WO2019156058A1 - 回転電機の駆動装置 - Google Patents

回転電機の駆動装置 Download PDF

Info

Publication number
WO2019156058A1
WO2019156058A1 PCT/JP2019/004000 JP2019004000W WO2019156058A1 WO 2019156058 A1 WO2019156058 A1 WO 2019156058A1 JP 2019004000 W JP2019004000 W JP 2019004000W WO 2019156058 A1 WO2019156058 A1 WO 2019156058A1
Authority
WO
WIPO (PCT)
Prior art keywords
inverter
winding
switch
arm switch
closed
Prior art date
Application number
PCT/JP2019/004000
Other languages
English (en)
French (fr)
Inventor
博文 金城
谷口 真
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201980012412.8A priority Critical patent/CN111699625B/zh
Publication of WO2019156058A1 publication Critical patent/WO2019156058A1/ja
Priority to US16/989,641 priority patent/US11196315B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/18Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring with arrangements for switching the windings, e.g. with mechanical switches or relays
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2201/00Indexing scheme relating to controlling arrangements characterised by the converter used
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2209/00Indexing scheme relating to controlling arrangements characterised by the waveform of the supplied voltage or current
    • H02P2209/01Motors with neutral point connected to the power supply

Definitions

  • the present disclosure relates to a drive device for a rotating electrical machine.
  • the present disclosure has been made in view of the above problems, and the main purpose of the present disclosure is to provide a rotary electric machine that can suitably perform full-wave driving and half-wave driving and reduce torque pulsation during half-wave driving. It is to provide a driving device.
  • the first means is A stator core and a first winding and a second winding wound around the stator core and comprising at least three-phase winding portions and having one end of each phase winding portion connected at a neutral point And a drive device for driving the rotating electrical machine,
  • a first inverter connected to a direct current power source and energizing each phase of the first winding by opening and closing an upper arm switch and a lower arm switch provided for each phase of the first winding;
  • a second inverter that is connected to the DC power source and opens and closes an upper arm switch and a lower arm switch provided for each phase of the second winding, thereby energizing each phase of the second winding;
  • a first changeover switch provided in a current path connecting a neutral point of the first winding and a low potential side of the DC power supply;
  • a second changeover switch provided in a current path connecting the neutral point of the second winding and the high potential side of the DC power supply; With the first changeover switch and the second changeover switch open,
  • the above rotating electric machine has at least three-phase first winding and second winding, and energization of each winding is controlled by the first inverter and the second inverter, respectively.
  • the path connecting the neutral point of the first winding and the low potential side of the DC power supply is provided with a first changeover switch, and the neutral point of the second winding and the high potential side of the DC power supply
  • a second switch is provided in the path connecting the two, and the open / close state of each switch is appropriately switched.
  • each changeover switch is switched between an open state and a closed state, whereby the full-wave drive mode and the half-wave drive mode can be switched as the drive mode of the rotating electrical machine.
  • the upper arm switch of the upper and lower arm switches of the first inverter and the lower arm switch of the upper and lower arm switches of the second inverter are The energization of the first winding and the second winding is controlled by opening and closing each of the energization periods determined alternately. That is, in each inverter, the half-wave drive of the rotating electrical machine is alternately performed. In this case, the first winding and the second winding are wound around the stator core and are magnetically coupled to each other. On the first winding side, the neutral point is set by the first changeover switch.
  • the low potential side of the DC power supply are short-circuited, and on the second winding side, the neutral point and the high potential side of the DC power supply are short-circuited by the second changeover switch. Therefore, during the energization period of the first winding and the energization period of the second winding, the directions of the phase currents are opposite to each other and change in positive and negative directions. And since the energization period of the first winding and the energization period of the second winding are set alternately, a full-wave composite magnetomotive force can be obtained. That is, it is possible to obtain a sinusoidal rotating magnetic field similar to that at the time of full wave driving while being half wave driving. As described above, full-wave driving and half-wave driving can be suitably performed, and torque pulsation during half-wave driving can be reduced.
  • the first energization control unit performs energization control of the windings by opening the first changeover switch and the second changeover switch in an operating region on the low rotation side of the rotating electrical machine.
  • the second energization control unit performs energization control of the windings by closing the first changeover switch and the second changeover switch in an operating region on the high rotation side of the rotating electrical machine.
  • the upper arm switch and the lower arm switch in the first inverter and the upper arm switch and the lower arm switch in the second inverter are connected in a reverse parallel direction.
  • the first inverter is configured such that the lower arm switch of the second inverter is opened / closed from the state where the upper arm switch of the first inverter is opened / closed by the second energization control unit.
  • the first inverter includes a first blocking unit that blocks a return path that is a path including the return diode and the first winding of the lower arm switch in the first inverter, and the second inverter The lower arm switch of the second inverter is opened and closed by the second energization control unit.
  • the return path is a path including the return diode and the second winding of the upper arm switch in the second inverter.
  • a second blocking portion for blocking the.
  • the first winding and the second winding are magnetic. Since they are coupled, commutation from the first winding side to the second winding side is performed. However, there is a concern that commutation may not be properly performed if a return path is formed on the first inverter side during the switching. That is, in the first inverter, since the return diode is provided in the upper arm switch and the lower arm switch, a return path is formed in the first inverter through the return diode and the winding. On the contrary, the same applies to the case where the state is switched from the state where the lower arm switch of the second inverter is opened and closed to the state where the upper arm switch of the first inverter is opened and closed.
  • the first inverter when the first inverter is switched from the state where the upper arm switch of the first inverter is opened and closed by the second energization control unit to the state where the lower arm switch of the second inverter is opened and closed.
  • the return path which is the path including the return diode and the first winding of the lower arm switch in the first inverter, is blocked by the first blocking section.
  • the second inverter when the second energization control unit switches from the state in which the lower arm switch of the second inverter is opened and closed to the state in which the upper arm switch of the first inverter is opened and closed,
  • the return path which is a path including the return diode of the arm switch and the second winding, is blocked by the second blocking unit.
  • the alternating current line connecting the intermediate point of each switch of the upper and lower arms of the first inverter and the winding portion for each phase of the first winding is used as the first cutoff portion.
  • a first additional switch for opening and closing a line, and connecting the intermediate point of each switch of the upper and lower arms of the second inverter and the winding portion for each phase of the second winding as the second cutoff portion The AC line has a second additional switch for opening and closing the AC line, and the first energization control unit opens the first changeover switch and the second changeover switch, and the first addition switch and The second additional switch is in a closed state, and the second energization control unit energizes the upper arm switch in the first inverter to open and close with the first changeover switch and the second changeover switch closed.
  • the first additional switch is closed, the second additional switch is opened, and the first additional switch is opened during the energization period for opening and closing the lower arm switch in the second inverter. Close the additional switch.
  • the first additional switch is provided on the AC line connecting the intermediate point of the upper and lower arms of the first inverter and the winding portion of each phase as the first interrupting unit.
  • the 2nd addition switch was provided in the alternating current line which connects the intermediate point of the upper and lower arms in a 2nd inverter, and the winding part of each phase as a 2nd interruption
  • the reflux path formed including the upper arm switch in the second inverter can be suitably cut off.
  • complementary half-wave driving can be appropriately performed with the winding that is also on the energization side.
  • the first inverter has a pair of semiconductor switching elements having free-wheeling diodes connected in series with each other and provided in opposite directions as the lower arm switch of each phase
  • the two inverters have a pair of semiconductor switching elements having free-wheeling diodes connected in series with each other as the upper arm switch of each phase and provided in opposite directions, and the pair of semiconductor switching elements in the first inverter
  • the element includes the first blocking section, and the pair of semiconductor switching elements in the second inverter configures the second blocking section.
  • a pair of semiconductor switching elements having a free-wheeling diode connected in series with each other and provided in opposite directions to each other (that is, an anti-series semiconductor switching element) ), And the pair of semiconductor switching elements function as a first cutoff unit, and the pair of semiconductor switching elements functions as a bidirectional switch that enables bidirectional energization and cutoff.
  • route formed including the lower arm switch in a 1st inverter can be interrupted
  • the second inverter a pair of semiconductor switching elements (that is, anti-series semiconductor switching elements having anti-reflective diodes) connected to each other in series and provided in opposite directions as upper arm switches of the respective phases.
  • the pair of semiconductor switching elements function as a bidirectional switch that enables bidirectional energization and interruption.
  • the reflux path formed by including the upper arm switch in the second inverter can be suitably cut off.
  • the first energization control unit is configured to control one of the pair of semiconductor switching elements in the first inverter during energization control of the first winding and the second winding.
  • Complementary opening and closing with respect to the upper arm switch in the first inverter and holding the other semiconductor switching element in a closed state, and one semiconductor switching element of the pair of semiconductor switching elements in the second inverter Are complementarily opened and closed with respect to the lower arm switch in the second inverter, and the other semiconductor switching element is held in a closed state.
  • the energization current is controlled by opening and closing one of a pair of semiconductor switching elements in each inverter and holding the other closed. In this case, a reflux operation or a regenerative operation when the power factor is not 1 can be performed, and an appropriate full-wave drive can be realized.
  • the first inverter has a semiconductor switching element having a free-wheeling diode connected in an antiparallel direction as the upper arm switch of the first inverter, and the lower arm switch A pair of IGBTs connected in parallel in opposite directions
  • the second inverter has a semiconductor switching element having a free-wheeling diode connected in anti-parallel orientation as the lower arm switch of the second inverter
  • the upper arm switch has a pair of IGBTs connected in parallel in opposite directions, and the second energization control unit opens and closes the upper arm switch of the first inverter.
  • the reflux path which is a path including the lower arm switch and the first winding in the inverter, is interrupted by the pair of IGBTs provided as the lower arm switch, and the second energization control unit controls the second inverter.
  • the return path including the first winding is interrupted by the pair of IGBTs provided as the lower arm switches.
  • the second energization control unit switches from the state where the lower arm switch of the second inverter is opened and closed to the state where the upper arm switch of the first inverter is opened and closed
  • the return path including the second winding is interrupted by the pair of IGBTs provided.
  • the first energization control unit converts one IGBT of the pair of IGBTs in the first inverter to the first inverter in energization control of the first winding and the second winding. And the other IGBT is closed and held in a closed state, and one of the pair of IGBTs in the second inverter is connected to the lower arm in the second inverter.
  • the switch is complementarily opened and closed with respect to the switch, and the other IGBT is held in the closed state.
  • the energizing current is controlled by opening and closing one of the pair of IGBTs in and keeping the other closed.
  • a reflux operation or a regenerative operation when the power factor is not 1 can be performed, and an appropriate full-wave drive can be realized.
  • the first winding and the second winding have the same number of turns, and in-phase conductors are accommodated in the same slot of the stator core.
  • the degree of magnetic coupling between the first winding and the second winding can be increased.
  • commutation loss between the windings during half-wave driving that is, switching between windings when the upper arm switch of the first inverter and the lower arm switch of the second inverter are alternately opened and closed for each energization period, respectively.
  • Flow loss can be reduced and driving efficiency can be increased.
  • the first winding and the second winding are made of a conductor having a rectangular cross section.
  • the conductors of these windings can be arranged in an orderly manner in the slot. Therefore, it is possible to suppress variation in the degree of magnetic coupling between the first winding and the second winding for each individual. Thereby, the commutation loss between windings can be reduced more appropriately.
  • FIG. 1 is a longitudinal sectional view of a rotating electrical machine
  • FIG. 2 is a cross-sectional view showing the rotor and the stator
  • FIG. 3 is a diagram illustrating a conductor housing state in the stator
  • FIG. 4 is an electric circuit diagram showing a control system of the rotating electrical machine
  • FIG. 5 is a time chart for explaining the operation in the full-wave drive mode.
  • FIG. 6 is a time chart for explaining the operation in the half-wave drive mode.
  • FIG. 7 is a time chart showing a time-series change in torque of the rotating electrical machine
  • FIG. 1 is a longitudinal sectional view of a rotating electrical machine
  • FIG. 2 is a cross-sectional view showing the rotor and the stator
  • FIG. 3 is a diagram illustrating a conductor housing state in the stator
  • FIG. 4 is an electric circuit diagram showing a control system of the rotating electrical machine
  • FIG. 5 is a time chart for explaining the operation in the full-wave drive mode.
  • FIG. 8 is a diagram showing a reflux path formed by each inverter
  • FIG. 9 is a diagram illustrating the rotating electrical machine output when full-wave driving is performed and the rotating electrical machine output when half-wave driving is performed.
  • FIG. 10 is a diagram illustrating a first operation region in which full wave drive is performed and a second operation region in which half wave drive is performed.
  • FIG. 11 is a flowchart showing the mode switching process.
  • FIG. 12 is an electric circuit diagram illustrating a control system for a rotating electrical machine according to the second embodiment.
  • FIG. 13 is an electric circuit diagram illustrating a control system for a rotating electrical machine according to the third embodiment.
  • FIG. 14 is an electric circuit diagram illustrating a control system for a rotating electrical machine according to the fourth embodiment.
  • the rotating electrical machine in the present embodiment is used as a vehicle power source, for example.
  • the rotating electrical machine can be widely used for industrial use, vehicle use, ship use, aircraft use, home appliance use, OA equipment use, game machine use, and the like.
  • parts that are the same or equivalent to each other are given the same reference numerals in the drawings, and the description of the same reference numerals is used.
  • FIG. 1 is a longitudinal sectional view in a direction along the rotating shaft 11 of the rotating electrical machine 10
  • FIG. 2 is a sectional view showing a transverse section of the rotor 12 and the stator 13 in a direction orthogonal to the rotating shaft 11. is there.
  • the direction in which the rotating shaft 11 extends is referred to as the axial direction
  • the direction extending radially from the rotating shaft 11 is referred to as the radial direction
  • the direction extending circumferentially from the rotating shaft 11 is referred to as the circumferential direction.
  • the rotating electrical machine 10 includes a rotor 12 fixed to a rotating shaft 11, a stator 13 provided at a position surrounding the rotor 12, and a housing 14 that accommodates the rotor 12 and the stator 13. .
  • the rotor 12 and the stator 13 are arranged coaxially.
  • the housing 14 has a pair of cylindrical housing members 14a and 14b.
  • the housing members 14a and 14b are integrated by fastening bolts 15 in a state where the housing members 14a and 14b are joined to each other at the openings.
  • the housing 14 is provided with bearings 16 and 17, and the rotating shaft 11 and the rotor 12 are rotatably supported by the bearings 16 and 17.
  • the rotor 12 has a rotor core 21, and a plurality of permanent magnets 22 in the circumferential direction are provided on the outer peripheral portion of the rotor core 21 (that is, on the side facing the inner peripheral portion of the stator 13 in the radial direction). Are provided side by side.
  • the rotor core 21 is configured by laminating a plurality of electromagnetic steel plates in the axial direction and fixing them by caulking or the like.
  • a plurality of permanent magnets 22 are provided on the outer peripheral surface of the rotor core 21 so that magnetic poles are alternately arranged in the circumferential direction.
  • a 4-pole surface magnet type structure is used as the rotor structure.
  • the rotor 12 may be an embedded magnet type.
  • the permanent magnet may be a rare earth magnet or a ferrite magnet.
  • the stator 13 includes an annular stator core 31 and two sets of three phases wound around a plurality of slots 32 of the stator core 31, that is, six phases (U1, V1, W1, U2, V2, V2). Phase, W2 phase) stator windings 33.
  • the stator winding 33 has two sets of three-phase symmetrical windings.
  • the stator core 31 is configured by laminating a plurality of annular electromagnetic steel plates in the axial direction and fixing them by caulking or the like.
  • the stator core 31 has an annular yoke 34 and a plurality of teeth 35 extending radially inward from the yoke 34 and arranged at equal intervals in the circumferential direction, and slots 32 are formed between adjacent teeth 35. Has been.
  • the rotating electrical machine 10 has a 6-phase structure having 4 poles and 24 slots and two sets of three-phase windings. That is, the stator winding 33 includes two sets of three-phase windings, a first winding 33a having U1-phase, V1-phase, and W1-phase windings, and U2-phase, V2-phase, and W2-phase windings. And a second winding 33b having a phase winding (see FIG. 4).
  • each slot 32 in the stator 13, one phase is constituted by two slots that are continuous in the circumferential direction, and each slot 32 includes a first winding 33a and a second winding 33b.
  • Four conductors are inserted in a mixed state. That is, each slot 32 accommodates four layers of conductors inside and outside in the radial direction, and the conductors on the first winding 33a side and the conductors on the second winding 33b side are alternately arranged.
  • the first winding 33a and the second winding 33b have the same number of turns and are accommodated in the same slot 32 for each phase.
  • Each of the windings 33a and 33b is constituted by a rectangular wire (that is, a conductor having a rectangular cross section), and in each slot 32, the windings 33a and 33b are arranged in a state of being aligned radially inward and outward. .
  • the slots 32 of # 1 and # 2 accommodate the conductors of the windings 33a and 33b in the order of U2-> U1-> U2-> U1 from the radially inner side (that is, the rotor 12 side).
  • the slots 32 accommodate the conductors of the windings 33a and 33b in the order of V1-> V2-> V1-> V2 from the radially inner side, and the slots 32 of # 5 and # 6 are W2-> W1-> W2-> from the radially inner side.
  • the conductors of the windings 33a and 33b are accommodated in the order of W1. According to such a configuration, in each slot 32, the conductor on the first winding 33a side and the conductor on the second winding 33b side are magnetically coupled to each other for each phase.
  • the number of poles, the number of phases, the number of slots, and the number of conductor layers are not limited to this.
  • the first winding 33a and the second winding 33b are wound around the stator core 31, and this winding state
  • the windings 33a and 33b may be magnetically coupled to each other for each phase.
  • FIG. 4 two sets of three-phase windings (that is, the first winding 33a and the second winding 33b) are shown as the stator winding 33, and a first inverter is provided for each of the windings 33a and 33b. 40 and the second inverter 50 are provided.
  • the inverters 40 and 50 are configured by a full bridge circuit having upper and lower arms equal in number to the phases of the windings 33a and 33b, and the windings 33a and 33b are turned on and off by switches (semiconductor switching elements) provided in the arms. The energization current in 33b is adjusted.
  • the first inverter 40 includes a series connection body of an upper arm switch 41 and a lower arm switch 42 in three phases including a U1 phase, a V1 phase, and a W1 phase.
  • the high potential side terminal of the upper arm switch 41 of each phase is connected to the positive terminal of the DC power supply 60, and the low potential side terminal of the lower arm switch 42 of each phase is connected to the negative terminal (ground) of the DC power supply 60.
  • Each of the upper arm switch 41 and the lower arm switch 42 is a semiconductor switching element. More specifically, the upper arm switch 41 and the lower arm switch 42 are IGBTs having freewheeling diodes 43 and 44 connected in an antiparallel direction. That is, the free-wheeling diodes 43 and 44 are provided so that the cathode is on the high potential side and the anode is on the low potential side, respectively.
  • the additional switch 45 corresponds to a “first additional switch”, and by this additional switch 45, the intermediate point between the switches 41 and 42 of the upper and lower arms in the first inverter 40 and the winding for each phase of the first winding 33 a.
  • the AC line connecting the parts is turned on or off.
  • the additional switch 45 is a semiconductor switching element made of IGBT, for example.
  • the additional switch 45 is provided with a free-wheeling diode 46 in such a direction that the intermediate point side of each of the switches 41 and 42 of the upper and lower arms is a cathode and the winding portion side for each phase is an anode.
  • the phase windings of the first winding 33a are star-connected (Y connection), and the other ends of the phase windings are connected to each other at a neutral point N1.
  • the neutral point N1 is connected to the low potential side of the DC power supply 60 via a current path 47, and a changeover switch 48 is provided in the current path 47.
  • the change-over switch 48 corresponds to a “first change-over switch”, and the change-over switch 48 establishes or cuts off between the neutral point N1 and the low potential side of the DC power supply 60.
  • the changeover switch 48 is a semiconductor switching element made of, for example, IGBT.
  • the changeover switch 48 is provided with a freewheeling diode 49 in such a direction that the neutral point N1 side is a cathode and the low potential side of the DC power supply 60 is an anode.
  • the second inverter 50 has a configuration similar to that of the first inverter 40, and includes a series connection body of an upper arm switch 51 and a lower arm switch 52 in three phases including a U2 phase, a V2 phase, and a W2 phase. ing.
  • the high potential side terminal of the upper arm switch 51 of each phase is connected to the positive terminal of the DC power supply 60, and the low potential side terminal of the lower arm switch 52 of each phase is connected to the negative terminal (ground) of the DC power supply 60.
  • Each of the upper arm switch 51 and the lower arm switch 52 is a semiconductor switching element. More specifically, the upper arm switch 51 and the lower arm switch 52 are IGBTs having freewheeling diodes 53 and 54 connected in an antiparallel orientation. That is, the free-wheeling diodes 53 and 54 are provided so that the cathode is on the high potential side and the anode is on the low potential side, respectively.
  • the additional switch 55 corresponds to a “second additional switch”, and by this additional switch 55, the intermediate point between the switches 51 and 52 of the upper and lower arms in the second inverter 50 and the winding of each phase of the second winding 33 b.
  • the AC line connecting the parts is turned on or off.
  • the additional switch 55 is a semiconductor switching element made of, for example, IGBT.
  • the additional switch 55 is provided with a free-wheeling diode 56 in such a direction that an intermediate point side of each of the switches 51 and 52 of the upper and lower arms is an anode and a winding portion side for each phase is a cathode.
  • Each phase winding of the second winding 33b is star-connected (Y connection), and the other end of each phase winding is connected to each other at a neutral point N2.
  • the neutral point N2 is connected to the high potential side of the DC power supply 60 via a current path 57, and a changeover switch 58 is provided in the current path 57.
  • the change-over switch 58 corresponds to a “second change-over switch”, and the change-over switch 58 conducts or cuts off between the neutral point N ⁇ b> 2 and the high potential side of the DC power supply 60.
  • the changeover switch 58 is a semiconductor switching element made of, for example, IGBT.
  • the changeover switch 58 is provided with a reflux diode 59 in such a direction that the neutral point N2 side is an anode and the high potential side of the DC power supply 60 is a cathode.
  • the control device 65 includes a microcomputer composed of a CPU and various memories, and opens and closes (turns on and off) each switch in the inverters 40 and 50 based on various detection information in the rotating electrical machine 10 and requests for power running and power generation. Conduct energization control.
  • the detection information of the rotating electrical machine 10 includes, for example, a rotation angle (electrical angle information) of the rotor 12 detected by an angle detector such as a resolver, a power supply voltage (inverter input voltage) detected by a voltage sensor, and a current sensor.
  • the energization current of each phase detected by is included.
  • Control device 65 generates and outputs an operation signal for operating each switch of inverters 40 and 50.
  • energization of the first winding 33a and the second winding 33b in the rotating electrical machine 10 is controlled by the first inverter 40 and the second inverter 50, respectively.
  • the changeover switches 48 and 58 are opened (off state)
  • the drive of the rotating electrical machine 10 is controlled in the full-wave drive mode
  • the changeover switches 48 and 58 are closed (on state).
  • the drive of the rotating electrical machine 10 is controlled in the half-wave drive mode. That is, by switching the changeover switches 48 and 58 between the open state and the closed state, the drive mode of the rotating electrical machine 10 is switched between the full wave drive mode and the half wave drive mode.
  • the control device 65 constitutes a first energization control unit and a second energization control unit.
  • FIG. 5 shows a control mode of each switch in the full-wave drive mode
  • FIG. 6 shows a control mode of each switch in the half-wave drive mode. 5 and 6 show only the operations of the W1 phase and the W2 phase of the three-phase two sets of stator windings 33, but the electrical angles of the other phases of the windings 33a and 33b differ by 120 degrees. Similar operations are performed in phase.
  • the changeover switches 48 and 58 are turned off, and the additional switches 45 and 55 of the inverters 40 and 50 are turned on. Then, in the first inverter 40, the upper arm switch 41 and the lower arm switch 42 are turned on and off in a complementary manner, whereby energization of the first winding 33a is controlled. Further, when the upper arm switch 51 and the lower arm switch 52 are complementarily turned on and off in the second inverter 50, the energization of the second winding 33b is controlled.
  • the energization of the first winding 33a and the second winding 33b is controlled by each switch of the upper and lower arms in each of the inverters 40 and 50 being complementarily opened and closed in the same energization period.
  • the rotating electrical machine 10 is driven.
  • the stator winding 33 is energized by the full-wave three-phase alternating current by conducting energization control in the same energization period for the two sets of in-phase winding portions. As a result, high torque output is possible.
  • the changeover switches 48 and 58 are turned on, and the additional switch 45 of the first inverter 40 and the additional switch 55 of the second inverter 50 are cycled 180 degrees ( It is turned on alternately in an electrical half cycle.
  • the ON period of the additional switches 45 and 55 the upper arm switch 41 of the first inverter 40 is turned on / off, and the lower arm switch 52 of the second inverter 50 is turned on / off.
  • the additional switch 45 of the first inverter 40 is turned on and the additional switch 55 of the second inverter 50 is turned off.
  • the upper arm switch 41 is turned on and off, and the lower arm switch 42 is held off.
  • both the upper arm switch 51 and the lower arm switch 52 are held. Holds off.
  • the additional switch 45 of the first inverter 40 is turned off and the additional switch 55 of the second inverter 50 is turned on.
  • the upper arm switch 41 and the lower arm switch 42 are both held off, and in the second inverter 50, the upper arm switch 51 is held off, and the lower arm The switch 42 is turned on / off.
  • the upper arm switch 41 and the upper and lower arms of the second inverter 50 of the upper and lower arms 41 and 42 of the first inverter 40 are closed with the changeover switches 48 and 58 closed.
  • the lower arm switch 52 is opened and closed in alternately energized periods (T1 and T2). Thereby, the energization of the first winding 33a and the second winding 33b is controlled.
  • the half-wave drive of the rotating electrical machine 10 is alternately performed in each of the inverters 40 and 50.
  • the first winding 33a and the second winding 33b are in a state of being magnetically coupled to each other.
  • the neutral point N1 is Since the low potential side of the DC power source 60 is short-circuited and the neutral point N2 and the high potential side of the DC power source 60 are short-circuited by the changeover switch 58 on the second winding 33b side, the first winding In the energization period of the line 33a and the energization period of the second winding 33b, the directions of the phase currents are opposite to each other and change in positive and negative directions. And since the energization period of the 1st coil
  • a negative current flows as a W1 current at the beginning, but gradually shifts to a positive current.
  • a positive current is generated as a W1 current at the beginning. Flows, but gradually shifts to a negative current.
  • the combined current (W1 + W2 current) of the W1 current and the W2 current becomes a sine wave waveform or a waveform close to it while being half-wave driven. That is, a sinusoidal rotating magnetic field (magnetomotive force) can be obtained as in the case of full-wave driving.
  • FIG. 7 is a time chart showing the time-series change of the torque of the rotating electrical machine 10, the solid line shows the torque change in this embodiment, and the alternate long and short dash line shows the torque change in the conventional example. According to FIG. 7, it can be seen that the torque pulsation is reduced and the average torque is increased (AVE1 ⁇ AVE2).
  • the additional switch 55 is turned on, and the switching of the lower arm switch 52 of the second inverter 50 is started, so that a half-wave current flows through the second winding 33b. Further, thereafter, the same applies when commutation from the second winding 33b to the first winding 33a is performed. However, as a difference, when a half-wave current flows through the second winding 33b, the direction of the current is opposite to that when the first winding 33a is energized, and from the neutral point N2 of the second winding 33b, A negative current flows in a direction toward the lower arm switch 52 via the additional switch 55.
  • a reflux path is formed in the first inverter 40, which may cause trouble in commutation. That is, as shown in FIG. 8, on the first inverter 40 side, a return path R1 is formed as a path including the return diode 44 of the lower arm switch 42 and the first winding 33a.
  • FIG. 8 shows a return path R1 passing through the W1 phase winding section and a return path R2 passing through the W2 phase winding section.
  • the switching of the upper arm switch 41 of the first inverter 40 is stopped and the switching of the lower arm switch 52 of the second inverter 50 is started, it is added in accordance with the switching stop of the upper arm switch 41.
  • the switch 45 is turned off. Therefore, the reflux path R1 is blocked by the additional switch 45.
  • the additional switch is set in accordance with the switching stop of the lower arm switch 52. 55 is turned off. Therefore, the return path R2 is blocked by the additional switch 55.
  • the additional switch 45 corresponds to a “first blocking unit”
  • the additional switch 55 corresponds to a “second blocking unit”.
  • the lower arm switch 42 and the additional switch 45 are connected in series so that the freewheeling diodes 44 and 46 are opposite to each other.
  • a bidirectional switch that can be shut off is configured.
  • the upper arm switch 51 and the additional switch 55 are connected in series so that the freewheeling diodes 53 and 56 are opposite to each other.
  • a bidirectional switch that can be shut off is configured.
  • the control device 65 switches between the full wave drive mode and the half wave drive mode based on the rotation speed of the rotating electrical machine 10. Specifically, the control device 65 turns off (opens) the changeover switches 48 and 58 and performs energization control of the windings 33a and 33b in the full-wave drive mode in the operation region on the low rotation side of the rotating electrical machine 10. To do. Further, in the operating range on the high rotation side of the rotating electrical machine 10, the selector switches 48 and 58 are turned on (closed), and energization control of the windings 33a and 33b is performed in the half-wave drive mode.
  • the rotating electrical machine output at the time of performing full wave driving is indicated by a solid line
  • the rotating electrical machine output at the time of performing half wave driving is indicated by a broken line.
  • Full-wave driving is suitable for high torque operation because the magnetomotive force is twice that of half-wave driving.
  • Half-wave driving is suitable for high-speed operation because the applied voltage per unit winding is twice that of full-wave driving. In this case, the output characteristics partially overlap when full-wave driving and half-wave driving are performed.
  • the first operation region for full-wave drive and the second operation region for half-wave drive are defined as shown in FIG. 10, and mode switching is performed according to each of these operation regions. Yes. In FIG. 10, the first operation region is hatched.
  • FIG. 11 is a flowchart showing a mode switching process performed by the control device 65, and this process is repeatedly performed at a predetermined cycle.
  • step S11 it is determined whether or not the operating state of the rotating electrical machine 10 is in the first operating range
  • step S12 it is determined whether or not the operating state of the rotating electrical machine 10 is in the second operating range.
  • the operating range may be determined based on the rotation speed calculated based on the rotation information of the rotor 12 and the required torque for the rotating electrical machine 10.
  • step S13 it is determined that the rotating electrical machine 10 is driven in the full-wave drive mode.
  • the changeover switches 48 and 58 are turned off.
  • the full-wave drive is performed by switching the upper and lower arm switches of each phase.
  • step S14 If the operating state of the rotating electrical machine 10 is in the second operating range, the process proceeds to step S14, and it is determined that the rotating electrical machine 10 is driven in the half-wave drive mode. In this case, the changeover switches 48 and 58 are turned on. Further, in each phase, the additional switches 45 and 55 of the inverters 40 and 50 are alternately turned on every electrical half cycle, the upper arm switch 41 is switched in the first inverter 40, and the lower switch is switched in the second inverter 50. The arm switch 52 is switched to perform half-wave driving.
  • the changeover switches 48 and 58 are turned off (opened), and full-wave energization of the first winding 33a and the second winding 33b by the first inverter 40 and the second inverter 50 is performed.
  • energization control in the same energization period is performed on the in-phase winding portion, and high torque output is realized.
  • the changeover switches 48 and 58 are turned on (closed) so that the first inverter 40 and the second inverter 50 perform half-wave energization of the first winding 33a and the second winding 33b. did. In this case, the first winding 33a and the second winding 33b are in a state of being magnetically coupled to each other. Further, on the side of the first winding 33a, the neutral point N1 and the low potential of the DC power supply 60 are switched by the changeover switch 48.
  • the changeover switches 48 and 58 are opened and closed in accordance with the operating area of the rotating electrical machine 10, different output characteristics can be suitably obtained, and the high-efficiency operating area of the rotating electrical machine 10 can be expanded.
  • the changeover switches 48 and 58 are closed, the applied voltage per unit winding is increased in the winding portion of each phase as compared with the case of full-wave driving. Therefore, it is possible to realize an advantageous configuration for extending the operating range of the rotating electrical machine 10 to the high rotation range side.
  • R1 and R2 are blocked by additional switches 45 and 55.
  • the additional switches 45 and 55 are provided on the AC line connecting the intermediate point of the upper and lower arms and the winding portion of each phase.
  • the reflux path formed when energization is switched can be suitably blocked.
  • complementary half-wave driving can be appropriately performed with the winding that is also on the energization side.
  • first winding 33a and the second winding 33b have the same number of turns and the same-phase conductors are accommodated in the same slot 32 of the stator core 31, the first winding 33a and the second winding 33b.
  • the degree of magnetic coupling with 33b can be increased.
  • commutation loss between the windings during half-wave driving that is, winding when the upper arm switch 41 of the first inverter 40 and the lower arm switch 52 of the second inverter 50 are alternately opened and closed for each energization period.
  • the commutation loss between the lines can be reduced, and the driving efficiency can be increased.
  • the conductors of the windings 33a and 33b can be arranged in the slots 32 in an orderly manner. Therefore, it is possible to suppress variations in the degree of magnetic coupling between the first winding 33a and the second winding 33b. Thereby, the commutation loss between windings can be reduced more appropriately.
  • the drive system can be made redundant, and the reliability of the system can be improved.
  • FIG. 12 is an electric circuit diagram illustrating a control system for a rotating electrical machine according to the second embodiment.
  • the first inverter 40 includes a pair of semiconductor switching elements 42a and 42b having free-wheeling diodes 44a and 44b connected in series with each other as the lower arm switch 42 of each phase and provided in opposite directions. Is provided.
  • the pair of semiconductor switching elements 42a and 42b are reverse conducting semiconductor switching elements connected in reverse series, and function as bidirectional switches that enable bidirectional energization and interruption.
  • the pair of semiconductor switching elements 42a and 42b corresponds to the “first blocking portion”.
  • the second inverter 50 is provided with a pair of semiconductor switching elements 51a and 51b having free-wheeling diodes 53a and 53b that are connected in series with each other and provided in opposite directions as the upper arm switch 51 of each phase. ing.
  • the pair of semiconductor switching elements 51a and 51b are reverse conducting semiconductor switching elements connected in reverse series, and function as a bidirectional switch that enables energization and interruption in both directions.
  • the pair of semiconductor switching elements 51a and 51b corresponds to a “second blocking unit”.
  • the control device 65 in the first inverter 40 is one of the semiconductor switching elements 42 a and 42 b as the lower arm switch 42.
  • 42a that is, the semiconductor switching element having the same direction of the upper arm switch 41 and the reflux diode
  • the other semiconductor switching element 42b is held in the ON state (closed state).
  • one of the pair of semiconductor switching elements 51a and 51b as the upper arm switch 51 ie, a semiconductor switching element having the same direction of the lower arm switch 52 and the reflux diode
  • the lower arm switch 52 is complementarily opened and closed, and the other semiconductor switching element 51b is held in an on state (closed state).
  • the control device 65 switches the upper arm switch 41 while the semiconductor switching element 42a of the pair of semiconductor switching elements 42a and 42b. Is held in the off state (open state), and the semiconductor switching element 42b is held in the on state (closed state).
  • the switches 51 and 52 on the second inverter 50 side are both held in an off state (open state).
  • the control device 65 stops the switching of the upper arm switch 41 and turns off the pair of semiconductor switching elements 42a and 42b (open state). Then, the switching of the lower arm switch 52 by the second inverter 50 is started. When the lower arm switch 52 is switched, the semiconductor switching element 51a of the pair of semiconductor switching elements 51a and 51b is held in the off state (open state), and the semiconductor switching element 51b is held in the on state (closed state).
  • the semiconductor switching element 42 a operates in the same manner as the lower arm switch 42, and the semiconductor switching element 42 b operates in the same manner as the additional switch 45.
  • the semiconductor switching element 51 a operates in the same manner as the upper arm switch 51, and the semiconductor switching element 51 b operates in the same manner as the additional switch 55.
  • the pair of semiconductor switching elements 42a and 42b are turned off.
  • the currents are cut off in both directions by the free-flowing diodes 44a and 44b opposite to each other. Therefore, when the switching of the upper arm switch 41 is stopped, the reflux path R1 (see FIG. 8) in the first inverter 40 is cut off.
  • the pair of semiconductor switching elements 51a and 51b are turned off. In the state, the energization is cut off in both directions by the free-flowing diodes 53a and 53b opposite to each other. Therefore, when the switching of the lower arm switch 52 is stopped, the reflux path R2 (see FIG. 8) in the second inverter 50 is interrupted.
  • the number of series elements in a conducting state during full-wave driving can be reduced, and conduction loss can be reduced.
  • each of the inverters 40 and 50 includes a pair of semiconductor switching elements connected in reverse series (that is, the lower arm switch 42 of the first inverter 40 and the upper arm switch 51 of the second inverter 50).
  • the energization current is controlled by opening and closing one and holding the other closed. In this case, a reflux operation or a regenerative operation when the power factor is not 1 can be performed, and an appropriate full-wave drive can be realized.
  • FIG. 13 is an electric circuit diagram illustrating a control system for a rotating electrical machine according to the third embodiment.
  • the first inverter 40 is provided with a pair of IGBTs 42 c and 42 d connected in parallel in opposite directions as the lower arm switch 42 of each phase.
  • the pair of IGBTs 42c and 42d are reverse blocking IGBTs connected in antiparallel and function as bidirectional switches that enable bidirectional energization and interruption. More specifically, in one IGBT 42c, the collector is set to the high potential side and the emitter is set to the low potential side. In the other IGBT 42d, the emitter is set to the high potential side and the collector is set to the low potential side. It is connected to the.
  • the second inverter 50 is provided with a pair of IGBTs 51c and 51d connected in parallel in opposite directions as the upper arm switch 51 of each phase.
  • the pair of IGBTs 51c and 51d are reverse blocking IGBTs connected in antiparallel, and function as bidirectional switches that enable bidirectional energization and interruption. More specifically, in one IGBT 51c, the collector is set to the high potential side and the emitter is set to the low potential side, and in the other IGBT 51d, the emitter is set to the high potential side and the collector is set to the low potential side. It is connected to the.
  • the control device 65 in the first inverter 40 includes one IGBT 42c (that is, the upper arm) of the pair of IGBTs 42c and 42d as the lower arm switch 42.
  • the IGBT whose collector is connected to the switch 41 is opened and closed in a complementary manner with respect to the upper arm switch 41, and the other IGBT 42d is held in the ON state (closed state).
  • one IGBT 51 c that is, an IGBT having an emitter connected to the lower arm switch 52
  • the other IGBT 51d is held in the ON state (closed state).
  • the control device 65 switches the upper arm switch 41 while turning off the IGBT 42c of the pair of IGBTs 42c and 42d (open state). ) And the IGBT 42d is held in the ON state (closed state). The switches 51 and 52 on the second inverter 50 side are both held in an off state (open state).
  • the control device 65 stops the switching of the upper arm switch 41 and turns off the pair of IGBTs 42c and 42d (open state). Then, the switching of the lower arm switch 52 by the second inverter 50 is started. When the lower arm switch 52 is switched, the IGBT 51c of the pair of IGBTs 51c and 51d is held in the off state (open state) and held in the IGBT 51d on state (closed state).
  • the IGBT 42 c operates in the same manner as the lower arm switch 42, and the IGBT 42 d operates in the same manner as the additional switch 45. Further, the IGBT 51c operates in the same manner as the upper arm switch 51, and the IGBT 51d operates in the same manner as the additional switch 55.
  • the pair of IGBTs 42c and 42d are turned off to turn on and off. Is turned off. Therefore, when the switching of the upper arm switch 41 is stopped, the reflux path R1 (see FIG. 8) in the first inverter 40 is cut off.
  • the pair of IGBTs 51c and 51d are turned off to turn on and off. The power is cut off at. Therefore, when the switching of the lower arm switch 52 is stopped, the reflux path R2 (see FIG. 8) in the second inverter 50 is interrupted.
  • commutation between the first winding 33a side and the second winding 33b side can be suitably performed, and complementary half-wave drive in each winding 33a, 33b. Can be implemented properly.
  • the lower arm switch 42 of the first inverter 40 and the upper arm switch 51 of the second inverter 50 are configured by a pair of IGBTs connected in parallel to each other, the number of switching elements that are conducted during half-wave driving ( That is, the number of series elements on the conduction path does not increase. Therefore, conduction loss during half-wave driving can be reduced.
  • a pair of IGBTs connected in reverse parallel that is, the lower arm switch 42 of the first inverter 40 and the upper arm switch 51 of the second inverter 50.
  • the energization current is controlled by opening and closing one IGBT and holding the other IGBT in a closed state. In this case, a reflux operation or a regenerative operation when the power factor is not 1 can be performed, and an appropriate full-wave drive can be realized.
  • FIG. 14 is an electric circuit diagram showing a control system of the rotating electrical machine 10 in the fourth embodiment.
  • the lower arm switch 42 of the first inverter 40 is provided with MOSFETs 42e and 42f made of wide gap semiconductors connected in series in the opposite direction.
  • MOSFETs 51e and 51f made of a wide gap semiconductor are provided in a state of being connected in series in the reverse direction.
  • a wide gap semiconductor element made of SiC (silicon carbide) -based material, GaN (gallium nitride) -based material, or the like as the MOSFET formed of a wide gap semiconductor.
  • SiC silicon carbide
  • GaN gallium nitride
  • the conduction loss can be further reduced when the switches are switched in the full-wave drive mode.
  • the changeover switches 48 and 58 mechanical contact switches may be used instead of the semiconductor switching elements.
  • the semiconductor switching element does not necessarily have to be used in applications in which the low-rotation operation region and the high-rotation operation region are intermittently switched.
  • the number of turns of the first winding 33a and the number of turns of the second winding 33b may be different. In this case, the magnitude of the current flowing through the first winding 33a is different from the magnitude of the current flowing through the second winding 33b, but half-wave driving is possible.
  • the stator winding 33 is not limited to a three-phase winding, and may be, for example, a five-phase winding as long as it has a neutral point.
  • the two inverters 40 and 50 may be configured such that separate DC power supplies are connected to each other.
  • the rotary electric machine 10 may be other than the magnet rotor structure, for example, an induction rotor structure. Further, an outer rotor structure may be used instead of the inner rotor structure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Control Of Ac Motors In General (AREA)
  • Inverter Devices (AREA)
  • Windings For Motors And Generators (AREA)

Abstract

回転電機の駆動装置は、第1巻線(33a)の相ごとの上下アームスイッチ(41,42)を開閉させて第1巻線の通電を行わせる第1インバータ(40)と、第2巻線(33b)の相ごとの上下アームスイッチ(51,52)を開閉させて第2巻線の通電を行わせる第2インバータ(50)と、電流経路(47)に設けられた第1切替スイッチ(48)と、電流経路(57)に設けられた第2切替スイッチ(58)と、第1,第2切替スイッチの開放状態で、第1,第2インバータにおける上下アームの各スイッチを同じ通電期間でそれぞれ相補的に開閉させて、第1巻線及び第2巻線の通電を制御する第1通電制御部(65)と、第1,第2切替スイッチの閉鎖状態で、第1インバータの上アームスイッチと、第2インバータの下アームスイッチとを交互に開閉させて、第1巻線及び第2巻線の通電を制御する第2通電制御部(65)と、を備える。

Description

回転電機の駆動装置 関連出願の相互参照
 本出願は、2018年2月9日に出願された日本出願番号2018-022475号に基づくもので、ここにその記載内容を援用する。
 本開示は、回転電機の駆動装置に関するものである。
 従来、回転電機の駆動装置において、回転電機の制御モードを、高速回転と低速回転との2つの回転モードで適宜切り替えるようにした技術が提案されている。例えば特許文献1に記載の技術では、Y結線された3相巻線の相ごとに上アームスイッチ及び下アームスイッチからなる直列接続体を設けるとともに、3相巻線の中性点に、速度切替スイッチが接続している。そして、低速回転モードでは速度切替スイッチをオフにして全波駆動を行い、高速回転モードでは速度切替スイッチをオンにして半波駆動を行うことで、2つのトルク特性を得るようにしている。
特開平6-351283号公報
 しかしながら、上記特許文献1に記載の技術では、速度切替スイッチのオンオフにより全波駆動と半波駆動との切り替えが可能になるものの、速度切替スイッチをオンにして半波駆動を行う場合において、トルク脈動が大きくなるという不都合が懸念される。
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、全波駆動と半波駆動とを好適に行い、かつ半波駆動時におけるトルク脈動を低減することができる回転電機の駆動装置を提供することにある。
 以下、上記課題を解決するための手段、及びその作用効果について説明する。
 第1の手段は、
 固定子コアと、その固定子コアに巻装され、少なくとも3相の巻線部からなり各相の巻線部の一端が中性点にて接続されている第1巻線及び第2巻線と、を有する回転電機に適用され、その回転電機を駆動する駆動装置であって、
 直流電源に接続され、前記第1巻線の相ごとに設けられた上アームスイッチ及び下アームスイッチを開閉させることにより前記第1巻線の各相の通電を行わせる第1インバータと、
 前記直流電源に接続され、前記第2巻線の相ごとに設けられた上アームスイッチ及び下アームスイッチを開閉させることにより前記第2巻線の各相の通電を行わせる第2インバータと、
 前記第1巻線の中性点と前記直流電源の低電位側とを接続する電流経路に設けられた第1切替スイッチと、
 前記第2巻線の中性点と前記直流電源の高電位側とを接続する電流経路に設けられた第2切替スイッチと、
 前記第1切替スイッチ及び前記第2切替スイッチを開放した状態で、前記第1インバータ及び前記第2インバータにおける上下アームの各スイッチを同じ通電期間でそれぞれ相補的に開閉させて、前記第1巻線及び前記第2巻線の通電を制御する第1通電制御部と、
 前記第1切替スイッチ及び前記第2切替スイッチを閉鎖した状態で、前記第1インバータにおける上下アームの各スイッチのうち前記上アームスイッチと、前記第2インバータにおける上下アームの各スイッチのうち前記下アームスイッチとを、交互に定められた通電期間でそれぞれ開閉させて、前記第1巻線及び前記第2巻線の通電を制御する第2通電制御部と、
を備える。
 上記の回転電機は、少なくとも3相の第1巻線及び第2巻線を有しており、それら各巻線の通電が第1インバータ、第2インバータによりそれぞれ制御される。また特に、第1巻線の中性点と直流電源の低電位側とを接続する経路には第1切替スイッチが設けられるとともに、第2巻線の中性点と直流電源の高電位側とを接続する経路には第2切替スイッチが設けられており、それら各切替スイッチの開閉状態が適宜切り替えられる。かかる構成によれば、各切替スイッチが開状態と閉状態とで切り替えられることにより、回転電機の駆動モードとして、全波駆動モードと半波駆動モードとの切り替えが可能となっている。
 すなわち、第1切替スイッチ及び第2切替スイッチが開放された状態では、第1インバータ及び第2インバータにおける上下アームの各スイッチが同じ通電期間でそれぞれ相補的に開閉されることにより、第1巻線及び第2巻線の通電が制御される。つまり、各インバータでは、回転電機の全波駆動が行われる。この場合、第1巻線及び第2巻線では同相の巻線部について同じ通電期間での通電制御が行われることにより、高トルクの出力が可能となる。
 また、第1切替スイッチ及び第2切替スイッチが閉鎖された状態では、第1インバータにおける上下アームの各スイッチのうち上アームスイッチと、第2インバータにおける上下アームの各スイッチのうち下アームスイッチとが、交互に定められた通電期間でそれぞれ開閉されることにより、第1巻線及び第2巻線の通電が制御される。つまり、各インバータでは、回転電機の半波駆動が交互に行われる。この場合、第1巻線及び第2巻線が固定子コアに巻装されて互いに磁気結合された状態となっている一方で、第1巻線の側では、第1切替スイッチにより中性点と直流電源の低電位側とが短絡されるとともに、第2巻線の側では、第2切替スイッチにより中性点と直流電源の高電位側とが短絡されている。そのため、第1巻線の通電期間及び第2巻線の通電期間では、それぞれ相電流の向きが互いに逆となって正負で変化する。そして、第1巻線の通電期間と第2巻線の通電期間とが互い違いに設定されていることにより、全波状の合成起磁力が得られるようになっている。つまり、半波駆動でありながら、全波駆動時と同様の正弦波回転磁界を得ることが可能となっている。以上により、全波駆動と半波駆動とを好適に行い、かつ半波駆動時におけるトルク脈動を低減することができる。
 第2の手段では、前記第1通電制御部は、前記回転電機の低回転側の動作域で、前記第1切替スイッチ及び前記第2切替スイッチを開放して前記各巻線の通電制御を実施し、前記第2通電制御部は、前記回転電機の高回転側の動作域で、前記第1切替スイッチ及び前記第2切替スイッチを閉鎖して前記各巻線の通電制御を実施する。
 上記構成によれば、回転電機の動作域に応じて各切替スイッチを開閉することにより、異なる出力特性を好適に得ることができ、回転電機の高効率動作領域を拡大できる。また、上記のとおり第1切替スイッチにより第1巻線の中性点と直流電源の低電位側とを短絡させ、第2切替スイッチにより第2巻線の中性点と直流電源の高電位側とを短絡させる構成では、各切替スイッチが閉鎖されている状態下で、各相の巻線部に全波駆動時と比べて単位巻線あたりの印加電圧を高めることが可能となる。そのため、回転電機の動作域を高回転域側に拡張する上で有利な構成を実現できる。
 第3の手段では、前記第1インバータにおける前記上アームスイッチ及び前記下アームスイッチと、前記第2インバータにおける前記上アームスイッチ及び前記下アームスイッチとは、逆並列となる向きで接続された還流ダイオードを有する半導体スイッチング素子であり、前記第1インバータは、前記第2通電制御部により前記第1インバータの前記上アームスイッチが開閉される状態から、前記第2インバータの前記下アームスイッチが開閉される状態に切り替えられる際に、前記第1インバータにおける前記下アームスイッチの前記還流ダイオードと前記第1巻線とを含む経路である還流経路を遮断する第1遮断部を有し、前記第2インバータは、前記第2通電制御部により前記第2インバータの前記下アームスイッチが開閉される状態から、前記第1インバータの前記上アームスイッチが開閉される状態に切り替えられる際に、前記第2インバータにおける前記上アームスイッチの前記還流ダイオードと前記第2巻線とを含む経路である還流経路を遮断する第2遮断部を有する。
 半波駆動時において、第1インバータの上アームスイッチが開閉される状態から、第2インバータの下アームスイッチが開閉される状態に切り替えられる際には、第1巻線及び第2巻線が磁気結合していることから、第1巻線側から第2巻線側への転流が行われる。ただし、その切り替えに際して、第1インバータの側で還流経路が形成されると、転流が適正に実施されなくなることが懸念される。つまり、第1インバータでは、上アームスイッチ及び下アームスイッチに還流ダイオードが設けられていることから、その還流ダイオードと巻線とを介して、第1インバータ内に還流経路が形成される。その逆に、第2インバータの下アームスイッチが開閉される状態から、第1インバータの上アームスイッチが開閉される状態に切り替えられる場合も同様である。
 この点、上記手段によれば、第1インバータでは、第2通電制御部により第1インバータの上アームスイッチが開閉される状態から、第2インバータの下アームスイッチが開閉される状態に切り替えられる際に、第1インバータにおける下アームスイッチの還流ダイオードと第1巻線とを含む経路である還流経路が、第1遮断部により遮断される。また、第2インバータでは、第2通電制御部により第2インバータの下アームスイッチが開閉される状態から、第1インバータの上アームスイッチが開閉される状態に切り替えられる際に、第2インバータにおける上アームスイッチの還流ダイオードと第2巻線とを含む経路である還流経路が、第2遮断部により遮断される。これにより、第1巻線側と第2巻線側との間の転流を好適に実施させることができ、各巻線での相補的な半波駆動を適正に実施できる。
 第4の手段では、前記第1遮断部として、前記第1インバータにおける上下アームの各スイッチの中間点と前記第1巻線の相ごとの前記巻線部とを接続する交流線に、該交流線を開閉する第1付加スイッチを有し、前記第2遮断部として、前記第2インバータにおける上下アームの各スイッチの中間点と前記第2巻線の相ごとの前記巻線部とを接続する交流線に、該交流線を開閉する第2付加スイッチを有し、前記第1通電制御部は、前記第1切替スイッチ及び前記第2切替スイッチを開状態にするとともに、前記第1付加スイッチ及び前記第2付加スイッチを閉状態とし、前記第2通電制御部は、前記第1切替スイッチ及び前記第2切替スイッチを閉鎖した状態下で、前記第1インバータにおける前記上アームスイッチを開閉させる通電期間では、前記第1付加スイッチを閉状態、前記第2付加スイッチを開状態とし、前記第2インバータにおける前記下アームスイッチを開閉させる通電期間では、前記第1付加スイッチを開状態、前記第2付加スイッチを閉状態とする。
 上記手段によれば、第1遮断部として、第1インバータにおける上下アームの中間点と各相の巻線部とを接続する交流線に第1付加スイッチを設けたため、この第1付加スイッチにより、第2通電制御部により第2インバータにおける下アームスイッチが開閉される場合に、第1インバータにおける下アームスイッチを含んで形成される還流経路を好適に遮断することができる。
 また、第2遮断部として、第2インバータにおける上下アームの中間点と各相の巻線部とを接続する交流線に第2付加スイッチを設けたため、この第2付加スイッチにより、第2通電制御部により第1インバータにおける上アームスイッチが開閉される場合に、第2インバータにおける上アームスイッチを含んで形成される還流経路を好適に遮断することができる。これにより、やはり通電側となる巻線での相補的な半波駆動を適正に実施できる。
 第5の手段では、前記第1インバータは、各相の前記下アームスイッチとして、互いに直列に接続され、かつ互いに逆向きに設けられた還流ダイオードを有する一対の半導体スイッチング素子を有し、前記第2インバータは、各相の前記上アームスイッチとして、互いに直列に接続され、かつ互いに逆向きに設けられた還流ダイオードを有する一対の半導体スイッチング素子を有し、前記第1インバータにおける前記一対の半導体スイッチング素子により前記第1遮断部が構成され、前記第2インバータにおける前記一対の半導体スイッチング素子により前記第2遮断部が構成されている。
 上記手段によれば、第1インバータにおける各相の下アームスイッチとして、互いに直列に接続され、かつ互いに逆向きに設けられた還流ダイオードを有する一対の半導体スイッチング素子(すなわち、逆直列の半導体スイッチング素子)を設け、その一対の半導体スイッチング素子を第1遮断部としており、その一対の半導体スイッチング素子は、双方向での通電及び遮断を可能にする双方向スイッチとして機能する。これにより、第1インバータにおける下アームスイッチを含んで形成される還流経路を好適に遮断することができる。
 また、第2インバータにおいても同様に、各相の上アームスイッチとして、互いに直列に接続され、かつ互いに逆向きに設けられた還流ダイオードを有する一対の半導体スイッチング素子(すなわち、逆直列の半導体スイッチング素子)を設け、その一対の半導体スイッチング素子を第2遮断部としており、その一対の半導体スイッチング素子は、双方向での通電及び遮断を可能にする双方向スイッチとして機能する。これにより、やはり第2インバータにおける上アームスイッチを含んで形成される還流経路を好適に遮断することができる。
 第6の手段では、前記第1通電制御部は、前記第1巻線及び前記第2巻線の通電制御に際し、前記第1インバータにおける前記一対の半導体スイッチング素子のうち一方の半導体スイッチング素子を、前記第1インバータにおける前記上アームスイッチに対して相補的に開閉させ、かつ他方の半導体スイッチング素子を閉状態で保持するとともに、前記第2インバータにおける前記一対の半導体スイッチング素子のうち一方の半導体スイッチング素子を、前記第2インバータにおける前記下アームスイッチに対して相補的に開閉させ、かつ他方の半導体スイッチング素子を閉状態で保持する。
 上記手段によれば、第1インバータの下アームスイッチとして逆直列の一対の半導体スイッチング素子を有するとともに、第2インバータの上アームスイッチとして逆直列の一対の半導体スイッチング素子を有する構成において、全波駆動時に、各インバータにおける一対の半導体スイッチング素子のうち一方を開閉させ、かつ他方を閉状態で保持することにより通電電流が制御される。この場合、力率が1でない場合の還流動作や、あるいは回生動作も行うことができ、適正な全波駆動を実現できる。
 第7の手段では、前記第1インバータは、当該第1インバータの前記上アームスイッチとして、逆並列となる向きで接続された還流ダイオードを有する半導体スイッチング素子を有するとともに、前記下アームスイッチとして、互いに逆向きに並列接続された一対のIGBTを有し、前記第2インバータは、当該第2インバータの前記下アームスイッチとして、逆並列となる向きで接続された還流ダイオードを有する半導体スイッチング素子を有するとともに、前記上アームスイッチとして、互いに逆向きに並列接続された一対のIGBTを有し、前記第2通電制御部により前記第1インバータの前記上アームスイッチが開閉される状態から、前記第2インバータの前記下アームスイッチが開閉される状態に切り替えられる際に、前記第1インバータにおける前記下アームスイッチと前記第1巻線とを含む経路である還流経路を、当該下アームスイッチとして設けられた前記一対のIGBTにより遮断し、前記第2通電制御部により前記第2インバータの前記下アームスイッチが開閉される状態から、前記第1インバータの前記上アームスイッチが開閉される状態に切り替えられる際に、前記第2インバータにおける前記上アームスイッチと前記第2巻線とを含む経路である還流経路を、当該上アームスイッチとして設けられた前記一対のIGBTにより遮断する。
 上記手段によれば、第1インバータでは、第2通電制御部により第1インバータの上アームスイッチが開閉される状態から、第2インバータの下アームスイッチが開閉される状態に切り替えられる際に、当該下アームスイッチとして設けられた一対のIGBTにより、第1巻線を含む還流経路が遮断される。また、第2インバータでは、第2通電制御部により第2インバータの下アームスイッチが開閉される状態から、第1インバータの上アームスイッチが開閉される状態に切り替えられる際に、当該上アームスイッチとして設けられた一対のIGBTにより、第2巻線を含む還流経路が遮断される。これにより、第1巻線側と第2巻線側との間の転流を好適に実施させることができ、各巻線での相補的な半波駆動を適正に実施できる。
 なお、第1インバータの下アームスイッチ、及び第2インバータの上アームスイッチを、互いに並列に接続された一対のIGBTにより構成しても、半波駆動時に導通されるスイッチング素子数(すなわち、導通経路上の直列素子数)が増えることはない。したがって、半波駆動時における導通損失の低減を図ることができる。
 第8の手段では、前記第1通電制御部は、前記第1巻線及び前記第2巻線の通電制御に際し、前記第1インバータにおける前記一対のIGBTのうち一方のIGBTを、前記第1インバータにおける前記上アームスイッチに対して相補的に開閉させ、かつ他方のIGBTを閉状態で保持するとともに、前記第2インバータにおける前記一対のIGBTのうち一方のIGBTを、前記第2インバータにおける前記下アームスイッチに対して相補的に開閉させ、かつ他方のIGBTを閉状態で保持する。
 上記手段によれば、第1インバータの下アームスイッチとして逆並列の一対のIGBTを有するとともに、第2インバータの上アームスイッチとして逆並列の一対のIGBTを有する構成において、全波駆動時に、各インバータにおける一対のIGBTのうち一方を開閉させ、かつ他方を閉状態で保持することにより通電電流が制御される。この場合、力率が1でない場合の還流動作や、あるいは回生動作も行うことができ、適正な全波駆動を実現できる。
 なお、一対のIGBTを逆並列に接続する構成(例えば図13の構成)では、還流ダイオード付きの一対のIGBTを逆直列に接続する構成(例えば図12の構成)に比べて、全波駆動時において導通経路上における直列素子数を減らすことができ、導通損失の低減を図ることができる。
 第9の手段では、前記第1巻線及び前記第2巻線は、ターン数が同じであり、かつ同相の導体が固定子コアの同一のスロットに収容されている。
 上記手段によれば、第1巻線と第2巻線との磁気結合度を高くすることができる。これにより、半波駆動時における巻線間の転流ロス、すなわち第1インバータの上アームスイッチと第2インバータの下アームスイッチとを通電期間ごとに交互にそれぞれ開閉させる場合における巻線間の転流ロスを低減でき、駆動の効率を高めることができる。
 第10の手段では、前記第1巻線及び前記第2巻線は、平角断面形状の導体により構成されている。
 第1巻線及び第2巻線を、平角断面形状の導体により構成したため、これら各巻線の導体を、スロット内に整然と配列できる。そのため、第1巻線と第2巻線との個体ごとの磁気結合度のばらつきを抑えることができる。これにより、巻線間の転流ロスを一層適正に低減することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、回転電機の縦断面図であり、 図2は、回転子と固定子とを示す横断面図であり、 図3は、固定子における導体収容状態を示す図であり、 図4は、回転電機の制御システムを示す電気回路図であり、 図5は、全波駆動モードでの動作を説明するためのタイムチャートであり、 図6は、半波駆動モードでの動作を説明するためのタイムチャートであり、 図7は、回転電機のトルクの時系列変化を示すタイムチャートであり、 図8は、各インバータで形成される還流経路を示す図であり、 図9は、全波駆動の実施時における回転電機出力と半波駆動の実施時における回転電機出力とを示す図であり、 図10は、全波駆動を行う第1動作域と半波駆動を行う第2動作域とを示す図であり、 図11は、モード切替処理を示すフローチャートであり、 図12は、第2実施形態における回転電機の制御システムを示す電気回路図であり、 図13は、第3実施形態における回転電機の制御システムを示す電気回路図であり、 図14は、第4実施形態における回転電機の制御システムを示す電気回路図である。
 以下、実施形態を図面に基づいて説明する。本実施形態における回転電機は、例えば車両動力源として用いられるものとなっている。ただし、回転電機は、産業用、車両用、船舶用、航空機用、家電用、OA機器用、遊技機用などとして広く用いられることが可能となっている。なお、以下の各実施形態相互において、互いに同一又は均等である部分には、図中、同一符号を付しており、同一符号の部分についてはその説明を援用する。
 (第1実施形態)
 本実施形態に係る回転電機10は、インナロータ式(内転式)の多相交流モータであり、その概要を図1及び図2に示す。図1は、回転電機10の回転軸11に沿う方向での縦断面図であり、図2は、回転軸11に直交する方向での回転子12及び固定子13の横断面を示す断面図である。以下の記載では、回転軸11が延びる方向を軸方向とし、回転軸11を中心として放射状に延びる方向を径方向とし、回転軸11を中心として円周状に延びる方向を周方向としている。
 回転電機10は、回転軸11に固定された回転子12と、回転子12を包囲する位置に設けられる固定子13と、これら回転子12及び固定子13を収容するハウジング14とを備えている。回転子12及び固定子13は同軸に配置されている。ハウジング14は、筒状をなす一対のハウジング部材14a,14bを有し、ハウジング部材14a,14bが開口部同士で接合された状態でボルト15の締結により一体化されている。ハウジング14には軸受け16,17が設けられ、この軸受け16,17により回転軸11及び回転子12が回転自在に支持されている。
 回転子12は回転子コア21を有し、その回転子コア21の外周部(すなわち固定子13の内周部に対して径方向に対向する側)には、周方向に複数の永久磁石22が並べて設けられている。回転子コア21は、複数の電磁鋼板を軸方向に積層し、カシメ等により固定することで構成されている。
 回転子コア21の外周面には、周方向に磁極が交互となるようにして複数の永久磁石22が設けられている。本実施形態では、回転子構造として、4極の表面磁石型構造が用いられている。ただし、回転子12が埋め込み磁石型であってもよい。永久磁石は、希土類磁石でもフェライト磁石でもよい。
 固定子13は、円環状の固定子コア31と、固定子コア31の複数のスロット32に巻装された3相2組、すなわち6相(U1相、V1相、W1相、U2相、V2相、W2相)の固定子巻線33とを備えている。固定子巻線33は、2組の3相対称巻線を有する。固定子コア31は、円環状の複数の電磁鋼板を軸方向に積層し、カシメ等により固定することで構成されている。固定子コア31は、円環状のヨーク34と、ヨーク34から径方向内側に延び周方向に等間隔で配列された複数のティース35とを有し、隣り合うティース35の間にスロット32が形成されている。
 本実施形態では、回転電機10を、4極24スロットであって2組の3相巻線を有する6相構造としている。つまり、固定子巻線33は、2組の3相巻線として、U1相、V1相、W1相の各相巻線を有する第1巻線33aと、U2相、V2相、W2相の各相巻線を有する第2巻線33bとを備えて構成されている(図4参照)。
 この場合、図3に示すように、固定子13では、周方向に連続する2スロットで1相が構成されており、各スロット32には、第1巻線33aと第2巻線33bとが混合された状態で4本ずつの導体が挿入されている。つまり、各スロット32には、径方向内外に4層の導体が収容されており、第1巻線33a側の導体と第2巻線33b側の導体とが交互に配置されている。この場合、第1巻線33a及び第2巻線33bは、同じターン数であって、かつ相ごとに同一のスロット32に収容されている。また、各巻線33a,33bは平角線(すなわち平角断面形状の導体)により構成されており、各スロット32内には、径方向内外に整列された状態で各巻線33a,33bが配置されている。
 例えば、#1,#2のスロット32には、径方向内側(すなわち回転子12側)からU2→U1→U2→U1の順に各巻線33a,33bの導体が収容され、#3,#4のスロット32には、径方向内側からV1→V2→V1→V2の順に各巻線33a,33bの導体が収容され、#5,#6のスロット32には、径方向内側からW2→W1→W2→W1の順に各巻線33a,33bの導体が収容されている。かかる構成によれば、各スロット32において、第1巻線33a側の導体と第2巻線33b側の導体とは、相ごとに互いに磁気結合した状態となっている。
 なお、極数や、相数、スロット数、導体の層数はこの限りではなく、要は、固定子コア31に第1巻線33a及び第2巻線33bが巻装され、この巻装状態で、各巻線33a,33bが相ごとに互いに磁気結合されていればよい。
 次に、回転電機10を制御する制御システムの構成を、図4を用いて説明する。図4では、固定子巻線33として2組の3相巻線(すなわち第1巻線33a、第2巻線33b)が示されており、これらの巻線33a,33bごとに、第1インバータ40と第2インバータ50とがそれぞれ設けられている。インバータ40,50は、各巻線33a,33bの相数と同数の上下アームを有するフルブリッジ回路により構成されており、各アームに設けられたスイッチ(半導体スイッチング素子)のオンオフにより、各巻線33a,33bにおける通電電流が調整される。
 具体的には、第1インバータ40は、U1相、V1相及びW1相からなる3相において上アームスイッチ41と下アームスイッチ42との直列接続体をそれぞれ備えている。各相の上アームスイッチ41の高電位側端子は直流電源60の正極端子に接続され、各相の下アームスイッチ42の低電位側端子は直流電源60の負極端子(グランド)に接続されている。上アームスイッチ41及び下アームスイッチ42は、それぞれ半導体スイッチング素子であり、より具体的には、逆並列となる向きで接続された還流ダイオード43,44を有するIGBTである。つまり、還流ダイオード43,44は、それぞれカソードが高電位側、アノードが低電位側となる向きで設けられている。
 各相の上アームスイッチ41と下アームスイッチ42との間の中間点には、それぞれ付加スイッチ45を介して、U1相巻線、V1相巻線、W1相巻線の一端が接続されている。つまり、付加スイッチ45が「第1付加スイッチ」に相当し、この付加スイッチ45により、第1インバータ40における上下アームの各スイッチ41,42の中間点と第1巻線33aの相ごとの巻線部とを接続する交流線が導通又は遮断される。付加スイッチ45は、例えばIGBTよりなる半導体スイッチング素子である。付加スイッチ45には、上下アームの各スイッチ41,42の中間点側をカソード、相ごとの巻線部側をアノードとする向きで、還流ダイオード46が設けられている。
 第1巻線33aの各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点N1にて互いに接続されている。中性点N1は、電流経路47を介して直流電源60の低電位側に接続されており、その電流経路47には切替スイッチ48が設けられている。切替スイッチ48が「第1切替スイッチ」に相当し、この切替スイッチ48により、中性点N1と直流電源60の低電位側との間が導通又は遮断される。切替スイッチ48は、例えばIGBTよりなる半導体スイッチング素子である。切替スイッチ48には、中性点N1側をカソード、直流電源60の低電位側をアノードとする向きで、還流ダイオード49が設けられている。
 第2インバータ50は、第1インバータ40と同様の構成を有しており、U2相、V2相及びW2相からなる3相において上アームスイッチ51と下アームスイッチ52との直列接続体をそれぞれ備えている。各相の上アームスイッチ51の高電位側端子は直流電源60の正極端子に接続され、各相の下アームスイッチ52の低電位側端子は直流電源60の負極端子(グランド)に接続されている。上アームスイッチ51及び下アームスイッチ52は、それぞれ半導体スイッチング素子であり、より具体的には、逆並列となる向きで接続された還流ダイオード53,54を有するIGBTである。つまり、還流ダイオード53,54は、それぞれカソードが高電位側、アノードが低電位側となる向きで設けられている。
 各相の上アームスイッチ51と下アームスイッチ52との間の中間点には、それぞれ付加スイッチ55を介して、U2相巻線、V2相巻線、W2相巻線の一端が接続されている。つまり、付加スイッチ55が「第2付加スイッチ」に相当し、この付加スイッチ55により、第2インバータ50における上下アームの各スイッチ51,52の中間点と第2巻線33bの相ごとの巻線部とを接続する交流線が導通又は遮断される。付加スイッチ55は、例えばIGBTよりなる半導体スイッチング素子である。付加スイッチ55には、上下アームの各スイッチ51,52の中間点側をアノード、相ごとの巻線部側をカソードとする向きで、還流ダイオード56が設けられている。
 第2巻線33bの各相巻線は星形結線(Y結線)されており、各相巻線の他端は中性点N2にて互いに接続されている。中性点N2は、電流経路57を介して直流電源60の高電位側に接続されており、その電流経路57には切替スイッチ58が設けられている。切替スイッチ58が「第2切替スイッチ」に相当し、この切替スイッチ58により、中性点N2と直流電源60の高電位側との間が導通又は遮断される。切替スイッチ58は、例えばIGBTよりなる半導体スイッチング素子である。切替スイッチ58には、中性点N2側をアノード、直流電源60の高電位側をカソードとする向きで、還流ダイオード59が設けられている。
 制御装置65は、CPUや各種メモリからなるマイコンを備えており、回転電機10における各種の検出情報や、力行駆動及び発電の要求に基づいて、インバータ40,50における各スイッチの開閉(オンオフ)により通電制御を実施する。回転電機10の検出情報には、例えば、レゾルバ等の角度検出器により検出される回転子12の回転角度(電気角情報)や、電圧センサにより検出される電源電圧(インバータ入力電圧)、電流センサにより検出される各相の通電電流が含まれる。制御装置65は、インバータ40,50の各スイッチを操作する操作信号を生成して出力する。
 本実施形態では、回転電機10における第1巻線33a及び第2巻線33bの通電が第1インバータ40、第2インバータ50によりそれぞれ制御される。この場合特に、切替スイッチ48,58を開状態(オフ状態)にすることにより、全波駆動モードで回転電機10の駆動が制御され、切替スイッチ48,58を閉状態(オン状態)にすることにより、半波駆動モードで回転電機10の駆動が制御される。つまり、切替スイッチ48,58が開状態と閉状態とで切り替えられることにより、回転電機10の駆動モードとして、全波駆動モードと半波駆動モードとの切り替えが行われる。本実施形態では、制御装置65により、第1通電制御部と第2通電制御部とが構成されている。
 図5には、全波駆動モードでの各スイッチの制御態様を示し、図6には、半波駆動モードでの各スイッチの制御態様を示す。なお、図5及び図6には、3相2組の固定子巻線33のうちW1相及びW2相の動作のみを示すが、各巻線33a,33bの他相においても電気角で120度異なる位相で同様の動作が行われる。
 図5に示すように、全波駆動モードでは、切替スイッチ48,58がオフされるとともに、各インバータ40,50の付加スイッチ45,55がオンされている。そして、第1インバータ40において上アームスイッチ41と下アームスイッチ42とが相補的にオンオフされることにより、第1巻線33aの通電が制御される。また、第2インバータ50において上アームスイッチ51と下アームスイッチ52とが相補的にオンオフされることにより、第2巻線33bの通電が制御される。要するに、全波駆動モードでは、各インバータ40,50における上下アームの各スイッチが同じ通電期間でそれぞれ相補的に開閉されることにより、第1巻線33a及び第2巻線33bの通電が制御される。
 全波駆動モードでの通電制御によれば、同相であるW1相及びW2相の巻線部において、図示のように同位相でW1電流及びW2電流が流れ、その合成電流である「W1+W2電流」により回転電機10が駆動される。この場合、同相の2組の巻線部について同じ通電期間で通電制御が行われることにより、全波状の3相交流電流により固定子巻線33が通電される。これにより、高トルクの出力が可能となっている。
 一方で、図6に示すように、半波駆動モードでは、切替スイッチ48,58がオンされるとともに、第1インバータ40の付加スイッチ45と第2インバータ50の付加スイッチ55とが180度周期(電気半周期)で交互にオンされる。そして、付加スイッチ45,55のオン期間において、第1インバータ40の上アームスイッチ41がオンオフされるとともに、第2インバータ50の下アームスイッチ52がオンオフされる。
 詳しくは、期間T1では、第1インバータ40の付加スイッチ45がオンされるとともに、第2インバータ50の付加スイッチ55がオフされる。そして、かかる状態において、第1インバータ40では、上アームスイッチ41がオンオフされ、かつ下アームスイッチ42がオフのまま保持され、第2インバータ50では、上アームスイッチ51及び下アームスイッチ52がいずれもオフのまま保持される。
 また、期間T2では、第1インバータ40の付加スイッチ45がオフされるとともに、第2インバータ50の付加スイッチ55がオンされる。そして、かかる状態において、第1インバータ40では、上アームスイッチ41及び下アームスイッチ42がいずれもオフのまま保持され、第2インバータ50では、上アームスイッチ51がオフのまま保持され、かつ下アームスイッチ42がオンオフされる。
 要するに、半波駆動モードでは、切替スイッチ48,58が閉鎖された状態で、第1インバータ40における上下アームの各スイッチ41,42のうち上アームスイッチ41と、第2インバータ50における上下アームの各スイッチ51,52のうち下アームスイッチ52とが、交互に定められた通電期間(T1,T2)でそれぞれ開閉される。そしてこれにより、第1巻線33a及び第2巻線33bの通電が制御される。
 半波駆動モードでの通電制御によれば、各インバータ40,50において、回転電機10の半波駆動が交互に行われる。この場合、固定子13において第1巻線33a及び第2巻線33bが互いに磁気結合された状態となっている一方で、第1巻線33aの側では、切替スイッチ48により中性点N1と直流電源60の低電位側とが短絡されるとともに、第2巻線33bの側では、切替スイッチ58により中性点N2と直流電源60の高電位側とが短絡されているため、第1巻線33aの通電期間及び第2巻線33bの通電期間では、それぞれ相電流の向きが互いに逆となって正負で変化する。そして、第1巻線33aの通電期間と第2巻線33bの通電期間とが互い違いに設定されていることにより、その合成起磁力が全波状となる。
 つまり、図6に示すように、期間T1では、その当初においてW1電流として負の電流が流れるが、次第に正の電流にシフトし、逆に、期間T2では、その当初においてW1電流として正の電流が流れるが、次第に負の電流にシフトする。これにより、半波駆動でありながら、W1電流及びW2電流の合成電流(W1+W2電流)は正弦波波形又はそれに近い波形となる。すなわち、全波駆動時と同様に正弦波状の回転磁界(起磁力)を得ることが可能となる。
 図7は、回転電機10のトルクの時系列変化を示すタイムチャートであり、実線は本実施形態でのトルク変化を示し、一点鎖線は従来例でのトルク変化を示す。図7によれば、トルク脈動が低減され、かつ平均トルクが上昇していることが分かる(AVE1→AVE2)。
 第1インバータ40での半波駆動と第2インバータ50での半波駆動との切り替わり時には、互いに磁気結合されている巻線部同士で、磁気誘導による転流が行われるようになっており、その点について以下に補足する。
 第1インバータ40の上アームスイッチ41がスイッチングされて第1巻線33aに半波電流が流れる場合には、上アームスイッチ41から、付加スイッチ45を介して第1巻線33aの中性点N1に向かう向きで正の電流が流れる。そして、その状況下において、例えば図6のタイミングtaで、上アームスイッチ41及び付加スイッチ45がオフされて第1巻線33aの電流が遮断されると、その電流変化を妨げる向きに第1巻線33a及び第2巻線33bに電圧が生じる。これにより、第2巻線33b側では、第2巻線33b~切替スイッチ58~直流電源60~下アームスイッチ52の還流ダイオード54~上アームスイッチ51の還流ダイオード53~第2巻線33bを介する電流経路が形成され、第1巻線33aに流れていた電流が第2巻線33bに転流される。
 そしてその後、付加スイッチ55がオンされるとともに、第2インバータ50の下アームスイッチ52のスイッチングが開始されることにより、第2巻線33bに半波電流が流れる。さらにその後において、第2巻線33bから第1巻線33aへの転流が行われる際も同様である。ただし相違点として、第2巻線33bに半波電流が流れる場合には、第1巻線33aの通電時とは電流の向きが逆であり、第2巻線33bの中性点N2から、付加スイッチ55を介して下アームスイッチ52に向かう向きで負の電流が流れるようになっている。
 また、上記のとおり例えば第1インバータ40の上アームスイッチ41がスイッチングされて第1巻線33aに半波電流が流れている状況下において、第1巻線33aの電流が遮断されると、第2巻線33b側への転流が行われるが、その電流遮断直後には、第1インバータ40内において還流経路が形成され、それに起因して転流に支障が及ぶことが懸念される。つまり、図8に示すように、第1インバータ40側において、下アームスイッチ42の還流ダイオード44と第1巻線33aとを含む経路として還流経路R1が形成される。また、第2巻線33bの電流が遮断される場合には、第2インバータ50側において、上アームスイッチ51の還流ダイオード53と第2巻線33bとを含む経路として還流経路R2が形成される。なお、図8には、W1相の巻線部を通る還流経路R1と、W2相の巻線部を通る還流経路R2とを示している。
 この点、第1インバータ40の上アームスイッチ41のスイッチングが停止されて、第2インバータ50の下アームスイッチ52のスイッチングが開始される際には、上アームスイッチ41のスイッチング停止に合わせて、付加スイッチ45がオフされる。そのため、付加スイッチ45により還流経路R1が遮断される。また、第2インバータ50の下アームスイッチ52のスイッチングが停止されて、第1インバータ40の上アームスイッチ41のスイッチングが開始される際には、下アームスイッチ52のスイッチング停止に合わせて、付加スイッチ55がオフされる。そのため、付加スイッチ55により還流経路R2が遮断される。付加スイッチ45が「第1遮断部」に相当し、付加スイッチ55が「第2遮断部」に相当する。
 なお、第1インバータ40において、下アームスイッチ42と付加スイッチ45とは、還流ダイオード44,46が互いに逆となる向きで直列に接続されており、これら両スイッチ42,45により、双方向に通電及び遮断を可能にする双方向スイッチが構成されている。また、第2インバータ50において、上アームスイッチ51と付加スイッチ55とは、還流ダイオード53,56が互いに逆となる向きで直列に接続されており、これら両スイッチ51,55により、双方向に通電及び遮断を可能にする双方向スイッチが構成されている。
 制御装置65は、回転電機10の回転速度に基づいて、全波駆動モードと半波駆動モードとの切り替えを実施する。具体的には、制御装置65は、回転電機10の低回転側の動作域では、切替スイッチ48,58をオフ(開放)して、全波駆動モードで各巻線33a,33bの通電制御を実施する。また、回転電機10の高回転側の動作域では、切替スイッチ48,58をオン(閉鎖)して、半波駆動モードで各巻線33a,33bの通電制御を実施する。
 図9には、全波駆動の実施時における回転電機出力を実線で示すとともに、半波駆動の実施時における回転電機出力を破線で示す。全波駆動は、半波駆動と比べて起磁力が2倍となるため高トルク動作に適する。半波駆動は、全波駆動と比べて単位巻線あたりの印加電圧が2倍となるため、高回転動作に適する。この場合、全波駆動の実施時及び半波駆動の実施時で出力特性が一部重複している。そのため、本実施形態では、全波駆動を行う第1動作域と、半波駆動を行う第2動作域とを図10のように定め、それら各動作域に応じてモード切替を実施することとしている。なお、図10では、第1動作域にハッチングが付されている。
 図11は、制御装置65により実施されるモード切替処理を示すフローチャートであり、本処理は所定周期で繰り返し実施される。
 ステップS11では、回転電機10の運転状態が第1動作域に入っているか否かを判定し、ステップS12では、回転電機10の運転状態が第2動作域に入っているか否かを判定する。ステップS11,S12では、例えば、回転子12の回転情報に基づいて算出される回転速度と、回転電機10に対する要求トルクとに基づいて、動作域の判定が行われるとよい。
 回転電機10の運転状態が第1動作域に入っている場合、ステップS13に進み、全波駆動モードで回転電機10を駆動させる旨を決定する。この場合、切替スイッチ48,58をオフする。また、各インバータ40,50の付加スイッチ45,55をオン状態とした上で、各相の上下アームスイッチをスイッチングさせて全波駆動を実施する。
 また、回転電機10の運転状態が第2動作域に入っている場合、ステップS14に進み、半波駆動モードで回転電機10を駆動させる旨を決定する。この場合、切替スイッチ48,58をオンする。また、各相において、電気半周期ごとに各インバータ40,50の付加スイッチ45,55を交互にオン状態とするとともに、第1インバータ40では上アームスイッチ41をスイッチングさせ、第2インバータ50では下アームスイッチ52をスイッチングさせて半波駆動を実施する。
 以上詳述した本実施形態によれば、以下の優れた効果が得られる。
 全波駆動モードでは、切替スイッチ48,58をオフ(開放)し、第1インバータ40及び第2インバータ50による第1巻線33a及び第2巻線33bの全波通電を行わせるようにした。この場合、第1巻線33a及び第2巻線33bでは同相の巻線部について同じ通電期間での通電制御が行われ、高トルク出力が実現される。
 また、半波駆動モードでは、切替スイッチ48,58をオン(閉鎖)し、第1インバータ40及び第2インバータ50による第1巻線33a及び第2巻線33bの半波通電を行わせるようにした。この場合、第1巻線33a及び第2巻線33bが互いに磁気結合された状態であり、さらに、第1巻線33aの側では、切替スイッチ48により中性点N1と直流電源60の低電位側とが短絡されるとともに、第2巻線33bの側では、切替スイッチ58により中性点N2と直流電源60の高電位側とが短絡されているため、各巻線33a,33bの通電期間において相電流の向きが互いに逆となり、その合成起磁力により全波状の起磁力が得られるようになっている。以上により、全波駆動と半波駆動とを好適に行い、かつ半波駆動時におけるトルク脈動を低減することができる。
 回転電機10の動作域に応じて各切替スイッチ48,58を開閉するようにしたため、異なる出力特性を好適に得ることができ、回転電機10の高効率動作領域を拡大できる。また、各切替スイッチ48,58が閉鎖されている状態下では、各相の巻線部において全波駆動時と比べて単位巻線あたりの印加電圧が高められる。そのため、回転電機10の動作域を高回転域側に拡張する上で有利な構成を実現できる。
 半波駆動モードにおいて、第1インバータ40による半波通電と第2インバータ50による半波通電とを切り替える際に、各アームスイッチの還流ダイオードと各巻線33a,33bとを含んで形成される還流経路R1,R2を、付加スイッチ45,55により遮断するようにした。これにより、第1巻線33a側と第2巻線33b側との間の転流を好適に実施させることができ、各巻線33a,33bでの相補的な半波駆動を適正に実施できる。
 具体的には、各インバータ40,50において、上下アームの中間点と各相の巻線部とを接続する交流線に付加スイッチ45,55を設けたため、この付加スイッチ45,55により、半波通電の切替時に形成される還流経路を好適に遮断することができる。これにより、やはり通電側となる巻線での相補的な半波駆動を適正に実施できる。
 第1巻線33a及び第2巻線33bにおいて、ターン数を同じとし、かつ同相の導体を固定子コア31の同一のスロット32に収容するようにしたため、第1巻線33aと第2巻線33bとの磁気結合度を高くすることができる。これにより、半波駆動時における巻線間の転流ロス、すなわち第1インバータ40の上アームスイッチ41と第2インバータ50の下アームスイッチ52とを通電期間ごとに交互にそれぞれ開閉させる場合における巻線間の転流ロスを低減でき、駆動の効率を高めることができる。
 第1巻線33a及び第2巻線33bを平角断面形状の導体により構成したため、これら各巻線33a,33bの導体を、スロット32内に整然と配列できる。そのため、第1巻線33aと第2巻線33bとの個体ごとの磁気結合度のばらつきを抑えることができる。これにより、巻線間の転流ロスを一層適正に低減することができる。
 回転電機10の巻線とインバータとを2組ずつ備える構成にしたため、駆動系を冗長化でき、システムの信頼性を向上できる。
 以下に、第1インバータ40及び第2インバータ50の構成の一部を変更した第2~第4実施形態について説明する。なお、制御システムの構成として上記第1実施形態と同様のものは、同じ符号を付してその説明を省略する。制御装置65の説明も便宜上省略する。
 (第2実施形態)
 図12は、第2実施形態における回転電機の制御システムを示す電気回路図である。図12において、第1インバータ40には、各相の下アームスイッチ42として、互いに直列に接続され、かつ互いに逆向きに設けられた還流ダイオード44a,44bを有する一対の半導体スイッチング素子42a,42bが設けられている。一対の半導体スイッチング素子42a,42bは、逆直列に接続された逆導通型の半導体スイッチング素子であり、双方向での通電及び遮断を可能にする双方向スイッチとして機能する。本実施形態では、一対の半導体スイッチング素子42a,42bが「第1遮断部」に相当する。
 また、第2インバータ50には、各相の上アームスイッチ51として、互いに直列に接続され、かつ互いに逆向きに設けられた還流ダイオード53a,53bを有する一対の半導体スイッチング素子51a,51bが設けられている。一対の半導体スイッチング素子51a,51bは、逆直列に接続された逆導通型の半導体スイッチング素子であり、双方向での通電及び遮断を可能にする双方向スイッチとして機能する。本実施形態では、一対の半導体スイッチング素子51a,51bが「第2遮断部」に相当する。
 なお、第1インバータ40の上アームスイッチ41、第2インバータ50の下アームスイッチ52の構成は、上述した図4と同じである。
 上記構成では、各インバータ40,50で全波駆動を行う場合に、制御装置65は、第1インバータ40において、下アームスイッチ42としての一対の半導体スイッチング素子42a,42bのうち一方の半導体スイッチング素子42a(すなわち、上アームスイッチ41と還流ダイオードの向きが同じ半導体スイッチング素子)を、上アームスイッチ41に対して相補的に開閉させ、かつ他方の半導体スイッチング素子42bをオン状態(閉状態)で保持する。また、第2インバータ50において、上アームスイッチ51としての一対の半導体スイッチング素子51a,51bのうち一方の半導体スイッチング素子51a(すなわち、下アームスイッチ52と還流ダイオードの向きが同じ半導体スイッチング素子)を、下アームスイッチ52に対して相補的に開閉させ、かつ他方の半導体スイッチング素子51bをオン状態(閉状態)で保持する。
 また、半波駆動モードにおいて第1インバータ40にて半波駆動を行う場合に、制御装置65は、上アームスイッチ41をスイッチングする一方で、一対の半導体スイッチング素子42a,42bのうち半導体スイッチング素子42aをオフ状態(開状態)で保持し、かつ半導体スイッチング素子42bをオン状態(閉状態)で保持する。第2インバータ50側の各スイッチ51,52はいずれもオフ状態(開状態)で保持する。
 また、制御装置65は、電気半周期が経過することに伴い、上アームスイッチ41のスイッチングを停止するとともに、一対の半導体スイッチング素子42a,42bをいずれもオフ状態(開状態)にする。そして、第2インバータ50での下アームスイッチ52のスイッチングを開始する。その下アームスイッチ52のスイッチング時には、一対の半導体スイッチング素子51a,51bのうち半導体スイッチング素子51aをオフ状態(開状態)で保持し、かつ半導体スイッチング素子51bをオン状態(閉状態)で保持する。
 なお、第1実施形態で説明した図6の動作と対比させると、半導体スイッチング素子42aが下アームスイッチ42と同様に動作し、半導体スイッチング素子42bが付加スイッチ45と同様に動作する。また、半導体スイッチング素子51aが上アームスイッチ51と同様に動作し、半導体スイッチング素子51bが付加スイッチ55と同様に動作する。
 ここで、第1インバータ40にて半波駆動が行われる状態から、第2インバータ50にて半波駆動が行われる状態への切替時には、一対の半導体スイッチング素子42a,42bがオフされ、その状態において互いに逆向きの還流ダイオード44a,44bにより双方向での通電遮断がなされる。そのため、上アームスイッチ41のスイッチング停止時において第1インバータ40での還流経路R1(図8参照)が遮断されることになる。
 また同様に、第2インバータ50にて半波駆動が行われる状態から、第1インバータ40にて半波駆動が行われる状態への切替時には、一対の半導体スイッチング素子51a,51bがオフされ、その状態において互いに逆向きの還流ダイオード53a,53bにより双方向での通電遮断がなされる。そのため、下アームスイッチ52のスイッチング停止時において第2インバータ50での還流経路R2(図8参照)が遮断されることになる。
 本実施形態では、第1実施形態における図4の構成に比べて、全波駆動時において導通状態の直列素子数を減らすことができ、導通損失の低減を図ることができる。
 また、全波駆動時には、各インバータ40,50において、逆直列に接続された一対の半導体スイッチング素子(すなわち、第1インバータ40の下アームスイッチ42、第2インバータ50の上アームスイッチ51)のうち一方を開閉させ、他方を閉状態で保持することにより通電電流が制御される。この場合、力率が1でない場合の還流動作や、あるいは回生動作も行うことができ、適正な全波駆動を実現できる。
 (第3実施形態)
 図13は、第3実施形態における回転電機の制御システムを示す電気回路図である。図13において、第1インバータ40には、各相の下アームスイッチ42として、互いに逆向きに並列接続された一対のIGBT42c,42dが設けられている。一対のIGBT42c,42dは、逆並列に接続された逆阻止型IGBTであり、双方向での通電及び遮断を可能にする双方向スイッチとして機能する。より具体的には、一方のIGBT42cではコレクタを高電位側、エミッタを低電位側とし、他方のIGBT42dではエミッタを高電位側、コレクタを低電位側として、これら一対のIGBT42c,42dが互いに逆並列に接続されている。
 また、第2インバータ50には、各相の上アームスイッチ51として、互いに逆向きに並列接続された一対のIGBT51c,51dが設けられている。一対のIGBT51c,51dは、逆並列に接続された逆阻止型IGBTであり、双方向での通電及び遮断を可能にする双方向スイッチとして機能する。より具体的には、一方のIGBT51cではコレクタを高電位側、エミッタを低電位側とし、他方のIGBT51dではエミッタを高電位側、コレクタを低電位側として、これら一対のIGBT51c,52dが互いに逆並列に接続されている。
 なお、第1インバータ40の上アームスイッチ41、第2インバータ50の下アームスイッチ52の構成は、上述した図4と同じである。
 上記構成では、各インバータ40,50で全波駆動を行う場合に、制御装置65は、第1インバータ40において、下アームスイッチ42としての一対のIGBT42c,42dのうち一方のIGBT42c(すなわち、上アームスイッチ41にコレクタが接続されたIGBT)を、上アームスイッチ41に対して相補的に開閉させ、かつ他方のIGBT42dをオン状態(閉状態)で保持する。また、第2インバータ50において、上アームスイッチ51としての一対のIGBT51c,51dのうち一方のIGBT51c(すなわち、下アームスイッチ52にエミッタが接続されたIGBT)を、下アームスイッチ52に対して相補的に開閉させ、かつ他方のIGBT51dをオン状態(閉状態)で保持する。
 また、半波駆動モードにおいて第1インバータ40にて半波駆動を行う場合に、制御装置65は、上アームスイッチ41をスイッチングする一方で、一対のIGBT42c,42dのうちIGBT42cをオフ状態(開状態)で保持し、かつIGBT42dをオン状態(閉状態)で保持する。第2インバータ50側の各スイッチ51,52はいずれもオフ状態(開状態)で保持する。
 また、制御装置65は、電気半周期が経過することに伴い、上アームスイッチ41のスイッチングを停止するとともに、一対のIGBT42c,42dをいずれもオフ状態(開状態)にする。そして、第2インバータ50での下アームスイッチ52のスイッチングを開始する。その下アームスイッチ52のスイッチング時には、一対のIGBT51c,51dのうちIGBT51cをオフ状態(開状態)で保持し、かつIGBT51dオン状態(閉状態)で保持する。
 なお、第1実施形態で説明した図6の動作と対比させると、IGBT42cが下アームスイッチ42と同様に動作し、IGBT42dが付加スイッチ45と同様に動作する。また、IGBT51cが上アームスイッチ51と同様に動作し、IGBT51dが付加スイッチ55と同様に動作する。
 ここで、第1インバータ40にて半波駆動が行われる状態から、第2インバータ50にて半波駆動が行われる状態への切替時には、一対のIGBT42c,42dがオフされることにより双方向での通電遮断がなされる。そのため、上アームスイッチ41のスイッチング停止時において第1インバータ40での還流経路R1(図8参照)が遮断されることになる。
 また同様に、第2インバータ50にて半波駆動が行われる状態から、第1インバータ40にて半波駆動が行われる状態への切替時には、一対のIGBT51c,51dがオフされることにより双方向での通電遮断がなされる。そのため、下アームスイッチ52のスイッチング停止時において第2インバータ50での還流経路R2(図8参照)が遮断されることになる。
 以上により、半波駆動モードにおいて、第1巻線33a側と第2巻線33b側との間の転流を好適に実施させることができ、各巻線33a,33bでの相補的な半波駆動を適正に実施できる。
 なお、第1インバータ40の下アームスイッチ42、及び第2インバータ50の上アームスイッチ51を、互いに並列に接続された一対のIGBTにより構成しても、半波駆動時に導通されるスイッチング素子数(すなわち、導通経路上の直列素子数)が増えることはない。したがって、半波駆動時における導通損失の低減を図ることができる。
 本実施形態では、全波駆動時には、各インバータ40,50において、逆並列に接続された一対のIGBT(すなわち、第1インバータ40の下アームスイッチ42、第2インバータ50の上アームスイッチ51)のうち一方のIGBTを開閉させ、かつ他方のIGBTを閉状態で保持することにより通電電流が制御される。この場合、力率が1でない場合の還流動作や、あるいは回生動作も行うことができ、適正な全波駆動を実現できる。
 なお、一対のIGBTを逆並列に接続する構成(図13の構成)では、還流ダイオード付きの一対のIGBTを逆直列に接続する構成(図12の構成)に比べて、全波駆動時において導通状態の直列素子数を減らすことができ、導通損失の低減を図ることができる。
 (第4実施形態)
 各インバータ40,50のスイッチとしてMOSFETを用いる構成としてもよい。図14は、第4実施形態における回転電機10の制御システムを示す電気回路図である。図14では、第1インバータ40の下アームスイッチ42として、ワイドギャップ半導体で構成されたMOSFET42e,42fが逆向きに直列接続された状態で設けられている。また、第2インバータ50の上アームスイッチ51として、ワイドギャップ半導体で構成されたMOSFET51e,51fが逆向きに直列接続された状態で設けられている。これにより、第1インバータ40の下アームスイッチ42及び第2インバータ50の上アームスイッチ51において、双方向での導通及び遮断の機能が付与されている。
 ワイドギャップ半導体で構成されたMOSFETとして、SiC(シリコンカーバイド)系材料や、GaN(窒化ガリウム)系材料などによって構成されたワイドギャップ半導体素子を使用することが好ましい。ワイドギャップ半導体素子を用いることにより、オン抵抗の低減を図ることができる。図14の構成によれば、全波駆動モードでの各スイッチのスイッチング時において導通損失を一層低減できる。
 (他の実施形態)
 上記実施形態を例えば次のように変更してもよい。
 ・切替スイッチ48,58として、半導体スイッチング素子に代えて機械式接点スイッチを用いてもよい。例えば、低回転動作域と高回転動作域とを断続的に切り替えるような用途では、必ずしも半導体スイッチング素子を用いなくてもよい。
 ・第1巻線33aのターン数と第2巻線33bのターン数とが異なっていてもよい。この場合、第1巻線33aを流れる電流の大きさと第2巻線33bを流れる電流の大きさとが相違することになるが、半波駆動の実施は可能である。
 ・固定子巻線33は3相巻線に限定されず、中性点を有する巻線であれば、例えば5相巻線であってもよい。
 ・2つのインバータ40,50において、各々個別の直流電源が接続されている構成であってもよい。
 ・回転電機10は、磁石ロータ構造以外であってもよく、例えば誘導ロータ構造のものであってもよい。また、インナロータ構造に代えて、アウタロータ構造であってもよい。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (10)

  1.  固定子コア(31)と、その固定子コアに巻装され、少なくとも3相の巻線部からなり各相の巻線部の一端が中性点(N1,N2)にて接続されている第1巻線(33a)及び第2巻線(33b)と、を有する回転電機(10)に適用され、その回転電機を駆動する駆動装置であって、
     直流電源(60)に接続され、前記第1巻線の相ごとに設けられた上アームスイッチ(41)及び下アームスイッチ(42)を開閉させることにより前記第1巻線の各相の通電を行わせる第1インバータ(40)と、
     前記直流電源に接続され、前記第2巻線の相ごとに設けられた上アームスイッチ(51)及び下アームスイッチ(52)を開閉させることにより前記第2巻線の各相の通電を行わせる第2インバータ(50)と、
     前記第1巻線の中性点と前記直流電源の低電位側とを接続する電流経路(47)に設けられた第1切替スイッチ(48)と、
     前記第2巻線の中性点と前記直流電源の高電位側とを接続する電流経路(57)に設けられた第2切替スイッチ(58)と、
     前記第1切替スイッチ及び前記第2切替スイッチを開放した状態で、前記第1インバータ及び前記第2インバータにおける上下アームの各スイッチを同じ通電期間でそれぞれ相補的に開閉させて、前記第1巻線及び前記第2巻線の通電を制御する第1通電制御部(65)と、
     前記第1切替スイッチ及び前記第2切替スイッチを閉鎖した状態で、前記第1インバータにおける上下アームの各スイッチのうち前記上アームスイッチと、前記第2インバータにおける上下アームの各スイッチのうち前記下アームスイッチとを、交互に定められた通電期間でそれぞれ開閉させて、前記第1巻線及び前記第2巻線の通電を制御する第2通電制御部(65)と、
    を備える回転電機の駆動装置。
  2.  前記第1通電制御部は、前記回転電機の低回転側の動作域で、前記第1切替スイッチ及び前記第2切替スイッチを開放した状態での前記各巻線の通電制御を実施し、
     前記第2通電制御部は、前記回転電機の高回転側の動作域で、前記第1切替スイッチ及び前記第2切替スイッチを閉鎖した状態での前記各巻線の通電制御を実施する請求項1に記載の回転電機の駆動装置。
  3.  前記第1インバータにおける前記上アームスイッチ及び前記下アームスイッチと、前記第2インバータにおける前記上アームスイッチ及び前記下アームスイッチとは、逆並列となる向きで接続された還流ダイオード(43,44,53,54)を有する半導体スイッチング素子(41,42,51,52)であり、
     前記第1インバータは、前記第2通電制御部により前記第1インバータの前記上アームスイッチが開閉される状態から、前記第2インバータの前記下アームスイッチが開閉される状態に切り替えられる際に、前記第1インバータにおける前記下アームスイッチの前記還流ダイオードと前記第1巻線とを含む経路である還流経路(R1)を遮断する第1遮断部(45,42a,42b)を有し、
     前記第2インバータは、前記第2通電制御部により前記第2インバータの前記下アームスイッチが開閉される状態から、前記第1インバータの前記上アームスイッチが開閉される状態に切り替えられる際に、前記第2インバータにおける前記上アームスイッチの前記還流ダイオードと前記第2巻線とを含む経路である還流経路(R2)を遮断する第2遮断部(55,51a,51b)を有する請求項1又は2に記載の回転電機の駆動装置。
  4.  前記第1遮断部として、前記第1インバータにおける上下アームの各スイッチの中間点と前記第1巻線の相ごとの前記巻線部とを接続する交流線に、該交流線を開閉する第1付加スイッチ(45)を有し、
     前記第2遮断部として、前記第2インバータにおける上下アームの各スイッチの中間点と前記第2巻線の相ごとの前記巻線部とを接続する交流線に、該交流線を開閉する第2付加スイッチ(55)を有し、
     前記第1通電制御部は、前記第1切替スイッチ及び前記第2切替スイッチを開状態にするとともに、前記第1付加スイッチ及び前記第2付加スイッチを閉状態とし、
     前記第2通電制御部は、前記第1切替スイッチ及び前記第2切替スイッチを閉鎖した状態下で、前記第1インバータにおける前記上アームスイッチを開閉させる通電期間では、前記第1付加スイッチを閉状態、前記第2付加スイッチを開状態とし、前記第2インバータにおける前記下アームスイッチを開閉させる通電期間では、前記第1付加スイッチを開状態、前記第2付加スイッチを閉状態とする請求項3に記載の回転電機の駆動装置。
  5.  前記第1インバータは、各相の前記下アームスイッチとして、互いに直列に接続され、かつ互いに逆向きに設けられた還流ダイオード(44a,44b)を有する一対の半導体スイッチング素子(42a,42b)を有し、
     前記第2インバータは、各相の前記上アームスイッチとして、互いに直列に接続され、かつ互いに逆向きに設けられた還流ダイオード(53a,53b)を有する一対の半導体スイッチング素子(51a,51b)を有し、
     前記第1インバータにおける前記一対の半導体スイッチング素子により前記第1遮断部が構成され、前記第2インバータにおける前記一対の半導体スイッチング素子により前記第2遮断部が構成されている請求項3に記載の回転電機の駆動装置。
  6.  前記第1通電制御部は、前記第1巻線及び前記第2巻線の通電制御に際し、
     前記第1インバータにおける前記一対の半導体スイッチング素子のうち一方の半導体スイッチング素子を、前記第1インバータにおける前記上アームスイッチに対して相補的に開閉させ、かつ他方の半導体スイッチング素子を閉状態で保持するとともに、
     前記第2インバータにおける前記一対の半導体スイッチング素子のうち一方の半導体スイッチング素子を、前記第2インバータにおける前記下アームスイッチに対して相補的に開閉させ、かつ他方の半導体スイッチング素子を閉状態で保持する請求項5に記載の回転電機の駆動装置。
  7.  前記第1インバータは、当該第1インバータの前記上アームスイッチとして、逆並列となる向きで接続された還流ダイオード(43)を有する半導体スイッチング素子(41)を有するとともに、前記下アームスイッチとして、互いに逆向きで並列接続された一対のIGBT(42c,42d)を有し、
     前記第2インバータは、当該第2インバータの前記下アームスイッチとして、逆並列となる向きで接続された還流ダイオード(54)を有する半導体スイッチング素子(52)を有するとともに、前記上アームスイッチとして、互いに逆向きに並列接続された一対のIGBT(51c,51d)を有し、
     前記第2通電制御部により前記第1インバータの前記上アームスイッチが開閉される状態から、前記第2インバータの前記下アームスイッチが開閉される状態に切り替えられる際に、前記第1インバータにおける前記下アームスイッチと前記第1巻線とを含む経路である還流経路を、当該下アームスイッチとして設けられた前記一対のIGBTにより遮断し、
     前記第2通電制御部により前記第2インバータの前記下アームスイッチが開閉される状態から、前記第1インバータの前記上アームスイッチが開閉される状態に切り替えられる際に、前記第2インバータにおける前記上アームスイッチと前記第2巻線とを含む経路である還流経路を、当該上アームスイッチとして設けられた前記一対のIGBTにより遮断する請求項1又は2に記載の回転電機の駆動装置。
  8.  前記第1通電制御部は、前記第1巻線及び前記第2巻線の通電制御に際し、
     前記第1インバータにおける前記一対のIGBTのうち一方のIGBTを、前記第1インバータにおける前記上アームスイッチに対して相補的に開閉させ、かつ他方のIGBTを閉状態で保持するとともに、
     前記第2インバータにおける前記一対のIGBTのうち一方のIGBTを、前記第2インバータにおける前記下アームスイッチに対して相補的に開閉させ、かつ他方のIGBTを閉状態で保持する請求項7に記載の回転電機の駆動装置。
  9.  前記第1巻線及び前記第2巻線は、ターン数が同じであり、かつ同相の導体が固定子コアの同一のスロット(32)に収容されている請求項1~8のいずれか1項に記載の回転電機の駆動装置。
  10.  前記第1巻線及び前記第2巻線は、平角断面形状の導体により構成されている請求項9に記載の回転電機の駆動装置。
PCT/JP2019/004000 2018-02-09 2019-02-05 回転電機の駆動装置 WO2019156058A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980012412.8A CN111699625B (zh) 2018-02-09 2019-02-05 旋转电机的驱动装置
US16/989,641 US11196315B2 (en) 2018-02-09 2020-08-10 Drive apparatus for rotating electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-022475 2018-02-09
JP2018022475A JP6845818B2 (ja) 2018-02-09 2018-02-09 回転電機の駆動装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/989,641 Continuation US11196315B2 (en) 2018-02-09 2020-08-10 Drive apparatus for rotating electric machine

Publications (1)

Publication Number Publication Date
WO2019156058A1 true WO2019156058A1 (ja) 2019-08-15

Family

ID=67549607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/004000 WO2019156058A1 (ja) 2018-02-09 2019-02-05 回転電機の駆動装置

Country Status (4)

Country Link
US (1) US11196315B2 (ja)
JP (1) JP6845818B2 (ja)
CN (1) CN111699625B (ja)
WO (1) WO2019156058A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113746398A (zh) * 2021-09-03 2021-12-03 浙江大学 一种开关磁阻变档电机
US20220385121A1 (en) * 2021-06-01 2022-12-01 Hyundai Motor Company Winding pattern of a motor and a motor driving system

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11037917B1 (en) * 2019-12-11 2021-06-15 Littelfuse, Inc. Semiconductor device module and method of assembly
DE102021104567A1 (de) * 2021-02-25 2022-09-08 Lsp Innovative Automotive Systems Gmbh Umrichter sowie Verfahren zum Betrieb eines Umrichters
JP2022156662A (ja) * 2021-03-31 2022-10-14 本田技研工業株式会社 回転電機装置
WO2022236424A1 (en) * 2021-05-13 2022-11-17 Exro Technologies Inc. Method and appartus to drive coils of a multiphase electric machine
EP4338274A1 (en) 2021-07-08 2024-03-20 Exro Technologies Inc. Dynamically reconfigurable power converter utilizing windings of electrical machine
US11942887B2 (en) * 2021-12-02 2024-03-26 Dana Tm4 Italia S.R.L. Dual segmented motor drive
DE102022201437B3 (de) * 2022-02-11 2023-08-03 Zf Friedrichshafen Ag Ansteueranordnung einer sechsphasigen elektrischen Maschine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125006A (ja) * 2010-12-07 2012-06-28 Denso Corp 電動機装置
WO2015019790A1 (ja) * 2013-08-05 2015-02-12 日立オートモティブシステムズ株式会社 電動モータの制御装置及び電動モータの制御方法
JP2018011490A (ja) * 2016-07-15 2018-01-18 株式会社デンソー 回転電機装置

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351283A (ja) 1993-06-07 1994-12-22 Sony Corp モータ駆動装置
JP4380755B2 (ja) * 2007-10-10 2009-12-09 株式会社デンソー 回転電機装置
JP4609474B2 (ja) * 2007-10-10 2011-01-12 株式会社デンソー 回転電機装置
JP4662316B2 (ja) * 2007-12-27 2011-03-30 株式会社安川電機 交流電動機の巻線切替装置およびその巻線切替システム
JP2012235659A (ja) * 2011-05-09 2012-11-29 Denso Corp 回転機の制御装置
US8928264B2 (en) * 2012-04-05 2015-01-06 Denso Corporation Control device for rotating electrical machine
JP5765589B2 (ja) * 2013-03-11 2015-08-19 株式会社デンソー 電力変換装置
JP5862970B2 (ja) * 2013-06-25 2016-02-16 株式会社デンソー 回転電機
JP6285256B2 (ja) * 2014-04-02 2018-02-28 株式会社Soken 電力変換装置
CN104167975B (zh) * 2014-08-18 2016-06-22 华中科技大学 一种基于相切换的多相永磁电机调速系统及其调速方法
JP6380156B2 (ja) * 2015-02-19 2018-08-29 株式会社デンソー 電力変換装置
JP6344258B2 (ja) * 2015-02-19 2018-06-20 株式会社デンソー 電力変換装置
DE102016119892B4 (de) * 2015-10-21 2022-04-28 Denso Corporation Steuerungsgerät für eine rotierende elektrische Maschine
JP2017118775A (ja) * 2015-12-25 2017-06-29 株式会社デンソー 電源システム
JP6566262B2 (ja) * 2016-03-17 2019-08-28 株式会社デンソー 回転電機の固定子
JP6889013B2 (ja) * 2017-04-19 2021-06-18 田淵電機株式会社 電力変換装置及び分散型電源システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125006A (ja) * 2010-12-07 2012-06-28 Denso Corp 電動機装置
WO2015019790A1 (ja) * 2013-08-05 2015-02-12 日立オートモティブシステムズ株式会社 電動モータの制御装置及び電動モータの制御方法
JP2018011490A (ja) * 2016-07-15 2018-01-18 株式会社デンソー 回転電機装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220385121A1 (en) * 2021-06-01 2022-12-01 Hyundai Motor Company Winding pattern of a motor and a motor driving system
US11967862B2 (en) * 2021-06-01 2024-04-23 Hyundai Motor Company Winding pattern of a motor and a motor driving system
CN113746398A (zh) * 2021-09-03 2021-12-03 浙江大学 一种开关磁阻变档电机
CN113746398B (zh) * 2021-09-03 2023-08-04 浙江大学 一种开关磁阻变档电机

Also Published As

Publication number Publication date
JP2019140806A (ja) 2019-08-22
JP6845818B2 (ja) 2021-03-24
US20200373801A1 (en) 2020-11-26
US11196315B2 (en) 2021-12-07
CN111699625B (zh) 2023-10-20
CN111699625A (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
WO2019156058A1 (ja) 回転電機の駆動装置
US10090742B2 (en) Rotating electric machine
JP5725572B2 (ja) ステータティース、ステータ、回転電機、および、回転電機の制御方法
US20140239876A1 (en) Electric drive with reconfigurable winding
JP6394030B2 (ja) インバータ制御装置
JP5363913B2 (ja) 回転電機駆動システム
US20110241599A1 (en) System including a plurality of motors and a drive circuit therefor
WO2018029989A1 (ja) 可変速電気機械
CN109478864B (zh) 旋转电机装置
JP5301905B2 (ja) 複数相回転電機駆動装置、複数相発電機用コンバータ、複数相回転電機、及び回転電機駆動システム
CN111684709B (zh) 旋转电机的驱动装置
US10027252B2 (en) Rotating electric machine system
JP2009142130A (ja) 回転電機及び回転電機駆動装置
JP2016077052A (ja) 磁石レス回転電機及び回転電機制御システム
Kiyota et al. Principle of a novel dual-mode reluctance motor for electric vehicle applications
Su et al. Modular PM motor drives for automotive traction applications
JP2020156166A (ja) スイッチトリラクタンスモータ制御装置及びスイッチトリラクタンスモータ制御方法
JP6478114B2 (ja) 回転電機駆動システム
EP1225687A1 (en) Output switch circuit of generator
JP6658925B2 (ja) 回転電機駆動システム
JP2023025444A (ja) 電力変換装置
JP2016082664A (ja) ロータ極数切換可能な永久磁石同期機
CN114384296A (zh) 电流检测装置
CN114586275A (zh) 可切换绕组匝数的开关磁阻电机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751856

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751856

Country of ref document: EP

Kind code of ref document: A1