WO2019156163A1 - 光硬化性組成物、造形物及びハイドロゲル - Google Patents

光硬化性組成物、造形物及びハイドロゲル Download PDF

Info

Publication number
WO2019156163A1
WO2019156163A1 PCT/JP2019/004409 JP2019004409W WO2019156163A1 WO 2019156163 A1 WO2019156163 A1 WO 2019156163A1 JP 2019004409 W JP2019004409 W JP 2019004409W WO 2019156163 A1 WO2019156163 A1 WO 2019156163A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogel
composition
polymer
photopolymerization initiator
polymerizable monomer
Prior art date
Application number
PCT/JP2019/004409
Other languages
English (en)
French (fr)
Inventor
脩 鹿野
雅翔 西村
宏実 麻生
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2019571143A priority Critical patent/JP7276161B2/ja
Publication of WO2019156163A1 publication Critical patent/WO2019156163A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/52Amides or imides
    • C08F20/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F20/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-acryloylmorpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F291/00Macromolecular compounds obtained by polymerising monomers on to macromolecular compounds according to more than one of the groups C08F251/00 - C08F289/00

Definitions

  • the present invention relates to a photocurable composition, a shaped article, and a hydrogel.
  • This application claims priority on February 7, 2018 based on Japanese Patent Application No. 2018-020337 for which it applied in Japan, and uses the content here.
  • Hydrogels that contain hydrophilic polymers are useful materials that are attracting attention because they have excellent properties such as water absorption, water retention, and flexibility, and are used in various technologies such as medicine, food, and civil engineering. Use in the field is expected.
  • hydrogels having a structure in which polymers having a crosslinked network structure or polymers having a crosslinked network structure and a linear polymer are entangled with each other have been proposed as hydrogels having excellent mechanical properties. Further improvements in the field are expected.
  • Patent Document 1 describes a high-strength hydrogel obtained by polymerizing a pregel solution having predetermined cross-linked polymer particles, a vinyl monomer and a solvent and having a viscosity of 10 to 20,000 mPa ⁇ s. Yes.
  • a photopolymerization initiator or a thermal polymerization initiator is added to a pregel solution, poured into a mold or the like, and then subjected to radical polymerization to produce the gel.
  • the pregel solution has a high viscosity (for example, several thousand mPa ⁇ s or more).
  • a high viscosity for example, several thousand mPa ⁇ s or more.
  • An object of the present invention is to provide a low-viscosity photocurable composition, and a shaped article and a hydrogel using the same.
  • the present inventors have found that when a phosphinate is used as a photopolymerization initiator in a photocurable composition containing a polymerizable monomer, a photopolymerization initiator, and polymer particles, an acylphosphine oxide-based initiator, etc.
  • the present inventors have found that the photocurable composition can be made lower in viscosity than the case of using the present invention, and completed the present invention.
  • the present invention has the following aspects.
  • a photopolymerization initiator, a polymerizable monomer, and polymer particles A photocurable composition, wherein the photopolymerization initiator comprises a phosphinate.
  • the photocurable composition according to [1] wherein the phosphinate has absorption in a visible light region.
  • a ratio represented by the mass of the polymer particles / the mass of the remainder obtained by removing the polymer particles from the photocurable composition is in the range of 1/100 to 1/20.
  • the photocurable composition in any one of.
  • the photocurable composition according to any one of [1] to [5] which has a viscosity at 25 ° C. of 5 to 1000 mPa ⁇ s.
  • a shaped article comprising a cured product of the photocurable composition according to any one of [1] to [5].
  • a hydrogel comprising a cured product of the photocurable composition according to any one of [1] to [5].
  • gel means a structure in which polymer chains are physically or chemically bonded to form a network structure, and a solvent is taken into the formed network structure to swell.
  • the hydrogel means a structure in which a polar solvent is incorporated in a network structure composed of a polymer.
  • the photocurable composition of the present invention includes a photopolymerization initiator, a polymerizable monomer, and polymer particles. This composition may further contain a crosslinking agent, a polar solvent, and other components as necessary.
  • Photopolymerization initiator examples include a photoradical polymerization initiator, a photocationic polymerization initiator, a photoanion polymerization initiator, and a redox photopolymerization initiator. From the viewpoint of ease of handling, a radical photopolymerization initiator is preferred.
  • the photoradical polymerization initiator generates a radical which becomes a starting point of a polymerization reaction when light is irradiated to initiate polymerization. Examples of light include visible light, ultraviolet rays, and electron beams.
  • the photopolymerization initiator includes a phosphinic acid salt.
  • a phosphinate as a photopolymerization initiator, the present composition can have a lower viscosity than when an acylphosphine oxide-based initiator or the like is used.
  • Phosphinates are typically photoradical polymerization initiators.
  • the phosphinate preferably has absorption in the visible light region. When absorption is in the visible light range, visible light can be used as light for curing the composition, which is advantageous in terms of safety. Note that whether or not the phosphinate has absorption in the visible light region can be determined by an extinction coefficient.
  • the extinction coefficient of phosphinate is determined by pouring a methanol solution of phosphinate with a predetermined concentration into a 1 cm quartz cell and using a spectrophotometer (eg, Shimadzu UV-Vis spectrophotometer UV-1800) It is determined by measuring and calculating from Lambert-Beer's law (the following equation) using the obtained absorbance.
  • A ⁇ ⁇ c ⁇ d
  • A absorbance
  • molar extinction coefficient (L / (mol ⁇ cm))
  • c molar concentration (mol / L)
  • d cell thickness (cm).
  • the molar extinction coefficient in the visible light region is 100 or more, because sufficient light can be absorbed to generate radicals. Note that the molar extinction coefficient in the visible light region is 100 or more as long as the molar extinction coefficient at any wavelength in the visible light region is 100 or more, and the peak of the molar extinction coefficient exists in the visible light region. do not have to.
  • phosphinate examples include phenyl (2,4,6-trimethylbenzoyl) phosphinate and bis (2,4,6-trimethylbenzoyl) phosphinate.
  • salt examples include lithium salt and sodium salt. These phosphinates function as photo radical polymerization initiators. It also has absorption in the visible light range.
  • the photopolymerization initiator may further contain a photopolymerization initiator other than the phosphinate.
  • a photopolymerization initiator other photopolymerization initiators, known photopolymerization initiators can be used.
  • a radical photopolymerization initiator having absorption in the visible light region 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butan-1-one, 2- (4-methylbenzyl) -2-dimethyl Amino-1- (4-morpholinophenyl) butan-1-one, bis ( ⁇ 5-2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) ) Phenyl) titanium, bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, (2,4,6-trimethylbenzoyl) ethoxy
  • the ratio of the phosphinic acid salt in the photopolymerization initiator is preferably 0.01 to 100 mol%, more preferably 1 to 100 mol%, and further preferably 50 to 100 mol% with respect to the total molar amount of the photopolymerization initiator. preferable.
  • the ratio of the phosphinic acid salt is not less than the lower limit of the above range, the present composition can be made to have a lower viscosity.
  • the polymerizable monomer When the composition is irradiated with light, the polymerizable monomer is polymerized by the action of the photopolymerization initiator to form a polymer.
  • the polymerizable monomer may be any compound that can be polymerized using the photopolymerization initiator, and examples thereof include compounds having a radical polymerizable unsaturated group. Specific examples of the polymerizable monomer include the following compounds.
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • SS styrenesulfonic acid
  • acrylic acid AA
  • vinylpyridine vinyl acetate, styrene ( St)
  • acrylamide AAm
  • mono (or di) alkylacrylamide eg, N-isopropylacrylamide, N, N-dimethylacrylamide (DMAAm)
  • hydroxyethyl acrylate 2- (dimethylamino) ethyl methacrylate, methyl methacrylate ( MMA), lauryl acrylate (LA), stearyl acrylate (SA), trifluoroethyl acrylate (TFE), 2,2,2-trifluoroethyl methyl acrylate, 2,2,3,3,3-pentafluoropropylme Chryrate, 3- (perfluorobutyl) -2-hydroxypropyl meth
  • Examples of the salt in these polymerizable monomers include alkali metal salts such as sodium, alkaline earth metal salts such as calcium, and metal salts such as zinc.
  • a polymerizable monomer may be used individually by 1 type, and may be used in combination of 2 or more type. That is, the polymer formed from the polymerizable monomer may be a homopolymer or a copolymer.
  • the polymer formed from the polymerizable monomer of the present composition may be a polymer having a network structure or a polymer not having a network structure (for example, a linear polymer). From the viewpoint that the mechanical strength of the formed gel is more excellent, it is preferable to have a network structure.
  • Examples of the method for converting the polymer formed from the polymerizable monomer into a polymer having a network structure include a method of adding a crosslinking agent to the composition. In this case, the polymerizable monomer is polymerized in the presence of the photopolymerization initiator and the crosslinking agent to produce a polymer having a network structure.
  • the composition is polymerized in the presence of a photopolymerization initiator and in the absence of a crosslinking agent without containing a crosslinking agent in the composition. .
  • the hydrogel formed from the composition is composed of a polymer formed from a polymerizable monomer in the composition (hereinafter also referred to as “second polymer”).
  • the polymer particles are dispersed in the continuous phase.
  • Such a hydrogel is excellent in mechanical properties as compared with a case where polymer particles are not included.
  • the polymer particles function as a thickening component.
  • the thickening component increases the viscosity of the entire composition and decreases the fluidity due to the interaction with the polymerizable monomer and the polar solvent.
  • the thickening component is used, for example, for the purpose of improving the mechanical properties of the hydrogel, imparting functionality, and suppressing the drying of the solvent component of the hydrogel.
  • the polymer particles are typically swellable in a solution containing the polymerizable monomer (for example, a second solution described later).
  • a solution containing the polymerizable monomer for example, a second solution described later.
  • the first polymer examples include polymers obtained by polymerizing polymerizable monomers, polysaccharides (gellan, hyaluronic acid, carrageenan, chitin, alginic acid, etc.), and proteins (gelatin, collagen, etc.).
  • polymerizable monomer the same thing as the polymerizable monomer mentioned above is mentioned.
  • a polymerizable monomer may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the first polymer constituting the polymer particles may be one kind or two or more kinds.
  • the first polymer may be a polymer having a network structure, or may be a polymer having no network structure (for example, a linear polymer). From the viewpoint that the mechanical strength of the gel formed is more excellent, a polymer having a network structure is preferable.
  • the formed hydrogel has a structure in which the second polymer penetrates into the network structure of the first polymer. Therefore, when the first polymer does not have the network structure. Compared with mechanical strength.
  • the formed hydrogel has a network structure in which the first polymer and the second polymer penetrate each other. Is better.
  • the average particle size of the polymer particles is preferably 0.1 to 10,000 ⁇ m, more preferably 0.1 to 1000 ⁇ m, and particularly preferably 0.1 to 100 ⁇ m in a dry state.
  • the average particle diameter is obtained by observing 100 polymer particles in a completely dry state with a scanning electron microscope, obtaining the maximum diameter of each polymer particle, and calculating the average value thereof.
  • the polar solvent is a liquid compound having a relative dielectric constant of 10 or more at room temperature.
  • the polar solvent is incorporated into the network structure formed by the polymer to form a hydrogel.
  • the relative dielectric constant is a value measured using a liquid dielectric constant measurement kit (made by ITACA) at a frequency of 2 GHz and a condition of 25 ° C.
  • the polar solvent include water, a polar organic solvent, a mixture of water and a polar organic solvent, and the like.
  • the polar organic solvent include alcohols such as ethylene glycol and ethanol, ketones such as acetone, and ionic liquids.
  • water and alcohol are preferable from the viewpoint of ease of handling and safety, and water is particularly preferable from the viewpoint of availability and environmental harmony.
  • the crosslinking agent is not particularly limited, and known ones can be appropriately used depending on the type of polymerizable monomer.
  • a crosslinking agent the polyfunctional vinyl compound which has 2 or more of radically polymerizable unsaturated groups is mentioned, for example.
  • the polyfunctional vinyl compound N, N′-methylenebisacrylamide (MBAA), ethylene glycol dimethacrylate (EDMA), N, N′-diethylene glycol dimethacrylate (DEGDMA) are used in terms of the mechanical strength of the gel formed. Divinyl compounds such as are preferred.
  • Other components include, for example, thickening components other than polymer particles, light absorbers, surfactants, silane coupling agents, antioxidants, light stabilizers, metal deactivators, rust inhibitors, and anti-aging agents. Agents, hygroscopic agents, hydrolysis inhibitors, polymerization inhibitors, leveling agents and the like. Any one of these additives may be used alone, or two or more thereof may be used in combination.
  • thickening components other than polymer particles include inorganic clay minerals (montmorillonite, hectorite, etc.), thickeners (polysaccharides, carboxymethylcellulose, etc.) and the like.
  • a light absorber refers to a substance that absorbs light and converts it into heat energy or light of another wavelength.
  • this composition contains a light absorber, the three-dimensional (3D) modeling property of this composition is more excellent, and the modeling precision of the 3D structure molded object formed from this composition is more excellent.
  • the light absorber preferably has at least one structure selected from the group consisting of a benzotriazole structure, a benzophenone structure, a triazine structure, a benzoate structure, an oxalanilide structure, a salicylate structure, and a cyanoacrylate structure.
  • what has at least 1 structure selected from the group which consists of a benzotriazole structure, a triazine structure, and a benzophenone structure from a viewpoint of 3D modeling property is preferable. Any one of these light absorbers may be used alone, or two or more thereof may be used in combination.
  • the present composition preferably satisfies any one of the following conditions A and B. Thereby, the molecular chain of the 2nd polymer formed from the polymerizable monomer in this composition becomes easy to penetrate
  • the present composition more preferably satisfies the condition A.
  • Condition A the first polymer constituting the polymer particle includes a structural unit based on an unsaturated monomer having a group that can be positively or negatively charged, and the polymerizable monomer in the composition is electrically neutral Contains unsaturated monomers.
  • Condition B the first polymer constituting the polymer particle includes a structural unit based on an electrically unsaturated monomer, and the polymerizable monomer in the composition has a group that can be positively or negatively charged. Contains unsaturated monomers.
  • the unsaturated monomer having a positively or negatively charged group is preferably an unsaturated monomer having an acidic group (for example, a carboxy group, a phosphoric acid group or a sulfonic acid group) or a basic group (for example, an amino group).
  • an acidic group for example, a carboxy group, a phosphoric acid group or a sulfonic acid group
  • a basic group for example, an amino group
  • Specific examples include 2-acrylamido-2-methylpropanesulfonic acid (AMPS), acrylic acid (AA), methacrylic acid, and salts thereof.
  • electrically neutral unsaturated monomers include styrene (St), acrylamide (AAm), N-isopropylacrylamide, N, N-dimethyl-acrylamide, vinylpyridine, styrene, and methyl methacrylate (MMA).
  • Fluorine-containing unsaturated monomers eg, trifluoroethyl acrylate (TFE)
  • the content of the polymerizable monomer in the composition is preferably 0.01 to 100 mol / L, more preferably 0.1 to 50 mol / L, and more preferably 0.1 to 25 mol / L as the charged molar concentration. Particularly preferred.
  • This charged molar concentration is the molar amount of the polymerizable monomer per liter of the present composition when the present composition is prepared.
  • the content of the polymerizable monomer is not less than the lower limit of the above range, the mechanical strength of the hydrogel is more excellent.
  • the content of the polymerizable monomer is not more than the upper limit of the above range, the flexibility and transparency of the hydrogel are more excellent.
  • the content of the polar solvent can be set according to the content of the polymerizable monomer in the composition.
  • the content of the photopolymerization initiator is preferably from 0.001 to 5 mol%, more preferably from 0.001 to 1 mol%, more preferably from 0.01 to 0, based on the total molar amount (100 mol%) of the polymerizable monomer. 0.5 mol% is particularly preferred.
  • the content of the photopolymerization initiator content is not less than the lower limit of the above range, the curability of the composition and the mechanical strength of the hydrogel are more excellent.
  • the content of the photopolymerization initiator is not more than the upper limit of the above range, the flexibility of the hydrogel is more excellent.
  • the content of the polymer particles can be appropriately selected according to the kind of the polymer particles so that the effect of the polymer particles can be sufficiently obtained.
  • the ratio represented by the mass of the polymer particles / the mass of the rest of the composition excluding the polymer particles is preferably in the range of 1/100 to 1/20, more preferably in the range of 1/75 to 1/20. Further, the range of 1/50 to 1/25 is more preferable. When the ratio is not less than the lower limit of the range, the effect of the polymer particles can be easily obtained. When the ratio is not more than the upper limit of the above range, the viscosity of the composition can be sufficiently lowered, and the transparency and surface smoothness of the hydrogel are more excellent. In addition, "the remainder which remove
  • the ratio represented by the mass of the polymer particles / the mass of the polymerizable monomer is preferably from 0.1 / 99.9 to 70/30, more preferably from 1/99 to 60/40, and from 5/95 to 50/50. Further preferred.
  • This ratio can be regarded as a ratio expressed by the mass of the first polymer / the mass of the second polymer in the hydrogel. When this ratio is within the above range, the mechanical strength of the hydrogel is more excellent.
  • the content of the light absorber in the composition is preferably from 0 to 1000 mol%, more preferably from 0 to 750 mol%, particularly preferably from 0 to 500 mol%, based on the total molar amount of the photopolymerization initiator.
  • the content of the light absorber is preferably 0 to 3000% by mass, more preferably 0 to 2000% by mass, and particularly preferably 0 to 1500% by mass with respect to the total mass of the photopolymerization initiator. If the content of the light absorber is not less than the lower limit of the above range, the 3D modeling property is more excellent. When the content of the light absorber is not more than the upper limit of the above range, the mechanical strength of the hydrogel is more excellent.
  • the viscosity at 25 ° C. of the composition is preferably 5 to 1000 mPa ⁇ s, more preferably 5 to 750 mPa ⁇ s, still more preferably 5 to 500 mPa ⁇ s, and particularly preferably 10 to 100 mPa ⁇ s.
  • the viscosity is a value measured using a B-type viscometer.
  • the viscosity of the present composition can be reduced by using a phosphinate as a photoacid generator.
  • the viscosity of the present composition can be adjusted by the content of polymer particles, the concentration of the polymerizable monomer, and the like.
  • the present composition can be produced by mixing a photopolymerization initiator, a polymerizable monomer, polymer particles, and if necessary, a polar solvent, a crosslinking agent, and other components.
  • a photopolymerization initiator for polymer particles are produced.
  • a solution containing a component other than polymer particles for example, a solution containing a component other than polymer particles (hereinafter also referred to as “second solution”) by mixing a photopolymerization initiator, a polymerizable monomer, a polar solvent, and a crosslinking agent as necessary. Make it.
  • the produced polymer particles and the second solution are mixed to obtain the present composition.
  • first gel preparation step a first gel including a first polymer having a network structure and a liquid medium is prepared.
  • first gel breaking step the obtained first gel is physically broken and granulated.
  • first gel breaking step the first gel after the first gel preparation step or after the first gel breaking step is dried and pulverized as necessary to obtain dry gel particles (polymer particles).
  • Examples of the method for preparing the first gel include a method in which a gel is obtained by polymerizing a polymerizable monomer in the presence of a polymerization initiator and a crosslinking agent in a liquid medium. Specifically, a solution containing a polymerizable monomer, a polymerization initiator, a crosslinking agent and a liquid medium (hereinafter sometimes referred to as a first solution) is prepared, and the polymerizable monomer is added to the first solution.
  • the method of polymerizing is mentioned.
  • the polymerization method of the polymerizable monomer is not particularly limited, and a known polymerization method such as thermal polymerization or photopolymerization can be used.
  • a polymerization initiator a well-known polymerization initiator can be used suitably according to the polymerization method.
  • a photopolymerization initiator is used when photopolymerizing a polymerizable monomer.
  • this photopolymerization initiator may be the same as or different from the photopolymerization initiator used in the present composition.
  • an alkylphenone initiator and an acylphosphine oxide initiator are preferable. When such a photopolymerization initiator is used, the mechanical strength of the formed gel is good.
  • Acylphosphine oxide initiators include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, (2,4,6-trimethylbenzoyl) ethoxyphenylphosphine oxide.
  • Examples of the cross-linking agent include the same cross-linking agents as described above.
  • Examples of the liquid medium include water and organic solvents, and water is preferable from the viewpoint of easy availability and environmental harmony.
  • the content of the polymerizable monomer in the first solution is preferably 0.5 to 4 mol / L, preferably 1 to 2 mol / L as the charged molar concentration in order to obtain the preferable hardness of the first gel. More preferred.
  • This charged molar concentration is the molar amount of the polymerizable monomer per liter of the first solution when the first solution is prepared.
  • the content of the crosslinking agent in the first solution is preferably 1 to 20 mol%, more preferably 2 to 10 mol%, based on the total molar amount of the polymerizable monomers.
  • the content (mol%) of the crosslinking agent relative to the total molar amount of the polymerizable monomer corresponds to the crosslinking density of the first polymer.
  • the crosslink density of the first polymer is not less than the lower limit of the above range, the mechanical strength of the formed gel is more excellent.
  • the crosslink density of the first polymer is not more than the upper limit of the above range, the flexibility of the formed gel is more excellent.
  • the content of the polymerization initiator in the first solution is preferably from 0.001 to 5 mol%, more preferably from 0.01 to 1 mol%, based on the total molar amount of the polymerizable monomers. If the content of the polymerization initiator in the first solution is too large with respect to the total molar amount of the polymerizable monomer, the first gel tends to be weak because the molecular weight of the first polymer is small, and if the content is too small. There is a possibility that the first solution does not gel. When the content of the polymerization initiator in the first solution is within the above range, the first solution is sufficiently gelled and the strength of the first gel is excellent.
  • the first gel preparation step After the first gel preparation step, if the first gel breaking step is performed and the first gel is granulated, the first gel can be dried in a short time, and pulverization after drying is easy. Become.
  • emulsification weight which is a general method for producing a particulate polymer as described in Tsujiike et al. (Supervised by Mikiharu Tsunoike and Go Endo, “Radical Polymerization Handbook”, 1999, issued by NTS).
  • a polymerizable monomer may be polymerized by a combination method, a suspension polymerization method, a dispersion polymerization method, or the like to prepare a gel containing a granular first polymer and a liquid.
  • Dry gel particles are obtained by drying the first gel obtained in the first gel preparation step or the first gel pulverized in the first gel breaking step, and pulverizing as necessary.
  • the dried gel particles can be used as polymer particles. It does not specifically limit as a drying method, For example, it can carry out by well-known methods, such as hot air drying and freeze-drying. Drying is preferably performed until the content of the liquid medium is 10% by mass or less.
  • the drying conditions may be 20 to 130 ° C., for example.
  • the method for pulverizing the first gel after drying is not particularly limited, and may be physically pulverized by a known method. For example, a method of crushing using a mortar and pestle may be used. After pulverization, the pulverized product may be classified using a sieve or the like.
  • This composition is used for the production of hydrogel, for example.
  • the manufacturing method of the hydrogel using this composition is demonstrated later.
  • the composition described above includes a photopolymerization initiator, a polymerizable monomer, and polymer particles. Since the photopolymerization initiator includes a phosphinate, the polymer particles function as a thickening component. It has a low viscosity. Therefore, when forming a hydrogel using this composition, it is hard to remain
  • the resulting hydrogel can be molded into any shape, highly water-absorbent resin, disposable diapers, sanitary products, soft contact lenses, indoor water-containing sheets, shock absorbing materials, mental / soundproof materials, children's toys, etc. Can be used.
  • the composition can be applied to a substrate and cured, the composition can be applied to various coating materials such as ship bottom paint, anti-icing paint, antifogging paint, and antifouling paint, and friction resistance. It can also be used as a material to be applied to a portion to be reduced (propeller, catheter, pressure loss reduction in piping, etc.).
  • this composition has a low viscosity and excellent handling properties, it can also be suitably used as an ink for stereolithography 3D printers.
  • the shaped article of the present invention includes a cured product of the present composition.
  • the shaped article of the present invention includes at least a first polymer constituting polymer particles and a polymer (second polymer) formed from a polymerizable monomer in the present composition.
  • the shaped article of the present invention can be produced, for example, by placing the composition in a mold and irradiating the composition with light (ultraviolet light, visible light, electron beam, etc.).
  • light ultraviolet light, visible light, electron beam, etc.
  • the polymerizable monomer is polymerized to produce a polymer, and the composition is gelled to form a hydrogel.
  • the obtained hydrogel may be taken out of the mold and used as a shaped article of the present invention, and other treatments may be applied to the hydrogel as necessary. Examples of other treatments include removal of a polar solvent (drying) and immersion in a polar solvent (swelling).
  • the shaped object of the present invention can be used for various purposes such as an organ model.
  • the hydrogel of this invention contains the hardened
  • the hydrogel of the present invention includes at least a network structure and a polar solvent held therein.
  • the network structure is constituted by a first polymer constituting polymer particles and a polymer (second polymer) formed from a polymerizable monomer.
  • the content of the polar solvent in the hydrogel of the present invention is not particularly limited, and may be, for example, 10% by mass or more, 50% by mass or more, and 70% by mass or more.
  • the “polar solvent content” is the ratio of the mass of the polar solvent to the total mass of the hydrogel.
  • the content of the polar solvent is also referred to as “water content”.
  • the hydrogel of the present invention contains a phosphinate component derived from the photopolymerization initiator.
  • the structure of the phosphinate component derived from the photopolymerization initiator is usually different from the structure of the phosphinate in the present composition.
  • a radical is generated by cleavage into two molecules as shown in the following formula.
  • the content of the phosphinate component derived from the photopolymerization initiator is, for example, 0.0001 to 0.5% by mass with respect to the total mass of the hydrogel of the present invention. Whether or not the hydrogel contains a phosphinate component derived from a photopolymerization initiator and the content of the phosphinate component can be confirmed by, for example, a pyrolysis gas chromatograph (pyrolysis GC).
  • pyrolysis gas chromatograph pyrolysis chromatograph
  • the hydrogel of the present invention can be produced, for example, by placing the composition in a mold and irradiating the composition with light (ultraviolet light, visible light, electron beam, etc.). When the composition is irradiated with light, the polymerizable monomer is polymerized to produce a polymer, and the composition is gelled.
  • light ultraviolet light, visible light, electron beam, etc.
  • the hydrogel of the present invention uses this composition, it is excellent in transparency and surface smoothness.
  • the hydrogel of the present invention can be used in various applications such as superabsorbent resin, disposable diapers, sanitary products, soft contact lenses, water-containing sheets for indoor greening, shock absorbing materials, mental / soundproof materials and children's toys. Can be used.
  • Example 1 ⁇ Production of polymer particles> To 41.3 g (0.0900 mol) of a 50% by mass aqueous solution of 2-acrylamido-2-methylpropanesulfonic acid sodium salt (NaAMPS), 0.555 g (0.005 mol) of N, N′-methylenebisacrylamide (MBAAm) was added. And 3021 mmol), 0.021 g (0.00010 mol) of Irgacure 1173 (BASF, 2-hydroxy-2-methyl-1-phenyl-propan-1-one) as a photopolymerization initiator, and pure water 41 A first solution was prepared by adding 3 g.
  • NaAMPS 2-acrylamido-2-methylpropanesulfonic acid sodium salt
  • MBAAm N, N′-methylenebisacrylamide
  • the first solution is poured into a mold in which a frame-shaped silicone rubber sheet (thickness 2 mm) is placed on a polyethylene terephthalate (PET) film, and the top is covered with another PET film, and the upper and lower sides are sandwiched between glass plates.
  • a sample was made. By irradiating this sample with ultraviolet rays using an optical belt type ultraviolet irradiation device, the first solution in the sample was gelled. The obtained gel was dried in a dryer overnight or longer, the dried gel was pulverized, and the dried gel particles passing through a 100 ⁇ m sieve were collected to obtain polymer particles (particle diameter of 100 ⁇ m or less).
  • a ratio (hereinafter also referred to as “1st / 2nd”) represented by the mass of the polymer particles / the mass of the second solution (hereinafter also referred to as “1st / 2nd”) of the polymer particles and the second solution produced as described above is 1/30.
  • the polymer particles were uniformly dispersed and swollen to obtain a photocurable composition.
  • Table 1 shows the content (mole%) of the crosslinking agent (MBAAm) in the polymer particles relative to the total molar amount of NaAMPS, the type of the photopolymerization initiator in the photocurable composition, and the content relative to the total molar amount of the polymerizable monomer. The amount (mol%) and 1st / 2nd are also shown.
  • viscosity The viscosity (mPa ⁇ s) at 25 ° C. of the photocurable composition was measured using a B-type viscometer.
  • Example 2 In Example 1, the same operation as in Example 1 was performed except that 1st / 2nd was reduced to 1/25. The evaluation results are shown in Table 1.
  • Example 5 (Examples 3 to 5)
  • the amount of MBAAm blended in the second solution was changed to 0.154 g (0.00000999 mol)
  • the amount of pure water was changed to 59.7 g
  • Nippon Kayaku was used as a light absorber in the second solution.
  • the same operation as in Example 1 was performed except that KAYAPHOR AS150 manufactured by the company was blended in the amount shown in Table 1 and 1st / 2nd was changed to the value shown in Table 1.
  • the evaluation results are shown in Table 1.
  • the amount (mol%) of the light absorber is a ratio with respect to the total molar amount of the photopolymerization initiator.
  • Example 6 In Example 4, the amount of MBAAm used in the preparation of polymer particles was changed so that the content of MBAAm in the polymer particles relative to the total molar amount of NaAMPS was the value shown in the column “MBAAm (in particles)” in Table 1. The same operation as in Example 4 was performed except that. The evaluation results are shown in Table 1.
  • Example 7 In Example 4, the amount of Li-TPO blended in the second solution was changed as shown in Table 1, and the amount of 2,4,6-trimethylbenzoyldiphenylphosphine in the amount shown in Table 1 was added to the second solution. The same operation as in Example 4 was performed except that oxide (TPO) was added. The evaluation results are shown in Table 1.
  • the amounts (mol%) of Li-TPO and TPO in Table 1 are ratios relative to the total molar amount of polymerizable monomers.
  • Example 2 (Comparative Example 1) In Example 2, 0 of bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (BAPO) (absorption coefficient at a wavelength of 405 nm: 8.990 ⁇ 102 mL / (g ⁇ cm)) is used instead of Li-TPO. The same operation as in Example 2 was performed except that .0067 g (0.00016 mol) was used. The evaluation results are shown in Table 1. However, about Comparative Example 1, since the transparency and surface smoothness of the hydrogel were inferior, the 3D modeling property was not evaluated.
  • BAPO bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide
  • the photocurable compositions of Examples 1 to 6 using phosphinate as a photopolymerization initiator had a low viscosity. Moreover, the obtained hydrogel was excellent in transparency, surface smoothness, and 3D modeling property. Similar results were obtained in Examples 7 to 8 in which phosphinates and other photopolymerization initiators were used in combination.
  • the photocurable composition of Comparative Example 1 using another photopolymerization initiator as the photopolymerization initiator had a higher viscosity than Examples 1-8. Moreover, the obtained hydrogel was inferior in transparency and inferior in surface smoothness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Polymerisation Methods In General (AREA)
  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

本発明の一態様に係る光硬化性組成物は、光重合開始剤と、重合性モノマーと、ポリマー粒子とを含み、前記光重合開始剤がホスフィン酸塩を含む。

Description

光硬化性組成物、造形物及びハイドロゲル
 本発明は、光硬化性組成物、造形物及びハイドロゲルに関する。
 本願は、2018年2月7日に、日本出願された特願2018-020337号に基づき優先権を主張し、その内容をここに援用する。
 親水性のポリマーを含むハイドロゲルは、吸水性や保水性、柔軟性等の性質に優れるという特性を有することから注目を集めている有用な素材であり、医療、食品、土木等の様々な技術分野における利用が期待されている。
 近年、機械物性に優れたハイドロゲルとして、架橋網目構造を有するポリマー同士、又は架橋網目構造を有するポリマーと直鎖ポリマーとが互いに絡み合った構造を有するハイドロゲルが提案されており、ハイドロゲルの応用分野のさらなる向上が期待される。
 特許文献1には、所定の架橋ポリマー粒子、ビニル系単量体及び溶媒を含み、粘度が10~20,000mPa・sであるプレゲル溶液を重合して得られる高強度のハイドロゲルが記載されている。また、プレゲル溶液に光重合開始剤や熱重合開始剤を添加し、型枠等に流し込んだ後、ラジカル重合することにより前記ゲルを製造することが記載されている。
特開2015-96560号公報
 本発明者らの検討によれば、特許文献1に記載の光重合開始剤(アシルホスフィンオキサイド系開始剤等)を添加した場合、プレゲル溶液が高粘度(例えば数千mPa・s以上)になる。プレゲル溶液が高粘度であると、プレゲル溶液の注型時に気泡が入り、ハイドロゲルの透明性や表面平滑性が損なわれる。
 本発明は、低粘度の光硬化性組成物、並びにこれを用いた造形物及びハイドロゲルを提供することを目的とする。
 本発明者らは、鋭意検討の結果、重合性モノマー、光重合開始剤、及びポリマー粒子を含む光硬化性組成物における光重合開始剤としてホスフィン酸塩を用いると、アシルホスフィンオキサイド系開始剤等を用いる場合に比べて、光硬化性組成物を低粘度にできることを見出し、本発明を完成させた。
 本発明は、以下の態様を有する。
 〔1〕光重合開始剤と、重合性モノマーと、ポリマー粒子とを含み、
 前記光重合開始剤がホスフィン酸塩を含む、光硬化性組成物。
 〔2〕前記ホスフィン酸塩が、可視光域に吸収を有する〔1〕の光硬化性組成物。
 〔3〕前記光重合開始剤の含有量が、前記重合性モノマーの総モル量に対して0.01~0.5モル%である〔1〕又は〔2〕の光硬化性組成物。
 〔4〕前記ポリマー粒子の質量/前記光硬化性組成物から前記ポリマー粒子を除いた残部の質量で表される比が、1/100~1/20の範囲内である〔1〕~〔3〕のいずれかの光硬化性組成物。
 〔5〕25℃における粘度が5~1000mPa・sである〔1〕~〔5〕のいずれかの光硬化性組成物。
 〔6〕〔1〕~〔5〕のいずれかの光硬化性組成物の硬化物を含む、造形物。
 〔7〕〔1〕~〔5〕のいずれかの光硬化性組成物の硬化物を含む、ハイドロゲル。
 〔8〕光重合開始剤由来のホスフィン酸塩成分を含み、
 極性溶媒の含有率が50質量%以上である、ハイドロゲル。
 本発明によれば、低粘度の光硬化性組成物、並びにこれを用いた造形物及びハイドロゲルを提供できる。
 本明細書において、数値範囲を示す「~」は、その前後に記載された数値を下限値及び上限値として含むことを意味する。
 本明細書において、「ゲル」とは、ポリマー鎖同士が物理的もしくは化学的に結合することで網目構造を形成し、形成した網目構造に溶媒を取り込んで膨潤する構造体を意味する。
 本明細書において、ハイドロゲルとは、ポリマーで構成された網目構造中に極性溶媒を取り込んでいる構造体を意味する。
〔光硬化性組成物〕
 本発明の光硬化性組成物(以下、「本組成物」とも記す。)は、光重合開始剤と、重合性モノマーと、ポリマー粒子とを含む。
 本組成物は、必要に応じて、架橋剤、極性溶媒、その他の成分をさらに含んでいてもよい。
(光重合開始剤)
 光重合開始剤としては、光ラジカル重合開始剤、光カチオン重合開始剤、光アニオン重合開始剤、レドックス系光重合開始剤等が挙げられる。取り扱いやすさの点で、光ラジカル重合開始剤が好ましい。光ラジカル重合開始剤は、光が照射されたときに、重合反応の起点となるラジカルを発生して重合を開始させる。光としては、可視光、紫外線、電子線等が挙げられる。
 光重合開始剤は、ホスフィン酸塩を含む。光重合開始剤としてホスフィン酸塩を用いることにより、アシルホスフィンオキサイド系開始剤等を用いる場合に比べて、本組成物を低粘度にできる。
 ホスフィン酸塩は、典型的には、光ラジカル重合開始剤である。
 ホスフィン酸塩は、可視光域に吸収を有することが好ましい。可視光域に吸収を有すると、本組成物を硬化させる光として可視光を使用でき、安全性の点で有利である。
 なお、ホスフィン酸塩が可視光域に吸収を有するか否かは、吸光係数によって判定できる。ホスフィン酸塩の吸光係数は、所定濃度のホスフィン酸塩のメタノール溶液を1cmの石英セルに流し込み、分光光度計(例えば島津製紫外可視分光光度計UV-1800)を用いて紫外・可視吸収スペクトルを測定し、得られた吸光度を用いてLambert-beerの法則(以下の式)から計算することによって決定される。
 A=ε×c×d
 ただし、式中Aは吸光度、εはモル吸光係数(L/(モル・cm))、cはモル濃度(モル/L)、dはセルの厚さ(cm)を表す。
 ホスフィン酸塩を光ラジカル重合開始剤として用いるには、可視光領域におけるモル吸光係数が100以上であれば、ラジカルを発生させるのに十分な光を吸収することができるため、好ましい。なお、可視光領域におけるモル吸光係数が100以上であるとは、可視光領域のいずれかの波長におけるモル吸光係数の値が100以上であればよく、可視光領域にモル吸光係数のピークが存在する必要はない。
 ホスフィン酸塩としては、例えば、フェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸塩、ビス(2,4,6-トリメチルベンゾイル)ホスフィン酸塩が挙げられる。塩としては、例えばリチウム塩、ナトリウム塩が挙げられる。これらのホスフィン酸塩は、光ラジカル重合開始剤として機能する。また、可視光域に吸収を有する。
 光重合開始剤は、ホスフィン酸塩以外の他の光重合開始剤をさらに含んでいてもよい。
 他の光重合開始剤としては、公知の光重合開始剤を使用できる。例えば可視光域に吸収を有する光ラジカル重合開始剤として、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、2-(4-メチルベンジル)-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルホスフィンオキシド、チオキサントン、2-クロロチオキサントン、3-メチルチオキサントン、2,4-ジメチルチオキサントン、アントラキノン、2-メチルアントラキノン、2-エチルアントラキノン、2-tert-ブチルアントラキノン、2-アミノアントラキノン、1,2-オクタンジオン,1-(4-(フェニルチオ),2-(o-ベンゾイルオキシム))、1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-エタノン1-(O-アセチルオキシム)、カンファーキノン、トリアジン系光重合開始剤等が挙げられる。これらの光ラジカル重合開始剤はいずれか1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 光重合開始剤中のホスフィン酸塩の割合は、光重合開始剤の総モル量に対し、0.01~100モル%が好ましく、1~100モル%がより好ましく、50~100モル%がさらに好ましい。ホスフィン酸塩の割合が前記範囲の下限値以上であると、本組成物をより低粘度にできる。
(重合性モノマー)
 重合性モノマーは、本組成物に光が照射されたときに、前記光重合開始剤の作用によって重合し、ポリマーを形成する。
 重合性モノマーとしては、前記光重合開始剤を用いて重合可能な化合物であればよく、例えばラジカル重合性の不飽和基を有する化合物が挙げられる。重合性モノマーの具体例としては、以下の化合物が挙げられる。
 2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)及びその塩、スチレンスルホン酸(SS)及びその塩、アクリル酸(AA)及びその塩、メタクリル酸及びその塩、ビニルピリジン、酢酸ビニル、スチレン(St)、アクリルアミド(AAm)、モノ(又はジ)アルキルアクリルアミド(例えば、N-イソプロピルアクリルアミド、N,N-ジメチルアクリルアミド(DMAAm))、ヒドロキシエチルアクリレート、2-(ジメチルアミノ)エチルメタクリレート、メチルメタクリレート(MMA)、ラウリルアクリレート(LA)、ステアリルアクリレート(SA)、トリフルオロエチルアクリレート(TFE)、2,2,2-トリフルオロエチルメチルアクリレート、2,2,3,3,3-ペンタフルオロプロピルメタクリレート、3-(ペルフルオロブチル)-2-ヒドロキシプロピルメタクリレート、1H,1H,9H-ヘキサデカフルオロノニメタクリレート、2,2,2-トリフルオロエチルアクリレート、2,3,4,5,6-ペンタフルオロスチレン、及びフッ化ビニリデン等。これらの重合性モノマーにおける塩としては、ナトリウム等のアルカリ金属塩、カルシウム等のアルカリ土類金属塩、亜鉛等の金属塩等が挙げられる。
 重合性モノマーは1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。すなわち、重合性モノマーから形成されるポリマーはホモポリマーであってもよくコポリマーであってもよい。
 本組成物の重合性モノマーから形成されるポリマーは、網目構造を有するポリマーであってもよく、網目構造を有しないポリマー(例えば直鎖状ポリマー)であってもよい。形成されるゲルの機械的強度がより優れる点では、網目構造を有することが好ましい。
 重合性モノマーから形成されるポリマーを、網目構造を有するポリマーとする方法としては、本組成物に架橋剤を含有させる方法が挙げられる。この場合、重合性モノマーが光重合開始剤及び架橋剤の存在下に重合し、網目構造を有するポリマーが生成する。
 重合性モノマーから形成されるポリマーを直鎖状ポリマーとする場合は、本組成物に架橋剤を含有させず、重合性モノマーを光重合開始剤の存在下、かつ架橋剤の不在下に重合する。
(ポリマー粒子)
 本組成物がポリマー粒子を含むことによって、本組成物から形成されるハイドロゲルは、本組成物中の重合性モノマーから形成されたポリマー(以下、「第2のポリマー」ともいう。)からなる連続相中にポリマー粒子が分散して存在している構成を有する。かかるハイドロゲルは、ポリマー粒子を含まない場合に比べて、機械物性に優れる。
 また、ポリマー粒子は、増粘成分として機能する。増粘成分は、重合性モノマーや極性溶媒との相互作用によって、本組成物全体の粘度を高め、流動性を低下させる。増粘成分は、例えば、ハイドロゲルの機械物性の向上や、機能性の付与、ハイドロゲルの溶媒成分の乾燥抑制等の目的で用いられる。
 ポリマー粒子は、典型的には、前記重合性モノマーを含む溶液(例えば後述する第2の溶液)に膨潤可能である。これにより、組成物中の重合性モノマーを重合して第2のポリマーを形成したときに、ポリマー粒子を構成するポリマー(以下、「第1のポリマー」ともいう。)と第2のポリマーとが互いに絡み合った構造が形成される。
 ポリマー粒子が前記液体に膨潤可能であることは、粒子が均一に分散し、系の粘度が上昇することにより確認できる。
 第1のポリマーとしては、例えば、重合性モノマーを重合したポリマー、多糖類(ジェラン、ヒアルロン酸、カラギーナン、キチン、アルギン酸等)、タンパク質(ゼラチン、コラーゲン等)が挙げられる。
 重合性モノマーとしては、上述した重合性モノマーと同様のものが挙げられる。重合性モノマーは1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 ポリマー粒子を構成する第1のポリマーは、1種でもよく2種以上でもよい。
 第1のポリマーは、網目構造を有するポリマーであってもよく、網目構造を有しないポリマー(例えば直鎖状ポリマー)であってもよい。形成されるゲルの機械的強度がより優れる点では、網目構造を有するポリマーであることが好ましい。
 第1のポリマーが網目構造を有すると、形成されるハイドロゲルは、第1のポリマーの網目構造に第2のポリマーが侵入した構造を有するため、第1のポリマーが網目構造を有しない場合に比べて、機械的強度が優れる。
 特に、第1のポリマー及び第2のポリマーが共に網目構造を有すると、形成されるハイドロゲルは、第1のポリマーと第2のポリマーとが相互に侵入する網目構造を有するため、機械的強度がより優れる。
 ポリマー粒子の平均粒子径は、乾燥状態で、0.1~10000μmが好ましく、0.1~1000μmがより好ましく、0.1~100μmが特に好ましい。平均粒子径が前記範囲の下限値以上であると、取扱い性がより優れる。平均粒子径が前記範囲の上限値以下であると、機械的強度がより優れる。
 平均粒子径は、走査型電子顕微鏡により絶乾状態でのポリマー粒子100個を観察し、各ポリマー粒子の最大径を求め、それらの平均値を算出することにより求める。
(極性溶媒)
 極性溶媒は、比誘電率が10以上の、常温で液状の化合物である。極性溶媒は、ポリマーによって構成された網目構造中に取り込まれてハイドロゲルを構成する。
 比誘電率は、液体用誘電率測定キット(ITACA製)を用いて、2GHzの周波数、25℃の条件で測定される値である。
 極性溶媒としては、水、極性有機溶剤、水と極性有機溶剤との混合物等が挙げられる。極性有機溶剤の例としては、エチレングリコール、エタノール等のアルコール、アセトン等のケトン、イオン液体等が挙げられる。極性溶媒としては、扱いやすさや安全性の観点から水、アルコールが好ましく、入手の容易さや環境調和性の点で、水が特に好ましい。
(架橋剤)
 架橋剤としては、特に限定されず、重合性モノマーの種類に応じて公知のものを適宜用いることができる。
 架橋剤としては、例えば、ラジカル重合性の不飽和基を2個以上有する多官能ビニル化合物が挙げられる。多官能ビニル化合物としては、形成されるゲルの機械的強度の点で、N,N’-メチレンビスアクリルアミド(MBAA)、エチレングリコールジメタクリレート(EDMA)、N,N’-ジエチレングリコールジメタクリレート(DEGDMA)等のジビニル化合物が好ましい。
(他の成分)
 他の成分としては、例えば、ポリマー粒子以外の増粘成分、光吸収剤、界面活性剤、シランカップリング剤、酸化防止剤、光安定化剤、金属不活性化剤、防錆剤、老化防止剤、吸湿剤、加水分解防止剤、重合禁止剤、レベリング剤等が挙げられる。これらの添加剤はいずれか1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 ポリマー粒子以外の増粘成分としては、例えば、無機粘土鉱物(モンモリロナイト、ヘクトライト等)、増粘剤(多糖類、カルボキシメチルセルロース等)等が挙げられる。
 光吸収剤とは、光を吸収して熱エネルギーあるいは他の波長の光に変換する物質を示す。本組成物が光吸収剤を含むと、本組成物の3次元(3D)造形性がより優れ、本組成物から形成される3D構造の造形物の造形精度がより優れる。
 光吸収剤としては、本組成物の硬化に用いる光を吸収可能なものであればよい。
 光吸収剤としては、ベンゾトリアゾール構造、ベンゾフェノン構造、トリアジン構造、ベンゾエート構造、オキサルアニリド構造、サリシレート構造及びシアノアクリレート構造からなる群より選択される少なくとも1つの構造を有するものが好ましい。中でも、3D造形性の観点から、ベンゾトリアゾール構造、トリアジン構造及びベンゾフェノン構造からなる群より選択される少なくとも1つの構造を有するものが好ましい。これらの光吸収剤はいずれか1種を単独で用いてもよく2種以上を組み合わせて用いてもよい。
 本組成物は、以下の条件A及び条件Bのいずれか一方を満たすことが好ましい。これにより、本組成物中の重合性モノマーから形成される第2のポリマーの分子鎖が、ポリマー粒子内に侵入し易くなる。本組成物は、条件Aを満たすことがより好ましい。
 条件A:ポリマー粒子を構成する第1のポリマーが、正又は負に荷電し得る基を有する不飽和モノマーに基づく構成単位を含み、組成物中の重合性モノマーが、電気的に中性である不飽和モノマーを含む。
 条件B:ポリマー粒子を構成する第1のポリマーが、電気的に中性である不飽和モノマーに基づく構成単位を含み、組成物中の重合性モノマーが、正又は負に荷電し得る基を有する不飽和モノマーを含む。
 正又は負に荷電し得る基を有する不飽和モノマーとしては、酸性基(例えば、カルボキシ基、リン酸基又はスルホン酸基)又は塩基性基(例えば、アミノ基)を有する不飽和モノマーが好ましい。具体例としては、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)、アクリル酸(AA)、メタクリル酸、及びそれらの塩が挙げられる。
 電気的に中性である不飽和モノマーとしては、例えば、スチレン(St)、アクリルアミド(AAm)、N-イソプロピルアクリルアミド、N,N-ジメチル-アクリルアミド、ビニルピリジン、スチレン、メチルメククリレート(MMA)、フッ素含有不飽和モノマー(例えば、トリフルオロエチルアクリレート(TFE))、ヒドロキシエチルアクリレート、及び酢酸ビニルが挙げられる。
 本組成物中の重合性モノマーの含有量は、仕込みモル濃度として、0.01~100モル/Lが好ましく、0.1~50モル/Lがより好ましく、0.1~25モル/Lが特に好ましい。この仕込みモル濃度は、本組成物を調製したときの、本組成物1L当たりの重合性モノマーのモル量である。重合性モノマーの含有量が前記範囲の下限値以上であると、ハイドロゲルの機械的強度がより優れる。重合性モノマーの含有量が前記範囲の上限値以下であると、ハイドロゲルの柔軟性、透明性がより優れる。
 極性溶媒の含有量は、本組成物中の重合性モノマーの含有量に応じて設定できる。
 光重合開始剤の含有量は、重合性モノマーの総モル量(100モル%)に対して0.001~5モル%が好ましく、0.001~1モル%がより好ましく、0.01~0.5モル%が特に好ましい。光重合開始剤の含有量の含有量が前記範囲の下限値以上であると、本組成物の硬化性、ハイドロゲルの機械的強度がより優れる。光重合開始剤の含有量が前記範囲の上限値以下であると、ハイドロゲルの柔軟性がより優れる。
 ポリマー粒子の含有量は、ポリマー粒子による効果が充分に得られるように、ポリマー粒子の種類に応じて適宜選定できる。
 ポリマー粒子の質量/本組成物からポリマー粒子を除いた残部の質量で表される比は、1/100~1/20の範囲内が好ましく、1/75~1/20の範囲内がより好ましく、1/50~1/25の範囲内がさらに好ましい。前記比が前記範囲の下限値以上であると、ポリマー粒子による効果が得られやすい。前記比が前記範囲の上限値以下であると、本組成物の粘度を充分に低くでき、ハイドロゲルの透明性、表面平滑性がより優れる。
 なお、「本組成物からポリマー粒子を除いた残部」は、後述する第2の溶液に等しい。
 ポリマー粒子の質量/重合性モノマーの質量で表される比は、0.1/99.9~70/30が好ましく、1/99~60/40がより好ましく、5/95~50/50がさらに好ましい。この比は、ハイドロゲルにおける第1のポリマーの質量/第2のポリマーの質量で表される比とみなすことができる。この比が前記範囲内であると、ハイドロゲルの機械的強度がより優れる。
 本組成物中の光吸収剤の含有量は、光重合開始剤の総モル量に対して0~1000モル%が好ましく、0~750モル%がより好ましく、0~500モル%が特に好ましい。
 又は光吸収剤の含有量は、光重合開始剤の総質量に対して0~3000質量%が好ましく、0~2000質量%がより好ましく、0~1500質量%が特に好ましい。
 光吸収剤の含有量が前記範囲の下限値以上であると、3D造形性がより優れる。光吸収剤の含有量が前記範囲の上限値以下であると、ハイドロゲルの機械的強度がより優れる。
 本組成物の25℃における粘度は、5~1000mPa・sが好ましく、5~750mPa・sがより好ましく、5~500mPa・sがさらに好ましく、10~100mPa・sが特に好ましい。本組成物の粘度が前記範囲の下限値以上であると、ハイドロゲルの機械的強度がより優れる。本組成物の粘度が前記範囲の上限値以下であると、本組成物を注型する際に気泡が入り込んでハイドロゲルの透明性や表面平滑性が低下することを抑制できる。
 粘度は、B型粘度計を用いて測定される値である。
 前述のとおり、光酸発生剤としてホスフィン酸塩を用いることによって、本組成物の粘度を低減できる。その他、ポリマー粒子の含有量、重合性モノマーの濃度等によって本組成物の粘度を調整できる。
 本組成物は、光重合開始剤、重合性モノマー、ポリマー粒子、必要に応じて極性溶媒、架橋剤、他の成分を混合することにより製造できる。
 本組成物の製造方法としては、特に限定するものではないが、例えば次のような方法を採用することができる。すなわち、まず、ポリマー粒子を作製する。別途、光重合開始剤と、重合性モノマーと、極性溶媒と、必要に応じて架橋剤とを混合し、ポリマー粒子以外の成分を含む溶液(以下、「第2の溶液」とも記す。)を作製する。次いで、作製したポリマー粒子と第2の溶液とを混合し、本組成物を得る。
 以下に、ポリマー粒子の製造方法の一例を示す。ただし、ポリマー粒子の製造方法はこの例に限定されるものではない。
 この例の製造方法では、まず、網目構造を有する第1のポリマーと液状媒体とを含む第1のゲルを調製する(第1のゲル調製工程)。次いで、必要に応じて、得られた第1のゲルを物理的に破壊し、粒状にする(第1のゲル破壊工程)。次いで、第1のゲル調製工程後又は第1のゲル破壊工程後の第1のゲルを乾燥し、必要に応じて粉砕し、乾燥ゲル粒子(ポリマー粒子)を得る。
 第1のゲルの調製方法としては、液状媒体中で、重合性モノマーを重合開始剤及び架橋剤の存在下に重合させてゲルを得る方法が挙げられる。具体的には、重合性モノマー、重合開始剤、架橋剤及び液状媒体を含有する溶液(以下、第1の溶液ということもある。)を調製し、この第1の溶液中で重合性モノマーを重合させる方法が挙げられる。
 重合性モノマーの重合方法は、特に限定されず、熱重合や光重合といった公知の重合方法を用いることができる。
 重合開始剤としては、重合方法に応じて公知の重合開始剤を適宜用いることができる。
 例えば、重合性モノマーを光重合する場合は、光重合開始剤が用いられる。光重合開始剤を用いる場合、この光重合開始剤は、本組成物に用いる光重合開始剤と同じであってもよく異なってもよい。
 第1のゲルの調製に用いられる光重合開始剤としては、アルキルフェノン系開始剤、アシルホスフィンオキサイド系開始剤が好ましい。かかる光重合開始剤を用いると、形成されるゲルの機械的強度が良好である。
 アシルホスフィンオキサイド系開始剤としては、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、(2,4,6-トリメチルベンゾイル)エトキシフェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)2,4,4-トリメチルペンチルホスフィンオキシド等が挙げられる。
 架橋剤としては、前述した架橋剤と同様のものが挙げられる。
 液状媒体としては、水、有機溶剤等が挙げられ、入手の容易さや環境調和性の点で、水が好ましい。
 第1の溶液中の重合性モノマーの含有量は、第1のゲルの好ましい硬さを得る上で、仕込みモル濃度として、0.5~4モル/Lが好ましく、1~2モル/Lがより好ましい。この仕込みモル濃度は、第1の溶液を調製したときの、第1の溶液1L当たりの重合性モノマーのモル量である。
 第1の溶液中の架橋剤の含有量は、重合性モノマーの総モル量に対して1~20モル%が好ましく、2~10モル%がより好ましい。重合性モノマーの総モル量に対する架橋剤の含有量(モル%)は、第1のポリマーの架橋密度に相当する。第1のポリマーの架橋密度が前記範囲の下限値以上であると、形成されるゲルの機械的強度がより優れる。第1のポリマーの架橋密度が前記範囲の上限値以下であると、形成されるゲルの柔軟性がより優れる。
 第1の溶液中の重合開始剤の含有量は、重合性モノマーの総モル量に対して0.001~5モル%が好ましく、0.01~1モル%がより好ましい。第1の溶液中の重合開始剤の含有量が、重合性モノマーの総モル量に対して多すぎると、第1のポリマーの分子量が小さくなるため第1のゲルが弱くなりやすく、少なすぎると第1の溶液がゲル化しないおそれがある。第1の溶液中の重合開始剤の含有量が前記範囲内であると、第1の溶液が充分にゲル化し、かつ第1のゲルの強度が優れる。
 第1のゲル調製工程の後、第1のゲル破壊工程を行って第1のゲルを粒状にすると、第1のゲルの乾燥を短時間で行うことができるほか、乾燥後の粉砕が容易になる。
 なお、蒲池ら(蒲池幹治、遠藤剛監修、「ラジカル重合ハンドブック」、1999年、エヌ・ティー・エス発行)に記載されるような、粒子状のポリマーを製造する一般的な方法である乳化重合法、懸濁重合法又は分散重合法等によって重合性モノマーを重合させ、粒状の第1のポリマーと液体を含むゲルを調製してもよい。
 第1のゲル調製工程で得た第1のゲル、又は第1のゲル破壊工程で粉砕した第1のゲルを乾燥し、必要に応じて粉砕することで、乾燥ゲル粒子が得られる。この乾燥ゲル粒子をポリマー粒子として使用できる。
 乾燥方法としては、特に限定されず、例えば熱風乾燥、凍結乾燥等の公知の方法で行うことができる。乾燥は、液状媒体の含有率が10質量%以下になるまで行うことが好ましい。乾燥条件は、例えば20~130℃であってよい。
 乾燥後の第1のゲルの粉砕方法は特に限定されず、公知の方法で物理的に粉砕すればよい。例えば乳鉢と乳棒を用いて砕く方法でもよい。粉砕後、篩等を用いて粉砕物を分級してもよい。
 本組成物は、例えば、ハイドロゲルの製造に用いられる。本組成物を用いたハイドロゲルの製造方法は後で説明する。
 以上説明した本組成物にあっては、光重合開始剤と、重合性モノマーと、ポリマー粒子とを含み、光重合開始剤がホスフィン酸塩を含むため、増粘成分として機能するポリマー粒子を含んでいながらも、低粘度である。そのため、本組成物を用いてハイドロゲルを形成する際に、本組成物中に気泡が残存したり、本組成物と型との間に気泡が残存したりしにくい。そのため、透明性、表面平滑性に優れたハイドロゲルを得ることができる。
 得られるハイドロゲルは、任意の形状に成形することができるため、高吸水性樹脂や紙おむつ、生理用品、ソフトコンタクトレンズ、屋内緑化用含水シート、衝撃吸収材料、精神・防音材料や子供の玩具等に用いることができる。
 また、本組成物は、基材に塗布して硬化させることができるため、本組成物を、船底塗料、着氷防止塗料、防曇塗料、防汚塗料等の各種コーティング材料や、摩擦抵抗を低減したい部位(プロペラ、カテーテル、配管内の圧力損失低減等)に塗布する材料としても用いることができる。さらに、本組成物は粘度が低くハンドリング性に優れるため、光造形法式の3Dプリンタ用のインクとしても好適に用いることができる。
〔造形物〕
 本発明の造形物は、本組成物の硬化物を含む。本発明の造形物は、具体的には、少なくともポリマー粒子を構成する第1のポリマーと、本組成物中の重合性モノマーから形成されたポリマー(第2のポリマー)とを含む。
 本発明の造形物は、例えば、本組成物を型に入れ、本組成物に対して光(紫外線、可視光線、電子線等)を照射することにより製造できる。本組成物に対して光を照射すると、重合性モノマーが重合してポリマーが生成し、本組成物がゲル化してハイドロゲルとなる。得られたハイドロゲルを型から取り出して本発明の造形物としてもよく、必要に応じて、ハイドロゲルに対して他の処理を施してもよい。他の処理としては、例えば、極性溶媒の除去(乾燥)、極性溶媒への浸漬(膨潤)が挙げられる。
 本発明の造形物は、臓器モデル等、種々の用途に用いることができる。
〔ハイドロゲル〕
 本発明のハイドロゲルは、本組成物の硬化物を含む。本発明のハイドロゲルは、具体的には、少なくとも網目構造と、その内部に保持された極性溶媒とを含む。前記網目構造は、ポリマー粒子を構成する第1のポリマーと、重合性モノマーから形成されたポリマー(第2のポリマー)とによって構成される。
 本発明のハイドロゲルの極性溶媒の含有率は、特に限定されず、例えば10質量%以上であってよく、50質量%以上であってよく、70質量%以上であってよい。極性溶媒の含有率が高いほど、ハイドロゲルの透明性、柔軟性がより優れる。
 本明細書において、「極性溶媒の含有率」とは、ハイドロゲルの総質量に対する極性溶媒の質量の割合である。ハイドロゲルに含まれる極性溶媒が水の場合、極性溶媒の含有率を「含水率」ともいう。
 本組成物は光重合開始剤としてホスフィン酸塩を含むので、本発明のハイドロゲルは、光重合開始剤由来のホスフィン酸塩成分を含む。
 光重合開始剤由来のホスフィン酸塩成分の構造は通常、本組成物中のホスフィン酸塩の構造とは異なる。本組成物中のホスフィン酸塩は、光が照射されると、二分子に開裂(-P(=O)-C(=O)-結合が開裂)してラジカルを発生する。例えばフェニル(2,4,6-トリメチルベンゾイル)ホスフィン酸塩の場合、下記式に示すように二分子に開裂してラジカルを発生する。
Figure JPOXMLDOC01-appb-C000001
 光重合開始剤由来のホスフィン酸塩成分の含有量は、例えば、本発明のハイドロゲルの総質量に対して0.0001~0.5質量%である。
 ハイドロゲルが光重合開始剤由来のホスフィン酸塩成分を含むか否か、及びこのホスフィン酸塩成分の含有量は、例えば、熱分解ガスクロマトグラフ(熱分解GC)等により確認できる。
 本発明のハイドロゲルは、例えば、本組成物を型に入れ、本組成物に対して光(紫外線、可視光線、電子線等)を照射することにより製造できる。本組成物に対して光を照射すると、重合性モノマーが重合してポリマーが生成し、本組成物がゲル化する。
 本発明のハイドロゲルは、本組成物を用いているため、透明性、表面平滑性に優れる。
 本発明のハイドロゲルは、前述のように、高吸水性樹脂や紙おむつ、生理用品、ソフトコンタクトレンズ、屋内緑化用含水シート、衝撃吸収材料、精神・防音材料や子供の玩具等、種々の用途に用いることができる。
 以下、本発明を実施例により更に詳しく説明するが、以下の実施例は本発明の範囲を限定するものではない。
(実施例1)
 <ポリマー粒子の作製>
 2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム塩(NaAMPS)の50質量%水溶液の41.3g(0.0900モル)に、N,N’-メチレンビスアクリルアミド(MBAAm)の0.555g(0.00360ミリモル)と、光重合開始剤であるIrgacure1173(BASF社製、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン)の0.021g(0.00010モル)と、純水41.3gを加えて第1の溶液を調製した。
 第1の溶液を、ポリエチレンテレフタレート(PET)フィルム上に枠状のシリコーンゴムシート(厚さ2mm)を置いた型に流し込み、その上を別のPETフィルムで覆い、さらに上下をガラス板で挟んでサンプルを作製した。このサンプルに、光ベルト方式の紫外線照射装置を用いて紫外線を照射することにより、サンプル内の第1の溶液をゲル化した。得られたゲルを乾燥機で一晩以上乾燥させ、乾燥後のゲルを粉砕し、100μmの篩を通過する乾燥ゲル粒子を回収し、ポリマー粒子(粒子径100μm以下)とした。
 <光硬化性組成物の作製>
 N,N-ジメチルアクリルアミド(DMAAm)の19.8g(0.200モル)と、MBAAmの0.031g(0.00020モル)と、リチウムフェニル(2,4,6-トリメチルベンゾイル)ホスフィネート(Li-TPO)の0.059g(0.00020モル)と、純水79.3gとを混合し、第2の溶液を得た。
 上記のように作製したポリマー粒子と第2の溶液とを、ポリマー粒子の質量/第2の溶液の質量で表される比(以下、「1st/2nd」ともいう。)が1/30となるように混合し、ポリマー粒子を均一に分散、膨潤させ、光硬化性組成物を得た。
 <ハイドロゲル(造形物)の作製>
 上記のように作製した光硬化性組成物を、ポリマー粒子の作製に用いたのと同様の型に流し込み、波長405nmのLED光を30分間照射してポリマー粒子含有組成物をゲル化させ、ハイドロゲルを得た。
 <評価>
 上記ハイドロゲルの作製に用いた光硬化性組成物及び得られたハイドロゲルについて以下の評価を行った。結果を表1に示す。
 表1に、ポリマー粒子中の架橋剤(MBAAm)のNaAMPSの総モル量に対する含有量(モル%)、光硬化性組成物中の光重合開始剤の種類及び重合性モノマーの総モル量に対する含有量(モル%)、1st/2ndを併記した。
 「粘度」
 光硬化性組成物の25℃における粘度(mPa・s)を、B型粘度計を用いて測定した。
 「ハイドロゲルの透明性」
 ハイドロゲルを文字の書かれた紙の上に置き、ゲルを通して文字を目視で観察し、以下の基準で評価した。
 〇(良好):ゲルを通さずに見た場合と大差なく、文字をはっきりと視認できる。
 ×(不良):文字をはっきりと視認することができない。
 「ハイドロゲルの表面平滑性」
 ハイドロゲルを目視で観察し、以下の基準で評価した。
 〇(良好):表面に凹凸がなく滑らかである。
 ×(不良):表面に凹凸が見られる。
 「3D造形性」
 光硬化組成物の液面に目開きが1mm程度の金網を固定し、そこに波長405nmの光を照射して液面付近に板状の硬化物を作製し、その後、金網を液中に沈めた。金網を沈めた際の光硬化性組成物の挙動、ならびに金網上に得られた硬化物を観察し、以下の基準で評価した。
 ◎(特に良好):金網を沈めた際にすぐに液面が均一になり、かつ金網から下方向への硬化が1mm未満である。
 ○(良好):金網を沈めた際に液面がすぐに均一にならない、または金網から下方向への硬化が1mm以上である。
 「ハイドロゲルの含水率」
 ハイドロゲルの含水率(%)を、加熱乾燥式水分計MS-70(エー・アンド・デイ社製)を用いて測定した。具体的には、ハイドロゲル約1gを200℃に加熱して3分間保持した後に150℃に温度を下げてその温度を維持し、含水率の時間変化が0.50質量%/分以内となった時点を乾燥状態(乾燥ゲル)として測定を終了し、以下の式により含水率を計算した。
  含水率=(乾燥前のハイドロゲルの質量(g)-乾燥ゲルの質量(g))/乾燥前のハイドロゲルの質量(g)×100
(実施例2)
 実施例1において、1st/2ndを1/25にした以外は実施例1と同様の操作を行った。評価結果を表1に示す。
(実施例3~5)
 実施例1において、第2の溶液に配合するMBAAmの量を0.154g(0.000999モル)、純水の量を59.7gに変更し、第2の溶液に光吸収剤として日本化薬社製のKAYAPHOR AS150を表1に示す量で配合し、1st/2ndを表1に示す値にした以外は実施例1と同様の操作を行った。評価結果を表1に示す。
 表1中、光吸収剤の量(モル%)は、光重合開始剤の総モル量に対する割合である。
(実施例6)
 実施例4において、ポリマー粒子中のMBAAmのNaAMPSの総モル量に対する含有量が表1の「MBAAm(粒子中)」の欄に示す値となるようにポリマー粒子の作製におけるMBAAmの使用量を変更した以外は実施例4と同様の操作を行った。評価結果を表1に示す。
(実施例7~8)
 実施例4において、第2の溶液に配合するLi-TPOの量を表1に示すように変更するとともに、第2の溶液に、表1に示す量の2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(TPO)を配合した以外は実施例4と同様の操作を行った。評価結果を表1に示す。
 表1中のLi-TPO、TPOそれぞれの量(モル%)は、重合性モノマーの総モル量に対する割合である。
(比較例1)
 実施例2において、Li-TPOの代わりに、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド(BAPO)(波長405nmの吸光係数:8.990×102mL/(g・cm))の0.0067g(0.00016mol)を用いた以外は実施例2と同様の操作を行った。評価結果を表1に示す。ただし、比較例1については、ハイドロゲルの透明性、表面平滑性が劣っていたので、3D造形性の評価は行わなかった。
Figure JPOXMLDOC01-appb-T000002
 光重合開始剤としてホスフィン酸塩を用いた実施例1~6の光硬化性組成物は、低粘度であった。また、得られたハイドロゲルは、透明性、表面平滑性、3D造形性に優れていた。ホスフィン酸塩と他の光重合開始剤とを併用した実施例7~8においても同様の結果が得られた。
 一方、光重合開始剤として他の光重合開始剤を用いた比較例1の光硬化性組成物は、実施例1~8に比べて高粘度であった。また、得られたハイドロゲルは、透明性に劣り、表面平滑性にも劣っていた。

Claims (8)

  1.  光重合開始剤と、重合性モノマーと、ポリマー粒子とを含み、
     前記光重合開始剤がホスフィン酸塩を含む、光硬化性組成物。
  2.  前記ホスフィン酸塩が、可視光域に吸収を有する請求項1に記載の光硬化性組成物。
  3.  前記光重合開始剤の含有量が、前記重合性モノマーの総モル量に対して0.01~0.5モル%である請求項1又は2に記載の光硬化性組成物。
  4.  前記ポリマー粒子の質量/前記光硬化性組成物から前記ポリマー粒子を除いた残部の質量で表される比が、1/100~1/20の範囲内である請求項1~3のいずれか一項に記載の光硬化性組成物。
  5.  25℃における粘度が5~1000mPa・sである請求項1~4のいずれか一項に記載の光硬化性組成物。
  6.  請求項1~5のいずれか一項に記載の光硬化性組成物の硬化物を含む、造形物。
  7.  請求項1~5のいずれか一項に記載の光硬化性組成物の硬化物を含む、ハイドロゲル。
  8.  光重合開始剤由来のホスフィン酸塩成分を含み、
     極性溶媒の含有率が50質量%以上である、ハイドロゲル。
PCT/JP2019/004409 2018-02-07 2019-02-07 光硬化性組成物、造形物及びハイドロゲル WO2019156163A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019571143A JP7276161B2 (ja) 2018-02-07 2019-02-07 光硬化性組成物、造形物及びハイドロゲル

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-020337 2018-02-07
JP2018020337 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019156163A1 true WO2019156163A1 (ja) 2019-08-15

Family

ID=67548276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004409 WO2019156163A1 (ja) 2018-02-07 2019-02-07 光硬化性組成物、造形物及びハイドロゲル

Country Status (2)

Country Link
JP (1) JP7276161B2 (ja)
WO (1) WO2019156163A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197289A (en) * 1981-04-09 1982-12-03 Basf Ag Acylphosphine compound and use
JP2007277380A (ja) * 2006-04-05 2007-10-25 Canon Inc 水性活性エネルギー線硬化型インク、インクジェット記録方法及び記録物
JP2016510314A (ja) * 2012-12-19 2016-04-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ビスアシルホスフィン酸の誘導体、その製造および光開始剤としての使用
WO2017057431A1 (ja) * 2015-09-30 2017-04-06 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルムおよびそれを用いたプリント配線板
JP2018150497A (ja) * 2017-03-15 2018-09-27 株式会社Adeka 水溶性組成物、その硬化物の製造方法、およびその硬化物、並びにアシルホスフィン酸塩

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015049873A1 (ja) * 2013-10-03 2015-04-09 コニカミノルタ株式会社 インク組成物および画像又は三次元造形物形成方法
WO2016063978A1 (ja) * 2014-10-24 2016-04-28 セメダイン株式会社 光硬化性組成物
CN107011609A (zh) * 2016-01-27 2017-08-04 中国科学院化学研究所 一种具有自恢复能力的高强化学-物理双网络水凝胶及其制备方法与应用
JP6752584B2 (ja) * 2016-02-16 2020-09-09 ローランドディー.ジー.株式会社 光硬化性組成物
CN106854258A (zh) * 2016-12-30 2017-06-16 合众(佛山)化工有限公司 一种水性raft聚合的温敏型水凝胶
CN107325213B (zh) * 2017-08-09 2019-09-10 江苏富淼科技股份有限公司 一种分子量可调节的甲基丙烯酰氧乙基三甲基氯化铵聚合物制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57197289A (en) * 1981-04-09 1982-12-03 Basf Ag Acylphosphine compound and use
JP2007277380A (ja) * 2006-04-05 2007-10-25 Canon Inc 水性活性エネルギー線硬化型インク、インクジェット記録方法及び記録物
JP2016510314A (ja) * 2012-12-19 2016-04-07 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ビスアシルホスフィン酸の誘導体、その製造および光開始剤としての使用
WO2017057431A1 (ja) * 2015-09-30 2017-04-06 太陽インキ製造株式会社 硬化性樹脂組成物、ドライフィルムおよびそれを用いたプリント配線板
JP2018150497A (ja) * 2017-03-15 2018-09-27 株式会社Adeka 水溶性組成物、その硬化物の製造方法、およびその硬化物、並びにアシルホスフィン酸塩

Also Published As

Publication number Publication date
JPWO2019156163A1 (ja) 2021-01-28
JP7276161B2 (ja) 2023-05-18

Similar Documents

Publication Publication Date Title
Li et al. Hybrid hydrogels with extremely high stiffness and toughness
Nicol Photopolymerized porous hydrogels
Hu et al. Structure optimization and mechanical model for microgel-reinforced hydrogels with high strength and toughness
Brahim et al. Synthesis and hydration properties of pH-sensitive p (HEMA)-based hydrogels containing 3-(trimethoxysilyl) propyl methacrylate
Haraguchi et al. Microstructures formed in co-cross-linked networks and their relationships to the optical and mechanical properties of PNIPA/clay nanocomposite gels
JP2008536971A5 (ja)
JP6628396B2 (ja) 3dプリンタ用ゲル材料
JP4733471B2 (ja) コンタクトレンズの製造方法およびそれにより得られたコンタクトレンズ
KR20090067315A (ko) 코어-쉘 구조의 폴리머 비드 및 그의 제조방법
JP2019035043A (ja) 刺激硬化性ゲル
JP2008163055A (ja) 高強度ゲルおよびそのゲルの製造方法
JP7130561B2 (ja) ナノゲルによるポリマーネットワーク構造の制御
JP5138632B2 (ja) プレゲル溶液および高分子組成物、ならびに高分子組成物の製造方法
Xiang et al. 3D-printed high-toughness double network hydrogels via digital light processing
JP7014485B2 (ja) ポリビニルアルコール系相互貫入型ゲル
JP7276161B2 (ja) 光硬化性組成物、造形物及びハイドロゲル
JP2010254800A (ja) 有機無機複合体
JP7205345B2 (ja) 高分子ゲル製造用溶液、高分子ゲルの製造方法
JP7251123B2 (ja) 高分子ゲル製造用溶液、高分子ゲル、高分子ゲルの製造方法
JP2011144236A (ja) 有機無機複合体分散液及びその製造方法
JP2011178843A (ja) ゲル体同士の接着方法
JP2011213793A (ja) 有機無機複合ヒドロゲルの製造方法
JP5133209B2 (ja) オルガノゲルおよびその製造方法
Cavusoglu et al. Poly (2‐hydroxyethyl methacrylate) nanocomposites: From a nonionic gel to pH sensitivity
JP5850417B2 (ja) 高分子ゲル及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751079

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019571143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751079

Country of ref document: EP

Kind code of ref document: A1