conversion leg 153R, 153S, 153T can be suppressed.
  • the output voltages of the star conversion legs 153R, 153S, and 153T of the positive side star conversion unit 150P and the negative side star conversion unit 150N are equal to the output voltages of the unit converters 108 and 109.
  • the present invention is not limited to this.
  • the rated voltage of the capacitor of the positive star conversion unit and the negative star conversion unit is different from the rated voltage of the capacitor of the unit converter, and the output voltage of each star conversion leg is different from the output voltage of the unit converter. You may do it. In this case, there is an effect that the number of capacitors can be further reduced.
  • the rated voltage of the capacitor of the positive side star converter 150P and the rated voltage of the capacitor of the negative side star converter 150N are made different from each other so that the output voltage of the star conversion leg of the positive side star converter 150P and the negative side star converter 150P
  • the output voltage of the star conversion leg of the conversion unit 150N may be different.
  • a unit converter 108 is provided between the terminals 102R, 102S, and 102T and the positive side star conversion unit 150P (160P).
  • the unit converters 109 are connected to the terminals 102R, 102S, and 102T and the negative-side star converter 150N (160N) one by one, but the present invention is not limited to this.
  • the number of unit converters 108 and 109 can be changed as appropriate.
  • the positive power converter 132P and the negative power converter 132N have only the positive star converter 160P and the negative star converter 160N, respectively,
  • the unit converters 108 and 109 connected to the star conversion unit 160P and the negative side star conversion unit 160N may not be provided. Since the unit converters 108 and 109 are single-phase converters, the voltage fluctuation of the capacitor 204 becomes large at low frequencies. However, if the unit converters 108 and 109 are not connected, there is no single-phase converter, so that the unit converters 108 and 109 are driven at low frequencies. However, there is a merit that the influence on the capacitor voltage fluctuation is slight.
  • the capacitor 203 of the positive star conversion unit 160P and the capacitor 203 of the negative star conversion unit 160N are changed to capacitors having different rated voltages so that the output voltage of the capacitor is different.
  • Each star conversion leg of the side star conversion unit outputs a first predetermined voltage and zero at high and low
  • each star conversion leg of the negative side star conversion unit outputs a first predetermined voltage at high and low. May output different second predetermined voltages and zero.
  • a unit converter 108 (also referred to as a first unit converter 108, a second unit converter 108, or a third unit converter 108 from the side closer to the star conversion legs 153R, 153S, and 153T) is connected in series.
  • the negative power converter 133N is connected to three unit converters 109 (star conversion legs 153R, 153S, 153T between the terminals 102R, 102S, 102T and the star conversion legs 153R, 153S, 153T of the negative star converter 160N, respectively. (Also referred to as the first unit converter 109, the second unit converter 109, and the third unit converter 109 from the closer side.) It may be connected in series.
  • terminals 102R, 102S, and 102T, a positive side star conversion unit 150P, a negative side star conversion unit 150N, a positive side star conversion unit 160P, and a negative side star conversion unit 160N (a positive side star conversion unit and a negative side star conversion unit)
  • the number of unit converters 108 and 109 connected in series with the capacitor voltage V is n (n from the first unit converters 108 and 109 to the nth unit converters 108 and 109). ), And the output voltages of the unit converters 108 and 109 (that is, the capacitor voltages) are all set to the same voltage V, so that the AC voltage output from the power converter of the present invention is changed from 0 to ⁇ (n + 1).
  • the waveform can be controlled to an arbitrary multilevel waveform up to V, and by increasing the number of n, the waveform of the AC voltage output from the power converter can be made closer to a sine wave.
  • the unit converters 108 and 109 connected in series have the same capacitor 204 and output the same voltage, but the unit converters 108 and 109 connected in series
  • the rated voltage of the capacitor of each unit converter may be different, and the output voltage of each unit converter may be different.
  • the switching elements used in the star conversion legs 153R, 153S, and 153T of the positive star conversion unit 160P and the negative star conversion unit 160N can be used at a high voltage (for example, described later).
  • the switching element used in the unit converters 108 and 109 may be a low-voltage and low-loss switching element. In this case, the breakdown voltage of the switching elements used in the star conversion legs 153R, 153S, and 153T is higher than the breakdown voltage of the switching elements used in the unit converters 108 and 109.
  • the switching elements used in the star conversion legs 153R, 153S, and 153T of the positive star conversion unit 160P and the negative star conversion unit 160N are high-voltage switching elements, so that the positive star conversion unit 160P and the negative star conversion unit 160P
  • the output voltage of the capacitor 203 used in the converter 160N can be set high, and the output voltage of the capacitor 204 of the unit converters 108 and 109 can be set low accordingly.
  • the size of the capacitor 204 can be reduced, and the switching element can be changed to a low-voltage low-loss switching element, so that the power converter 401 can be further downsized.
  • the high-voltage switching element for example, a MOS-FET formed of IGBT, GCT, or SiC can be used.
  • a MOS-FET formed of IGBT, GCT, or SiC can be used.
  • an FET, MOS-FET, or the like formed of GaN can be used. it can.
  • the power conversion device of the present invention includes two capacitors 203 in which a positive star conversion unit 161P and a negative star conversion unit 161N are connected in series, and a star conversion, as in the power conversion device 501 illustrated in FIG.
  • the legs 154R, 154S, and 154T may be connected in parallel.
  • the star conversion legs 154R, 154S, 154T are a high-high side switch SA and a high-low side switch SB (also referred to as a high-side switch series body), a low-high side switch SC and a low-low side switch SD (also referred to as a low-side switch series body) as switches.
  • the four are connected in series.
  • each of the star conversion legs 154R, 154S, and 154T the sum total of breakdown voltages of the switching elements constituting the switches connected in series is higher than that in the above embodiment, and further, the switches of the unit converters 108 and 109 are constituted. Higher than the withstand voltage of the switching element.
  • the star conversion legs 154R, 154S, and 154T are switch connection points of the high-side switch series body and the low-side switch series body, that is, switch connection points 152R, 152S, and 152T between the high-low side switch SB and the low-high side switch SC. Connected to devices 108 and 109. Each arm has a configuration in which switches are connected in series.
  • the power conversion device 501 can output a higher voltage, and three unit conversions connected in series with the output voltage range of the positive star conversion unit 161P (negative star conversion unit 161N).
  • the range of the total value of the output voltage of the converter 108 (unit converter 109) can be made substantially the same. That is, the maximum value of at least one of the star conversion legs 154R, 154S, and 154T and the unit converter 108 (unit converter 109) connected to the star conversion leg (three converters in this embodiment) The maximum value of the total output voltage of the unit converter can be made substantially the same.
  • the number of switches connected in series in the capacitors 203 and arms connected in series may be further increased.
  • the positive-side star conversion unit 161P and the negative-side star conversion unit 161N output a two-level voltage.
  • the positive star conversion unit 150P (negative star conversion unit 150N) is a two-level converter that can output a first predetermined voltage (second predetermined voltage) and zero.
  • the invention is not limited to this.
  • the positive star conversion unit 162P and the negative star conversion unit 162N are connected to the star conversion legs 154R, 154S, and 154T at the switch connection point 152R. , 152S, 152T, and a three-level converter that outputs three types of voltages described later between the neutral point.
  • the positive side star conversion unit 162P includes a star conversion leg 154R having a configuration in which four of a high-high side switch SA, a high-low side switch SB, a low-high side switch SC, and a low-low side switch SD are connected in series.
  • 154S and 154T and three capacitor series bodies including a high-side capacitor 203H and a low-side capacitor 203L connected in series are connected in parallel.
  • the positive-side star converter 162P includes three diode series bodies in which two diodes D are connected in series, and the connection points between the high-high side switch SA and the high-low side switch SB of each star conversion leg 154R, 154S, 154T and the low-high side.
  • connection points of the switch SC and the low / low side switch SD are connected in antiparallel, and the connection points of the diodes D in the series diode body and the connection points of the high side capacitor 203H and the low side capacitor 203L are connected by the conductive wire 120.
  • the negative side star conversion unit 162N has the same configuration.
  • Each star conversion leg 154R, 154S, 154T of the positive side star conversion unit 162P has a first predetermined voltage between the switch connection points 152R, 152S, 152T and the first neutral point NP1 by the control of the switch by the control circuit.
  • the output voltage of the high-side capacitor 203H can be output, and the total value of the output voltages of the high-side capacitor 203H and the low-side capacitor 203L can be output as the third predetermined voltage.
  • each star conversion leg 154R, 154S, 154T of the negative star conversion unit 162N is controlled between the switch connection points 152R, 152S, 152T and the second neutral point NP2 by the control of the switch by the control circuit.
  • the output voltage of the high side capacitor 203H can be output as the predetermined voltage, and the total value of the output voltages of the high side capacitor 203H and the low side capacitor 203L can be output as the fourth predetermined voltage.
  • the power converter device 601 can output a multi-level voltage more than the case where the positive side star converter and the negative side star converter are two-level converters, and only the two-level converters Compared with the case where the same number of voltages are to be output using the, the device can be miniaturized.
  • the positive side star conversion unit 150P and the negative side star conversion unit 150N of the power conversion device 101 shown in FIG. It is good also as a structure changed into the conversion part 162P and the negative side star conversion part 162N.
  • the positive-side power conversion unit 138P includes a positive-side star conversion unit 162P and three unit converters 108, and the switch connection points 152R of the star conversion legs 154R, 154S, and 154T of the positive-side star conversion unit 162P,
  • the unit converter 108 is connected in series to each of 152S and 152T.
  • the negative power conversion unit 138N includes a negative star conversion unit 162N and three unit converters 109, and switch connection points 152R, 152S of the star conversion legs 154R, 154S, 154T of the negative side star conversion unit 162N. 152T, unit converters 109 are connected in series.
  • One unit converter 108 is connected in series to each star conversion leg 154R, 154S, 154T of the positive-side star conversion unit 162P, but the present invention is not limited to this, and each star conversion leg 154R, 154S is connected.
  • the number of unit converters 108 connected in series to 154T may be two, or three or more. The same applies to the negative star conversion unit 162N and the unit converter 109.
  • the high-side capacitor 203H and the low-side capacitor 203L of the positive side star conversion unit 162P and the negative side star conversion unit 162N are composed of the same capacitor, so the first predetermined voltage and the second predetermined voltage are equal.
  • the third predetermined voltage and the fourth predetermined voltage are equal.
  • the configurations of the positive side star conversion unit 162P and the negative side star conversion unit 162N as the three-level converter are not particularly limited.
  • the three capacitor series bodies of the positive side star conversion unit 162P and the negative side star conversion unit 162N may be integrated into one capacitor series body.
  • the first predetermined voltage and the second predetermined voltage may be made different, and the third predetermined voltage and the fourth predetermined voltage may be made different.
  • the high-side capacitor 203H and the low-side capacitor 203L of the positive-side star conversion unit 162P and the high-side capacitor 203H and the low-side capacitor 203L of the negative-side star conversion unit 162N are configured using capacitors having different rated voltages, and the output voltage To be different.
  • the output voltages of the high side capacitor 203H and the low side capacitor 203L of the positive side star conversion unit 162P are set to 1.8 kV, and the output voltages of the high side capacitor 203H and the low side capacitor 203L of the negative side star conversion unit 162N are 0.
  • the positive side star converter 162P outputs 1.8 kV (first predetermined voltage), 3.6 kV (third predetermined voltage), 0, and the negative side star converter 162N outputs 1. 2 kV (second predetermined voltage), 0.6 kV (fourth predetermined voltage), and 0 can be output.
  • the power conversion device 601 can output an AC voltage represented by 9 levels in increments of 0.6 kV.
  • the bidirectional chopper circuit is used as the unit converters 108 and 109 .
  • the present invention is not limited to this, and includes at least a two-terminal circuit including an energy storage element such as a capacitor or a battery. And a circuit capable of outputting at least a positive or zero voltage between the two terminals.
  • a full bridge circuit system may be used like the unit converter 708 shown in FIG. This unit converter can be applied to any of the power converters described so far.
  • the unit converter 708 is a three-level converter that can output three types of positive and negative voltages ⁇ V and zero by controlling the high-side switches 702XH and 702YH and the low-side switches 702XL and 702YL.
  • the power converter of the present invention can reverse the polarity between the terminal P and the terminal N by using the unit converter 708.
  • This full bridge circuit configuration can also be applied to the star conversion leg of the positive star conversion unit and the negative star conversion unit, in which case, the high side switch 702XH and the low side switch 702XL connected in series are connected in series.
  • a configuration in which the high-side switch 702YH and the low-side switch 702YL are connected in parallel is a star conversion leg.
  • connection point X of the high side switch 702XH and the low side switch 702XL is connected to the first neutral point NP1 or the second neutral point NP2, and the switch connection point Y of the high side switch 702YH and the low side switch 702YL is connected to the three-phase AC. Try to connect to one of each phase. Then, such three star conversion legs and at least one capacitor 703 are connected in parallel. By connecting three such star conversion legs in parallel with at least one capacitor, a positive star is a three-level converter that can output three types of voltages between the switch connection point Y and the neutral point. A conversion unit and a negative star conversion unit can be configured.
  • the power conversion device 101 may include a transformer.
  • the power conversion device 801 shown in FIG. 11 includes the transformer 103 similar to the transformer disclosed in Japanese Patent No. 6121582 as an AC connection unit. Also, the AC power converted from the DC power is directly connected to the three-phase AC system 111. The power converter 801 can omit the reactor 112 by providing the transformer 103.
  • the switch connection point of each star conversion leg of the positive-side star conversion unit 160P is connected to the terminals RP, SP, and TP of the transformer 103, and each switch connection point and the terminals RP, SP, and TP A unit converter 108 is provided between the two.
  • the switch connection point of each star conversion leg of the negative side star conversion unit 160N is connected to the terminals RN, SN, and TN of the transformer 103, respectively, and each switch connection point and the terminals RN, SN, A unit converter 109 is provided between the TN and the TN.
  • the transformer 103 that outputs a voltage to each star conversion leg is connected in series between the star conversion leg of the positive side star conversion unit 160P and the star conversion leg of the negative side star conversion unit 160N.
  • an AC voltage source may be inserted as an AC connection unit in the power converter.
  • AC voltage sources are connected in place of six windings of positive side secondary windings 106RP, 106SP, and 106TP, which will be described later, and negative side secondary windings 106RN, 106SN, and 106TN.
  • the power conversion device 801 is obtained by providing a transformer 103 in the power conversion device 1010 shown in FIG.
  • the transformer 103 includes iron cores 104R, 104S, 104T, primary windings 105RS, 105ST, 105TR, positive secondary windings 106RP, 106SP, 106TP, and negative secondary windings 106RN, 106SN, 106TN. I have.
  • the positive secondary winding 106RP is wound around the iron core 104R
  • the positive secondary winding 106SP is wound around the iron core 104S
  • the positive secondary winding 106TP is wound around the iron core 104T.
  • Positive side secondary windings 106RP, 106SP, 106TP are connected at one end to unit converter 108 of positive side power converter 131P via terminals RP, SP, TP, and at the other end, negative side secondary winding 106RN. , 106SN, 106TN. Further, the other ends of the positive side secondary windings 106RP, 106SP, and 106TP are connected to the connection point M and Y-connected.
  • the negative secondary winding 106RN is wound around the iron core 104R
  • the negative secondary winding 106SN is wound around the iron core 104S
  • the negative secondary winding 106TN is wound around the iron core 104T.
  • Negative secondary windings 106RN, 106SN, and 106TN have one end connected to unit converter 109 of negative power converter 131N via terminals RN, SN, and TN, and the other end connected to positive secondary winding 106RP. , 106SP, 106TP. Further, the other ends of the negative side secondary windings 106RN, 106SN, and 106TN are connected to the connection point M and Y-connected.
  • the neutral point of the positive secondary windings 106RP, 106SP and 106TP thus Y-connected and the neutral point of the negative secondary windings 106RN, 106SN and 106TN Y-connected are the connection points M. Electrically connected.
  • the positive side secondary windings 106RP, 106SP, 106TP and the negative side secondary windings 106RN, 106SN, 106TN are magnetically coupled so as to have opposite polarities for each phase. In this way, the DC magnetomotive force generated by the positive secondary windings 106RP, 106SP, 106TP and the DC magnetomotive force generated by the negative secondary windings 106RN, 106SN, 106TN can be offset, and the iron core 104R. , 104S, 104T can be prevented from generating DC magnetic flux.
  • primary windings 105RS, 105ST, and 105TR are wound around the iron cores 104R, 104S, and 104T.
  • Primary windings 105RS, 105ST, and 105TR are ⁇ -connected and connected to three-phase AC system 111.
  • the primary windings 105RS, 105ST, and 105TR are magnetically coupled to have the same polarity as the positive secondary windings 106RP, 106SP, and 106TP.
  • the same effect can be obtained when 105ST and 105TR are magnetically coupled so as to have the same polarity as the negative secondary windings 106RN, 106SN, and 106TN.
  • an AC connection unit is provided with a transformer 800 similar to the transformer disclosed in International Publication No. WO2010 / 116806, such as a power converter 901 shown in FIG. May be.
  • the transformer 800 is different from the transformer 103 in that the connection between the positive side secondary windings 106RP, 106SP, 106TP and the negative side secondary windings 106RN, 106SN, 106TN is different, and windings of different phases and magnetic The difference is that they are connected.
  • the transformer 800 the positive secondary winding 106RP and the negative secondary winding 106TN are connected, and the positive secondary winding 106SP and the negative secondary winding 106RN are connected, and the positive secondary winding.
  • It is a transformer in which the line 106TP and the negative secondary winding 106SN are connected.
  • the power conversion device 901 shown in FIG. 12 has a configuration in which a transformer 800 is inserted between the positive power conversion unit 130P and the negative power conversion unit 136N.
  • the negative power conversion unit 136N is different from the negative power conversion unit 130N illustrated in FIG. 1 in that the unit converter 109 is not included, but the other configurations are the same.
  • the alternating voltage waveform output from a positive side power converter and a negative side power converter was reverse polarity.
  • the AC voltage waveforms output from the positive power conversion unit 130P and the negative power conversion unit 136N have the same polarity.
  • the star conversion leg 153R of the positive side star conversion unit 150P and the negative side star conversion unit 150N and the unit converter 108 are connected to the DC voltage to be output between the terminal P and the terminal N, the transformer Control is performed so as to output a differential voltage of the voltage desired to be output to the secondary winding 106RN of 800.
  • the power converter 901 can output an arbitrary AC voltage and an arbitrary DC voltage.
  • the positive power converter 130P includes the unit converter 108, but the unit converter 108 is removed from the positive power converter 130P, and the negative power converter 136N is replaced by a unit.
  • a negative power converter 130N having the converter 109 may be replaced.
  • the output voltages of the two positive star conversion units 150P and the negative star conversion unit 150N may be different.
  • the star conversion legs 153R, 153S, and 153T of the positive side star conversion unit 150P are configured in series with two power semiconductor elements (switching elements) with a withstand voltage of 6.5 kV, and the star conversion legs 153R and 153S of the negative side star conversion unit 150N.
  • 153T has a power semiconductor element (switching element) 1-series configuration with a withstand voltage of 6.5 kV
  • a switch of the unit converter 108 has a power semiconductor element 1-series configuration with a withstand voltage of 3.3 kV
  • the output voltage of each capacitor is about 7.2 kV.
  • each secondary winding of the transformer 800 can be used in domestic distribution systems and motors.
  • the rated voltage of 6.6 kV can be output.
  • the transformer in this specification makes it a requirement of a transformer having the structure where a secondary winding is linked with AC magnetic flux.
  • AC power is converted to DC power
  • DC power is converted to AC power
  • the present invention is not limited thereto, and AC voltage is converted to AC voltage. (AC / AC converter) is also applicable.
  • AC / AC converter is also applicable.
  • An AC / AC converter can be configured.
  • the power conversion device 1001 shown in FIG. 13 connects the terminals P and the terminals N of the two power conversion devices in this way, and connects the capacitors of the two positive-side star conversion units 150P and 150P ′ in parallel by the conducting wire 611. In this configuration, two capacitors connected in parallel are replaced with one capacitor 159. Similarly, in the power conversion device 1001, the capacitors of the two negative star conversion units 150N and 150N ′ are connected in parallel by the conducting wire 611, and the two capacitors 159 connected in parallel are replaced with one capacitor 159.
  • the power conversion device 1001 includes star conversion legs 153R, 153S, in which the R phase, S phase, and T phase of the three-phase AC system 111 on the input side are respectively connected to the switch connection points of the high side switch and the low side switch.
  • switch connection points of the high-side switch and the low-side switch of the star conversion legs 153R ′, 153S ′, and 153T ′ are connected to the u-phase, v-phase, and w-phase of the three-phase AC system 111a on the output side has been described.
  • they may be connected to the u phase, v phase, and w phase of a three-phase AC motor, respectively.
  • AC power input to the positive side star conversion unit 1500P and the negative side star conversion unit 1500N is converted into star conversion legs 153R ′, 153S ′, which are connected to the output-side three-phase AC system 111a. It is supplied to the three-phase AC system 111a on the output side via 153T ′ and canceled. Therefore, the capacitor capacity can be further reduced than the capacitor capacity when the capacitors 159 are individually installed.
  • the DC current component of the arm current IRP flowing through the leg 107R is common to the positive star conversion unit 150P and the unit converter 108, and the DC current component of the arm current IRN is the negative star component.
  • the converter 150N and the unit converter 108 are common. The same applies to the leg 107S and the leg 107T. Therefore, the ratio of the DC power output from the positive side star conversion unit 150P, the negative side star conversion unit 150N and the unit converters 108 and 109 is the positive side star conversion unit 150P, the negative side star conversion unit 150N and the unit converter 108, 109 is equal to the output DC voltage ratio.
  • the received AC power is equal to the output DC power, so the ratio of the AC power received between the positive star conversion unit 150P, the negative star conversion unit 150N and the unit converters 108 and 109 is the positive star conversion unit 150P.
  • the DC voltage ratio output from the negative star conversion unit 150N and the unit converters 108 and 109 needs to be substantially the same.
  • the conducting wire 611 since the conducting wire 611 becomes a path that bypasses the direct current component, it is not necessary to be restricted by the restriction. Therefore, there is an effect that the direct current can be reduced by receiving more AC power at the positive side star conversion unit 1500P and the negative side star conversion unit 1500N and reducing the AC power of the unit converters 108 and 109.
  • FIG. 14A the horizontal axis represents time and the vertical axis represents voltage
  • FIG. 14B is a graph showing the voltage waveform 1013 of the output voltage of the unit converter 108 connected to the star conversion leg 153R, with the horizontal axis representing time and the vertical axis representing voltage.
  • the star conversion leg 153R preferably has a single pulse waveform as the output voltage waveform. Output a simple pulse.
  • the control circuit (not shown) of the star conversion leg 153R controls the switch of the star conversion leg 153R and causes the star conversion leg 153R to output a single pulse. Therefore, the unit converter 108 is controlled so as to output a difference voltage between a voltage desired to be output between the terminal 102R and the terminal P and an output voltage of the star conversion leg 153R, for example, as in the voltage waveform 1013.
  • the total output voltage of each unit converter 108 is controlled in this way.
  • the output voltage of the unit converter 108 is 1 ⁇ 2 of the output voltage to be output.
  • the AC fundamental wave component of the voltage waveform 1013 is clearly smaller than the half voltage of the voltage waveform 1011 to be output. Since the AC power of the unit converter 108 is reduced, the DC power output from the unit converter 108 is reduced, and the DC current of the unit converter 108 can be reduced. Furthermore, since the star conversion leg 153R is one-pulse switching, there is an advantage that switching loss can be reduced. Further, in the power factor 1 operation, the star conversion leg 153R performs zero current switching, and ideally no switching loss occurs. As described above, the power conversion device 1001 can be expected to further reduce the loss.
  • the high side switch 200H and the low side switch 200L constituting the star conversion legs 153R, 153S, and 153T of the positive side star conversion unit 1500P and the negative side star conversion unit 1500N.
  • the side switching element 201H and the low side switching element 201L are made to have a high breakdown voltage IGBT, and the high side switch 200H and the low side switch 200L are constituted by low voltage low loss switching elements 250H and 250L such as FETs formed of GaN on a Si substrate.
  • the unit converters 108 and 109 may be replaced by the unit converters 188 and 189.
  • the transformer 103 is provided instead of the reactor.
  • each star conversion leg 153R, 153S, 153T having a relatively small number of switching times.
  • a switch a high voltage IGBT (switching element) with small conduction loss but large switching loss is used, and a low voltage low loss switching element with small switching loss is used as a switch of the unit converters 188 and 189 having a relatively large switching frequency. Therefore, low-loss power conversion can be performed without using a special technique such as series connection of power semiconductor elements.
  • the FET formed of GaN is a double gate type bidirectionally conductive FET, even lower loss can be realized.
  • the FET is formed on inexpensive Si, the economic burden is small.
  • the positive side star conversion unit 1500P and the negative side star conversion unit 1500N of the power conversion device 1001 are two-level converters, but the positive side star conversion unit 1500P and the negative side of the power conversion device 1001 are the same as in the above embodiment.
  • the star conversion unit 1500N can be a three-level converter.
  • the power conversion device 1301 illustrated in FIG. 16 includes a positive-side star conversion unit 1500P, a negative-side star conversion unit 1500N that are three-level converters, a positive-side transformer 103, and a negative-side transformer 103. Yes.
  • the positive side star conversion unit 1800P includes a star conversion leg 154R, 154S, 154T, a star conversion leg 154R ′, 154S ′, 154T ′, and a high side capacitor 159H and a low side capacitor 159L connected in series.
  • the capacitor series body thus formed is connected in parallel.
  • the star conversion legs 154R, 154S, and 154T have a configuration in which four of a high / high side switch SA, a high / low side switch SB, a low / high side switch SC, and a low / low side switch SD are connected in series, and the high / low side switch SB and the low / high side switch
  • the switch connection points 152R, 152S, and 152T between the SCs are connected to the terminals RP, SP, and TP of the input-side transformer 103, and the R-phase, S-phase, and T-phase of the input-side three-phase AC system 111 are input-side.
  • the star conversion legs 154R ′, 154S ′, and 154T ′ have a configuration in which a high-high side switch SA, a high-low side switch SB, a low-high side switch SC, and a low-low side switch SD are connected in series.
  • Switch connection points 152R ′, 152S ′, and 152T ′ between the low-high side switches SC are connected to the terminals RP, SP, and TP of the output-side transformer 103, respectively, and the u-phase and v-phase of the three-phase AC system 111 on the output side.
  • W-phase are connected to the switch connection points 152R ′, 152S ′, 152T ′ of the star conversion legs 154R ′, 154S ′, 154T ′ via the transformer 103 on the output side, respectively.
  • the star conversion legs 154R, 154S, and 154T and the star conversion legs 154R ′, 154S ′, and 154T ′ are diode series bodies in which two diodes D are connected in series, the high-side switch SA and the high-low side switch SB. A connection point and a connection point between the low-high side switch SC and the low-low side switch SD are connected in antiparallel.
  • condenser 159L are connected by the conducting wire 611b.
  • the negative side star conversion unit 1800N has the same configuration.
  • the star conversion legs 154R, 154S, 154T, 154R ′, 154S ′, and 154T ′ of the positive side star conversion unit 1800P can output the first predetermined voltage, the third predetermined voltage, or zero
  • the star conversion legs 154R, 154S, 154T, 154R ′, 154S ′, and 154T ′ of the negative star conversion unit 1800N can output the second predetermined voltage, the third predetermined voltage, or zero.
  • the first predetermined voltage and the second predetermined voltage may be the same voltage, and the third predetermined voltage and the fourth predetermined voltage may be the same voltage.
  • the predetermined voltage may be a different value.
  • the output voltages of the high side capacitor 159H and the low side capacitor 159L of the positive side star conversion unit 1800P are set to 1.8 kV
  • the output voltages of the high side capacitor 203H and the low side capacitor 203L of the negative side star conversion unit 1800N are set to 0.
  • the positive side star conversion unit 1800P outputs 1.8 kV (first predetermined voltage), 3.6 kV (third predetermined voltage), 0, and the negative side star conversion unit 1800N outputs 1. 2 kV (second predetermined voltage), 0.6 kV (fourth predetermined voltage), and 0 can be output.
  • the power conversion device 1301 converts the AC voltage of the three-phase AC system 111, and converts the AC voltage represented by nine levels in increments of 0.6 kV into the u-phase, v-phase, and w-phase of the three-phase AC on the output side. Can be output to each phase.
  • the power conversion device of the present invention is, for example, a power generation system for supplying power generated by a power generator such as sunlight or wind power to an electric power system, an AC motor, or a DC motor. It is used for a motor drive system for driving the power system, a power interconnection system for connecting power systems to each other, and the like. In a power generation system, for example, it is used as an inverter that converts DC power generated by a generator into AC power.
  • a capacitor is inserted between the terminal P and the terminal N of the power conversion device 101 shown in FIG. 1, and the terminal P and the terminal N are used as input terminals for the DC voltage generated by the generator.
  • a generator is connected to terminal P and terminal N, terminals 102R, 102S, and 102T are connected to a power system, and a generator and a power system are connected via a power converter.
  • the power generation system includes a control device that causes the power conversion device 101 to convert a DC voltage input to the power conversion device 101 into a voltage obtained by adding a predetermined voltage to the system voltage and output the power voltage from the power conversion device 101 to the power system. May be.
  • a power source and a motor are connected via the power conversion device of the present invention, and an inverter and a power source for converting a DC voltage of a DC voltage source as a power source into an AC voltage and supplying the AC voltage to the AC motor.
  • Converter for converting the AC voltage of the AC voltage source into a DC voltage and supplying it to the DC motor AC / AC converter for converting the AC voltage of the power system as a power source into a predetermined AC voltage and supplying it to the motor, etc.
  • the motor drive system may include a control device that controls the output voltage of the power conversion device to control the rotation speed of the motor.
  • the power systems are connected via the power conversion device of the present invention, and power is transmitted and received between the power systems.
  • two power conversion devices 101 shown in FIG. 1 are prepared, and terminals P and terminals N of one power conversion device 101 and another power conversion device 101 are connected by electric wires, and between the power conversion devices 101. May be transmitted by direct current and the two power systems may be linked.
  • an AC / AC converter type power conversion device such as the power conversion device 1001 illustrated in FIG. 13 may be used, and the two power systems may be directly linked via the power conversion device 1001.

Abstract

小型の電力変換装置、発電システム、モータドライブシステム及び電力連系システムを提供する。電力変換装置(101)は、三相交流の各相がスター結線された構成を有する電力変換装置(101)であって、直列に接続された2つのスイッチを含む3つのスター変換レグ(153R、153S、153T)と少なくとも1つのコンデンサ(159)とが並列に接続されたスター変換部(150P、150N)と、各スター変換レグ(153R、153S、153T)と直列に接続された単位変換器(108、109)とを備え、3つのスター変換レグ(153R、153S、153T)が接続された接続点(NP1、NP2)がスター結線の中性点であり、各スター変換レグ(153R、153S、153T)の2つのスイッチの間のスイッチ接続点(151R、151S、151T)に、三相交流の各相が単位変換器(108、109)を介してそれぞれ接続されている。

Description

電力変換装置、発電システム、モータドライブシステム及び電力連系システム
 本発明は、電力変換装置、発電システム、モータドライブシステム及び電力連系システムに関する。
 フィルタなしで、正弦波に近い電圧を出力する電力変換装置として、単位変換器をカスケードに直列に接続したモジュラー・マルチレベル変換器(以下、MMCと呼ぶ。)が知られている。MMCはスイッチング素子の耐圧を超える高電圧を出力できるメリットがあり(非特許文献1)、数百kVクラスの直流送電用途で広く使われている。MMCでは、少なくともゼロと所定電圧との2つの電圧をスイッチングにより出力できる単位変換器を直列に接続し、各単位変換器の出力電圧を足し合わせることで、高電圧の電力を変換できる。
萩原誠・赤木泰文:「モジュラー・マルチレベル変換器(MMC)のPWM制御法と動作検証」、電気学会論文誌D、128巻7号、pp.957-965
 MMCの各単位変換器は、コンデンサを有しており、スイッチングにより当該コンデンサ電圧もしくはゼロ電圧を出力する。コンデンサの出力が変動すると、単位変換器の出力も変動し、MMCが精度よく電力を変換できなくなる恐れがある。従来は、コンデンサの容量を大きくすることで、コンデンサの出力電圧の変動を抑制していた。そのため、容量の大きい大型のコンデンサを用いる必要があり、MMCの小型化が難しいという問題があった。さらに、このような短所を有することから、MMCの適用範囲は、事実上、数百kVクラスの直流送電など素子耐圧の十倍以上の電圧用途に限られていた。
 そこで、本発明は、上記のような問題に鑑みてなされたものであり、小型の電力変換装置、発電システム、モータドライブシステム及び電力連系システムを提供することを目的とする。
 本発明による電力変換装置は、三相交流の各相がスター結線された構成を有する電力変換装置であって、直列に接続された2つのスイッチを含む3つのスター変換レグと、少なくとも1つのコンデンサとを含むスター変換部と、前記スター変換部の各前記スター変換レグと直列に接続された単位変換器とを備え、前記スター変換部は、3つの前記スター変換レグと、前記コンデンサとが並列に接続され、各前記スター変換レグの2つの前記スイッチの間のスイッチ接続点に、前記三相交流の各相が前記単位変換器を介してそれぞれ接続され、3つの前記スター変換レグが接続された接続点が前記スター結線の中性点であり、前記単位変換器は、各前記スター変換レグの前記スイッチ接続点にそれぞれ接続されている。
 本発明による電力変換装置は、三相交流の各相がスター結線された構成を有する電力変換装置であって、直列に接続された2つのスイッチを含む3つのスター変換レグと、少なくとも1つのコンデンサとを含む正側スター変換部と負側スター変換部とを備え、前記正側スター変換部は、3つの前記スター変換レグと、前記コンデンサとが並列に接続され、各前記スター変換レグの2つの前記スイッチの間のスイッチ接続点に前記三相交流の各相がそれぞれ接続され、3つの前記スター変換レグが接続された接続点が前記スター結線の第1中性点であり、各前記スター変換レグの前記スイッチ接続点と前記第1中性点との間に、第1所定電圧又はゼロを出力し、前記負側スター変換部は、3つの前記スター変換レグと、前記コンデンサとが並列に接続され、各前記スター変換レグの2つの前記スイッチの間のスイッチ接続点に前記三相交流の各相がそれぞれ接続され、3つの前記スター変換レグの接続点が前記スター結線の第2中性点であり、各前記スター変換レグの前記スイッチ接続点と前記第2中性点との間に、前記第1所定電圧と異なる第2所定電圧又はゼロを出力する。
 本発明による電力変換装置は、三相交流の各相がスター結線された構成を有する電力変換装置であって、直列に接続された2つのスイッチを含む3つのスター変換レグと、少なくとも1つのコンデンサとを含み、3つの前記スター変換レグと、前記コンデンサとが並列に接続され、各前記スター変換レグと前記コンデンサとが接続された接続点が前記スター結線の中性点である2つのスター変換部と、前記スター変換レグの2つの前記スイッチの間のスイッチ接続点を介して前記スター変換レグと直列に接続された単位変換器とを備え、一の前記スター変換部は、各前記スター変換レグの前記スイッチ接続点に、前記三相交流の各相が前記単位変換器を介してそれぞれ接続されており、他の前記スター変換部は、各前記スター変換レグの前記スイッチ接続点に、前記三相交流とは異なる三相交流の各相が前記単位変換器を介してそれぞれ接続されており、一の前記スター変換部と他の前記スター変換部が互いに接続されている。
 本発明による発電システムは、請求項1~25のいずれか1項に記載の電力変換装置を介して、発電機と電力系統とを接続する。
 本発明によるモータドライブシステムは、請求項1~25のいずれか1項に記載の電力変換装置を介して、電源とモータとを接続する。
 本発明による電力連系システムは、請求項1~25のいずれか1項に記載の電力変換装置を介して、電力系統同士を接続する。
 本発明の電力変換装置では、スター変換部が3つのスター変換レグと、少なくとも1つのコンデンサとが並列に接続され、3つのスター変換レグの接続点が中性点である構成であるので、スター変換部の各スター変換レグを流れる交流電流の合計値がゼロであり、理想的には交流電力の変動量をほぼゼロにでき、コンデンサの電圧の変動を抑制することができる。よって、電力変換装置では、スター変換部のコンデンサの電圧の変動を抑制できるので、スター変換部のコンデンサに容量の小さいコンデンサを用いることができ、小型化でき、小型の電力変換装置、発電システム、モータドライブシステム及び電力連系システムを提供できる。
本発明の実施形態に係る電力変換装置の全体構成を示す概略図である。 図2A、図2Bは、本発明の実施形態の単位変換器を示す概略図であり、図2Cは本発明の他の実施形態の単位変換器を示す概略図である。 本発明の電力変換装置、スター変換レグ、及び、単位変換器の出力電圧波形を示す図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の単位変換器を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 図14Aは、端子102Rと端子Pとの間に出力したい電圧の電圧波形と、正側スター変換部1500Pのスター変換レグ153Rの出力電圧の電圧波形とを示すグラフであり、図14Bは、スター変換レグ153Rに接続された単位変換器108の出力電圧の電圧波形を示すグラフである。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。 本発明の他の実施形態の電力変換装置の全体構成を示す概略図である。
(1)本発明の実施形態の電力変換装置の全体構成
 図1に示すように、電力変換装置101は、端子102R、102S、102Tが、変圧器(図1には図示せず)を介して三相交流のR相、S相、T相にそれぞれ接続され、三相交流系統111に連系している。電力変換装置101は、端子Pと端子Nとの間に、直流装置110が接続されている。直流装置110は、抵抗器のような直流負荷や、直流電源、他の電力変換装置などを代表して描いたものである。このように電力変換装置101は、三相交流系統111の交流電力を直流電力に変換して直流装置110に供給したり、直流装置110が出力した直流電力を交流電力に変換して三相交流系統111に供給したり、三相交流モータに供給したりできる電力変換装置であり、MMCと同様に正弦波に近い電圧を出力できる。
 電力変換装置101は、正側電力変換部130Pと負側電力変換部130Nとで構成される。正側電力変換部130Pと負側電力変換部130Nとは、三相交流の各相と、交流接続部としての端子102R、102S、102Tを介して接続されている。正側電力変換部130Pは、正側スター変換部150Pと、3つの単位変換器108とを備え、負側電力変換部130Nは、負側スター変換部150Nと、3つの単位変換器109とを備えている。
 正側スター変換部150Pと負側スター変換部150Nとは同様の構成であるので、ここでは、代表して正側スター変換部150Pについて説明する。正側スター変換部150Pは、三相フルブリッジ構成の電力変換器であり、3つのスター変換レグ153R、153S、153Tと、コンデンサ159とを備え、これらが接続点NP1と接続点NP3との間(負側スター変換部150Nでの場合は接続点NP4と接続点NP2との間)で並列に接続された構成である。スター変換レグ153R、153S、153Tは、ハイサイドスイッチ200Hと、ローサイドスイッチ200Lとを備え、これらが直列に接続された構成である。
 正側スター変換部150Pは、スター変換レグ153Rのハイサイドスイッチ200Hと、ローサイドスイッチ200Lとの間のスイッチ接続点151Rが、後述する単位変換器108(負側スター変換部150Nでは単位変換器109)と、リアクトル112とを介して、端子102Rと接続され、三相交流のR相に接続されている。3つのスター変換レグの接続点と単位変換器が接続されたスイッチ接続点の間をアームとも呼び、各アームに1つずつスイッチを備えている。
 同様に、正側スター変換部150Pは、スター変換レグ153Sのハイサイドスイッチ200Hと、ローサイドスイッチ200Lとの間の中間にあるスイッチ接続点151Sが、単位変換器108と、リアクトル112と、端子102Sとを介して、三相交流のS相に接続され、スター変換レグ153Tのハイサイドスイッチ200Hと、ローサイドスイッチ200Lとの間のスイッチ接続点151Tが、単位変換器108と、リアクトル112と、端子102Tとを介して、三相交流のT相に接続されている。
 ここで、電力変換装置101では、接続点NP1と接続点NP2との間で、スター変換レグ153R、単位変換器108、リアクトル112、端子102R、リアクトル112、単位変換器109、スター変換レグ153Rがこの順に直列に接続されている。同様に、接続点NP1と接続点NP2との間で、スター変換レグ153S、単位変換器108、リアクトル112、端子102S、リアクトル112、単位変換器109、スター変換レグ153Sが直列に接続され、スター変換レグ153T、単位変換器108、リアクトル112、端子102T、リアクトル112、単位変換器109、スター変換レグ153Tが直列に接続されている。このように、正側スター変換部150Pのスター変換レグ153R、153S、153Tと、負側スター変換部150Nのスター変換レグ153R、153S、153Tとの間に、単位変換器108、109が直列に接続されている。本実施形態では、接続点NP1と接続点NP2との間で直列に接続されたこれらの構成要素群をレグ107R、レグ107S、レグ107Tとも呼ぶ。レグ107R、レグ107S、レグ107Tは並列に接続されている。
 電力変換装置101の正側電力変換部130Pでは、スター変換レグ153R、153S、153Tの接続点NP1で三相交流の各相が接続されており、三相交流の各相がスター結線された構成である。このことは、負側電力変換部130Nでも同様であり、接続点NP2で三相交流の各相がスター結線された構成となっている。接続点NP1、NP2は、並列に接続された各スター変換レグ153R、153S、153T(レグ107R、レグ107S、レグ107T)の接続点となっているだけでなく、スター結線の中性点(以下、接続点NP1を第1中性点NP1、接続点NP2を第2中性点NP2とも呼ぶ。)ともなっている。
 ここで、端子102Rと第1中性点NP1の間を流れる電流をアーム電流IRP、端子102Sと第1中性点NP1の間を流れる電流をアーム電流ISP、端子102Tと第1中性点NP1の間を流れる電流をアーム電流ITPとすると、電力変換装置101の正側電力変換部130P側では、第1中性点NP1で三相交流の各相がスター結線されているので、正側電力変換部130P側のアーム電流(正相交流成分)の合計値はゼロ(IRP+ISP+ITP=0)となる。そのため、正側スター変換部150Pのコンデンサ159を流れる交流電流成分も理想的にはゼロとなる。
 同様に、端子102Rと第2中性点NP2の間を流れる電流をアーム電流IRN、端子102Sと第2中性点NP2の間を流れる電流をアーム電流ISN、端子102Tと第2中性点NP2の間を流れる電流をアーム電流ITNとすると、電力変換装置101の負側電力変換部130N側では、第2中性点NP2で三相交流の各相がスター結線されているので、負側電力変換部130N側のアーム電流(正相交流成分)の合計値はゼロ(IRN+ISN+ITN=0)となる。そのため、負側スター変換部150Nのコンデンサ159を流れる交流電流も理想的にはゼロとなる。なお、端子Pは、第1中性点NP1から引き出され、端子Nは、第2中性点NP2から引き出されている。なお、図1では、便宜上、端子P、端子Nを第1中性点NP1又は第2中性点NP2と同電位の場所から引き出している。
 続いて、図2A、2Bを用いて単位変換器108、109について説明する。図2Aに示すように、単位変換器108は、例えばIGBTでなるハイサイドスイッチング素子201H及びハイサイド還流ダイオード202Hで構成されたハイサイドスイッチ200Hと、例えばIGBTでなるローサイドスイッチング素子201L及びローサイド還流ダイオード202Lで構成されたローサイドスイッチ200Lと、コンデンサ204とを備える双方向チョッパ回路である。ハイサイドスイッチ200Hは、ハイサイドスイッチング素子201Hの正極(IGBTではコレクタ)側とハイサイド還流ダイオード202Hの負極側とが接続され、ハイサイドスイッチング素子201Hの負極(IGBTではエミッタ)側とハイサイド還流ダイオード202Hの正極側とが接続されて、ハイサイドスイッチング素子201H及びハイサイド還流ダイオード202Hが逆並列に接続された構成である。ローサイドスイッチ200Lでも同様に、ローサイドスイッチング素子201L及びローサイド還流ダイオード202Lが逆並列に接続された構成である。
 このように、ハイサイドスイッチ200H、ローサイドスイッチ200Lは、ハイサイドスイッチング素子201H、ローサイドスイッチング素子201Lにハイサイド還流ダイオード202H、ローサイド還流ダイオード202Lを逆並列に接続することで、IGBTの負極側から正極側に電圧が印加されたとき、ハイサイド還流ダイオード202H、ローサイド還流ダイオード202Lに電流が流れるようにし、IGBTの負極から正極に電流が流れることを防止して、IGBTを保護できる。なお、ハイサイドスイッチング素子201H、ローサイドスイッチング素子201Lの正極側を、それぞれハイサイドスイッチ200H、ローサイドスイッチ200Lの正極側とする。なお、正側スター変換部150P、負側スター変換部150Nのハイサイドスイッチ200H及びローサイドスイッチ200Lも、単位変換器108のハイサイドスイッチ200H及びローサイドスイッチ200Lと同様の構成である。
 単位変換器108は、ハイサイドスイッチ200Hの負極側と、ローサイドスイッチ200Lの正極側とが接続されて、ハイサイドスイッチ200Hと、ローサイドスイッチ200Lとが直列に接続されている。ハイサイドスイッチ200H及びローサイドスイッチ200Lは、図示しない制御回路に接続されており、制御回路からの制御信号によってオン・オフされるようになされている。コンデンサ204は、直列に接続されたハイサイドスイッチ200H及びローサイドスイッチ200Lと並列に接続されている。
 単位変換器108は、コンデンサ204とハイサイドスイッチ200Hとの接続点Xから正極端子が引き出され、ハイサイドスイッチ200Hとローサイドスイッチ200Lとのスイッチ接続点Yから負極端子が引き出されている。
 単位変換器108は、ハイサイドスイッチ200Hがオフで、ローサイドスイッチ200Lがオンのとき、正極端子と負極端子間(単位変換器内のレグの両端)に、アーム電流IRP、ISP、ITPに依存せずコンデンサ204の電圧と概ね等しい電圧を出力する。本明細書ではこの状態を、単位変換器108がハイであると称する。なお、特に断りがない限り、本明細書でコンデンサの電圧といった場合、コンデンサが充電されたときのコンデンサの電圧を指し、単位変換器の出力電圧といった場合はハイである場合の出力を指す。
 単位変換器108は、ハイサイドスイッチ200Hがオンで、ローサイドスイッチ200Lがオフのとき、正極端子と負極端子間が短絡されて、端子間電圧がアーム電流IRP、ISP、ITPに依存せず概ねゼロと等しくなる。本明細書ではこの状態を、単位変換器108がローであると称する。
 単位変換器108は、ハイサイドスイッチ200Hと、ローサイドスイッチ200Lが共にオンの場合、コンデンサ204が短絡されてしまう。そのため、このような動作は禁止する。
 単位変換器108は、ハイサイドスイッチ200Hと、ローサイドスイッチ200Lが共にオフの場合、正極端子と負極端子間の電圧が、単位変換器108を流れる電流の極性に依存する。電流が正の場合(正極端子から負極端子に電流が流れる場合)、出力電圧はコンデンサ204の電圧に概ね等しい。また、電流が負の場合(負極端子から正極端子に電流が流れる場合)、端子間の出力電圧は概ねゼロに等しい。このように単位変換器108は、スイッチの制御により、ハイと、ローとに制御できる。
 図2Bに示す単位変換器109は、単位変換器108とは正極端子及び負極端子が引き出された位置のみが異なり、他の構成は単位変換器108と同様である。単位変換器109では、正極端子がスイッチ接続点Yから引き出され、負極端子がローサイドスイッチ200Lとコンデンサ204との接続点Zから引き出されている。単位変換器109も、スイッチングの操作により、ハイとローとに制御できる。
 単位変換器109は、ハイサイドスイッチ200Hがオンで、ローサイドスイッチ200Lがオフのとき、正極端子と負極端子間(単位変換器内のレグの両端)に、アーム電流IRN、ISN、ITNに依存せずコンデンサ204の電圧と概ね等しい電圧を出力し、ハイとなる。
 単位変換器109は、ハイサイドスイッチ200Hがオフで、ローサイドスイッチ200Lがオンのとき、正極端子と負極端子間が短絡されて、端子間電圧がアーム電流IRN、ISN、ITNに依存せず概ねゼロと等しくなり、ローとなる。各スイッチが共にオンのときと、共にオフのときとの動作は単位変換器108と同様である。なお、図2Cに示す単位変換器108aのように、ハイサイドスイッチング素子205H、ローサイドスイッチング素子205Lとして双方向導通可能なFETやMOS-FETを用い、所謂同期整流をすれば、単位変換器108、109から還流ダイオード(ハイサイド還流ダイオード202H、ローサイド還流ダイオード202L)を省略できる。
 このような単位変換器108は、正極端子が正側スター変換部150Pのスイッチ接続点151R、151S、151Tに接続され、負極端子がリアクトル112に接続されている。単位変換器109は、正極端子がリアクトル112に接続され、負極端子が負側スター変換部150Nのスイッチ接続点151R、151S、151Tにされている。
 次に、正側スター変換部150Pのスター変換レグ153R、153S、153Tの動作について説明する。スター変換レグ153R、153S、153Tのハイサイドスイッチ200H及びローサイドスイッチ200Lは、図示しない制御回路に接続されており、制御回路によりオン・オフ制御できる。スター変換レグ153R、153S、153Tの動作は、同様であるので、スター変換レグ153Rを代表として説明する。
 スター変換レグ153Rの動作は、単位変換器108と同様である。スター変換レグ153Rは、ハイサイドスイッチ200Hがオフで、ローサイドスイッチ200Lがオンのとき、第1中性点NP1とスイッチ接続点151R(スター変換レグ153Sではスイッチ接続点151Sで、スター変換レグ153Tではスイッチ接続点151T)との間に、アーム電流IRP(スター変換レグ153Sではアーム電流ISP、スター変換レグ153Tではアーム電流ITP)に依存せずコンデンサ159の電圧と概ね等しい第1所定電圧を出力し、ハイとなる。
 スター変換レグ153Rは、ハイサイドスイッチ200Hがオンで、ローサイドスイッチ200Lがオフのとき、第1中性点NP1とスイッチ接続点151R(スター変換レグ153Sではスイッチ接続点151Sで、スター変換レグ153Tではスイッチ接続点151T)との間が短絡されて、ローとなる。ハイサイドスイッチ200Hとローサイドスイッチ200Lとが他の状態のときの動作も単位変換器108と同様である。
 負側スター変換部150Nのスター変換レグ153R、153S、153Tの動作は、単位変換器109と同様である。すなわち、スター変換レグ153Rは、ハイサイドスイッチ200Hがオンで、ローサイドスイッチ200Lがオフのとき、スイッチ接続点151R(スター変換レグ153Sではスイッチ接続点151Sで、スター変換レグ153Tではスイッチ接続点151T)と第2中性点NP2との間に、アーム電流IRN(スター変換レグ153Sではアーム電流ISN、スター変換レグ153Tではアーム電流ITN)に依存せずコンデンサ159の電圧と概ね等しい第2所定電圧を出力し、ハイとなる。スター変換レグ153Rは、ハイサイドスイッチ200Hがオフで、ローサイドスイッチ200Lがオンのとき、スイッチ接続点151R(スター変換レグ153Sではスイッチ接続点151Sで、スター変換レグ153Tではスイッチ接続点151T)と第2中性点NP2との間が短絡されて、ローとなる。ハイサイドスイッチ200Hとローサイドスイッチ200Lとが他の状態のときの動作も単位変換器109と同様である。なお、本実施形態では、正側スター変換部150P、負側スター変換部150Nのコンデンサ159と、単位変換器108、109のコンデンサ204とを同じものを用いているので、第1所定電圧及び第2所定電圧と、単位変換器108、109とがハイのときの出力電圧は概略等しい値である。
 このように、正側スター変換部150Pでは、第1中性点NP1が正極端子となり、スイッチ接続点151R、151S、151Tが負極端子となり、負側スター変換部150Nでは、スイッチ接続点151R、151S、151Tが正極端子となり、第2中性点NP2が負極端子となる。正側スター変換部150Pのスイッチ接続点151R、151S、151Tには、単位変換器108が接続され、負側スター変換部150Nのスイッチ接続点151R、151S、151Tには、単位変換器109が接続されている。このとき、各レグ107R、107S、107Tでは、各構成要素がすべて順方向に直列に接続されている。ここで、「順方向に」とは、構成要素に正極と負極の区別がある場合に、一の構成要素の正極端子と他の構成要素の負極端子とが接続され、構成要素の正極端子同士、又は、構成要素の負極端子同士が接続されていないことを意味している。
 MMCの単位変換器のコンデンサは、コンデンサを流れる電流が変動すると、コンデンサに流入する電力も変動し、それに伴いコンデンサの出力電圧が変動する。そのため、従来、MMCでは、単位変換器のコンデンサの容量を大きくして、コンデンサに蓄えられた電荷総量に対する電荷の変動量の割合を小さくすることで、出力電圧の変動を抑制していた。これに対して、本発明の電力変換装置101では、正側スター変換部150Pを流れる各アーム電流IRP、ISP、ITPの合計値、及び、負側スター変換部150Nを流れる各アーム電流IRN、ISN、ITN合計値は理想的にはゼロ(交流基本波正相成分の和がゼロ)であるので、理想的には交流電力の変動量をほぼゼロにでき、コンデンサの電圧の変動を抑制することができる。そのため、正側スター変換部150P、負側スター変換部150Nでは、コンデンサ159の電圧の変動を抑制できるので、コンデンサ159として容量の小さいコンデンサを用いることができる。よって、正側スター変換部150P、負側スター変換部150Nは、MMCの単位変換器よりもコンデンサが小さく、装置を小型化できる。
 リアクトル112は、各レグ107R、107S、107Tの第1中性点NP1、第2中性点NP2間の電圧であるレグ電圧VR、VS、VTが不一致である期間において、レグ107R、107S、107Tに過電流が流れてしまうことを抑制するために、各レグ107R、107S、107Tにそれぞれ設けている。また、リアクトル112は、レグ107R、107S、107Tで発生するスイッチング周波数の信号を減衰させる。リアクトル112は、単位変換器108、109と端子102R、102S、102Tとの間にそれぞれ設けているが、単位変換器108、109と各スター変換レグ153R、153S、153Tのスイッチ接続点151R、151S、151Tとの間に設けることもできる。
 続いて、このような電力変換装置101の動作を、直流から交流に変換する場合と、交流から直流に変換する場合とに分けて説明する。まずは、電力変換装置101によって直流から交流に変換する場合について説明する。この場合、直流装置110は、直流送電線(電力変換装置101が直流送電線から見て受電側の電力変換装置である場合)や、直流電源、回生制動しているモータドライブ用インバータなどを想定している。
 各レグの動作は同様であるので、ここではレグ107Rに注目して説明する。そして、コンデンサ159、204は予め定められた直流電圧Vに充電済みであり、直流装置110により、端子Pには正の直流電圧+Vが印加され、端子Nには負の直流電圧-Vが印加されている(レグ電圧VR=2V)ものとする。
 ここで、図3には、端子102Rから出力される電圧の電圧波形1112(但し、端子102Rに接続される外部回路のインピーダンスが十分に大きい場合。インピーダンスが小さいと外部の交流電圧源とインピーダンス分圧した電圧となる)と、正側スター変換部150Pのスター変換レグ153Rの出力電圧の電圧波形1111psと、単位変換器108の出力電圧の電圧波形1111pcと、負側スター変換部150Nのスター変換レグ153Rの出力電圧の電圧波形1111nsと、単位変換器109の出力電圧の電圧波形1111ncとを示している。図3の横方向は時間であり、縦方向は出力電圧である。端子102Rからの出力電圧値(交流相電圧)は、負側スター変換部150Nのスター変換レグ153Rの出力電圧値と単位変換器109の出力電圧値との合計値から、正側スター変換部150Pのスター変換レグ153Rの出力電圧値と単位変換器108の出力電圧値との合計値を減算した値となる。
 具体的には、電力変換装置101は、例えば、単位変換器109のみハイのとき、端子102Rは+Vを出力でき、負側スター変換部150Nのスター変換レグ153Rと単位変換器109とがハイのとき、端子102Rから+2Vを出力できる。一方で、電力変換装置101は、例えば、単位変換器108のみハイのとき、端子102Rは-Vを出力でき、正側スター変換部150Pのスター変換レグ153Rと単位変換器109とがハイのとき、端子102Rから-2Vを出力できる。正側スター変換部150P及び負側スター変換部150Nのスター変換レグ153Rと単位変換器108、109とがすべてハイ又はすべてローのとき、電力変換装置101は、端子102Rから0を出力する。
 したがって、正側スター変換部150Pのスター変換レグ153Rと、単位変換器108と、負側スター変換部150Nのスター変換レグ153Rと、単位変換器109とが、図3に示す電圧波形1111ps、1111pc、1111ns、1111ncを出力できるように、正側スター変換部150Pのスター変換レグ153R、単位変換器108、負側スター変換部150Nのスター変換レグ153R、及び、単位変換器109のハイ、ローを制御することで、電力変換装置101は、端子102Rから図3の電圧波形1112のような交流電圧を出力できる。なお、図3に示す電圧波形1111ps、1111pc、1111ns、1111ncは、正側スター変換部150Pのスター変換レグ153Rと、単位変換器108と、負側スター変換部150Nのスター変換レグ153Rと、単位変換器109の出力電圧をPWM(Pulse Width Modulation:パルス幅変調)制御することで得ることができる。
 次に、電力変換装置101によって交流から直流に変換する場合ついて説明する。この場合、直流装置110は、直流送電線(電力変換装置101が直流送電線から見て送電側の電力変換装置である場合)や、直流負荷、駆動しているモータドライブ用インバータなどを想定している。
 この場合、直流装置110に直流電力が出力される。直流装置110にかかる直流電圧は、正側スター変換部150Pのスター変換レグ153Rの出力電圧と、単位変換器108の出力電圧と、負側スター変換部150Nのスター変換レグ153Rの出力電圧と、単位変換器109の出力電圧との合計値である。よって、正側スター変換部150P及び負側スター変換部150Nのスター変換レグ153Rと単位変換器108、109とのハイ、ローを制御することで、直流装置110にかかる直流電圧を調整できる。
 一方、直流装置110を流れる電流は、各レグ107R、107S、107Tを流れるアーム電流の和である。実際上、正側電力変換部130P側のアーム電流和(IRP+ISP+ITP)と負側電力変換部130N側のアーム電流和(IRN+ISN+ITN)は同じ値になり、各アーム電流IRP、ISP、ITP、IRN、ISN、ITNが零相直流成分を含まない場合には、IRP+ISP+ITP=0であり、IRN+ISN+ITN=0であるので、直流装置110に電力を伝送できない。そのため、直流装置110に電力を供給するために、レグ電圧VR、VS、VTの直流電圧成分を調節し、アーム電流IRP、ISP、ITP、IRN、ISN、ITNの零相成分、特に直流電流成分を制御する。
(2)作用及び効果
 以上の構成において、電力変換装置101は、三相交流の各相(R相、S相、T相)がスター結線された構成を有し、直列に接続された2つのスイッチ(ハイサイドスイッチ200H及びローサイドスイッチ200L)を含むスター変換レグ(153R、153S、153T)と、少なくとも1つのコンデンサ159とを含むスター変換部(正側スター変換部150P及び負側スター変換部150N)と、スター変換部の各スター変換レグと直列に接続された単位変換器108、109とを備え、正側スター変換部150P、負側スター変換部150Nは、3つのスター変換レグ153R、153S、153Tと、コンデンサ159とが並列に接続され、各スター変換レグ153R、153S、153Tの2つのスイッチの間のスイッチ接続点151R、151S、151Tに三相交流の各相が単位変換器108、109を介してそれぞれ接続され、3つのスター変換レグ153R、153S、153Tが接続された接続点NP1がスター結線の中性点であり、R相に接続された単位変換器108、109がスター変換レグ153Rのスイッチ接続点151Rに接続され、S相に接続された単位変換器108、109がスター変換レグ153Sのスイッチ接続点151S、に接続され、T相に接続された単位変換器108、109がスター変換レグ153Tのスイッチ接続点151Tに接続されているように構成した。
 電力変換装置101では、正側スター変換部150Pを流れる各アーム電流IRP、ISP、ITPの合計値、及び、負側スター変換部150Nを流れる各アーム電流IRN、ISN、ITN合計値がゼロであるので、理想的には正側スター変換部150P及び負側スター変換部150Nのコンデンサ159の交流電力の変動量をほぼゼロにでき、コンデンサ159の電圧の変動を抑制することができる。よって、電力変換装置101では、正側スター変換部150P及び負側スター変換部150Nのコンデンサ159の電圧の変動を抑制できるので、正側スター変換部150P及び負側スター変換部150Nのコンデンサに容量の小さいコンデンサを用いることができる。よって、小さいコンデンサを用いることで小型化でき、コンデンサの物量を削減すると、それを支える架台も削減でき、電力変換装置101を小型化できる。
(3)他の実施形態
 なお、本発明は、上記の実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、上記の実施形態では、正側スター変換部150P及び負側スター変換部150Nが、3つのスター変換レグ153R、153S、153Tとコンデンサ159とが並列に接続された構成をしている場合について説明したが、本発明はこれに限られず、図4に示す電力変換装置1010のように、正側電力変換部131Pの正側スター変換部160P、及び、負側電力変換部131Nの負側スター変換部160Nが、3つのスター変換レグ153R、153S、153Tと3つのコンデンサ203とが並列に接続された構成をしていてもよい。電力変換装置1010は、コンデンサ203の電圧を、電力変換装置101のコンデンサ159の電圧に設定することで、電力変換装置101と概略等価である。
 電力変換装置1010では、スター変換レグ153R、153S、153Tのハイサイドスイッチ200H側の端子にコンデンサ203の正側を接続し、スター変換レグ153R、153S、153Tのローサイドスイッチ200L側の端子にコンデンサ203の負側を接続し、並列に接続されたスター変換レグ153R及びコンデンサ203と、並列に接続されたスター変換レグ153S及びコンデンサ203と、並列に接続されたスター変換レグ153T及びコンデンサ203と、をさらに並列に接続している。このようにして、各スター変換レグ153R、153S、153Tと各コンデンサ203とがそれぞれ交互に並列となるようにしている。電力変換装置1010では、スター変換レグ153R、コンデンサ203、スター変換レグ153S、コンデンサ203、スター変換レグ153T、コンデンサ203という並びで並列に接続することで、各スター変換レグ153R、153S、153Tの近傍にコンデンサ203をそれぞれ配置できるようにしている。このように電力変換装置1010では、各コンデンサ203と各スター変換レグ153R、153S、153Tを近接配置できるので、各コンデンサ203と各スター変換レグ153R、153S、153Tの間の寄生インダクタンスを小さくでき、各スター変換レグ153R、153S、153Tのハイサイドスイッチ200H、ローサイドスイッチ200Lをスイッチングする際のサージ電圧を抑制できるというメリットがある。
 また、上記の実施形態では、正側スター変換部150P及び負側スター変換部150Nの各スター変換レグ153R、153S、153Tの出力電圧と、単位変換器108、109の出力電圧とを等しくした場合について説明したが、本発明はこれに限られない。正側スター変換部及び負側スター変換部のコンデンサの定格電圧を、単位変換器のコンデンサの定格電圧と異なるようにして、各スター変換レグの出力電圧と、単位変換器の出力電圧とを異なるようにしてもよい。この場合、コンデンサをより削減できるという効果を奏する。さらに、正側スター変換部150Pのコンデンサの定格電圧と、負側スター変換部150Nのコンデンサの定格電圧とを異なるようにし、正側スター変換部150Pのスター変換レグの出力電圧と、負側スター変換部150Nのスター変換レグの出力電圧も異なるようにしてもよい。
 上記の実施形態で説明した電力変換装置101及び上記の変形例の電力変換装置1010では、端子102R、102S、102Tと正側スター変換部150P(160P)との間には単位変換器108が、端子102R、102S、102Tと負側スター変換部150N(160N)との間には単位変換器109が、それぞれ1つずつ接続されるように構成したが、本発明はこれに限られない。単位変換器108、109の数は適宜変更することができる。
 例えば、図5に示す電力変換装置301のように、正側電力変換部132P、負側電力変換部132Nが、それぞれ正側スター変換部160P及び負側スター変換部160Nのみを有し、正側スター変換部160P、負側スター変換部160Nに接続された単位変換器108、109を有していないようにしてもよい。単位変換器108、109は単相変換器なので、低周波ではコンデンサ204の電圧変動が大きくなるが、単位変換器108、109を接続しないと、単相変換器が存在しないので低周波で駆動してもコンデンサ電圧変動に与える影響が軽微であるというメリットがある。
 さらに、電力変換装置301では、正側スター変換部160Pのコンデンサ203と、負側スター変換部160Nのコンデンサ203とを、定格電圧が異なるコンデンサに変えて、コンデンサの出力電圧が異なるようにし、正側スター変換部の各スター変換レグが、ハイとローとで、第1所定電圧及びゼロを出力し、負側スター変換部の各スター変換レグが、ハイとローとで、第1所定電圧とは異なる第2所定電圧及び0を出力するようにしてもよい。このようにすることで、電力変換装置301は、従来よりも多レベルで電圧を出力することができ、従来の方法で同じレベル数の電圧を出力しようとする場合と比較して、装置を小型化できる。
 また、図6に示す電力変換装置401のように、正側電力変換部133Pが、端子102R、102S、102Tと正側スター変換部160Pのスター変換レグ153R、153S、153Tの間にそれぞれ3つの単位変換器108(スター変換レグ153R、153S、153Tに近い方から第1単位変換器108、第2単位変換器108、第3単位変換器108ともいう。)が直列に接続された構成にし、負側電力変換部133Nが、端子102R、102S、102Tと負側スター変換部160Nのスター変換レグ153R、153S、153Tの間にそれぞれ3つの単位変換器109(スター変換レグ153R、153S、153Tに近い方から第1単位変換器109、第2単位変換器109、第3単位変換器109ともいう。)が直列に接続された構成にしてもよい。
 また、端子102R、102S、102Tと、正側スター変換部150P、負側スター変換部150N、正側スター変換部160P、負側スター変換部160N(正側スター変換部及び負側スター変換部のコンデンサの電圧をVとする)との間に直列に接続する単位変換器108、109の数をそれぞれn個(第1単位変換器108、109~第n単位変換器108、109までのn個)にし、各単位変換器108、109の出力電圧(すなわち、コンデンサの電圧)をすべて同じ電圧Vに設定することで、本発明の電力変換装置から出力される交流電圧を0から±(n+1)Vまでの多レベルの任意の波形に制御でき、nの数を増やすことにより、電力変換装置から出力される交流電圧の波形をより正弦波に近づけることができる。また、電力変換装置401では、直列に接続された単位変換器108、109は、すべて同じコンデンサ204を有し、同じ電圧を出力するようにしているが、直列に接続された単位変換器108、109内で、各単位変換器のコンデンサの定格電圧を異なるようにし、各単位変換器の出力電圧が異なるようにしてもよい。
 また、上記の電力変換装置401では、正側スター変換部160P、負側スター変換部160Nのスター変換レグ153R、153S、153Tで使用するスイッチング素子を高い電圧でも使用できる高圧スイッチング素子(例えば、後述の高耐圧IGBT)とし、単位変換器108、109で使用するスイッチング素子を低圧低損失スイッチング素子としてもよい。この場合、スター変換レグ153R、153S、153Tで使用するスイッチング素子の耐圧が単位変換器108、109で使用するスイッチング素子の耐圧よりも高い。このように、正側スター変換部160P、負側スター変換部160Nのスター変換レグ153R、153S、153Tで使用するスイッチング素子を高圧スイッチング素子とすることで、正側スター変換部160P、負側スター変換部160Nで使用するコンデンサ203の出力電圧を高く設定し、その分、単位変換器108、109のコンデンサ204の出力電圧を低く設定することができる。その結果、単位変換器108、109では、コンデンサ204のサイズを小さくできると共に、スイッチング素子も低圧低損失スイッチング素子に変えることができるので、電力変換装置401をさらに小型化することができる。高圧スイッチング素子としては、例えば、IGBT、GCT、SiCで形成されたMOS-FETなどを用いることができ、低圧低損失スイッチング素子としては、GaNで形成されたFET、MOS-FETなどを用いることができる。
 さらに、本発明の電力変換装置は、図7に示す電力変換装置501のように、正側スター変換部161P、負側スター変換部161Nが、直列に接続された2つコンデンサ203と、スター変換レグ154R、154S、154Tとがそれぞれ並列に接続された構成であってもよい。スター変換レグ154R、154S、154Tは、スイッチとしてのハイハイサイドスイッチSA及びハイローサイドスイッチSB(ハイサイドスイッチ直列体ともいう)と、ローハイサイドスイッチSC及びローローサイドスイッチSD(ローサイドスイッチ直列体ともいう)の4つが直列に接続された構成である。そのため、各スター変換レグ154R、154S、154Tにおいて、直列に接続されたスイッチを構成するスイッチング素子の耐圧の総和が、上記の実施形態より高く、さらには、単位変換器108、109のスイッチを構成するスイッチング素子の耐圧より高くできる。スター変換レグ154R、154S、154Tは、ハイサイドスイッチ直列体及びローサイドスイッチ直列体のスイッチ接続点、すなわち、ハイローサイドスイッチSBと、ローハイサイドスイッチSCとのスイッチ接続点152R、152S、152Tが単位変換器108、109に接続されている。各アームがスイッチを直列に接続された構成である。電力変換装置501は、このようにすることで、より高い電圧を出力でき、且つ、正側スター変換部161P(負側スター変換部161N)の出力電圧範囲と直列に接続された3つの単位変換器108(単位変換器109)の出力電圧の合計値の範囲をほぼ同じにできる。すなわち、スター変換レグ154R、154S、154Tの内の少なくとも1つ以上の出力電圧の最大値と、当該スター変換レグに接続された単位変換器108(単位変換器109)(この実施例では3つの単位変換器)の出力電圧の合計値の最大値とを略同じにすることができる。これは、各スター変換レグ154R、154S、154Tにおいて直列に接続されたスイッチの数が増えたことで、スイッチの耐圧の総和が増え、より高い直流の電圧にも耐えられるようになり、コンデンサ203としてより容量の大きいコンデンサを用いることができるようになったからである。そして、正側スター変換部161P(負側スター変換部161N)のコンデンサのコンデンサ電圧(この変形例の場合、直列に接続された2つのコンデンサ203の合計電圧)、すなわち、スター変換レグ154R、154S、154Tの内の少なくとも1つ以上の両端の直流電圧と、当該スター変換レグに接続された3つの単位変換器108(単位変換器109)内のレグの両端の直流電圧の合計値とを略等しくできる。本実施例は、スイッチを直列にすることにより高電圧を出力できるというメリットがある。より高い電圧を出力するために、直列に接続したコンデンサ203やアームにおいて直列に接続したスイッチの数をさらに増やしてもよい。正側スター変換部161P、負側スター変換部161Nは、NPC3レベル変換器とは異なり、2レベルの電圧を出力する。
 上記の実施形態では、正側スター変換部150P(負側スター変換部150N)が第1所定電圧(第2所定電圧)とゼロとを出力できる2レベル変換器である場合について説明したが、本発明はこれに限られず、例えば、図8に示す電力変換装置601のように、正側スター変換部162P、負側スター変換部162Nが、各スター変換レグ154R、154S、154Tがスイッチ接続点152R、152S、152Tと中性点との間に後述する3種類の電圧を出力する3レベル変換器であってもよい。
 この場合、例えば、正側スター変換部162Pは、スイッチとしてのハイハイサイドスイッチSA、ハイローサイドスイッチSB、ローハイサイドスイッチSC、ローローサイドスイッチSDの4つが直列に接続された構成のスター変換レグ154R、154S、154Tと、直列に接続されたハイサイドコンデンサ203H及びローサイドコンデンサ203Lとでなる3つのコンデンサ直列体とが並列に接続された構成である。さらに正側スター変換部162Pは、2つのダイオードDを直列に接続した3つのダイオード直列体が、各スター変換レグ154R、154S、154TのハイハイサイドスイッチSAとハイローサイドスイッチSBの接続点及びローハイサイドスイッチSCとローローサイドスイッチSDの接続点の間に、それぞれ逆並列に接続され、ダイオード直列体の各ダイオードDの接続点と、ハイサイドコンデンサ203H及びローサイドコンデンサ203Lの接続点とが導線120によって接続されている。負側スター変換部162Nも同様の構成である。
 正側スター変換部162Pの各スター変換レグ154R、154S、154Tは、制御回路によるスイッチの制御によって、スイッチ接続点152R、152S、152Tと第1中性点NP1との間に、第1所定電圧としてハイサイドコンデンサ203Hの出力電圧を出力し、第3所定電圧としてハイサイドコンデンサ203Hとローサイドコンデンサ203Lの出力電圧の合計値を出力できる。同様に、負側スター変換部162Nの各スター変換レグ154R、154S、154Tは、制御回路によるスイッチの制御によって、スイッチ接続点152R、152S、152Tと第2中性点NP2との間に、第2所定電圧としてハイサイドコンデンサ203Hの出力電圧を出力し、第4所定電圧としてハイサイドコンデンサ203Hとローサイドコンデンサ203Lの出力電圧の合計値を出力できる。このようにすることで、電力変換装置601は、正側スター変換部及び負側スター変換部が2レベル変換器である場合よりも多レベルの電圧を出力することができ、2レベル変換器のみを用いて同じレベル数の電圧を出力しようとする場合と比較して、装置を小型化できる。
 また、図9に示す電力変換装置602のように、図1に示す電力変換装置101の正側スター変換部150Pと負側スター変換部150Nとを、上述の3レベル変換器である正側スター変換部162P及び負側スター変換部162Nに変えた構成としてもよい。この場合、正側電力変換部138Pは、正側スター変換部162Pと3つの単位変換器108とを備え、正側スター変換部162Pの各スター変換レグ154R、154S、154Tのスイッチ接続点152R、152S、152Tに、単位変換器108がそれぞれ直列に接続された構成である。そして、負側電力変換部138Nは、負側スター変換部162Nと3つの単位変換器109とを備え、負側スター変換部162Nの各スター変換レグ154R、154S、154Tのスイッチ接続点152R、152S、152Tに、単位変換器109がそれぞれ直列に接続された構成である。正側スター変換部162Pの各スター変換レグ154R、154S、154Tには、単位変換器108がそれぞれ1つ直列に接続されているが、本発明はこれに限られず、各スター変換レグ154R、154S、154Tに直列に接続される単位変換器108の数は2つでもよく、3つ以上でもよい。負側スター変換部162Nと単位変換器109についても同様である。
 この実施形態の場合、正側スター変換部162P及び負側スター変換部162Nのハイサイドコンデンサ203H及びローサイドコンデンサ203Lとを同じコンデンサで構成しているので、第1所定電圧と第2所定電圧は等しく、第3所定電圧と第4所定電圧は等しい。なお、3レベル変換器としての正側スター変換部162P、負側スター変換部162Nの構成は、特に限定されない。正側スター変換部162P、負側スター変換部162Nの3つのコンデンサ直列体を1つのコンデンサ直列体に統合してもよい。
 また、第1所定電圧と第2所定電圧とを異なるようにし、第3所定電圧と第4所定電圧とを異なるようにしてもよい。この場合、正側スター変換部162Pのハイサイドコンデンサ203H及びローサイドコンデンサ203Lと、負側スター変換部162Nのハイサイドコンデンサ203H及びローサイドコンデンサ203Lとを定格電圧が異なるコンデンサを用いて構成し、出力電圧を異なるようにする。例えば、正側スター変換部162Pのハイサイドコンデンサ203H及びローサイドコンデンサ203Lの出力電圧が1.8kVとなるようにし、負側スター変換部162Nのハイサイドコンデンサ203H及びローサイドコンデンサ203Lの出力電圧が0.6kVとなるようにする。このようにすることで、正側スター変換部162Pが、1.8kV(第1所定電圧)、3.6kV(第3所定電圧)、0を出力し、負側スター変換部162Nが、1.2kV(第2所定電圧)、0.6kV(第4所定電圧)、0を出力できる。その結果、電力変換装置601は、0.6kV刻みの9レベルで表された交流電圧を出力できる。
 上記の実施形態では、単位変換器108、109として双方向チョッパ回路を用いた場合について説明したが、本発明はこれに限られず、コンデンサやバッテリなどのエネルギー貯蔵素子を備え、少なくとも2端子の回路で、かつ、2端子間に少なくとも正又はゼロの電圧を出力できる回路であってもよい。例えば、図10に示す単位変換器708のように、フルブリッジ回路方式であってもよい。この単位変換器は、今まで説明してきたいずれの電力変換装置にも適用できる。単位変換器708は、ハイサイドスイッチ702XH、702YH、ローサイドスイッチ702XL、702YLを制御することで、正負の所定電圧±Vとゼロとの3種類の電圧を出力できる3レベル変換器である。本発明の電力変換装置は、単位変換器708を用いることで端子P、端子N間の極性を逆転させることができる。このフルブリッジ回路構成は、正側スター変換部及び負側スター変換部のスター変換レグにも適用でき、その場合、直列に接続されたハイサイドスイッチ702XH及びローサイドスイッチ702XLと、直列に接続されたハイサイドスイッチ702YH及びローサイドスイッチ702YLとを並列に接続した構成がスター変換レグとなる。例えば、ハイサイドスイッチ702XH及びローサイドスイッチ702XLの接続点Xを第1中性点NP1又は第2中性点NP2に接続し、ハイサイドスイッチ702YH及びローサイドスイッチ702YLのスイッチ接続点Yを三相交流の各相のいずれかに接続するようにする。そして、このようなスター変換レグ3つと、コンデンサ703を少なくとも1つ以上並列となるように接続する。このようなスター変換レグを3つ、少なくとも1つのコンデンサと共に並列に接続することで、スイッチ接続点Yと中性点との間に3種類の電圧を出力できる3レベル変換器である正側スター変換部及び負側スター変換部を構成できる。
 上記の実施形態では、電力変換装置101で変換した三相交流を図示しない変圧器を介して三相交流系統111に連系する場合について説明したが、本発明はこれに限られず、電力変換装置101が変圧器を備えるようにしてもよい。例えば、図11に示す電力変換装置801では、交流接続部として、特許第6121582号に開示されている変圧器と同様の変圧器103を備えるようにし、電力の変換に加えて電力変換装置801で変圧もして、直流電力から変換した交流電力を三相交流系統111に直接連系するようにしている。電力変換装置801は、変圧器103を設けることで、リアクトル112を省略することができる。電力変換装置801は、正側スター変換部160Pの各スター変換レグのスイッチ接続点が、変圧器103の端子RP、SP、TPにそれぞれ接続され、各スイッチ接続点と端子RP、SP、TPとの間に単位変換器108が設けられている。さらに、電力変換装置801は、負側スター変換部160Nの各スター変換レグのスイッチ接続点が、変圧器103の端子RN、SN、TNにそれぞれ接続され、各スイッチ接続点と端子RN、SN、TNとの間に単位変換器109が設けられている。
 このようにして、正側スター変換部160Pのスター変換レグと、負側スター変換部160Nのスター変換レグとの間に、各スター変換レグに電圧を出力する変圧器103が直列に接続されている。なお、変圧器103に変えて、電力変換装置に交流接続部として、交流電圧源を挿入するようにしてもよい。この場合、後述する正側2次巻線106RP、106SP、106TPと、負側2次巻線106RN、106SN、106TNとの6つの巻き線に換えて、交流電圧源をそれぞれ接続する。
 電力変換装置801に設ける変圧器103の構成の一例を説明する。電力変換装置801は、図4に示す電力変換装置1010に変圧器103を設けたものである。変圧器103は、鉄心104R、104S、104Tと、1次巻線105RS、105ST、105TRと、正側2次巻線106RP、106SP、106TPと、負側2次巻線106RN、106SN、106TNとを備えている。
 正側2次巻線106RPは、鉄心104Rに巻回され、正側2次巻線106SPは、鉄心104Sに巻回され、正側2次巻線106TPは、鉄心104Tに巻回されている。正側2次巻線106RP、106SP、106TPは、一端が端子RP、SP、TPを介して、正側電力変換部131Pの単位変換器108と接続され、他端が負側2次巻線106RN、106SN、106TNに接続されている。さらに、正側2次巻線106RP、106SP、106TPの他端は、接続点Mに接続されてY結線されている。
 負側2次巻線106RNは、鉄心104Rに巻回され、負側2次巻線106SNは、鉄心104Sに巻回され、負側2次巻線106TNは、鉄心104Tに巻回されている。負側2次巻線106RN、106SN、106TNは、一端が端子RN、SN、TNを介して、負側電力変換部131Nの単位変換器109と接続され、他端が正側2次巻線106RP、106SP、106TPに接続されている。さらに、負側2次巻線106RN、106SN、106TNの他端は、接続点Mに接続されてY結線されている。
 このようにY結線された正側2次巻線106RP、106SP、106TPの中性点と、Y結線された負側2次巻線106RN、106SN、106TNの中性点とが、接続点Mで電気的に接続されている。そして、正側2次巻線106RP、106SP、106TPと負側2次巻線106RN、106SN、106TNとは、相毎に互いに逆極性となるように磁気結合している。このようにすることで、正側2次巻線106RP、106SP、106TPが発生する直流起磁力と、負側2次巻線106RN、106SN、106TNが発生する直流起磁力とを相殺でき、鉄心104R、104S、104Tに直流磁束が発生しないようにできる。
 さらに、鉄心104R、104S、104Tには1次巻線105RS、105ST、105TRが巻回されている。1次巻線105RS、105ST、105TRはΔ結線され、三相交流系統111に接続されている。
 図11に示す変圧器103では、1次巻線105RS、105ST、105TRは正側2次巻線106RP、106SP、106TPと同極性となるように磁気結合しているが、1次巻線105RS、105ST、105TRが負側2次巻線106RN、106SN、106TNと同極性となるように磁気結合させた場合も、同様の効果を得ることができる。
 また、交流接続部として、変圧器103に変えて、図12に示す電力変換装置901のように、国際公開第WO2010/116806号に開示されている変圧器と同様の変圧器800を備えるようにしてもよい。変圧器800は、変圧器103とは、正側2次巻線106RP、106SP、106TPと負側2次巻線106RN、106SN、106TNとの間の結線が異なり、互いに違う相の巻線と磁気的に結合している点が異なる。変圧器800では、正側2次巻線106RPと負側2次巻線106TNとが結線され、正側2次巻線106SPと負側2次巻線106RNとが結線され、正側2次巻線106TPと負側2次巻線106SNとが結線された変圧器となっている。このような結合形態にすることにより、直流磁束を相殺して変圧器800が飽和することを防止できる。
 図12に示す電力変換装置901は、正側電力変換部130Pと、負側電力変換部136Nとの間に、変圧器800が挿入された構成をしている。負側電力変換部136Nは、図1に示す負側電力変換部130Nとは、単位変換器109を有していない点が異なっているが、他の構成は同じである。上記の実施形態では、正側電力変換部及び負側電力変換部から出力される交流電圧波形が逆極性であった。一方で、電力変換装置901のような構成とすることで、正側電力変換部130P及び負側電力変換部136Nから出力される交流電圧波形が同極性となる。
 例えば、電力変換装置901では、正側スター変換部150P、負側スター変換部150Nのスター変換レグ153Rと単位変換器108が、端子Pと端子Nとの間に出力したい直流電圧と、変圧器800の2次巻線106RNに出力したい電圧の差分の電圧を出力するように制御する。このような出力形態に制御することにより、電力変換装置901は、任意の交流電圧と任意の直流電圧を出力できる。なお、電力変換装置901では、正側電力変換部130Pが単位変換器108を有しているが、正側電力変換部130Pから単位変換器108を除去し、負側電力変換部136Nを、単位変換器109を有する負側電力変換部130Nに置き換えてもよい。
 また、2つの正側スター変換部150P、負側スター変換部150Nの出力電圧を違えてもよい。この場合、例えば、正側スター変換部150Pのスター変換レグ153R、153S、153Tを6.5kV耐圧のパワー半導体素子(スイッチング素子)2直列構成、負側スター変換部150Nのスター変換レグ153R、153S、153Tを6.5kV耐圧のパワー半導体素子(スイッチング素子)1直列構成、単位変換器108のスイッチを3.3kV耐圧のパワー半導体素子1直列構成として、それぞれのコンデンサの出力電圧を約7.2kV(正側スター変換部150Pのコンデンサ159)、約3.6kV(負側スター変換部150Nのコンデンサ159)、約1.8kV(単位変換器108のコンデンサ)にすれば、少ない段数で8レベルの電圧出力が可能なほか、変圧器800の各2次巻線に国内配電系統や、モータの主要定格電圧である6.6kVを出力することができる。なお、本明細書における変圧器とは2次巻線が交流磁束と鎖交する構造を有することを持って、変圧器の要件とする。
 上記の実施形態では、本発明の電力変換装置で、交流電力から直流電力に変換する場合、直流電力から交流電力に変換する場合について説明したが、これに限られず、交流電圧から交流電圧に変換する(AC/ACコンバータ)場合にも適用できる。実際上、図1に示す電力変換装置101を2つ用意し、2つの電力変換装置101の端子P同士と端子N同士とを接続することで、電力が交流―直流-交流の順に変換され、AC/ACコンバータを構成することができる。
 この場合、2つの電力変換装置101の正側スター変換部150Pのコンデンサ159同士の間に導線を設け、コンデンサ159同士を電気的に並列に接続しても他の電力変換装置101の正側スター変換部150Pのコンデンサ159の間に導線を設け、コンデンサ159同士が電気的に並列になるようにしても、2つの電力変換装置101の端子P同士、端子N同士を接続した場合と等価である。そして、このような並列に接続された2つコンデンサ159は、1つのコンデンサ159に置き換えることができる。
 図13に示す電力変換装置1001は、このように2つの電力変換装置の端子P同士、端子N同士を接続し、2つの正側スター変換部150P、150P’のコンデンサを導線611で並列に接続し、並列接続の2つのコンデンサを1つのコンデンサ159に置き換えた構成である。電力変換装置1001では、同様に、2つ負側スター変換部150N、150N’のコンデンサを導線611で並列に接続し、並列接続の2つのコンデンサ159を1つのコンデンサ159に置き換えている。
 このように電力変換装置1001では、一の正側スター変換部150Pと他の正側スター変換部150P’とがコンデンサ159を共有し、一の負側スター変換部150Nと他の負側スター変換部150N’とがコンデンサ159を共有しているような構成となっている。実際には、電力変換装置1001は、入力側の三相交流系統111のR相、S相、T相がハイサイドスイッチとローサイドスイッチのスイッチ接続点にそれぞれ接続されたスター変換レグ153R、153S、153Tと、出力側の三相交流系統111aのu相、v相、w相がハイサイドスイッチとローサイドスイッチのスイッチ接続点にそれぞれ接続されたスター変換レグ153R’、153S’、153T’と、コンデンサ159とが並列に接続された正側スター変換部1500P、負側スター変換部1500Nとを有する構成となっている。この場合、コンデンサ159を1つに集約できるので装置を小型化できる。スター変換レグ153R’、153S’、153T’のハイサイドスイッチとローサイドスイッチのスイッチ接続点が出力側の三相交流系統111aのu相、v相、w相に接続されている場合について説明したが、例えば三相交流モータのu相、v相、w相にそれぞれ接続されるようにしてもよい。
 さらに、電力変換装置1001では、正側スター変換部1500P、負側スター変換部1500Nに入力される交流電力が、出力側の三相交流系統111aに接続されたスター変換レグ153R’、153S’、153T’を介して出力側の三相交流系統111aに供給されて相殺される。したがって、コンデンサ159を個別設置した際のコンデンサ容量よりもさらにコンデンサ容量の削減が可能である。
 さらに、上記の実施形態では、レグ107Rを流れるアーム電流IRPの直流電流成分は、正側スター変換部150Pと単位変換器108とで共通であり、アーム電流IRNの直流電流成分は、負側スター変換部150Nと単位変換器108とで共通であった。レグ107S、レグ107Tについても同様である。したがって、正側スター変換部150P、負側スター変換部150Nと単位変換器108、109とが出力する直流電力の比は正側スター変換部150P、負側スター変換部150Nと単位変換器108、109と出力する直流電圧比に等しい。定常状態では、受け取る交流電力と出力する直流電力は等しいので、正側スター変換部150P、負側スター変換部150Nと単位変換器108、109と受け取る交流電力の比は、正側スター変換部150P、負側スター変換部150Nと単位変換器108、109との出力する直流電圧比と大略同じである必要があった。しかし、本実施例の電力変換装置1001では、導線611が直流電流成分をバイパスする経路となるため、その制約に縛られる必要がない。したがって、正側スター変換部1500P、負側スター変換部1500Nでより多くの交流電力を受け取り、単位変換器108、109の交流電力を少なくすることによって、直流電流を削減できるという効果がある。
 図14Aは、横軸が時間で縦軸が電圧であり、端子102Rと端子Pとの間に出力したい電圧の電圧波形1011と、正側スター変換部1500Pのスター変換レグ153Rの出力電圧の電圧波形1012とを示すグラフであり、図14Bは、横軸が時間で縦軸が電圧であり、スター変換レグ153Rに接続された単位変換器108の出力電圧の電圧波形1013を示すグラフである。端子102Rと端子Pとの間に電圧波形1011のような電圧を出力しようとする場合、スター変換レグ153Rは、出力電圧の波形が単パルス波形となるのが望ましいので、例えば電圧波形1012のような単パルスを出力する。実際上、スター変換レグ153Rの制御回路(不図示)が、スター変換レグ153Rのスイッチを制御し、スター変換レグ153Rに単パルスを出力させる。そのため、単位変換器108は、例えば電圧波形1013のように、端子102Rと端子Pとの間に出力したい電圧とスター変換レグ153Rの出力電圧との差電圧を出力するように制御される。単位変換器108が複数個直列に接続されている場合は、各単位変換器108の出力電圧の合計値をこのように制御する。
 電力変換装置1001では、このように、スター変換レグ153Rと単位変換器108が大略同じ電圧波形を出力する場合、単位変換器108の出力電圧は出力したい出力電圧の1/2となる。電圧波形1013の交流基本波成分は、出力したい電圧波形1011の1/2の電圧より明らかに小さい。単位変換器108の交流電力が小さくなるので、単位変換器108出力直流電力が小さくすみ、単位変換器108直流電流を小さくできる。さらに、スター変換レグ153Rは、1パルススイッチングとなるのでスイッチング損失を低減できるメリットがある。さらに、力率1運転においては、スター変換レグ153Rはゼロ電流スイッチングとなり、理想的にはスイッチング損失が発生しない。以上のように、電力変換装置1001では、さらに損失低減効果が期待できる。
 また、図15に示す電力変換装置1101のように、正側スター変換部1500P、負側スター変換部1500Nの各スター変換レグ153R、153S、153Tを構成するハイサイドスイッチ200H及びローサイドスイッチ200Lのハイサイドスイッチング素子201H及びローサイドスイッチング素子201Lを高耐圧IGBTにし、ハイサイドスイッチ200H、ローサイドスイッチ200Lを、Si基板上にGaNで形成されたFETなどの低圧低損失スイッチング素子250H、250Lで構成するようにした単位変換器188、189で単位変換器108、109を置き換えてもよい。電力変換装置1101では、リアクトルの代わりに変圧器103が設けられている。
 このように電力変換装置1101では、上記のように出力電圧として単パルスを順次出力していく1パルス駆動となるように制御するため、スイッチング回数が比較的少ない各スター変換レグ153R、153S、153Tのスイッチとして、導通損失は小さいがスイッチング損失が大きい高耐圧IGBT(スイッチング素子)を用い、比較的にスイッチング回数の多い単位変換器188、189のスイッチとして、スイッチング損失の小さな低圧低損失スイッチング素子を用いているので、パワー半導体素子の直列接続などの特殊な技術を用いることなく低損失な電力変換ができる。さらに、GaNで形成されたFETがダブルゲート型の双方向導通型のFETであれば、さらに低損失を実現できる。さらに、当該FETが安価なSi上に形成されていれば経済的な負担も小さい。
 電力変換装置1001の正側スター変換部1500P、負側スター変換部1500Nは、2レベル変換器であるが、上記の実施形態と同様に、電力変換装置1001の正側スター変換部1500P、負側スター変換部1500Nを3レベル変換器にすることもできる。例えば図16に示す電力変換装置1301は、3レベル変換器である正側スター変換部1500P、負側スター変換部1500Nと、正側の変圧器103と、負側の変圧器103とを備えている。
 電力変換装置1301では、正側スター変換部1800Pが、スター変換レグ154R、154S、154Tと、スター変換レグ154R’、154S’、154T’と、ハイサイドコンデンサ159Hとローサイドコンデンサ159Lとが直列に接続されたコンデンサ直列体とが並列に接続された構成を有する。スター変換レグ154R、154S、154Tは、ハイハイサイドスイッチSA、ハイローサイドスイッチSB、ローハイサイドスイッチSC、ローローサイドスイッチSDの4つが直列に接続された構成を有し、ハイローサイドスイッチSB及びローハイサイドスイッチSC間のスイッチ接続点152R、152S、152Tが入力側の変圧器103の端子RP、SP、TPにそれぞれ接続され、入力側の三相交流系統111のR相、S相、T相が入力側の変圧器103を介して、スター変換レグ154R、154S、154Tのスイッチ接続点152R、152S、152Tにそれぞれ接続されている。
 スター変換レグ154R’、154S’、154T’は、ハイハイサイドスイッチSA、ハイローサイドスイッチSB、ローハイサイドスイッチSC、ローローサイドスイッチSDの4つが直列に接続された構成を有し、ハイローサイドスイッチSB及びローハイサイドスイッチSC間のスイッチ接続点152R’、152S’、152T’が出力側の変圧器103の端子RP、SP、TPにそれぞれ接続され、出力側の三相交流系統111のu相、v相、w相が出力側の変圧器103を介して、スター変換レグ154R’、154S’、154T’のスイッチ接続点152R’、152S’、152T’にそれぞれ接続されている。さらに、スター変換レグ154R、154S、154Tと、スター変換レグ154R’、154S’、154T’とは、2つのダイオードDを直列に接続したダイオード直列体が、ハイハイサイドスイッチSAとハイローサイドスイッチSBの接続点及びローハイサイドスイッチSCとローローサイドスイッチSDの接続点の間に、それぞれ逆並列に接続されている。そして、各ダイオード直列体のダイオードD同士の接続点とハイサイドコンデンサ159H及びローサイドコンデンサ159Lの接続点とが導線611bによって接続されている。負側スター変換部1800Nも同様の構成である。
 このように構成することで、正側スター変換部1800Pのスター変換レグ154R、154S、154T、154R’、154S’、154T’は、第1所定電圧、第3所定電圧、又はゼロを出力でき、負側スター変換部1800Nのスター変換レグ154R、154S、154T、154R’、154S’、154T’は、第2所定電圧、第3所定電圧、又はゼロを出力できる。第1所定電圧及び第2所定電圧が同じ電圧で、第3所定電圧及び第4所定電圧が同じ電圧となるようにしてもよく、第1所定電圧、第2所定電圧、第3所定電圧、第4所定電圧が、異なる値となるようにしてもよい。
 例えば、正側スター変換部1800Pのハイサイドコンデンサ159H及びローサイドコンデンサ159Lの出力電圧が1.8kVとなるようにし、負側スター変換部1800Nのハイサイドコンデンサ203H及びローサイドコンデンサ203Lの出力電圧が0.6kVとなるようにする。このようにすることで、正側スター変換部1800Pが、1.8kV(第1所定電圧)、3.6kV(第3所定電圧)、0を出力し、負側スター変換部1800Nが、1.2kV(第2所定電圧)、0.6kV(第4所定電圧)、0を出力できる。その結果、電力変換装置1301は、三相交流系統111の交流電圧を変換し、0.6kV刻みの9レベルで表された交流電圧を出力側の三相交流のu相、v相、w相の各相に出力できる。
(4)本発明の電力変換装置の用途
 本発明の電力変換装置は、例えば、太陽光や風力などの発電機で発電した電力を電力系統へと供給するための発電システム、交流モータや直流モータを駆動するためのモータドライブシステム、電力系統同士を接続するための電力連系システムなどに用いられる。発電システムでは、例えば、発電機で発電した直流電力を交流電力に変換するインバータとして用いる。
 発電システムでは、例えば、図1に示す電力変換装置101の端子Pと端子Nとの間にコンデンサを挿入し、端子Pと端子Nとを発電機で発電された直流電圧の入力端子とする。そして、端子Pと端子Nとに発電機を接続し端子102R、102S、102Tを電力系統に接続し、電力変換装置を介して、発電機と電力系統とを接続する。発電システムは、電力変換装置101に、電力変換装置101に入力された直流電圧を、系統電圧に所定電圧を加えた電圧に変換させ、電力変換装置101から電力系統に出力させる制御装置を備えていてもよい。
 モータドライブシステムでは、本発明の電力変換装置を介して、電源とモータとが接続され、電源としての直流電圧源の直流電圧を交流電圧に変換して交流モータに供給するためのインバータ、電源としての交流電圧源の交流電圧を直流電圧に変換して直流モータに供給するためのコンバータ、電源としての電力系統の交流電圧を所定の交流電圧に変換してモータに供給するAC/ACコンバータなどとして用いられる。このとき、モータドライブシステムでは、電力変換装置の出力電圧などを制御してモータの回転数を制御する制御装置を備えていてもよい。
 電力連系システムでは、本発明の電力変換装置を介して、電力系統同士が接続され、電力系統間で電力の送電・受電が行われる。例えば、図1に示す電力変換装置101を2つ用意し、一の電力変換装置101と、他の電力変換装置101との端子P同士及び端子N同士を電線で接続し、電力変換装置101間を直流で送電し、2つの電力系統を連系するようにしてもよい。また、例えば、図13に示す電力変換装置1001のようなAC/ACコンバータ型の電力変換装置を用い、電力変換装置1001を介して2つの電力系統を直接連系するようにしてもよい。
 101  電力変換装置
 102R、102S、102T  端子
 107R、107S、107T  レグ
 108、109  単位変換器
 110  直流装置
 111  三相交流系統
 112  リアクトル
 151R、151S、151T  スイッチ接続点
 153R、153S、153T  スター変換レグ
 150P  正側スター変換部
 150N  負側スター変換部
 159、204  コンデンサ
 NP1  第1中性点
 NP2  第2中性点

Claims (28)

  1.  三相交流の各相がスター結線された構成を有する電力変換装置であって、
     直列に接続された2つのスイッチを含む3つのスター変換レグと、少なくとも1つのコンデンサとを含むスター変換部と、
     前記スター変換部の各前記スター変換レグと直列に接続された単位変換器とを備え、
     前記スター変換部は、3つの前記スター変換レグと、前記コンデンサとが並列に接続され、各前記スター変換レグの2つの前記スイッチの間のスイッチ接続点に、前記三相交流の各相が前記単位変換器を介してそれぞれ接続され、3つの前記スター変換レグが接続された接続点が前記スター結線の中性点であり、
     前記単位変換器は、各前記スター変換レグの前記スイッチ接続点にそれぞれ接続されている
     電力変換装置。
  2.  前記単位変換器は、コンデンサを有し、前記単位変換器の前記コンデンサと、前記スター変換部の前記コンデンサとが前記スイッチを介して接続されている
     請求項1に記載の電力変換装置。
  3.  前記スター変換部と前記単位変換器との間で、直流電流が流れる
     請求項1又は2に記載の電力変換装置。
  4.  前記単位変換器は双方向チョッパ回路である
     請求項1~3のいずれか1項に記載の電力変換装置。
  5.  前記スター変換部は、少なくとも3つのコンデンサを有し、各前記スター変換レグにそれぞれ少なくとも1つの前記コンデンサが並列に接続され、前記コンデンサが並列に接続された各前記スター変換レグを並列に接続している
     請求項1~4のいずれか1項に記載の電力変換装置。
  6.  2つの前記スター変換部を備え、一の前記スター変換部の前記スター変換レグと、他の前記スター変換部の前記スター変換レグとの間に、前記単位変換器が直列に接続されている
     請求項1~5のいずれか1項に記載の電力変換装置。
  7.  前記スター変換部は、各前記スター変換レグが前記スイッチ接続点と前記中性点との間に3種類の電圧を出力する3レベル変換器である
     請求項1~6のいずれか1項に記載の電力変換装置。
  8.  前記スター変換レグのアームは、スイッチが直列に接続されている
     請求項1~7のいずれか1項に記載の電力変換装置。
  9.  前記スター変換レグの出力電圧の最大値と、当該スター変換レグに接続された前記単位変換器の出力電圧の合計値の最大値とが略同じである
     請求項1~8のいずれか1項に記載の電力変換装置。
  10.  前記スター変換レグの両端の直流電圧と、当該スター変換レグに接続された前記単位変換器内のレグの両端の直流電圧の合計値とが略同じである
     請求項2~9のいずれか1項に記載の電力変換装置。
  11.  前記スター変換部の前記スイッチを構成するスイッチング素子の耐圧が、当該スター変換レグに接続された前記単位変換器が有するスイッチを構成するスイッチング素子の耐圧より高い
     請求項1~10のいずれか1項に記載の電力変換装置。
  12.  3つの前記スター変換レグは、直列に接続された少なくとも4つの前記スイッチを備え、少なくとも2つの前記スイッチが直列に接続されたハイサイドスイッチ直列体と、少なくとも2つの前記スイッチが直列に接続されたローサイドスイッチ直列体との間のスイッチ接続点に、前記三相交流の各相が前記単位変換器を介してそれぞれ接続されている
     請求項1~11のいずれか1項に記載の電力変換装置。
  13.  直列に接続された少なくとも2つの前記コンデンサが、前記スター変換レグと並列に接続されている
     請求項1~12のいずれか1項に記載の電力変換装置。
  14.  前記スター変換部は、前記スイッチ接続点が出力側の三相交流の各相のいずれか1つと接続された3つの前記スター変換レグをさらに備える
     請求項1~13のいずれか1項に記載の電力変換装置。
  15.  前記スター変換レグの前記スイッチを制御する制御回路を備え、前記制御回路が前記スター変換レグに単パルスを出力させる
     請求項14に記載の電力変換装置。
  16.  一の前記スター変換部の前記スター変換レグと、他の前記スター変換部の前記スター変換レグとの間に、各前記スター変換レグに電圧を出力する交流接続部が直列に接続されている
     請求項6~15のいずれか1項に記載の電力変換装置。
  17.  前記交流接続部が、交流電圧源又は変圧器である
     請求項16に記載の電力変換装置。
  18.  一の前記スター変換部の前記コンデンサと、他の前記スター変換部の前記コンデンサとは、定格電圧が異なる
     請求項16又は17に記載の電力変換装置。
  19.  三相交流の各相がスター結線された構成を有する電力変換装置であって、
     直列に接続された2つのスイッチを含む3つのスター変換レグと、少なくとも1つのコンデンサとを含む正側スター変換部と負側スター変換部とを備え、
     前記正側スター変換部は、3つの前記スター変換レグと、前記コンデンサとが並列に接続され、各前記スター変換レグの2つの前記スイッチの間のスイッチ接続点に前記三相交流の各相がそれぞれ接続され、3つの前記スター変換レグが接続された接続点が前記スター結線の第1中性点であり、各前記スター変換レグの前記スイッチ接続点と前記第1中性点との間に、第1所定電圧又はゼロを出力し、
     前記負側スター変換部は、3つの前記スター変換レグと、前記コンデンサとが並列に接続され、各前記スター変換レグの2つの前記スイッチの間のスイッチ接続点に前記三相交流の各相がそれぞれ接続され、3つの前記スター変換レグの接続点が前記スター結線の第2中性点であり、各前記スター変換レグの前記スイッチ接続点と前記第2中性点との間に、前記第1所定電圧と異なる第2所定電圧又はゼロを出力する
     電力変換装置。
  20.  前記正側スター変換部が、各前記スター変換レグの前記スイッチ接続点と前記第1中性点との間に、前記第1所定電圧、第3所定電圧、又は、ゼロを出力する3レベル変換器であり、
     前記負側スター変換部が、各前記スター変換レグの前記スイッチ接続点と前記第2中性点との間に、前記第2所定電圧、第4所定電圧、又は、ゼロを出力する3レベル変換器である
     請求項19に記載の電力変換装置。
  21.  前記正側スター変換部又は前記負側スター変換部の各前記スター変換レグの前記スイッチ接続点に、単位変換器が接続されている
     請求項19又は20に記載の電力変換装置。
  22.  前記正側スター変換部又は前記負側スター変換部の各前記スター変換レグの前記スイッチ接続点に、単位変換器が接続されており、
     前記単位変換器の出力電圧が、前記第1所定電圧、前記第2所定電圧、前記第3所定電圧、前記第4所定電圧と異なる
     請求項20に記載の電力変換装置。
  23.  前記正側スター変換部は、前記スイッチ接続点が出力側の三相交流の各相のいずれか1つと接続された3つの前記スター変換レグをさらに備え、
     前記負側スター変換部は、前記スイッチ接続点が前記出力側の前記三相交流の各相のいずれか1つと接続された3つの前記スター変換レグをさらに備える
     請求項19~22のいずれか1項に記載の電力変換装置。
  24.  三相交流の各相がスター結線された構成を有する電力変換装置であって、
     直列に接続された2つのスイッチを含む3つのスター変換レグと、少なくとも1つのコンデンサとを含み、3つの前記スター変換レグと、前記コンデンサとが並列に接続され、各前記スター変換レグと前記コンデンサとが接続された接続点が前記スター結線の中性点である2つのスター変換部と、
     前記スター変換レグの2つの前記スイッチの間のスイッチ接続点を介して前記スター変換レグと直列に接続された単位変換器とを備え、
     一の前記スター変換部は、各前記スター変換レグの前記スイッチ接続点に、前記三相交流の各相が前記単位変換器を介してそれぞれ接続されており、
     他の前記スター変換部は、各前記スター変換レグの前記スイッチ接続点に、前記三相交流とは異なる三相交流の各相が前記単位変換器を介してそれぞれ接続されており、
     一の前記スター変換部と他の前記スター変換部が互いに接続されている
     電力変換装置。
  25.  一の前記スター変換部と他の前記スター変換部は、前記コンデンサを共有することで互いに接続されている
     請求項24に記載の電力変換装置。
  26.  請求項1~25のいずれか1項に記載の電力変換装置を介して、発電機と電力系統とを接続する発電システム。
  27.  請求項1~25のいずれか1項に記載の電力変換装置を介して、電源とモータとを接続するモータドライブシステム。
  28.  請求項1~25のいずれか1項に記載の電力変換装置を介して、電力系統同士を接続する電力連系システム。

     
PCT/JP2019/004516 2018-02-07 2019-02-07 電力変換装置、発電システム、モータドライブシステム及び電力連系システム WO2019156192A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019571158A JP7177500B2 (ja) 2018-02-07 2019-02-07 電力変換装置、発電システム、モータドライブシステム及び電力連系システム
EP19750640.5A EP3758213A4 (en) 2018-02-07 2019-02-07 ENERGY CONVERSION DEVICE, ENERGY GENERATING SYSTEM, MOTOR DRIVE SYSTEM AND ENERGY CONNECTION SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018020493 2018-02-07
JP2018-020493 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019156192A1 true WO2019156192A1 (ja) 2019-08-15

Family

ID=67549441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004516 WO2019156192A1 (ja) 2018-02-07 2019-02-07 電力変換装置、発電システム、モータドライブシステム及び電力連系システム

Country Status (3)

Country Link
EP (1) EP3758213A4 (ja)
JP (1) JP7177500B2 (ja)
WO (1) WO2019156192A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021095204A1 (ja) * 2019-11-14 2021-05-20
CN114553020A (zh) * 2022-04-27 2022-05-27 华北电力大学(保定) 一种电容复用型模块化多电平换流器及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121582B2 (ja) 1982-03-05 1986-05-28 Kasei Optonix
WO2010116806A1 (ja) 2009-03-30 2010-10-14 株式会社日立製作所 電力変換装置
JP2011223735A (ja) * 2010-04-09 2011-11-04 Hitachi Ltd 電力変換装置
WO2014010474A1 (ja) * 2012-07-11 2014-01-16 三菱電機株式会社 電力変換装置
EP2961057A1 (en) * 2014-06-26 2015-12-30 Alstom Technology Ltd. Voltage source converter and control thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5268744B2 (ja) * 2009-03-31 2013-08-21 株式会社日立製作所 電力変換装置
JP5894763B2 (ja) * 2011-10-31 2016-03-30 株式会社日立製作所 電力変換装置
CN102832841B (zh) * 2012-08-27 2014-09-17 清华大学 一种带辅助二极管模块化多电平变换器
WO2014125697A1 (ja) * 2013-02-15 2014-08-21 三菱電機株式会社 三相電力変換装置
JP6104736B2 (ja) * 2013-07-01 2017-03-29 株式会社東芝 電力変換装置
JP2015035902A (ja) * 2013-08-09 2015-02-19 株式会社明電舎 マルチレベル電力変換装置
CN106031012A (zh) * 2014-02-18 2016-10-12 Abb瑞士股份有限公司 用于ac系统的转换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121582B2 (ja) 1982-03-05 1986-05-28 Kasei Optonix
WO2010116806A1 (ja) 2009-03-30 2010-10-14 株式会社日立製作所 電力変換装置
JP2011223735A (ja) * 2010-04-09 2011-11-04 Hitachi Ltd 電力変換装置
WO2014010474A1 (ja) * 2012-07-11 2014-01-16 三菱電機株式会社 電力変換装置
EP2961057A1 (en) * 2014-06-26 2015-12-30 Alstom Technology Ltd. Voltage source converter and control thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MAKOTO HAGIWARAHIROFUMI AKAGI: "PWM Control and Experiment of Modular Multilevel Converters (MMC", IEEJ TRANSACTIONS D, vol. 128, no. 7, pages 957 - 965, XP055185989, DOI: 10.1541/ieejias.128.957
See also references of EP3758213A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021095204A1 (ja) * 2019-11-14 2021-05-20
JP7103531B2 (ja) 2019-11-14 2022-07-20 三菱電機株式会社 電源装置および磁気共鳴画像診断装置
CN114553020A (zh) * 2022-04-27 2022-05-27 华北电力大学(保定) 一种电容复用型模块化多电平换流器及其控制方法

Also Published As

Publication number Publication date
JP7177500B2 (ja) 2022-11-24
JPWO2019156192A1 (ja) 2021-01-28
EP3758213A4 (en) 2022-01-05
EP3758213A1 (en) 2020-12-30

Similar Documents

Publication Publication Date Title
US9036379B2 (en) Power converter based on H-bridges
EP2816719B1 (en) Improved multilevel voltage source converters and systems
US10069430B2 (en) Modular converter with multilevel submodules
US10560019B2 (en) Bipolar high-voltage network and method for operating a bipolar high-voltage network
JP5803683B2 (ja) マルチレベル電力変換回路
US20150229227A1 (en) Multi-phase AC/AC Step-down Converter for Distribution Systems
EP2833537A2 (en) Multilevel converter system
JP2014100064A (ja) コンバータ
WO2017144693A1 (en) Dual submodule for a modular multilevel converter and modular multilevel converter including the same
US8248828B2 (en) Medium voltage inverter system
JP5792903B2 (ja) 電力変換装置
US20140078802A1 (en) Dc/ac inverter to convert dc current/voltage to ac current/voltage
EP2621073A1 (en) Multilevel converter
JP2015027170A (ja) 直流/交流変換装置
JP6383304B2 (ja) 電力変換装置、およびダブルセル
WO2019156192A1 (ja) 電力変換装置、発電システム、モータドライブシステム及び電力連系システム
WO2013151542A1 (en) Multilevel converter
WO2014154241A1 (en) A multilevel converter with cell type mixing
JP2019176708A (ja) 電力変換装置、発電システム、負荷システム及び送配電システム
Orfanoudakis et al. An Extended Boost Three-Phase Transformerless PV Inverter for Common-Mode Leakage Current Reduction
JP2014054152A (ja) 電力変換装置及び電力制御装置
WO2018131260A1 (ja) 電力変換装置および直流送電システム
CN115706538A (zh) 双向中压转换器
JP2020162331A (ja) 電力変換装置
JP2020127333A (ja) 電力変換装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571158

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019750640

Country of ref document: EP

Effective date: 20200907