WO2019155918A1 - 電力変換装置、モータおよび電動パワーステアリング装置 - Google Patents

電力変換装置、モータおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2019155918A1
WO2019155918A1 PCT/JP2019/002514 JP2019002514W WO2019155918A1 WO 2019155918 A1 WO2019155918 A1 WO 2019155918A1 JP 2019002514 W JP2019002514 W JP 2019002514W WO 2019155918 A1 WO2019155918 A1 WO 2019155918A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
phase winding
component
winding
motor
Prior art date
Application number
PCT/JP2019/002514
Other languages
English (en)
French (fr)
Inventor
弘光 大橋
香織 鍋師
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to US16/967,425 priority Critical patent/US20230198452A1/en
Priority to CN201980011422.XA priority patent/CN111684702A/zh
Priority to JP2019570679A priority patent/JPWO2019155918A1/ja
Priority to DE112019000678.9T priority patent/DE112019000678T5/de
Publication of WO2019155918A1 publication Critical patent/WO2019155918A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/50Reduction of harmonics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/10Arrangements for controlling torque ripple, e.g. providing reduced torque ripple

Definitions

  • the present disclosure relates to a power conversion device, a motor, and an electric power steering device.
  • motors such as brushless DC motors and AC synchronous motors.
  • high silence and low vibration are further required in order to improve steering feeling.
  • a motor has a rotor and a stator.
  • a plurality of permanent magnets are arranged along the circumferential direction of the rotor.
  • the stator has a plurality of windings.
  • Embodiments of the present disclosure provide a power conversion device capable of reducing motor vibration.
  • An exemplary power conversion device is a power conversion device that converts power from a power source into power supplied to a motor, the motor including a rotor provided with a plurality of permanent magnets, a three-phase winding.
  • An inverter and a control circuit for controlling operations of the first and second inverters wherein the three-phase winding includes a first-phase winding, and the first and second inverters to the first phase
  • the current supplied to the windings includes a fundamental wave component and a harmonic component having a frequency that is an integral multiple of the frequency of the fundamental wave component
  • the control circuit includes the third-order component of the magnetic flux of the permanent magnet and the Based on the third order component of the current supplied to the first phase winding, It controls the sixth-order component of the force in the radial direction acting on teeth serial stator has.
  • An exemplary power conversion device is a power conversion device that converts power from a power source into power supplied to a motor, the motor including a rotor provided with a plurality of permanent magnets, a three-phase winding.
  • An inverter and a control circuit for controlling operations of the first and second inverters wherein the three-phase winding includes a first-phase winding, and the first and second inverters to the first phase
  • the current supplied to the first winding includes a fundamental wave component and a harmonic component having a frequency that is an integral multiple of the frequency of the fundamental wave component
  • the control circuit supplies the current supplied to the first phase winding.
  • the third order component of the magnetic flux of the permanent magnet Controlling a torque ripple generated from the relationship of the serial fundamental component of the current supplied to the first phase winding and the permanent magnet flux.
  • vibration of the motor can be reduced.
  • FIG. 1 is a schematic diagram illustrating the structure of a motor according to an exemplary embodiment.
  • FIG. 2 is a schematic diagram illustrating a circuit configuration of a power conversion device according to an exemplary embodiment.
  • FIG. 3 is a block diagram illustrating a motor including a power converter according to an exemplary embodiment.
  • FIG. 4 shows current waveforms obtained by plotting the current values flowing through the A-phase, B-phase, and C-phase windings of the motor when the power converter is controlled according to the three-phase energization control according to the exemplary embodiment.
  • FIG. FIG. 5 is a diagram illustrating a drive current in which a harmonic component is superimposed on a fundamental wave component according to an exemplary embodiment.
  • FIG. 6 is a plan view illustrating a stator and a rotor included in a motor according to an exemplary embodiment.
  • FIG. 7 is a plan view of a permanent magnet included in a rotor according to an exemplary embodiment.
  • FIG. 8 is a perspective view of a permanent magnet included in a rotor according to an exemplary embodiment.
  • FIG. 9 is a plan view showing a block-shaped magnet material according to an exemplary embodiment.
  • FIG. 10 is a plan view of a permanent magnet according to an exemplary embodiment.
  • FIG. 11 is a plan view showing a modification of the permanent magnet included in the rotor according to the exemplary embodiment.
  • FIG. 12 is a schematic diagram illustrating an electric power steering apparatus according to an exemplary embodiment.
  • an embodiment of the present disclosure will be described using a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings as an example.
  • an n-phase motor having n-phase windings such as four-phase and five-phase is also included in the scope of the present disclosure.
  • FIG. 1 is a diagram showing a structure of a motor 10 according to the present embodiment.
  • FIG. 1 shows the inside of the motor 10 when cut along the central axis 11.
  • the motor 10 is an electromechanical integrated motor.
  • the motor 10 is mounted on, for example, an automobile and is used as a motor for an electric power steering device. In that case, the motor 10 generates the driving force of the electric power steering device.
  • the motor 10 includes a stator 20, a rotor 30, a housing 12, a partition wall 14, a bearing 15, and a bearing 16.
  • the stator 20 is also referred to as an armature.
  • the central axis 11 is a rotation axis of the rotor 30. *
  • the housing 12 is a substantially cylindrical casing having a bottom, and accommodates the stator 20, the bearing 15, and the rotor 30 therein.
  • a recess 13 holding the bearing 15 is in the center of the bottom of the housing 12.
  • the partition wall 14 is a plate-like member that closes the upper opening of the housing 12. The partition wall 14 holds the bearing 16 at the center thereof.
  • the stator 20 is annular and has a laminate 22 and a winding 21.
  • the laminated body 22 is also referred to as a laminated annular core.
  • the winding is also called a coil.
  • the stator 20 generates a magnetic flux according to the drive current.
  • the laminated body 22 is comprised from the laminated steel plate which laminated
  • the laminate 22 includes an annular laminate core back 24 and a plurality of laminate teeth (teeth) 23.
  • the laminated core back 24 is fixed to the inner wall of the housing 12. *
  • the winding 21 is made of a conductive material such as copper, and is typically attached to each of the plurality of laminated teeth 23 of the laminated body 22. *
  • the rotor 30 includes a rotor core 31, a plurality of permanent magnets 32 and a shaft 33 provided along the outer periphery of the rotor core 31.
  • the rotor core 31 is made of a magnetic material such as iron, and has a cylindrical shape.
  • the rotor core 31 is composed of a laminated steel plate in which a plurality of steel plates are laminated in the direction along the central axis 11 (Z direction in FIG. 1).
  • the plurality of permanent magnets 32 are provided such that N poles and S poles appear alternately in the circumferential direction of the rotor core 31.
  • the shaft 33 is fixed to the center of the rotor core 31 and extends in the vertical direction (Z direction) along the central axis 11.
  • the vertical and horizontal directions in this specification are the vertical and horizontal directions when the motor 10 shown in FIG. 1 is viewed, and these directions are used for easy understanding of the embodiment. Yes.
  • the vertical and horizontal directions in this specification do not necessarily match the vertical and horizontal directions when the motor 10 is mounted on an actual product (automobile or the like). *
  • the bearings 15 and 16 rotatably support the shaft 33 of the rotor 30.
  • the bearings 15 and 16 are ball bearings that relatively rotate the outer ring and the inner ring via a sphere, for example.
  • FIG. 1 illustrates a ball bearing. *
  • a permanent magnet 41 is fixed to an end portion of the shaft 33 on the partition wall 14 side.
  • the permanent magnet 41 can rotate together with the rotor 30.
  • a substrate 50 is disposed on the partition wall 14.
  • the power converter 100 is mounted on the substrate 50.
  • the partition wall 14 separates a space in which the stator 20 and the rotor 30 inside the motor 10 are housed from a space in which the substrate 50 is housed.
  • the power conversion device 100 converts power from the power source into power supplied to the winding 21 of the stator 20.
  • the substrate 50 is provided with an inverter terminal 52 provided in the power conversion device 100.
  • An electric wire 51 is connected to the terminal 52.
  • the electric wire 51 is, for example, an end portion of the winding 21.
  • the electric wires 51 and the windings 21 may be separate members.
  • the electric power output from the power conversion device 100 is supplied to the winding 21 via the electric wire 51. Details of the power conversion apparatus 100 will be described later. *
  • a magnetic sensor 40 is provided on the substrate 50.
  • the magnetic sensor 40 is disposed at a position facing the permanent magnet 41 fixed to the shaft 33.
  • the magnetic sensor 40 is disposed on the central axis 11 of the shaft 33.
  • the magnetic sensor 40 is, for example, a magnetoresistive element or a Hall element.
  • the magnetic sensor 40 can detect a magnetic field generated from the permanent magnet 41 that rotates together with the shaft 33, thereby detecting the rotation angle of the rotor 30.
  • the motor 10 is connected to various control devices outside the motor 10, a battery, and the like via a plurality of terminals 17.
  • the plurality of terminals 17 include a power supply terminal to which power is supplied from an external power supply, a signal terminal for transmitting / receiving data to / from an external device, and the like.
  • FIG. 2 schematically shows a circuit configuration of the power conversion apparatus 100 according to the present embodiment.
  • the power conversion device 100 includes a first inverter 110 and a second inverter 140. Moreover, the power converter device 100 is provided with the control circuit 300 shown in FIG. *
  • an A-phase winding M1, a B-phase winding M2, and a C-phase winding M3 are wound around the stator 20.
  • Each phase winding is connected to first inverter 110 and second inverter 140. More specifically, the first inverter 110 is connected to one end of each phase winding, and the second inverter 140 is connected to the other end of each phase winding.
  • connection between components in an electric circuit mainly means electrical connection.
  • the first inverter 110 has terminals A_L, B_L, and C_L corresponding to the respective phases as terminals 52 (FIG. 1).
  • the second inverter 140 has terminals A_R, B_R and C_R corresponding to the respective phases as the terminal 52.
  • the terminal A_L of the first inverter 110 is connected to one end of the A-phase winding M1, the terminal B_L is connected to one end of the B-phase winding M2, and the terminal C_L is connected to one end of the C-phase winding M3. Connected.
  • the terminal A_R of the second inverter 140 is connected to the other end of the A-phase winding M1
  • the terminal B_R is connected to the other end of the B-phase winding M2
  • the terminal C_R is , And connected to the other end of the C-phase winding M3.
  • Such connections are different from so-called star connections and delta connections.
  • the first inverter 110 and the second inverter 140 are connected to the power source 101 and GND.
  • the motor 10 including the power conversion device 100 can be connected to an external power source via, for example, a terminal 17 (FIG. 1).
  • the first inverter 110 may be referred to as “bridge circuit L”.
  • the second inverter 140 may be referred to as “bridge circuit R”.
  • Each of the first inverter 110 and the second inverter 140 includes three legs including a low-side switching element and a high-side switching element.
  • the plurality of switching elements constituting the legs constitute a plurality of H bridges between the first inverter 110 and the second inverter 140 via windings.
  • the first inverter 110 includes a bridge circuit composed of three legs.
  • Switching elements 111L, 112L, and 113L shown in FIG. 2 are low-side switching elements, and switching elements 111H, 112H, and 113H are high-side switching elements.
  • the switching element for example, a field effect transistor (typically MOSFET) or an insulated gate bipolar transistor (IGBT) can be used.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the switching element may be referred to as an FET.
  • the switching element 111L is denoted as FET 111L. *
  • the second inverter 140 includes a bridge circuit composed of three legs.
  • FETs 141L, 142L, and 143L shown in FIG. 2 are low-side switching elements, and FETs 141H, 142H, and 143H are high-side switching elements.
  • Each FET of the first and second inverters 110 and 140 can be controlled by, for example, a microcontroller or a dedicated driver. *
  • the power supply 101 (FIG. 2) generates a predetermined power supply voltage. Power is supplied from the power source 101 to the first and second inverters 110 and 140.
  • the power source 101 for example, a DC power source is used.
  • the power source 101 may be an AC-DC converter, a DC-DC converter, or a battery (storage battery).
  • the power source 101 may be a single power source common to the first and second inverters 110 and 140, or may include a first power source for the first inverter 110 and a second power source for the second inverter 140. Good. *
  • FIG. 3 schematically illustrates a block configuration of the motor 10 including the power conversion device 100.
  • the power conversion apparatus 100 includes a control circuit 300. *
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a microcontroller 340, a drive circuit 350, and a ROM 360.
  • the angle sensor 320 is the magnetic sensor 40 (FIG. 1).
  • the control circuit 300 controls the rotation of the motor 10 by controlling the overall operation of the power conversion apparatus 100. Specifically, the control circuit 300 can realize closed-loop control by controlling the target rotor position, rotational speed, current, and the like.
  • the control circuit 300 may include a torque sensor. In this case, the control circuit 300 can control the target motor torque. *
  • the power supply circuit 310 generates a DC voltage (for example, 3V, 5V) necessary for each block in the circuit.
  • the angle sensor 320 is, for example, a magnetoresistive effect element, a resolver, or a Hall IC.
  • the angle sensor 320 detects the rotation angle of the rotor 30 (hereinafter referred to as “rotation signal”) and outputs the rotation signal to the microcontroller 340.
  • the current sensor 170 has, for example, a shunt resistor connected between the low-side switching element of the inverter and GND. Current sensor 170 detects the current flowing through the windings of each phase of A phase, B phase, and C phase.
  • the input circuit 330 receives the motor current value detected by the current sensor 170 (hereinafter referred to as “actual current value”), and converts the level of the actual current value to the input level of the microcontroller 340 as necessary. Then, the actual current value is output to the microcontroller 340.
  • actual current value the motor current value detected by the current sensor 170
  • the microcontroller 340 controls the switching operation (turn-on or turn-off) of each FET of the first inverter 110 and the second inverter 140.
  • the microcontroller 340 sets the target current value according to the actual current value and the rotation signal of the rotor, generates a PWM signal, and outputs it to the drive circuit 350.
  • the drive circuit 350 is typically a gate driver.
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each FET in the first and second inverters 110 and 140 according to the PWM signal, and gives the control signal to the gate of each FET.
  • the microcontroller 340 may have the function of the drive circuit 350. In that case, the control circuit 300 may not include the drive circuit 350.
  • the ROM 360 is, for example, a writable memory, a rewritable memory, or a read-only memory.
  • the ROM 360 stores a control program including a command group for causing the microcontroller 340 to control the power conversion apparatus 100.
  • the control program is temporarily expanded in a RAM (not shown) at the time of booting.
  • connection of the power conversion apparatus 100 may be referred to as an open connection or an independent connection.
  • a part of the current that flows from the FET 111H to the winding M1 may flow to the FET 141H. That is, the current that flows from the FET 111H to the winding M1 may branch into the FET 141L and the FET 141H. For example, when the motor 10 rotates at a low speed, the ratio of the current flowing from the FET 111H to the winding M1 to the FET 141H may be larger than when rotating at a high speed.
  • a part of the current that flows from the FET 141H to the winding M1 may flow to the FET 111H.
  • the ratio of the current flowing from the FET 141H to the winding M1 to the FET 111H may be larger than when rotating at a high speed.
  • a part of the current that flows from the FET 112H to the winding M2 may flow to the FET 142H.
  • the ratio of the current flowing from the FET 112H to the winding M2 to the FET 142H may be larger than when rotating at a high speed.
  • part of the current that flows from the FET 142H to the winding M2 may flow to the FET 112H.
  • the ratio of the current flowing from the FET 142H to the winding M2 to the FET 112H may be larger than when rotating at a high speed.
  • a part of the current that flows from the FET 113H to the winding M3 may flow to the FET 143H.
  • the ratio of the current flowing from the FET 113H to the winding M3 to the FET 143H may be larger than when rotating at a high speed.
  • part of the current that flows from the FET 143H to the winding M3 may flow to the FET 113H.
  • the ratio of the current flowing from the FET 143H to the winding M3 to the FET 113H may be larger than when rotating at a high speed.
  • FIG. 4 exemplifies a current waveform (sine wave) obtained by plotting current values flowing through the windings of the A phase, the B phase, and the C phase when the power conversion device 100 is controlled according to the three-phase energization control.
  • FIG. 4 shows the fundamental wave components of the current flowing through the A-phase, B-phase and C-phase windings.
  • the horizontal axis indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • current values are plotted every 30 ° electrical angle.
  • I pk represents the maximum current value (peak current value) of each phase.
  • the control circuit 300 controls the switching operation of each FET of the bridge circuits L and R by, for example, PWM control.
  • Table 1 shows the value of current flowing through the terminals of each inverter for each electrical angle in the sine wave of FIG.
  • Table 1 specifically shows the current value for each electrical angle of 30 ° flowing through the terminals A_L, B_L and C_L of the first inverter 110 (bridge circuit L), and the terminal A_R of the second inverter 140 (bridge circuit R).
  • B_R and C_R current values for every electrical angle of 30 ° are shown.
  • the direction of current flowing from the terminal of the bridge circuit L to the terminal of the bridge circuit R is defined as a positive direction.
  • the direction of current shown in FIG. 4 follows this definition.
  • the direction of current flowing from the terminal of the bridge circuit R to the terminal of the bridge circuit L is defined as a positive direction. Therefore, the phase difference between the current of the bridge circuit L and the current of the bridge circuit R is 180 °.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * I pk
  • the magnitude of the current value I 2 is I pk / 2.
  • the current magnitude I 2 flows from the bridge circuit L to the bridge circuit R is the winding M1 of the A-phase
  • size Ipk is the winding M2 of phase B from the bridge circuit R to the bridge circuit L
  • the current magnitude I 1 flows from the bridge circuit L to the bridge circuit R is the winding M1 of the A-phase bridge circuit size from R to the bridge circuit L
  • I is the winding M2 of phase B 1 current flows.
  • a current of magnitude Ipk flows from the bridge circuit L to the bridge circuit R in the A-phase winding M1, and a magnitude I 2 from the bridge circuit R to the bridge circuit L in the B-phase winding M2.
  • current flow, current of magnitude I 2 flows from the bridge circuit R to the bridge circuit L is the winding M3 of C phase.
  • the current magnitude I 1 flows from the bridge circuit L to the bridge circuit R is the winding M1 of the A-phase, the winding M3 of C-phase bridge circuit R from the bridge circuit L in magnitude I 1 current flows. No current flows through the B-phase winding M2.
  • the current magnitude I 2 flows from the bridge circuit L to the bridge circuit R is the winding M1 of the A-phase
  • the winding M2 of B-phase bridge circuit L from the bridge circuit R to the magnitude I 2 flows
  • a current of magnitude Ipk flows from the bridge circuit R to the bridge circuit L in the C-phase winding M3.
  • the current magnitude I 2 flows from the bridge circuit R to the bridge circuit L is the winding M1 of the A-phase
  • size Ipk is the winding M2 of B phase from the bridge circuit L to the bridge circuit R current flow
  • current of magnitude I 2 flows from the bridge circuit R to the bridge circuit L is the winding M3 of C phase.
  • a current of magnitude I 1 flows from the bridge circuit R to the bridge circuit L through the A-phase winding M1, and a magnitude I from the bridge circuit L to the bridge circuit R flows through the B-phase winding M2. 1 current flows. No current flows through the C-phase winding M3.
  • a current of magnitude Ipk flows from the bridge circuit R to the bridge circuit L in the A-phase winding M1, and a magnitude I 2 from the bridge circuit L to the bridge circuit R in the B-phase winding M2.
  • current flow, current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R is the winding M3 of C phase.
  • the current magnitude I 1 flows from the bridge circuit R to the bridge circuit L is the winding M1 of the A-phase, C-phase winding M3 size I from the bridge circuit L to the bridge circuit R is 1 current flows. No current flows through the B-phase winding M2.
  • the current magnitude I 2 flows from the bridge circuit R to the bridge circuit L is the winding M1 of the A-phase
  • magnitude I is the winding M2 of phase B from the bridge circuit R to the bridge circuit L 2 of current flows
  • the current magnitude Ipk flows from the bridge circuit L to the bridge circuit R is the winding M3 of C phase.
  • FIG. 5 is a diagram illustrating a drive current in which a harmonic component is superimposed on a fundamental wave component.
  • the horizontal axis in FIG. 5 indicates the motor electrical angle (deg), and the vertical axis indicates the current value (A).
  • the harmonic component 253 has a frequency that is an integral multiple of the frequency of the fundamental wave component 251 of the current.
  • the harmonic component 253 is a third-order harmonic component having a frequency that is three times the frequency of the fundamental wave component 251.
  • the control circuit 300 supplies a drive current 250 obtained by superimposing the harmonic component 253 to the fundamental wave component 251 to each of the A-phase winding M1, the B-phase winding M2, and the C-phase winding M3. .
  • the control circuit 300 controls the switching operation of each FET of the bridge circuits L and R by PWM control so that, for example, a drive current as shown in FIG. 5 is obtained. *
  • FIG. 6 is a plan view illustrating an example of the stator 20 and the rotor 30 included in the motor 10.
  • the stator 20 includes twelve laminated teeth 23.
  • the rotor 30 includes ten permanent magnets 32.
  • the stator 20 has twelve grooves (slots) 25 that are formed between the adjacent laminated teeth 23 and in which the windings 21 are disposed.
  • the number of poles in the rotor 30 is ten.
  • a structure having such a number of grooves and magnetic poles may be referred to as 12S10P (12 slots 10 poles).
  • the motor 10 is a three-phase motor having three-phase (A-phase, B-phase, and C-phase) windings.
  • A, A, B, B, C, C, A, A, B, B, C, and C are assigned to the 12 laminated teeth 23 in the order of A, B, C, and C. . *
  • the outer shape of the rotor core 31 is a polygon.
  • the outer shape of the rotor core 31 in plan view is a decagon.
  • the outer peripheral portion of the rotor core 31 has a plurality of side surfaces 34.
  • the outer peripheral portion of the rotor core 31 has ten side surfaces 34.
  • the ten side surfaces 34 are arranged adjacent to each other in the circumferential direction of the rotor core 31 and constitute the outer surface of the rotor core 31.
  • each side surface 34 has a linear shape.
  • a permanent magnet 32 is disposed on each of the side surfaces 34.
  • the permanent magnet 32 is fixed to the side surface 34 by, for example, an adhesive.
  • Each permanent magnet 32 faces each laminated tooth 23 in the radial direction.
  • the permanent magnet 32 may be hold
  • FIG. 7 is a plan view of the permanent magnet 32 provided on the rotor core 31.
  • FIG. 7 shows the permanent magnet 32 in a plan view when the rotor 30 is viewed from a direction parallel to the rotation axis direction of the rotor 30.
  • FIG. 8 is a perspective view showing the permanent magnet 32.
  • FIG. 8 shows the interior of the permanent magnet 32 in a transparent manner.
  • the permanent magnet 32 has a first surface 221 that contacts the side surface 34 (FIG. 6) of the rotor core 31, a second surface 222 that is positioned outside the first surface 221 in the radial direction 210 of the rotor 30, and a diameter. And a side surface 223 extending along the direction 210.
  • the first surface 221 is an inner peripheral surface of the permanent magnet 32 that is fixed to the side surface 34 of the rotor core 31.
  • the second surface 222 is a surface on the outer peripheral side of the permanent magnet 32 facing the laminated tooth 23 of the stator 20.
  • the second surface 222 is located on the side opposite to the first surface 221 in the radial direction.
  • each of the first surface 221 and the second surface 222 has a linear shape in plan view.
  • the linear portion of the first surface 221 and the linear portion of the second surface 222 are parallel to each other.
  • the length L2 of the linear portion of the second surface 222 is smaller than the length L1 of the linear portion of the first surface 221.
  • the side surface 223 of the permanent magnet 32 extends radially outward from both circumferential ends of the first surface 221.
  • the permanent magnet 32 has a connection portion 224 that connects the side surface 223 and the second surface 222.
  • the connection portion 224 has a linear portion that is inclined with respect to each of the second surface 222 and the side surface 223.
  • the permanent magnet 32 for the rotor is formed by, for example, cutting a block-shaped magnet material.
  • the permanent magnet 32 of this embodiment forms a permanent magnet 32 having a connection portion 224 by chamfering a block-shaped magnet material.
  • FIG. 9 is a plan view showing a block-shaped magnet material 32a.
  • the magnet material 32a has a rectangular parallelepiped shape.
  • the permanent magnet 32 having the connecting portion 224 as shown in FIG. 7 is obtained by chamfering the broken line portion of the magnet material 32a shown in FIG. *
  • the magnetic flux generated from the permanent magnet 32 having a shape as shown in FIG. 7 includes a harmonic component.
  • the magnetic flux generated from the permanent magnet 32 includes, for example, a third harmonic component. *
  • the drive current supplied by the power conversion apparatus 100 to each of the A-phase winding M1, the B-phase winding M2, and the C-phase winding M3 will be described. As described above, the power conversion apparatus 100 generates a drive current in which a harmonic component is superimposed on a fundamental wave component.
  • the radial force Fr acting on each laminated tooth 23 of the stator 20 can be expressed by the square of each interlinkage magnetic flux ⁇ .
  • the radial force Fr is a radial excitation force acting on the laminated teeth.
  • ⁇ 0 is the magnetic permeability
  • N is the number of turns
  • S is the area where the magnetic flux is linked to each laminated tooth.
  • the subscripts a, b, and c represent the A phase, the B phase, and the C phase, respectively.
  • the interlinkage magnetic flux ⁇ is expressed by the sum of the magnetic flux component ⁇ m and the current component i of the permanent magnet 32, and is expressed as shown in Expression (2).
  • L is a self-inductance and M is a mutual inductance.
  • the motor torque Te is expressed by the following formula (3).
  • P is the output of the motor and ⁇ is the angular velocity.
  • Equation (3) On the right side of Equation (3) Is a sixth-order component generated from the third-order component of the drive current and the third-order component of the magnetic flux of the permanent magnet 32.
  • the third order component of the current is determined so that the sixth order component is minimized.
  • an electrical angle even-order component such as second-order, fourth-order, sixth-order,...
  • the sixth-order radial force is likely to cause resonance and increase in vibration in relation to the natural frequency of the motor.
  • the control circuit 300 controls the torque ripple generated from the relationship between the fundamental wave component of the drive current and the magnetic flux of the permanent magnet 32 based on the tertiary component of the drive current and the tertiary component of the magnetic flux of the permanent magnet 32. For example, the torque ripple generated from the relationship between the tertiary component of the drive current and the magnetic flux of the permanent magnet 32 cancels the torque ripple generated from the relationship between the fundamental wave component of the drive current and the magnetic flux of the permanent magnet 32. Is determined.
  • the waveform of the torque ripple generated from the relationship between the tertiary component of the drive current and the magnetic flux of the permanent magnet 32 is the inverse of the waveform of the torque ripple generated from the relationship between the fundamental wave component of the drive current and the magnetic flux of the permanent magnet 32.
  • the third order component of the current is determined so as to be in phase.
  • the fundamental component and the third harmonic component of the drive current do not have to be in phase with each other and may be shifted from each other.
  • the phase of the fundamental wave component and the third harmonic component may be shifted by 120 degrees.
  • the motor torque can be increased by appropriately controlling the tertiary component of the motor torque.
  • the third-order component Tabc_3rd of the motor torque is expressed by the following formula (4).
  • i a is a current flowing through the A-phase winding
  • i b is a current flowing through the B-phase winding
  • ic is a current flowing through the C-phase winding.
  • I abc is the current flowing through the three-phase winding
  • ⁇ _3rd is the third-order component of the flux linkage
  • is the rotor angle.
  • the motor torque increases, by determining the tertiary component of current i a, i b, i c , greater total motor torque by effectively utilizing the third-order component of the torque can do.
  • the vibration of the motor 10 can be reduced by determining the third order components of the currents i a , i b , and ic so that the sixth order component of the radial force is minimized.
  • the control circuit 300 on the basis of the third-order component of the magnetic flux of the current i a, i b, i c of the tertiary component and the permanent magnet 32, the fundamental wave component of the current i a, i b, i c
  • the torque ripple generated from the relationship with the magnetic flux of the permanent magnet 32 is controlled.
  • the current i a, i b, the torque ripple generated by the relationship between the 3-order component and the magnetic flux of the permanent magnets 32 of the i c is the current i a, i b, the fundamental wave component and the magnetic flux of the permanent magnets 32 of the i c
  • the third order components of the currents i a , i b , and ic are determined so as to cancel the torque ripple generated from the relationship between
  • the waveform of the torque ripple generated from the relationship between the tertiary components of the currents i a , i b , and ic and the magnetic flux of the permanent magnet 32 is the fundamental wave components of the currents i a , i b , and ic and the permanent magnet 32.
  • the third order components of the currents i a , i b , and ic are determined so as to have an opposite phase to the waveform of the torque ripple generated from the relationship with the magnetic flux of the current.
  • the control circuit 300 may reduce vibration and torque ripple by including a third order component in at least one of the currents i a , i b , and ic .
  • the control circuit 300 on the basis of the third-order component of the magnetic flux of the third-order component and the permanent magnet 32 of the currents i a, may control the torque ripple.
  • the control circuit 300 may reduce vibration and torque ripple by controlling each of the third order components of the currents i a , i b , and ic independently of each other.
  • the A-phase winding, the B-phase winding, and the C-phase winding are not electrically connected to each other. Therefore, the current i a flowing through the A-phase winding, the current i b flowing through the B-phase winding, and the current ic flowing through the C-phase winding can be individually adjusted. Vibration and torque ripple can be more effectively reduced by controlling each of the tertiary components of the currents i a , i b , and ic independently of each other.
  • the vibration and torque ripple can be more effectively reduced by making the amplitudes of the third-order components different from each other among the three-phase currents, or making the phases of the third-order components different from each other with respect to the fundamental wave component. be able to.
  • FIG. 10 is a plan view of a permanent magnet 32 ⁇ / b> C that is a modification of the permanent magnet 32.
  • the permanent magnet 32C has a first surface 221C that is a surface fixed to the outer peripheral portion of the rotor core, and a second surface 222C that faces the laminated teeth of the stator.
  • the second surface 222C has a curved shape, and the first surface 221C and the second surface 222C are not parallel.
  • the second surface 222C has an arc shape.
  • the thickness T2 of the permanent magnet 32C shown in FIG. 10 is larger than the thickness T1 (FIG. 7) of the permanent magnet 32 in the present embodiment.
  • the thickness of the permanent magnet is the length of the permanent magnet along the radial direction.
  • the length of the first surface 221 of the permanent magnet 32 and the length of the first surface 221C of the permanent magnet 32C are the same.
  • the lengths of the permanent magnet 32 and the permanent magnet 32C along the axial direction of the rotor are the same. Even with the shape of the permanent magnet 32C as shown in FIG. 10, the third harmonic component can be included in the magnetic flux generated from the permanent magnet 32C.
  • connection portion 224 of the permanent magnet 32 has linear portions that are inclined with respect to the second surface 222 and the side surface 223.
  • the shape of the connecting portion 224 is not limited to a linear shape.
  • FIG. 11 is a plan view showing a modification of the permanent magnet 32.
  • the connection portion 224 has a curved portion in plan view. Even when the connecting portion 224 has a curved portion, the same effect as described above can be obtained by satisfying the ratio of the length L1 and the length L2. *
  • FIG. 12 is a schematic diagram showing an electric power steering apparatus 500 according to the embodiment.
  • the electric power steering apparatus 500 is mounted on a steering mechanism for a vehicle wheel.
  • An electric power steering apparatus 500 shown in FIG. 12 is an apparatus that reduces the steering force by hydraulic pressure.
  • the electric power steering apparatus 500 includes a motor 10, a steering shaft 514, an oil pump 516, and a control valve 517. *
  • the steering shaft 514 transmits the input from the steering 511 to the axle 513 having the wheels 512.
  • the oil pump 516 generates hydraulic pressure in the power cylinder 515 that transmits the driving force by hydraulic pressure to the axle 513.
  • the control valve 517 controls the oil movement of the oil pump 516.
  • the motor 10 is mounted as a drive source for the oil pump 516. *
  • the auxiliary force generated by the motor 10 is transmitted to the axle 513 via hydraulic pressure, but may be transmitted to the axle 513 without hydraulic pressure.
  • the electric power steering apparatus 500 may be any of a pinion assist type, a rack assist type, a column assist type, and the like. *
  • Embodiments of the present disclosure can be widely used in various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
  • various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.

Abstract

モータの振動を低減させる。実施形態に係る電力変換装置100は、電源101からの電力をモータ10に供給する電力に変換する。電力変換装置100は、モータ10の各相の巻線の一端に接続される第1インバータ110と、各相の巻線の他端に接続される第2インバータ140と、第1および第2インバータ110、140の動作を制御する制御回路300とを備える。制御回路300は、ロータ30の永久磁石32の磁束の3次成分およびA相の巻線へ供給する電流の3次成分に基づいて、ステータ20が有する歯23に働くラジアル方向の力の6次成分を制御する。

Description

電力変換装置、モータおよび電動パワーステアリング装置
本開示は、電力変換装置、モータおよび電動パワーステアリング装置に関する。
近年、ブラシレスDCモータおよび交流同期モータなどの電動モータ(以下、単に「モータ」と表記する。)に対して静粛性および低振動性の要求が高まっている。特に、電動パワーステアリング装置用のモータに対しては、操舵フィーリングを向上させるために、高い静粛性および低振動性がより一層求められている。 
一般に、モータは、ロータおよびステータを有する。ロータには、その円周方向に沿って複数の永久磁石が配列される。ステータは複数の巻線を有する。モータの駆動時には、ステータの励磁によって、ステータおよびロータにはラジアル方向の加振力が加わり、振動および騒音が発生する。このような振動および騒音の対策として、モータに供給する電流に高調波成分を重畳させることにより、振動を抑制する方法が知られている(例えば特許文献1参照)。
特許第4155152号公報
モータの低振動化についてさらなる改善が求められている。 
本開示の実施形態は、モータの振動を低減させることが可能な電力変換装置を提供する。
本開示の例示的な電力変換装置は、電源からの電力をモータに供給する電力に変換する電力変換装置であって、前記モータは、複数の永久磁石が設けられたロータと、三相の巻線が設けられたステータとを備え、前記電力変換装置は、前記モータの各相の巻線の一端に接続される第1インバータと、前記各相の巻線の他端に接続される第2インバータと、前記第1および第2インバータの動作を制御する制御回路とを備え、前記三相の巻線は、第1相の巻線を含み、前記第1および第2インバータから前記第1相の巻線へ供給する電流は、基本波成分と、前記基本波成分の周波数の整数倍の周波数を有する高調波成分とを含み、前記制御回路は、前記永久磁石の磁束の3次成分および前記第1相の巻線へ供給する電流の3次成分に基づいて、前記ステータが有する歯に働くラジアル方向の力の6次成分を制御する。 
本開示の例示的な電力変換装置は、電源からの電力をモータに供給する電力に変換する電力変換装置であって、前記モータは、複数の永久磁石が設けられたロータと、三相の巻線が設けられたステータとを備え、前記電力変換装置は、前記モータの各相の巻線の一端に接続される第1インバータと、前記各相の巻線の他端に接続される第2インバータと、前記第1および第2インバータの動作を制御する制御回路とを備え、前記三相の巻線は、第1相の巻線を含み、前記第1および第2インバータから前記第1相の巻線へ供給する電流は、基本波成分と、前記基本波成分の周波数の整数倍の周波数を有する高調波成分とを含み、前記制御回路は、前記第1相の巻線へ供給する電流の3次成分および前記永久磁石の磁束の3次成分に基づいて、前記第1相の巻線へ供給する電流の基本波成分と前記永久磁石の磁束との関係から発生するトルクリップルを制御する。
本開示の実施形態によれば、モータの振動を低減することができる。
図1は、例示的な実施形態によるモータの構造を示す模式図である。 図2は、例示的な実施形態による電力変換装置の回路構成を示す模式図である。 図3は、例示的な実施形態による電力変換装置を備えるモータを示すブロック図である。 図4は、例示的な実施形態による三相通電制御に従って電力変換装置を制御したときに、モータのA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形を示す図である。 図5は、例示的な実施形態による基本波成分に高調波成分を重畳させた駆動電流を示す図である。 図6は、例示的な実施形態によるモータが備えるステータおよびロータを示す平面図である。 図7は、例示的な実施形態によるロータが備える永久磁石の平面図である。 図8は、例示的な実施形態によるロータが備える永久磁石の斜視図である。 図9は、例示的な実施形態によるブロック形状の磁石素材を示す平面図である。 図10は、例示的な実施形態による永久磁石の平面図である。 図11は、例示的な実施形態によるロータが備える永久磁石の変形例を示す平面図である。 図12は、例示的な実施形態による電動パワーステアリング装置を示す模式図である。
以下、添付の図面を参照しながら、本開示のモータおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。 
本明細書においては、三相(A相、B相、C相)の巻線を有する三相モータを例にして、本開示の実施形態を説明する。但し、例えば四相および五相などのn相(nは3以上の整数)の巻線を有するn相モータも本開示の範疇である。 
(実施形態1)

 図1は、本実施形態によるモータ10の構造を示す図である。図1は、中心軸11に沿って切断したときのモータ10の内部を示している。 
モータ10は、機電一体型モータである。モータ10は、例えば自動車に搭載され、電動パワーステアリング装置用モータとして利用される。その場合、モータ10は、電動パワーステアリング装置の駆動力を発生する。 
モータ10は、ステータ20と、ロータ30と、ハウジング12と、隔壁14と、軸受15と、軸受16とを備える。ステータ20は電機子とも称される。中心軸11はロータ30の回転軸である。 
ハウジング12は底を有する略円筒状の筐体であり、ステータ20、軸受15およびロータ30を内部に収納する。軸受15を保持する凹部13がハウジング12の底の中央にある。隔壁14はハウジング12の上部の開口を閉じる板状の部材である。隔壁14はその中央部で軸受16を保持する。 
ステータ20は環状であり、積層体22および巻線21を有する。積層体22は積層環状コアとも称される。巻線はコイルとも称される。ステータ20は、駆動電流に応じて磁束を発生させる。積層体22は、複数の鋼板を中心軸11に沿う方向(図1のZ方向)に積層した積層鋼板から構成される。積層体22は、環状の積層コアバック24および複数の積層歯(ティース)23を含む。積層コアバック24は、ハウジング12の内壁に固定される。 
巻線21は、銅等の導電性材料によって構成され、典型的には積層体22の複数の積層歯23にそれぞれ取り付けられている。 
ロータ30は、ロータコア31、ロータコア31の外周に沿って設けられた複数の永久磁石32、シャフト33を備える。ロータコア31は、例えば鉄などの磁性材料で構成されており、筒状の形状を有する。本実施形態において、ロータコア31は、複数の鋼板を中心軸11に沿う方向(図1のZ方向)に積層した積層鋼板から構成される。複数の永久磁石32は、N極とS極とがロータコア31の周方向に交互に現れるように設けられている。シャフト33は、ロータコア31の中心に固定されており、中心軸11に沿って上下方向(Z方向)に延びている。なお、本明細書中における上下左右方向とは、図1に示されたモータ10を見たときの上下左右方向であり、実施形態を分かりやすく説明するためにそれらの方向を用いて説明している。本明細書中における上下左右方向と、モータ10が実際の製品(自動車等)に搭載された状態における上下左右方向とは必ずしも一致しない。 
軸受15および16は、ロータ30のシャフト33を回転可能に支持する。軸受15および16は、例えば、球体を介して外輪と内輪とを相対回転させるボールベアリングである。図1はボールベアリングを例示している。 
モータ10において、ステータ20の巻線21に駆動電流を流すと、積層体22の複数の積層歯23に径方向の磁束が発生する。複数の積層歯23と永久磁石32との間の磁束の作用によって周方向にトルクが発生し、ロータ30はステータ20に対して回転する。ロータ30が回転すると、例えば電動パワーステアリング装置に駆動力が発生する。 
シャフト33における隔壁14側の端部には、永久磁石41が固定されている。永久磁石41は、ロータ30とともに回転可能である。隔壁14の上部には、基板50が配置されている。基板50には電力変換装置100が搭載されている。隔壁14は、モータ10内部のステータ20およびロータ30が収納される空間と基板50が収納される空間とを隔てている。 
電力変換装置100は、電源からの電力をステータ20の巻線21に供給する電力に変換する。基板50には、電力変換装置100が備えるインバータの端子52が設けられている。端子52には電線51が接続されている。電線51は例えば巻線21の端部である。電線51と巻線21とは別々の部材であってもよい。電力変換装置100から出力された電力は、電線51を介して巻線21に供給される。電力変換装置100の詳細は後述する。 
基板50には磁気センサ40が設けられている。磁気センサ40は、シャフト33に固定された永久磁石41に対向する位置に配置されている。磁気センサ40は、シャフト33の中心軸11上に配置されている。磁気センサ40は、例えば磁気抵抗効果素子またはホール素子である。磁気センサ40は、シャフト33とともに回転する永久磁石41から発生する磁場を検出し、これによりロータ30の回転角を検出することができる。 
モータ10は、複数の端子17を介して、モータ10外部の各種制御装置およびバッテリ等と接続される。複数の端子17は、外部の電源から電力が供給される電源端子および外部機器とデータの送受信を行うための信号端子等を含む。 
次に、電力変換装置100の詳細を説明する。 
図2は、本実施形態による電力変換装置100の回路構成を模式的に示す。 
電力変換装置100は、第1インバータ110と、第2インバータ140とを備える。また、電力変換装置100は図3に示す制御回路300を備える。 
巻線21(図1)として、ステータ20にはA相の巻線M1、B相の巻線M2およびC相の巻線M3が巻かれている。各相の巻線は第1インバータ110と第2インバータ140とに接続される。具体的に説明すると、第1インバータ110は各相の巻線の一端に接続され、第2インバータ140は各相の巻線の他端に接続される。本願明細書において、電気回路内の部品同士の間の「接続」とは、主に電気的な接続を意味する。 
第1インバータ110は、端子52(図1)として、各相に対応した端子A_L、B_LおよびC_Lを有する。第2インバータ140は、端子52として、各相に対応した端子A_R、B_RおよびC_Rを有する。第1インバータ110の端子A_Lは、A相の巻線M1の一端に接続され、端子B_Lは、B相の巻線M2の一端に接続され、端子C_Lは、C相の巻線M3の一端に接続される。第1インバータ110と同様に、第2インバータ140の端子A_Rは、A相の巻線M1の他端に接続され、端子B_Rは、B相の巻線M2の他端に接続され、端子C_Rは、C相の巻線M3の他端に接続される。このような結線は、いわゆるスター結線およびデルタ結線とは異なる。 

 電力変換装置100では、第1インバータ110および第2インバータ140は、電源101およびGNDに接続されている。電力変換装置100を備えるモータ10は、例えば端子17(図1)を介して、外部の電源に接続され得る。
本明細書中において、第1インバータ110を「ブリッジ回路L」と表記する場合がある。また、第2インバータ140を「ブリッジ回路R」と表記する場合がある。第1インバータ110および第2インバータ140のそれぞれは、ローサイドスイッチング素子およびハイサイドスイッチング素子を含むレグを3個備える。それらレグを構成する複数のスイッチング素子は、巻線を介して第1インバータ110と第2インバータ140との間で複数のHブリッジを構成する。 
第1インバータ110は、3個のレグから構成されるブリッジ回路を含む。図2に示されるスイッチング素子111L、112Lおよび113Lがローサイドスイッチング素子であり、スイッチング素子111H、112Hおよび113Hはハイサイドスイッチング素子である。スイッチング素子として、例えば電界効果トランジスタ(典型的にはMOSFET)または絶縁ゲートバイポーラトランジスタ(IGBT)を用いることができる。本願明細書において、インバータのスイッチング素子としてFETを用いる例を説明し、以下の説明ではスイッチング素子をFETと表記する場合がある。例えば、スイッチング素子111LはFET111Lと表記される。 
第1インバータ110と同様に、第2インバータ140は、3個のレグから構成されるブリッジ回路を含む。図2に示されるFET141L、142Lおよび143Lがローサイドスイッチング素子であり、FET141H、142Hおよび143Hはハイサイドスイッチング素子である。第1および第2インバータ110、140の各FETは、例えばマイクロコントローラまたは専用ドライバによって制御され得る。 
電源101(図2)は、所定の電源電圧を生成する。電源101から第1および第2インバータ110、140に電力が供給される。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、第1および第2インバータ110、140に共通の単一電源であってもよいし、第1インバータ110用の第1電源および第2インバータ140用の第2電源を備えていてもよい。 
図3は、電力変換装置100を備えるモータ10のブロック構成を模式的に示している。電力変換装置100は制御回路300を備える。 
制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、マイクロコントローラ340と、駆動回路350と、ROM360とを備える。この例では、角度センサ320は、磁気センサ40(図1)である。制御回路300は、電力変換装置100の全体の動作を制御することによりモータ10の回転を制御する。具体的には、制御回路300は、目的とするロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。制御回路300はトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。 
電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。角度センサ320は、例えば磁気抵抗効果素子、レゾルバまたはホールICである。角度センサ320は、ロータ30の回転角(以下、「回転信号」と表記する。)を検出し、回転信号をマイクロコントローラ340に出力する。電流センサ170は、例えばインバータのローサイドスイッチング素子とGNDとの間に接続されるシャント抵抗を有する。電流センサ170は、A相、B相およびC相の各相の巻線に流れる電流を検出する。入力回路330は、電流センサ170によって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取り、必要に応じて、実電流値のレベルをマイクロコントローラ340の入力レベルに変換し、実電流値をマイクロコントローラ340に出力する。 
マイクロコントローラ340は、第1インバータ110と第2インバータ140の各FETのスイッチング動作(ターンオンまたはターンオフ)を制御する。マイクロコントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。 
駆動回路350は、典型的にはゲートドライバである。駆動回路350は、第1および第2インバータ110、140における各FETのスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各FETのゲートに制御信号を与える。なお、マイクロコントローラ340が駆動回路350の機能を備えていてもよい。その場合、制御回路300は駆動回路350を備えていなくてもよい。 
ROM360は、例えば書き込み可能なメモリ、書き換え可能なメモリまたは読み出し専用のメモリである。ROM360は、マイクロコントローラ340に電力変換装置100を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。 
制御回路300は、第1および第2インバータ110、140の両方を用いて三相通電制御することによってモータ10を駆動する。具体的に、制御回路300は、第1インバータ110のFETと第2インバータ140のFETとを互いに逆位相(位相差=180°)でスイッチング制御することにより三相通電制御を行う。例えば、FET111L、111H、141Lおよび141Hを含むHブリッジに着目すると、FET111Lがオンすると、FET141Lはオフし、FET111Lがオフすると、FET141Lはオンする。これと同様に、FET111Hがオンすると、FET141Hはオフし、FET111Hがオフすると、FET141Hはオンする。電源101から出力された電流は、ハイサイドスイッチング素子、巻線、ローサイドスイッチング素子を通ってGNDに流れる。電力変換装置100の結線は、オープン結線あるいは独立結線と称される場合がある。 
A相の巻線M1を流れる電流の経路を説明する。FET111HおよびFET141Lがオンであり、FET141HおよびFET111Lがオフのとき、電流は、電源101、FET111H、巻線M1、FET141L、GNDの順に流れる。FET141HおよびFET111Lがオンであり、FET111HおよびFET141Lがオフのとき、電流は、電源101、FET141H、巻線M1、FET111L、GNDの順に流れる。 
FET111Hから巻線M1へ流れた電流の一部が、FET141Hへ流れる場合がある。つまり、FET111Hから巻線M1へ流れた電流が、FET141LとFET141Hとに分岐して流れる場合がある。例えば、モータ10の低速回転時は、高速回転時と比較して、FET111Hから巻線M1へ流れた電流が、FET141Hへ流れる割合が大きくなる場合がある。 
同様に、FET141Hから巻線M1へ流れた電流の一部が、FET111Hへ流れる場合がある。例えば、モータ10の低速回転時は、高速回転時と比較して、FET141Hから巻線M1へ流れた電流が、FET111Hへ流れる割合が大きくなる場合がある。 
次に、B相の巻線M2を流れる電流の経路を説明する。FET112HおよびFET142Lがオンであり、FET142HおよびFET112Lがオフのとき、電流は、電源101、FET112H、巻線M2、FET142L、GNDの順に流れる。FET142HおよびFET112Lがオンであり、FET112HおよびFET142Lがオフのとき、電流は、電源101、FET142H、巻線M2、FET112L、GNDの順に流れる。 
なお、FET112Hから巻線M2へ流れた電流の一部が、FET142Hへ流れる場合がある。例えば、モータ10の低速回転時は、高速回転時と比較して、FET112Hから巻線M2へ流れた電流が、FET142Hへ流れる割合が大きくなる場合がある。 
同様に、FET142Hから巻線M2へ流れた電流の一部が、FET112Hへ流れる場合がある。例えば、モータ10の低速回転時は、高速回転時と比較して、FET142Hから巻線M2へ流れた電流が、FET112Hへ流れる割合が大きくなる場合がある。 
次に、C相の巻線M3を流れる電流の経路を説明する。FET113HおよびFET143Lがオンであり、FET143HおよびFET113Lがオフのとき、電流は、電源101、FET113H、巻線M3、FET143L、GNDの順に流れる。FET143HおよびFET113Lがオンであり、FET113HおよびFET143Lがオフのとき、電流は、電源101、FET143H、巻線M3、FET113L、GNDの順に流れる。 
なお、FET113Hから巻線M3へ流れた電流の一部が、FET143Hへ流れる場合がある。例えば、モータ10の低速回転時は、高速回転時と比較して、FET113Hから巻線M3へ流れた電流が、FET143Hへ流れる割合が大きくなる場合がある。 
同様に、FET143Hから巻線M3へ流れた電流の一部が、FET113Hへ流れる場合がある。例えば、モータ10の低速回転時は、高速回転時と比較して、FET143Hから巻線M3へ流れた電流が、FET113Hへ流れる割合が大きくなる場合がある。 
図4は、三相通電制御に従って電力変換装置100を制御したときにA相、B相およびC相の各巻線に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。図4は、A相、B相およびC相の各巻線に流れる電流の基本波成分を示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示している。図4の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表している。制御回路300は、例えば、PWM制御によってブリッジ回路LおよびRの各FETのスイッチング動作を制御する。 
表1は、図4の正弦波において電気角毎に、各インバータの端子に流れる電流値を示している。表1は、具体的に、第1インバータ110(ブリッジ回路L)の端子A_L、B_LおよびC_Lに流れる、電気角30°毎の電流値、および、第2インバータ140(ブリッジ回路R)の端子A_R、B_RおよびC_Rに流れる、電気角30°毎の電流値を示している。ここで、ブリッジ回路Lに対しては、ブリッジ回路Lの端子からブリッジ回路Rの端子に流れる電流方向を正の方向と定義する。図4に示される電流の向きはこの定義に従う。また、ブリッジ回路Rに対しては、ブリッジ回路Rの端子からブリッジ回路Lの端子に流れる電流方向を正の方向と定義する。従って、ブリッジ回路Lの電流とブリッジ回路Rの電流との位相差は180°となる。表1において、電流値Iの大きさは〔(3)1/2/2〕*Ipkであり、電流値Iの大きさはIpk/2である。 
Figure JPOXMLDOC01-appb-T000001
電気角0°において、A相の巻線M1には電流は流れない。B相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、C相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。 
電気角30°において、A相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、B相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、C相の巻線M3にはブリッジ回路L
からブリッジ回路Rに大きさIの電流が流れる。
電気角60°において、A相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、B相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。C相の巻線M3には電流は流れない。 
電気角90°において、A相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れ、B相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、C相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。 
電気角120°において、A相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、C相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。B相の巻線M2には電流は流れない。 
電気角150°において、A相の巻線M1にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、B相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、C相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れる。 
電気角180°において、A相の巻線M1には電流は流れない。B相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、C相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。 
電気角210°において、A相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、B相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れ、C相の巻線M3にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。 
電気角240°において、A相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、B相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。C相の巻線M3には電流は流れない。 
電気角270°において、A相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、B相の巻線M2にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、C相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。 
電気角300°において、A相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、C相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。B相の巻線M2には電流は流れない。 
電気角330°において、A相の巻線M1にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、B相の巻線M2にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、C相の巻線M3にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れる。 
本実施形態では、A相の巻線M1、B相の巻線M2およびC相の巻線M3のそれぞれに供給する電流に高調波成分を重畳させる。図5は、基本波成分に高調波成分を重畳させた駆動電流を示す図である。図5の横軸はモータ電気角(deg)を示し、縦軸は電流値(A)を示している。 
高調波成分253は、電流の基本波成分251の周波数の整数倍の周波数を有する。図5に示す例では、高調波成分253は、基本波成分251の周波数の3倍の周波数を有する3次高調波成分である。制御回路300は、基本波成分251に高調波成分253を重畳して得られる駆動電流250を、A相の巻線M1、B相の巻線M2およびC相の巻線M3のそれぞれに供給する。制御回路300は、例えば、図5に示すような駆動電流が得られるように、PWM制御によってブリッジ回路LおよびRの各FETのスイッチング動作を制御する。 
次に、振動およびトルクリップルを効果的に低減させるロータ30用の永久磁石32の形状を説明する。 
図6は、モータ10が備えるステータ20およびロータ30の一例を示す平面図である。この例では、ステータ20は12個の積層歯23を備える。ロータ30は10個の永久磁石32を備える。言い換えると、この例では、ステータ20には、隣り合う積層歯23の間に構成され巻線21が配置される溝(スロット)25が12個ある。ロータ30における極数は10である。このような数の溝および磁極を備える構造は、12S10P(12スロット10ポール)と称されることがある。この例では、モータ10は、三相(A相、B相、C相)の巻線を有する三相モータである。12個の積層歯23には、例えば、A、A、B、B、C、C、A、A、B、B、C、Cの順に、A相、B相、C相が割り当てられている。 
ロータ30の回転軸方向に平行な方向からロータ30を見たときの平面視において、ロータコア31の外形は、多角形である。この例では、平面視におけるロータコア31の外形は、十角形である。ロータコア31の外周部は、複数の側面34を有する。この例では、ロータコア31の外周部は、10個の側面34を有する。10個の側面34は、ロータコア31の周方向に隣り合って配置され、ロータコア31の外側面を構成する。平面視において、各側面34は、直線形状を有する。 
側面34のそれぞれには、永久磁石32が配置される。永久磁石32は、例えば、接着剤等によって側面34に固定される。各永久磁石32は、各積層歯23と径方向に対向する。なお、永久磁石32は、磁石ホルダなどの部材を用いてロータコア31に保持されてもよいし、他の方法によって固定されてもよい。 
図7は、ロータコア31に設けられる永久磁石32の平面図である。図7は、ロータ30の回転軸方向に平行な方向からロータ30を見たときの平面視における永久磁石32を示している。図8は、永久磁石32を示す斜視図である。永久磁石32の形状を分かり易く説明するために、図8では永久磁石32の内部を透かして図示している。 
永久磁石32は、ロータコア31の側面34(図6)と接触する第1の面221と、ロータ30の径方向210において第1の面221よりも外側に位置する第2の面222と、径方向210に沿って延びる側面223とを有する。 
第1の面221は、ロータコア31の側面34に固定される永久磁石32の内周側の面である。第2の面222は、ステータ20の積層歯23と対向する永久磁石32の外周側の面である。第2の面222は、径方向において第1の面221とは反対側に位置する。 
図7に示すように、平面視において、第1の面221および第2の面222のそれぞれは直線形状を有する。第1の面221の直線形状部分と第2の面222の直線形状部分とは互いに平行である。第2の面222の直線形状部分の長さL2は、第1の面221の直線形状部分の長さL1より小さい。 
平面視において、永久磁石32の側面223は、第1の面221の周方向両端から径方向外側に向かって延びている。永久磁石32は、側面223と第2の面222とを接続する接続部分224を有する。接続部分224は、第2の面222および側面223のそれぞれに対して傾斜した直線形状部分を有する。 
ロータ用の永久磁石32は、例えば、ブロック形状の磁石素材を削って成形される。本実施形態の永久磁石32は、ブロック形状の磁石素材に対して面取りを行って、接続部分224を有する永久磁石32を成形する。図9は、ブロック形状の磁石素材32aを示す平面図である。この例では、磁石素材32aは直方体形状である。図9に示す磁石素材32aの破線部分を面取りすることにより、図7に示すような接続部分224を有する永久磁石32が得られる。 
図7に示すような形状の永久磁石32から発生する磁束には、高調波成分が含まれる。永久磁石32から発生する磁束には、例えば3次高調波成分が含まれる。 
電力変換装置100がA相の巻線M1、B相の巻線M2およびC相の巻線M3のそれぞれに供給する駆動電流を説明する。上述したように、電力変換装置100は基本波成分に高調波成分を重畳させた駆動電流を生成する。 
下記の式(1)に示すように、ステータ20の各積層歯23に働くラジアル力Frは、各鎖交磁束Ψの2乗で表すことができる。ラジアル力Frは、積層歯に働くラジアル方向の加振力である。ここで、μは透磁率であり、Nはターン数であり、Sは各積層歯に磁束が鎖交する面積である。添え字a、b、cはそれぞれA相、B相、C相を表している。  
Figure JPOXMLDOC01-appb-M000002
鎖交磁束Ψは、永久磁石32の磁束成分Ψmと電流成分iの和で表されることから、式(2)のように表される。ここで、Lは自己インダクタンスであり、Mは相互インダクタンスである。  
Figure JPOXMLDOC01-appb-M000003
制御回路300は、永久磁石32の磁束の3次成分と駆動電流の3次成分とを用いて、ラジアル力の6次成分(=3+3)を制御することができる。例えば、ラジアル力の6次成分が最小となるように、電流の3次成分を決定する。 
モータトルクTeは、下記の式(3)により表される。ここで、Pはモータの出力であり、ωは角速度である。  
Figure JPOXMLDOC01-appb-M000004
式(3)の右辺の、  
Figure JPOXMLDOC01-appb-M000005
が駆動電流の3次成分と永久磁石32の磁束の3次成分とから発生する6次成分になる。この6次成分が最小となるように、電流の3次成分を決定する。 
ラジアル力としては、2次、4次、6次、・・・など、電気角偶数次の成分(2n次の成分)が発生する。特に、6次のラジアル力は、モータの固有振動数との関係において、共振を引き起こしやすく、振動が大きくなりやすい。ラジアル力の6次成分が最小となるよう、電流の3次成分を決めることにより、モータ10の振動を低減することができる。 
制御回路300は、駆動電流の3次成分および永久磁石32の磁束の3次成分に基づいて、駆動電流の基本波成分と永久磁石32の磁束との関係から発生するトルクリップルを制御する。例えば、駆動電流の3次成分と永久磁石32の磁束との関係から発生するトルクリップルが、駆動電流の基本波成分と永久磁石32の磁束との関係から発生するトルクリップルを打ち消すように、電流の3次成分を決定する。例えば、駆動電流の3次成分と永久磁石32の磁束との関係から発生するトルクリップルの波形が、駆動電流の基本波成分と永久磁石32の磁束との関係から発生するトルクリップルの波形の逆位相となるように、電流の3次成分を決定する。
なお、駆動電流の基本波成分と3次高調波成分とは互いに位相が揃っていなくてもよく、互いにずれていてもよい。例えば、基本波成分と3次高調波成分との位相は120度ずれていてもよい。 
また、モータトルクの3次成分を適切に制御することで、モータトルクを大きくすることができる。モータトルクの3次成分Tabc_3rdは、以下の式(4)で表される。  
Figure JPOXMLDOC01-appb-M000006
はA相の巻線を流れる電流、iはB相の巻線を流れる電流、iはC相の巻線を流れる電流である。Iabcは三相の巻線を流れる電流、Ψ_3rdは鎖交磁束の3次成分、θはロータ角である。 
例えば、モータトルクの3次成分Tabc_3rdが大きくなるように、電流i、i、iの3次成分を決定することで、トルクの3次成分を有効活用してトータルのモータトルク大きくすることができる。 
また、例えば、ラジアル力の6次成分が最小となるよう、電流i、i、iの3次成分を決めることにより、モータ10の振動を低減することができる。また、例えば、制御回路300は、電流i、i、iの3次成分および永久磁石32の磁束の3次成分に基づいて、電流i、i、iの基本波成分と永久磁石32の磁束との関係から発生するトルクリップルを制御する。例えば、電流i、i、iの3次成分と永久磁石32の磁束との関係から発生するトルクリップルが、電流i、i、iの基本波成分と永久磁石32の磁束との関係から発生するトルクリップルを打ち消すように、電流i、i、iの3次成分を決定する。例えば、電流i、i、iの3次成分と永久磁石32の磁束との関係から発生するトルクリップルの波形が、電流i、i、iの基本波成分と永久磁石32の磁束との関係から発生するトルクリップルの波形の逆位相となるように、電流i、i、iの3次成分を決定する。 
制御回路300は、電流i、i、iの少なくとも1つに3次成分を含ませることで、振動およびトルクリップルを低減させてもよい。例えば、制御回路300は、電流iの3次成分および永久磁石32の磁束の3次成分に基づいて、トルクリップルを制御してもよい。 
制御回路300は、電流i、i、iの3次成分のそれぞれを互いに独立して制御することで、振動およびトルクリップルを低減させてもよい。独立結線方式の電力変換装置100では、A相の巻線、B相の巻線、C相の巻線は互いに電気的に接続されていない。そのため、A相の巻線を流れる電流i、B相の巻線を流れる電流i、C相の巻線を流れる電流iのそれぞれを個別に調整することができる。電流i、i、iの3次成分のそれぞれを互いに独立して制御することで、振動およびトルクリップルをより効果的に低減させることができる。例えば、三相の電流の間で、3次成分の振幅を互いに異ならせたり、基本波成分に対する3次成分の位相を互いに異ならせたりすることで、振動およびトルクリップルをより効果的に低減させることができる。 
実施形態に係る永久磁石32の変形例を説明する。図10は、永久磁石32の変形例である永久磁石32Cの平面図である。永久磁石32Cは、ロータコアの外周部に固定される面である第1の面221Cと、ステータの積層歯と対向する第2の面222Cとを有する。平面視において、永久磁石32Cでは、第2の面222Cは湾曲形状であり、第1の面221Cと第2の面222Cとは平行ではない。第2の面222Cは、円弧状となっている。本実施形態における永久磁石32の厚さT1(図7)と比較して、図10に示す永久磁石32Cの厚さT2は大きい。ここで永久磁石の厚さは、径方向に沿った永久磁石の長さである。平面視において、永久磁石32の第1の面221の長さと、永久磁石32Cの第1の面221Cの長さは互いに同じである。また、永久磁石32および永久磁石32Cのロータの軸方向に沿った長さは互いに同じである。図10に示すような永久磁石32Cの形状によっても、永久磁石32Cから発生する磁束に3次高調波成分を含めることができる。 
図7に示す例では、永久磁石32の接続部分224は、第2の面222および側面223のそれぞれに対して傾斜した直線形状部分を有していた。接続部分224の形状は直線形状に限定されない。図11は、永久磁石32の変形例を示す平面図である。図11に示す例では、平面視において、接続部分224は曲線形状部分を有している。接続部分224が曲線形状部分を有する場合でも、上述の長さL1と長さL2の比率を満たすことにより、上述と同様の効果を得ることができる。 
(実施形態2)

 次に、実施形態に係るモータ10を搭載する電動パワーステアリング装置を説明する。図12は、実施形態に係る電動パワーステアリング装置500を示す模式図である。 
電動パワーステアリング装置500は、自動車の車輪の操舵機構に搭載される。図12に示す電動パワーステアリング装置500は、操舵力を油圧により軽減する装置である。図12に示すように、電動パワーステアリング装置500は、モータ10と、操舵軸514と、オイルポンプ516と、コントロールバルブ517とを備える。 
操舵軸514は、ステアリング511からの入力を、車輪512を有する車軸513に伝える。オイルポンプ516は、車軸513に油圧による駆動力を伝えるパワーシリンダ515に油圧を発生させる。コントロールバルブ517は、オイルポンプ516のオイルの動きを制御する。電動パワーステアリング装置500において、モータ10は、オイルポンプ516の駆動源として搭載されている。 
図12に示す例では、モータ10が発生する補助力は、油圧を介して車軸513に伝達していたが、油圧を介さずに車軸513に伝達されてもよい。電動パワーステアリング装置500は、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等のいずれであってもよい。 
モータ10を備える電動パワーステアリング装置500では、モータの動作に起因する振動および騒音が低減される。これにより、操舵フィーリングを向上させることができる。 
以上、本開示にかかる実施形態を説明した。上述の実施形態の説明は例示であり、本開示の技術を限定するものではない。また、上述の実施形態で説明した各構成要素を適宜組み合わせた実施形態も可能である。
本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。
10 モータ 11 中心軸 20 ステータ 21 巻線 22 積層体 23 積層歯 24 コアバック 26 渡り線 30 ロータ 31 ロータコア 32 永久磁石 33 シャフト 100 電力変換装置 101 電源 102 コイル 103 コンデンサ 110 第1インバータ 140 第2インバータ 300 制御回路 310 電源回路 320 角度センサ 330 入力回路 340 マイクロコントローラ 350 駆動回路 351 検出回路 360 ROM 500 電動パワーステアリング装置

Claims (8)

  1. 電源からの電力をモータに供給する電力に変換する電力変換装置であって、



     前記モータは、



     複数の永久磁石が設けられたロータと、



     三相の巻線が設けられたステータと、



     を備え、



     前記電力変換装置は、



     前記モータの各相の巻線の一端に接続される第1インバータと、



     前記各相の巻線の他端に接続される第2インバータと、



     前記第1および第2インバータの動作を制御する制御回路と、



     を備え、



     前記三相の巻線は、第1相の巻線を含み、



     前記第1および第2インバータから前記第1相の巻線へ供給する電流は、基本波成分と、前記基本波成分の周波数の整数倍の周波数を有する高調波成分とを含み、



     前記制御回路は、前記永久磁石の磁束の3次成分および前記第1相の巻線へ供給する電流の3次成分に基づいて、前記ステータが有する歯に働くラジアル方向の力の6次成分を制御する、電力変換装置。
  2. 前記第1および第2インバータから前記各相の巻線へ供給する電流は、基本波成分と、前記基本波成分の周波数の整数倍の周波数を有する高調波成分とを含み、



     前記制御回路は、前記永久磁石の磁束の3次成分および前記各相の巻線へ供給する電流の3次成分に基づいて、前記ステータが有する歯に働くラジアル方向の力の6次成分を制御する、請求項1に記載の電力変換装置。
  3. 前記三相の巻線は、第2相の巻線および第3相の巻線をさらに含み、



     前記制御回路は、前記第1相の巻線へ供給する電流の3次成分、前記第2相の巻線へ供給する電流の3次成分、前記第3相の巻線へ供給する電流の3次成分のそれぞれを独立に制御する、請求項2に記載の電力変換装置。
  4. 電源からの電力をモータに供給する電力に変換する電力変換装置であって、



     前記モータは、



     複数の永久磁石が設けられたロータと、



     三相の巻線が設けられたステータと、



     を備え、



     前記電力変換装置は、



     前記モータの各相の巻線の一端に接続される第1インバータと、



     前記各相の巻線の他端に接続される第2インバータと、



     前記第1および第2インバータの動作を制御する制御回路と、



     を備え、



     前記三相の巻線は、第1相の巻線を含み、



     前記第1および第2インバータから前記第1相の巻線へ供給する電流は、基本波成分と、前記基本波成分の周波数の整数倍の周波数を有する高調波成分とを含み、



     前記制御回路は、前記第1相の巻線へ供給する電流の3次成分および前記永久磁石の磁束の3次成分に基づいて、前記第1相の巻線へ供給する電流の基本波成分と前記永久磁石の磁束との関係から発生するトルクリップルを制御する、電力変換装置。
  5. 前記第1および第2インバータから前記各相の巻線へ供給する電流は、基本波成分と、前記基本波成分の周波数の整数倍の周波数を有する高調波成分とを含み、



     前記制御回路は、前記各相の巻線へ供給する電流の3次成分および前記永久磁石の磁束の3次成分に基づいて、前記各相の巻線へ供給する電流の基本波成分と前記永久磁石の磁束との関係から発生するトルクリップルを制御する、請求項4に記載の電力変換装置。
  6. 前記三相の巻線は、第2相の巻線および第3相の巻線をさらに含み、



     前記制御回路は、前記第1相の巻線へ供給する電流の3次成分、前記第2相の巻線へ供給する電流の3次成分、前記第3相の巻線へ供給する電流の3次成分のそれぞれを独立に制御する、請求項5に記載の電力変換装置。
  7. 請求項1から6のいずれかに記載の電力変換装置を備えるモータ。
  8. 請求項7に記載のモータを備える電動パワーステアリング装置。
PCT/JP2019/002514 2018-02-06 2019-01-25 電力変換装置、モータおよび電動パワーステアリング装置 WO2019155918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/967,425 US20230198452A1 (en) 2018-02-06 2019-01-25 Power conversion apparatus, motor, and electric power steering apparatus
CN201980011422.XA CN111684702A (zh) 2018-02-06 2019-01-25 电力转换装置、马达以及电动助力转向装置
JP2019570679A JPWO2019155918A1 (ja) 2018-02-06 2019-01-25 電力変換装置、モータおよび電動パワーステアリング装置
DE112019000678.9T DE112019000678T5 (de) 2018-02-06 2019-01-25 Leistungsumwandlungsvorrichtung, motor und elektrische servolenkvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-019005 2018-02-06
JP2018019005 2018-02-06

Publications (1)

Publication Number Publication Date
WO2019155918A1 true WO2019155918A1 (ja) 2019-08-15

Family

ID=67549435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/002514 WO2019155918A1 (ja) 2018-02-06 2019-01-25 電力変換装置、モータおよび電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20230198452A1 (ja)
JP (1) JPWO2019155918A1 (ja)
CN (1) CN111684702A (ja)
DE (1) DE112019000678T5 (ja)
WO (1) WO2019155918A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210138887A (ko) * 2020-05-13 2021-11-22 주식회사 만도 조향 제어 장치, 조향 어시스트 장치 및 조향 시스템

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183656A1 (ja) * 2016-04-19 2017-10-26 日本電産株式会社 モータおよび電動パワーステアリング装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3601757B2 (ja) * 1998-08-03 2004-12-15 オークマ株式会社 永久磁石モータ
JP2005328691A (ja) * 2004-04-15 2005-11-24 Denso Corp モータ制御装置
WO2011099122A1 (ja) * 2010-02-10 2011-08-18 株式会社 日立製作所 電力変換装置
JP5911636B2 (ja) * 2013-02-12 2016-04-27 三菱電機株式会社 モータ駆動装置
JP6221981B2 (ja) * 2014-07-25 2017-11-01 株式会社デンソー 回転電機の制御装置
US9419553B2 (en) * 2014-07-25 2016-08-16 Denso Corporation Apparatus for controlling rotary machine

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183656A1 (ja) * 2016-04-19 2017-10-26 日本電産株式会社 モータおよび電動パワーステアリング装置

Also Published As

Publication number Publication date
JPWO2019155918A1 (ja) 2021-01-28
CN111684702A (zh) 2020-09-18
DE112019000678T5 (de) 2020-10-22
US20230198452A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
JP5948061B2 (ja) 回転電機、およびその回転電機を備えた車両
EP2489118B1 (en) Method and system for measuring a characteristic of an electric motor
WO2018180361A1 (ja) モータおよび電動パワーステアリング装置
WO2018180360A1 (ja) モータおよび電動パワーステアリング装置
US9694845B2 (en) Motor control device, electric power steering device, and vehicle
JP6452889B2 (ja) 電動機
JP4968350B2 (ja) 直流モータ制御装置
CN109075633B (zh) 马达和电动助力转向装置
US6934468B2 (en) Brushless DC motor and circuit for controlling the same
JP5538984B2 (ja) 永久磁石式電動機
WO2019155918A1 (ja) 電力変換装置、モータおよび電動パワーステアリング装置
JP7105598B2 (ja) モータ、ブラシレスワイパーモータ、及びモータの駆動方法
JP6962375B2 (ja) モータの制御装置及び記憶媒体
WO2020100580A1 (ja) モータおよび電動パワーステアリング装置
TWM559542U (zh) 扁平式直流馬達
JPWO2019069918A1 (ja) モータおよび電動パワーステアリング装置
JP2019047711A (ja) ブラシレスモータ
JP6874765B2 (ja) モータ制御装置、車載モータ制御装置及び車載モータシステム
JPH11136889A (ja) 永久磁石形モータ及びその製造方法
WO2019155961A1 (ja) リラクタンスモータおよび当該リラクタンスモータを備えるモータシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019570679

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19750625

Country of ref document: EP

Kind code of ref document: A1