WO2020100580A1 - モータおよび電動パワーステアリング装置 - Google Patents

モータおよび電動パワーステアリング装置 Download PDF

Info

Publication number
WO2020100580A1
WO2020100580A1 PCT/JP2019/042390 JP2019042390W WO2020100580A1 WO 2020100580 A1 WO2020100580 A1 WO 2020100580A1 JP 2019042390 W JP2019042390 W JP 2019042390W WO 2020100580 A1 WO2020100580 A1 WO 2020100580A1
Authority
WO
WIPO (PCT)
Prior art keywords
coil
coil group
phase
motor
bridge circuit
Prior art date
Application number
PCT/JP2019/042390
Other languages
English (en)
French (fr)
Inventor
弘光 大橋
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to DE112019005725.1T priority Critical patent/DE112019005725T5/de
Priority to CN201980074833.3A priority patent/CN113016118A/zh
Priority to JP2020555986A priority patent/JPWO2020100580A1/ja
Priority to US17/292,704 priority patent/US20220014136A1/en
Publication of WO2020100580A1 publication Critical patent/WO2020100580A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • H02P25/22Multiple windings; Windings for more than three phases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0403Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by constructional features, e.g. common housing for motor and gear box
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/28Layout of windings or of connections between windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/003Constructional details, e.g. physical layout, assembly, wiring or busbar connections
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/16Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the circuit arrangement or by the kind of wiring
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P2207/00Indexing scheme relating to controlling arrangements characterised by the type of motor
    • H02P2207/05Synchronous machines, e.g. with permanent magnets or DC excitation
    • H02P2207/055Surface mounted magnet motors

Definitions

  • the present disclosure relates to a motor and an electric power steering device.
  • the power conversion device disclosed in Patent Document 1 includes a control unit and two inverters, and converts the power supplied to the three-phase motor.
  • Each of the two inverters is connected to a power source and a ground (hereinafter, referred to as “GND”).
  • One inverter is connected to one end of the three-phase coil of the motor, and the other inverter is connected to the other end of the three-phase coil.
  • Each inverter comprises a bridge circuit composed of three legs each including a high side switching element and a low side switching element. Such connection may be called independent connection.
  • the control unit disclosed in Patent Document 1 switches the motor control from the normal control to the abnormal control when a failure of the switching element in the two inverters is detected.
  • the neutral point of the coil is configured by turning on and off the switching element of the inverter including the failed switching element according to a predetermined rule. Then, the motor drive is continued using the normal inverter.
  • An exemplary motor includes an n-phase (n is an integer of 3 or more) coil group, a first inverter connected to one end of the n-phase coil group, and the other end of the n-phase coil group.
  • At least one of the coil groups includes a first sub-coil group including a first coil and a second coil connected in series with each other, and a second sub-coil group including a third coil and a fourth coil connected in series with each other.
  • the first sub-coil group and the second sub-coil group are connected in parallel with each other.
  • the output of a motor including an independent wiring type power conversion device can be increased.
  • FIG. 1 is a schematic diagram showing the structure of the motor according to the embodiment.
  • FIG. 2 is a schematic diagram illustrating a circuit configuration of a motor including the power conversion device according to the embodiment.
  • FIG. 3 is a diagram illustrating an H bridge included in the power conversion device according to the embodiment.
  • FIG. 4 is a diagram illustrating an H bridge included in the power conversion device according to the embodiment.
  • FIG. 5 is a figure which shows the H bridge which the power converter device which concerns on embodiment has.
  • FIG. 6 is a block diagram showing a motor including the power conversion device according to the embodiment.
  • FIG. 7 is a figure which shows the current waveform obtained by plotting the current value which flows into each coil of the U phase of a motor, V phase, and W phase, when controlling a power converter device according to the three-phase electricity supply control which concerns on embodiment.
  • FIG. 8 is a diagram showing a stator and a rotor according to the embodiment.
  • FIG. 9 is a diagram showing the relationship between the wire diameter of the coil and the output according to the embodiment.
  • FIG. 10 is a schematic diagram showing the electric power steering device according to the embodiment.
  • n-phase motors having n-phase (n is an integer of 3 or more) coils such as four-phase and five-phase are also within the scope of the present disclosure.
  • FIG. 1 is a diagram showing a structure of a motor 10 according to the present embodiment.
  • FIG. 1 shows the inside of the motor 10 when cut along the central axis 11.
  • the motor 10 is an electromechanical integrated motor.
  • the motor 10 is used, for example, as a motor for an electric power steering device of an automobile. In that case, the motor 10 generates the driving force of the electric power steering device.
  • the motor 10 is, for example, a three-phase AC motor.
  • the motor 10 includes a stator 20, a rotor 30, a housing 12, a partition wall 14, a bearing 15, and a bearing 16.
  • the stator 20 is also called an armature.
  • the central shaft 11 is the rotation shaft of the rotor 30.
  • the housing 12 is a substantially cylindrical housing having a bottom, and houses the stator 20, the bearing 15, and the rotor 30 inside.
  • a recess 13 for holding the bearing 15 is in the center of the bottom of the housing 12.
  • the partition wall 14 is a plate-shaped member that closes the upper opening of the housing 12. The partition wall 14 holds the bearing 16 at the center thereof.
  • the stator 20 is annular and has a laminated body 22 and a coil 21.
  • the laminated body 22 is also referred to as a laminated annular core.
  • a coil is also called a winding.
  • the coil 21 corresponds to a coil group 201, 202, 203 (FIG. 2) described later.
  • the stator 20 generates a magnetic flux according to the drive current.
  • the laminated body 22 is composed of laminated steel sheets obtained by laminating a plurality of steel sheets in a direction along the central axis 11 (Z direction in FIG. 1).
  • the laminated body 22 includes an annular laminated core back 24 and a plurality of laminated teeth (teeth) 23.
  • the laminated core back 24 is fixed to the inner wall of the housing 12.
  • the coil 21 is made of a conductive material such as copper, and is typically attached to each of the plurality of laminated teeth 23 of the laminated body 22.
  • the rotor 30 is rotatable relative to the stator 20 around the central axis 11.
  • the rotor 30 includes a rotor core 31, a plurality of permanent magnets 32 provided along the outer circumference of the rotor core 31, and a shaft 33.
  • the rotor core 31 is made of a magnetic material such as iron and has a tubular shape.
  • the rotor core 31 is composed of laminated steel plates in which a plurality of steel plates are laminated in the direction along the central axis 11 (Z direction in FIG. 1).
  • the plurality of permanent magnets 32 are provided so that N poles and S poles alternately appear in the circumferential direction of the rotor core 31.
  • the shaft 33 is fixed to the center of the rotor core 31, and extends in the vertical direction (Z direction) along the central axis 11.
  • the up, down, left, and right directions in this specification refer to the up, down, left, and right directions when the motor 10 shown in FIG. 1 is viewed, and these directions are used to explain the embodiment in an easy-to-understand manner.
  • the vertical and horizontal directions in this specification do not necessarily match the vertical and horizontal directions when the motor 10 is mounted on an actual product (such as an automobile).
  • the bearings 15 and 16 rotatably support the shaft 33 of the rotor 30.
  • the bearings 15 and 16 are, for example, ball bearings that relatively rotate an outer ring and an inner ring via a spherical body.
  • FIG. 1 illustrates a ball bearing.
  • a permanent magnet 41 is fixed to the end of the shaft 33 on the partition wall 14 side.
  • the permanent magnet 41 is rotatable with the rotor 30.
  • a substrate 50 is arranged on the partition wall 14.
  • the power conversion device 100 is mounted on the substrate 50.
  • the partition wall 14 separates a space for housing the stator 20 and the rotor 30 inside the motor 10 from a space for housing the substrate 50.
  • the power converter 100 converts the power from the power supply into the power to be supplied to the coil 21 of the stator 20.
  • the board 50 is provided with a terminal 52 of an inverter included in the power conversion device 100.
  • An electric wire 51 is connected to the terminal 52.
  • the electric wire 51 is, for example, an end portion of the coil 21.
  • the electric wire 51 and the coil 21 may be separate members.
  • the power output from the power converter 100 is supplied to the coil 21 via the electric wire 51. Details of the power converter 100 will be described later.
  • a magnetic sensor 40 is provided on the substrate 50.
  • the magnetic sensor 40 is arranged at a position facing the permanent magnet 41 fixed to the shaft 33.
  • the magnetic sensor 40 is arranged on the central axis 11 of the shaft 33.
  • the magnetic sensor 40 is, for example, a magnetoresistive effect element or a Hall element.
  • the magnetic sensor 40 can detect the magnetic field generated from the permanent magnet 41 that rotates together with the shaft 33, and thereby detect the rotation angle of the rotor 30.
  • the motor 10 is connected to various control devices, a battery, and the like outside the motor 10 via a plurality of terminals 17.
  • the plurality of terminals 17 include a power supply terminal to which power is supplied from an external power supply, a signal terminal for transmitting and receiving data to and from an external device, and the like.
  • FIG. 2 schematically shows the circuit configuration of the motor 10 including the power conversion device 100 according to this embodiment.
  • the power conversion device 100 includes a first inverter 110 and a second inverter 140.
  • the power converter 100 also includes the control circuit 300 shown in FIG. 6.
  • a U-phase coil group 201, a V-phase coil group 202, and a W-phase coil group 203 are wound around the stator 20.
  • the coil group of each phase is connected to the first inverter 110 and the second inverter 140. More specifically, the first inverter 110 is connected to one end of each phase coil group, and the second inverter 140 is connected to the other end of each phase coil group.
  • connection between components in an electric circuit mainly means electrical connection.
  • the U-phase coil group 201 includes a sub-coil group 215 and a sub-coil group 216.
  • the sub-coil group 215 includes a coil 211 and a coil 212 connected in series with each other.
  • the sub-coil group 216 includes a coil 213 and a coil 214 that are connected in series with each other.
  • the sub coil group 215 and the sub coil group 216 are connected in parallel with each other. In other words, the coils 211 and 212 connected in series and the coils 213 and 214 connected in series are connected in parallel.
  • the V-phase coil group 202 includes a sub-coil group 225 and a sub-coil group 226.
  • the sub-coil group 225 includes a coil 221 and a coil 222 that are connected in series with each other.
  • the sub-coil group 226 includes a coil 223 and a coil 224 that are connected in series with each other.
  • the sub-coil group 225 and the sub-coil group 226 are connected in parallel with each other. In other words, the series-connected coils 221 and 222 and the series-connected coils 223 and 224 are connected in parallel.
  • the W-phase coil group 203 includes a sub-coil group 235 and a sub-coil group 236.
  • the sub-coil group 235 includes a coil 231 and a coil 232 that are connected in series with each other.
  • the sub-coil group 236 includes a coil 233 and a coil 234 that are connected in series with each other.
  • the sub coil group 235 and the sub coil group 236 are connected in parallel with each other. In other words, the series-connected coils 231 and 232 and the series-connected coils 233 and 234 are connected in parallel.
  • FIG. 8 is a diagram showing an example of the stator 20 and the rotor 30.
  • the stator 20 comprises twelve teeth 23.
  • the rotor 30 includes eight permanent magnets 32.
  • the stator 20 has twelve grooves (slots) 25 which are formed between the adjacent teeth 23 and in which the coil 21 is arranged.
  • the number of poles in the rotor 30 is eight.
  • Such a structure having 12 slots and 8 magnetic poles may be referred to as 8P12S (8 poles 12 slots).
  • the motor 10 is a three-phase motor having three-phase (U-phase, V-phase, W-phase) windings.
  • U phase, V phase, W phase are assigned in the order of U, V, W, U, V, W, U, V, W, U, V, W.
  • the outer shape of the rotor core 31 is polygonal in a plan view when the rotor 30 is viewed from a direction parallel to the rotation axis direction of the rotor 30.
  • the outer shape of the rotor core 31 in plan view is an octagon.
  • the outer peripheral portion of the rotor core 31 has a plurality of side surfaces 34.
  • the outer peripheral portion of the rotor core 31 has eight side surfaces 34.
  • the eight side surfaces 34 are arranged adjacent to each other in the circumferential direction of the rotor core 31, and form the outer surface of the rotor core 31.
  • Each side surface 34 has a linear shape in a plan view.
  • a permanent magnet 32 is arranged on each of the side surfaces 34.
  • the permanent magnet 32 is fixed to the side surface 34 with an adhesive or the like, for example.
  • Each permanent magnet 32 faces each tooth 23 in the radial direction.
  • the permanent magnet 32 may be held on the rotor core 31 by using a member such as a magnet holder, or may be fixed by another method.
  • the coil winding method of the stator 20 is, for example, a concentrated winding method.
  • the coil 211, the coil 212, the coil 213, and the coil 214 are wound around the plurality of laminated teeth 23 to which the U phase is assigned.
  • a coil 221, a coil 222, a coil 223, and a coil 224 are wound around the plurality of laminated teeth 23 to which the V phase is assigned.
  • a coil 231, a coil 232, a coil 233, and a coil 234 are wound around the plurality of laminated teeth 23 to which the W phase is assigned.
  • the numbers of magnetic poles and slots described above are examples, and may be different numbers.
  • the number of magnetic poles may be 10, 14 or 16.
  • the first inverter 110 has terminals U_L, V_L and W_L corresponding to each phase as the terminal 52 (FIG. 1).
  • the second inverter 140 has, as the terminal 52, terminals U_R, V_R, and W_R corresponding to each phase.
  • the terminal U_L of the first inverter 110 is connected to one end of the U-phase coil group 201, the terminal V_L is connected to one end of the V-phase coil group 202, and the terminal W_L is connected to one end of the W-phase coil group 203. Connected.
  • the terminal U_R of the second inverter 140 is connected to the other end of the U-phase coil group 201, the terminal V_R is connected to the other end of the V-phase coil group 202, and the terminal W_R is , W-phase coil group 203 is connected to the other end.
  • Such connection may be called independent connection, unlike so-called star connection and delta connection.
  • the sub-coil groups of the same phase may be connected to the first inverter 110 and the second inverter 140 in a state of being connected to each other, or may be independently connected to the first inverter 110 and the second inverter 140.
  • the coil 211 and the coil 213 may be connected to the first inverter 110 while being connected to each other, or the coil 211 and the coil 213 may be connected to the first inverter 110 independently of each other.
  • the coil 212 and the coil 214 may be connected to the second inverter 140 while being connected to each other, or the coil 212 and the coil 214 may be connected to the second inverter 140 independently of each other.
  • the first inverter 110 and the second inverter 140 are connected to the power supply 101 and GND.
  • the motor 10 including the power conversion device 100 can be connected to an external power source, for example, via the terminal 17 (FIG. 1).
  • the first inverter 110 may be referred to as a “bridge circuit L”.
  • the second inverter 140 may be referred to as a “bridge circuit R”.
  • Each of the first inverter 110 and the second inverter 140 includes three legs including a low side switching element and a high side switching element.
  • the plurality of switching elements forming the legs form a plurality of H bridges between the first inverter 110 and the second inverter 140 via the coil group of the motor 10.
  • the first inverter 110 includes a bridge circuit composed of three legs.
  • the switching elements 111L, 112L, and 113L shown in FIG. 2 are low-side switching elements, and the switching elements 111H, 112H, and 113H are high-side switching elements.
  • As the switching element for example, a field effect transistor (typically MOSFET) or an insulated gate bipolar transistor (IGBT) can be used.
  • MOSFET field effect transistor
  • IGBT insulated gate bipolar transistor
  • the first inverter 110 includes three shunt resistors 111R, 112R, and 113R as current sensors (see FIG. 6) for detecting currents flowing in coil groups of U-phase, V-phase, and W-phase. .
  • the current sensor 170 includes a current detection circuit (not shown) that detects a current flowing through each shunt resistor.
  • the shunt resistors 111R, 112R and 113R are respectively connected between the three low side switching elements included in the three legs of the first inverter 110 and the GND.
  • the shunt resistor 111R is connected between the FET 111L and GND
  • the shunt resistor 112R is connected between the FET 112L and GND
  • the shunt resistor 113R is connected between the FET 113L and GND.
  • the resistance value of the shunt resistor is, for example, about 0.5 m ⁇ to 1.0 m ⁇ .
  • the second inverter 140 includes a bridge circuit composed of three legs.
  • the FETs 141L, 142L and 143L shown in FIG. 2 are low side switching elements, and the FETs 141H, 142H and 143H are high side switching elements.
  • the second inverter 140 also includes three shunt resistors 141R, 142R and 143R. Those shunt resistors are connected between the three low side switching elements included in the three legs and GND.
  • Each FET of the first and second inverters 110, 140 may be controlled by, for example, a microcontroller or a dedicated driver.
  • 3, 4, and 5 are diagrams showing three H bridges 131, 132, and 133 included in the power conversion device 100.
  • the first inverter 110 has legs 121, 123 and 125.
  • the leg 121 has a FET 111H and a FET 111L.
  • the leg 123 has a FET 112H and a FET 112L.
  • the leg 125 has a FET 113H and a FET 113L.
  • the second inverter 140 has legs 122, 124 and 126.
  • the leg 122 has a FET 141H and a FET 141L.
  • the leg 124 has a FET 142H and a FET 142L.
  • the leg 126 has a FET 143H and a FET 143L.
  • the H bridge 131 shown in FIG. 3 has a leg 121, a coil group 201, and a leg 122.
  • the H-bridge 132 shown in FIG. 4 has a leg 123, a coil group 202, and a leg 124.
  • the H bridge 133 shown in FIG. 5 has a leg 125, a coil group 203, and a leg 126.
  • the power supply 101 (FIG. 2) generates a predetermined power supply voltage. Electric power is supplied from the power supply 101 to the first and second inverters 110 and 140.
  • a DC power supply is used as the power supply 101.
  • the power supply 101 may be an AC-DC converter or a DC-DC converter, or a battery (storage battery).
  • the power supply 101 may be a single power supply common to the first and second inverters 110 and 140, or may include a first power supply for the first inverter 110 and a second power supply for the second inverter 140. Good.
  • a coil 102 is provided between the power supply 101 and the power conversion device 100.
  • the coil 102 functions as a noise filter and smoothes high frequency noise included in the voltage waveform supplied to each inverter or high frequency noise generated in each inverter so as not to flow out to the power supply 101 side.
  • one end of a capacitor 103 is connected between the power supply 101 and the power conversion device 100. The other end of the capacitor 103 is connected to GND.
  • the capacitor 103 is a so-called bypass capacitor and suppresses voltage ripple.
  • the capacitor 103 is, for example, an electrolytic capacitor, and the capacity and the number of capacitors used are appropriately determined according to design specifications and the like.
  • Fig. 2 exemplifies a configuration in which one shunt resistor is arranged in each leg of each inverter.
  • the first and second inverters 110, 140 may include up to 6 shunt resistors. Six or less shunt resistors may be connected between GND and six or less low-side switching elements of six legs included in the first and second inverters 110 and 140. Further expanding this to an n-phase motor, the first and second inverters 110, 140 may include 2n or less shunt resistors. The 2n or less shunt resistors may be connected between the GND and 2n or less low side switching elements of the 2n legs included in the first and second inverters 110 and 140.
  • FIG. 6 schematically shows a block configuration of the motor 10 including the power conversion device 100.
  • the power conversion device 100 includes a control circuit 300.
  • the control circuit 300 includes, for example, a power supply circuit 310, an angle sensor 320, an input circuit 330, a microcontroller 340, a drive circuit 350, and a ROM 360.
  • the control circuit 300 drives the motor 10 by controlling the overall operation of the power conversion device 100.
  • the control circuit 300 can realize the closed-loop control by controlling the target position, rotation speed, current, and the like of the rotor.
  • the control circuit 300 may include a torque sensor instead of the angle sensor. In this case, the control circuit 300 can control the target motor torque.
  • the power supply circuit 310 generates a DC voltage (for example, 3V, 5V) required for each block in the circuit.
  • the angle sensor 320 is, for example, a resolver or a Hall IC. A magnetoresistive effect element and a magnet may be used as the angle sensor 320.
  • the angle sensor 320 detects the rotation angle of the rotor of the motor 10 (hereinafter, referred to as “rotation signal”) and outputs the rotation signal to the microcontroller 340.
  • the input circuit 330 receives the motor current value detected by the current sensor 170 (hereinafter, referred to as “actual current value”), and converts the level of the actual current value to the input level of the microcontroller 340 as necessary. Then, the actual current value is output to the microcontroller 340.
  • the microcontroller 340 controls the switching operation (turn-on or turn-off) of each FET of the first inverter 110 and the second inverter 140.
  • the microcontroller 340 sets a target current value according to the actual current value and the rotor rotation signal, generates a PWM signal, and outputs the PWM signal to the drive circuit 350.
  • the drive circuit 350 is typically a gate driver.
  • the drive circuit 350 generates a control signal (gate control signal) for controlling the switching operation of each FET in the first and second inverters 110 and 140 according to the PWM signal, and supplies the control signal to the gate of each FET.
  • the microcontroller 340 may have the function of the drive circuit 350. In that case, the control circuit 300 may not include the drive circuit 350.
  • the ROM 360 is, for example, a writable memory, a rewritable memory, or a read-only memory.
  • the ROM 360 stores a control program including a command group for causing the microcontroller 340 to control the power conversion device 100.
  • the control program is once expanded in the RAM (not shown) at the time of booting.
  • the FET 141H turns off, and when the FET 111H turns off, the FET 141H turns on.
  • the current output from the power supply 101 flows to GND through the high side switching element, the coil group, and the low side switching element.
  • the path of the current flowing through the U-phase coil group 201 will be described.
  • the FETs 111H and 141L are on and the FETs 141H and 111L are off, current flows in the order of the power source 101, the FET 111H, the coil group 201, the FET 141L, and the GND.
  • the FET 141H and the FET 111L are on and the FET 111H and the FET 141L are off, the current flows in the order of the power source 101, the FET 141H, the coil group 201, the FET 111L, and the GND.
  • the path of the current flowing through the V-phase coil group 202 will be described.
  • the FET 112H and the FET 142L are on and the FET 142H and the FET 112L are off, the current flows in the order of the power source 101, the FET 112H, the coil group 202, the FET 142L, and the GND.
  • the FET 142H and the FET 112L are on and the FET 112H and the FET 142L are off, the current flows in the order of the power source 101, the FET 142H, the coil group 202, the FET 112L, and the GND.
  • FIG. 7 shows a current waveform (sine wave) obtained by plotting current values flowing in the U-phase, V-phase, and W-phase coil groups of the motor 10 when the power converter 100 is controlled according to the three-phase energization control. It is illustrated.
  • the horizontal axis represents the motor electrical angle (deg), and the vertical axis represents the current value (A).
  • current values are plotted at every 30 electrical degrees.
  • I pk represents the maximum current value (peak current value) of each phase.
  • Table 1 shows current values flowing through the terminals of each inverter for each electrical angle in the sine wave of FIG. 7.
  • Table 1 specifically shows the current values flowing through the terminals U_L, V_L, and W_L of the first inverter 110 (bridge circuit L) for each electrical angle of 30 °, and the terminal U_R of the second inverter 140 (bridge circuit R). , V_R and W_R, the current values are shown for each electrical angle of 30 °.
  • the direction of the current flowing from the terminal of the bridge circuit L to the terminal of the bridge circuit R is defined as the positive direction.
  • the current direction shown in FIG. 7 follows this definition.
  • the direction of current flowing from the terminal of the bridge circuit R to the terminal of the bridge circuit L is defined as a positive direction. Therefore, the phase difference between the current in the bridge circuit L and the current in the bridge circuit R is 180 °.
  • the magnitude of the current value I 1 is [(3) 1/2 / 2] * I pk
  • the magnitude of the current value I 2 is I pk / 2.
  • a current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the U-phase coil group 201, and a magnitude Ipk of V-phase coil group 202 from the bridge circuit R to the bridge circuit L. And a current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the W-phase coil group 203.
  • a current of magnitude I 1 flows from the bridge circuit L to the bridge circuit R in the U-phase coil group 201, and a magnitude I 1 flows from the bridge circuit R to the bridge circuit L in the V-phase coil group 202.
  • the current of 1 flows.
  • a current of magnitude Ipk flows from the bridge circuit L to the bridge circuit R in the U-phase coil group 201, and a magnitude I 2 flows from the bridge circuit R to the bridge circuit L in the V-phase coil group 202. current flows, the current magnitude I 2 flows from the bridge circuit R to the bridge circuit L is the coil group 203 and W-phase.
  • a current of magnitude I 1 flows from the bridge circuit L to the bridge circuit R in the U-phase coil group 201, and a magnitude I 1 flows from the bridge circuit R to the bridge circuit L in the W-phase coil group 203.
  • the current of 1 flows.
  • a current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the U-phase coil group 201, and a magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the V-phase coil group 202.
  • a current of 2 flows, and a current of magnitude Ipk flows from the bridge circuit R to the bridge circuit L in the W-phase coil group 203.
  • a current of magnitude I 2 flows from the bridge circuit R to the bridge circuit L in the U-phase coil group 201, and a magnitude Ipk of the V-phase coil group 202 from the bridge circuit L to the bridge circuit R. current flows, the current magnitude I 2 flows from the bridge circuit R to the bridge circuit L is the coil group 203 and W-phase.
  • a current of magnitude I 1 flows from the bridge circuit R to the bridge circuit L in the U-phase coil group 201, and a magnitude I 1 flows from the bridge circuit L to the bridge circuit R in the V-phase coil group 202.
  • the current of 1 flows.
  • a current of magnitude Ipk flows from the bridge circuit R to the bridge circuit L in the U-phase coil group 201, and a magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the V-phase coil group 202. And a current of magnitude I 2 flows from the bridge circuit L to the bridge circuit R in the W-phase coil group 203.
  • a current of magnitude I 1 flows from the bridge circuit R to the bridge circuit L in the U-phase coil group 201, and a magnitude I 1 flows from the bridge circuit L to the bridge circuit R in the W-phase coil group 203.
  • the current of 1 flows.
  • a current of magnitude I 2 flows from the bridge circuit R to the bridge circuit L in the U-phase coil group 201, and a magnitude I 2 flows from the bridge circuit R to the bridge circuit L in the V-phase coil group 202.
  • a current of 2 flows, and a current of magnitude Ipk flows from the bridge circuit L to the bridge circuit R in the W-phase coil group 203.
  • control circuit 300 controls the switching operation of each FET of the bridge circuits L and R by PWM control such that the current waveform shown in FIG. 7 is obtained.
  • the motor adopting the above-mentioned independent connection method can have a larger phase voltage than the motor adopting the star connection method and the motor adopting the delta connection method. ing.
  • the coil group of the present embodiment two coils connected in series and another two coils connected in series are connected in parallel.
  • four coils are wound around the four laminated teeth 23 to which the same phase is assigned.
  • the wire diameter of the coil can be reduced.
  • the cross-sectional area of the coil can be reduced.
  • a coil having a wire diameter of 1.2 to 2.0 mm can be used in the motor 10 having an outer diameter of the stator 20 of 70 to 100 mm.
  • the cross-sectional area of the coil in this case is 1.13 to 3.14 mm 2 .
  • the motor 10 having an outer diameter of 85 mm and a length of 36 mm in the rotation axis direction, it is possible to achieve high output by using a coil having a wire diameter of 1.8 mm or less. Since the wire diameter of the coil can be reduced, it becomes easy to wind the coil around the laminated tooth 23. Further, since the minimum bending radius of the coil can be reduced, the coil end can be reduced.
  • FIG. 9 is a diagram showing the relationship between the coil wire diameter and the output.
  • the vertical axis of FIG. 9 represents the normalized motor output, and the horizontal axis represents the coil wire diameter.
  • a solid line 401 in FIG. 9 shows the relationship between the wire diameter of the coil and the output in the motor 10 of the independent connection system of this embodiment.
  • a broken line 402 in FIG. 9 shows the relationship between the coil wire diameter and the output in the star connection type motor as a comparative example.
  • the output of the independent connection type motor 10 is large in the range of the wire diameter of the coil from 1.2 to 2.0 mm.
  • the motor 10 that employs the independent wiring system can have a larger output than the motor that employs another wiring system.
  • the motor 10 of the present embodiment since the number of connections is small and the phase voltage can be increased, the output can be increased. If the required output is the same, the motor 10 of the present embodiment can be smaller in size than the conventional motor.
  • Vehicles such as automobiles are generally equipped with an electric power steering device.
  • the electric power steering device generates an assist torque for assisting a steering torque of a steering system generated by a driver operating a steering wheel.
  • the auxiliary torque is generated by the auxiliary torque mechanism, and the driver's operation load can be reduced.
  • the auxiliary torque mechanism includes a steering torque sensor, an ECU, a motor, a speed reduction mechanism, and the like.
  • the steering torque sensor detects the steering torque in the steering system.
  • the ECU generates a drive signal based on the detection signal of the steering torque sensor.
  • the motor generates an auxiliary torque according to the steering torque based on the drive signal, and transmits the auxiliary torque to the steering system via the reduction mechanism.
  • FIG. 10 schematically shows an electric power steering device 500 according to this embodiment.
  • the electric power steering device 500 includes a steering system 520 and an auxiliary torque mechanism 540.
  • the steering system 520 includes, for example, a steering handle 521, a steering shaft 522 (also referred to as “steering column”), universal shaft couplings 523A and 523B, and a rotary shaft 524 (also referred to as “pinion shaft” or “input shaft”). ), A rack and pinion mechanism 525, a rack shaft 526, left and right ball joints 552A and 552B, tie rods 527A and 527B, knuckles 528A and 528B, and left and right steering wheels (for example, left and right front wheels) 529A and 529B.
  • the steering handle 521 is connected to the rotating shaft 524 through the steering shaft 522 and the universal shaft couplings 523A and 523B.
  • a rack shaft 526 is connected to the rotating shaft 524 via a rack and pinion mechanism 525.
  • the rack and pinion mechanism 525 has a pinion 531 provided on the rotating shaft 524 and a rack 532 provided on the rack shaft 526.
  • the right steering wheel 529A is connected to the right end of the rack shaft 526 through a ball joint 552A, a tie rod 527A, and a knuckle 528A in this order.
  • the left steering wheel 529B is connected to the left end of the rack shaft 526 via a ball joint 552B, a tie rod 527B, and a knuckle 528B in this order.
  • the right side and the left side correspond to the right side and the left side as seen from the driver sitting in the seat, respectively.
  • steering torque is generated by the driver operating the steering wheel 521, and the steering torque is transmitted to the left and right steering wheels 529A and 529B via the rack and pinion mechanism 525. This allows the driver to operate the left and right steering wheels 529A and 529B.
  • the auxiliary torque mechanism 540 includes, for example, a steering torque sensor 541, an ECU 542, a motor 543, a speed reduction mechanism 544, and a power conversion device 545.
  • the auxiliary torque mechanism 540 applies an auxiliary torque to the steering system 520 extending from the steering handle 521 to the left and right steering wheels 529A and 529B.
  • the auxiliary torque may be referred to as "additional torque”.
  • the control circuit 300 according to the embodiment can be used as the ECU 542, and the power conversion device 100 according to the embodiment can be used as the power conversion device 545.
  • the motor 543 corresponds to the motor 10 in the embodiment.
  • the motor 10 according to the embodiment can be preferably used as a mechano-electric integrated unit including the ECU 542, the motor 543, and the power conversion device 545.
  • the steering torque sensor 541 detects the steering torque of the steering system 520 provided by the steering wheel 521.
  • the ECU 542 generates a drive signal for driving the motor 543 based on the detection signal from the steering torque sensor 541 (hereinafter referred to as “torque signal”).
  • the motor 543 generates an auxiliary torque according to the steering torque based on the drive signal.
  • the auxiliary torque is transmitted to the rotary shaft 524 of the steering system 520 via the speed reduction mechanism 544.
  • the reduction mechanism 544 is, for example, a worm gear mechanism.
  • the auxiliary torque is further transmitted from the rotating shaft 524 to the rack and pinion mechanism 525.
  • the electric power steering device 500 can be classified into a pinion assist type, a rack assist type, a column assist type, and the like depending on the location where the assist torque is applied to the steering system 520.
  • FIG. 22 illustrates a pinion assist type electric power steering device 500.
  • the electric power steering device 500 may be a rack assist type, a column assist type, or the like.
  • the ECU 542 may receive not only a torque signal but also a vehicle speed signal, for example.
  • the external device 560 is, for example, a vehicle speed sensor.
  • the external device 560 may be another ECU that can communicate with an in-vehicle network such as CAN (Controller Area Network).
  • the microcontroller of the ECU 542 can control the motor 543 by vector control or the like based on the torque signal, the vehicle speed signal, or the like.
  • ECU 542 sets the target current value based on at least the torque signal. It is preferable that the ECU 542 set the target current value in consideration of the vehicle speed signal detected by the vehicle speed sensor and further in consideration of the rotor rotation signal detected by the angle sensor 320.
  • the ECU 542 can control the drive signal of the motor 543, that is, the drive current so that the actual current value detected by the current sensor 170 matches the target current value.
  • the left and right steered wheels 529A and 529B can be operated by the rack shaft 526 using a composite torque obtained by adding the assist torque of the motor 543 to the steering torque of the driver.
  • the motor 10 of the present disclosure in the above-mentioned electromechanical integrated unit, the quality of parts is improved, and an appropriate current control is possible in both normal and abnormal conditions.
  • An electric power steering device is provided.
  • the embodiments of the present disclosure can be widely used for various devices including various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.
  • various motors such as a vacuum cleaner, a dryer, a ceiling fan, a washing machine, a refrigerator, and an electric power steering device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Steering Mechanism (AREA)
  • Windings For Motors And Generators (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

実施形態に係るモータは、n相(nは3以上の整数)のコイル群と、n相のコイル群の一端に接続される第1インバータと、n相のコイル群の他端に接続される第2インバータと、n相のコイル群が巻かれたステータと、ステータに対して相対的に回転可能なロータとを備える。n相のコイル群のうちの少なくとも1つのコイル群は、互いに直列接続された第1コイルおよび第2コイルを含む第1サブコイル群と、互いに直列接続された第3コイルおよび第4コイルを含む第2サブコイル群とを含む。第1サブコイル群と第2サブコイル群とは互いに並列接続されている。

Description

モータおよび電動パワーステアリング装置
 本開示は、モータおよび電動パワーステアリング装置に関する。
 近年、モータ、電力変換装置およびECUが一体化された機電一体型モータが開発されている。特に車載分野においては、安全性の観点から高い品質保証が要求される。そのため、部品の一部が故障した場合でも安全動作を継続できる冗長設計が取り入れられている。冗長設計の一例として、1つのモータに対して2つの電力変換装置を設けることが検討されている。他の一例として、メインのマイクロコントローラにバックアップ用マイクロコントローラを設けることが検討されている。
 例えば、特許文献1が開示する電力変換装置は、制御部と、2つのインバータとを備え、三相モータに供給する電力を変換する。2つのインバータの各々は電源およびグランド(以下、「GND」と表記する。)に接続される。一方のインバータは、モータの三相のコイルの一端に接続され、他方のインバータは、三相のコイルの他端に接続される。各インバータは、各々がハイサイドスイッチング素子およびローサイドスイッチング素子を含む3つのレグから構成されるブリッジ回路を備える。このような結線は独立結線と呼ばれる場合がある。特許文献1が開示する制御部は、2つのインバータにおけるスイッチング素子の故障を検出した場合、モータ制御を正常時の制御から異常時の制御に切替える。異常時の制御では、例えば、故障したスイッチング素子を含むインバータのスイッチング素子を所定の規則でオンおよびオフすることによりコイルの中性点を構成する。そして、正常な方のインバータを用いてモータ駆動を継続させる。
日本国公開公報:特開2014-192950号公報
 上述したような2つのインバータからコイルに電力を供給するモータの高出力化が求められている。
 本開示の例示的なモータは、n相(nは3以上の整数)のコイル群と、前記n相のコイル群の一端に接続される第1インバータと、前記n相のコイル群の他端に接続される第2インバータと、前記n相のコイル群が巻かれたステータと、前記ステータに対して相対的に回転可能なロータとを備えたモータであって、前記n相のコイル群のうちの少なくとも1つのコイル群は、互いに直列接続された第1コイルおよび第2コイルを含む第1サブコイル群と、互いに直列接続された第3コイルおよび第4コイルを含む第2サブコイル群とを含み、前記第1サブコイル群と前記第2サブコイル群とは互いに並列接続されている。
 本開示の実施形態によれば、例えば、独立結線方式の電力変換装置を備えるモータの出力を大きくすることができる。
図1は、実施形態に係るモータの構造を示す模式図である。 図2は、実施形態に係る電力変換装置を備えるモータの回路構成を示す模式図である。 図3は、実施形態に係る電力変換装置が有するHブリッジを示す図である。 図4は、実施形態に係る電力変換装置が有するHブリッジを示す図である。 図5は、実施形態に係る電力変換装置が有するHブリッジを示す図である。 図6は、実施形態に係る電力変換装置を備えるモータを示すブロック図である。 図7は、実施形態に係る三相通電制御に従って電力変換装置を制御したときに、モータのU相、V相およびW相の各コイルに流れる電流値をプロットして得られる電流波形を示す図である。 図8は、実施形態に係るステータおよびロータを示す図である。 図9は、実施形態に係るコイルの線径と出力との関係を示す図である。 図10は、実施形態に係る電動パワーステアリング装置を示す模式図である。
 以下、添付の図面を参照しながら、本開示の電力変換装置を備えるモータおよび電動パワーステアリング装置の実施形態を詳細に説明する。但し、必要以上に詳細な説明は省略する場合がある。例えば、既によく知られた事項の詳細説明や実質的に同一の構成に対する重複説明を省略する場合がある。これは、以下の説明が不必要に冗長になるのを避け、当業者の理解を容易にするためである。
 本明細書においては、三相(U相、V相、W相)のコイルを有する三相モータを例にして、実施形態を説明する。但し、例えば四相および五相などのn相(nは3以上の整数)のコイルを有するn相モータも本開示の範疇である。
 (実施形態1)
 図1は、本実施形態によるモータ10の構造を示す図である。図1は、中心軸11に沿って切断したときのモータ10の内部を示している。
 モータ10は、機電一体型モータである。モータ10は、例えば自動車の電動パワーステアリング装置用モータとして利用される。その場合、モータ10は、電動パワーステアリング装置の駆動力を発生する。モータ10は、例えば三相交流モータである。
 モータ10は、ステータ20と、ロータ30と、ハウジング12と、隔壁14と、軸受15と、軸受16とを備える。ステータ20は電機子とも称される。中心軸11はロータ30の回転軸である。
 ハウジング12は、底を有する略円筒状の筐体であり、ステータ20、軸受15およびロータ30を内部に収納する。軸受15を保持する凹部13がハウジング12の底の中央にある。隔壁14は、ハウジング12の上部の開口を閉じる板状の部材である。隔壁14は、その中央部で軸受16を保持している。
 ステータ20は環状であり、積層体22およびコイル21を有する。積層体22は積層環状コアとも称される。コイルは巻線とも称される。コイル21は後述するコイル群201、202、203(図2)に該当する。ステータ20は、駆動電流に応じて磁束を発生させる。積層体22は、複数の鋼板を中心軸11に沿う方向(図1のZ方向)に積層した積層鋼板から構成される。積層体22は、環状の積層コアバック24および複数の積層歯(ティース)23を含む。積層コアバック24は、ハウジング12の内壁に固定される。
 コイル21は、銅等の導電性材料によって構成され、典型的には積層体22の複数の積層歯23にそれぞれ取り付けられている。
 ロータ30はステータ20に対して中心軸11まわりに相対的に回転可能である。ロータ30は、ロータコア31、ロータコア31の外周に沿って設けられた複数の永久磁石32、シャフト33を備える。ロータコア31は、例えば鉄などの磁性材料で構成されており、筒状の形状を有する。本実施形態において、ロータコア31は、複数の鋼板を中心軸11に沿う方向(図1のZ方向)に積層した積層鋼板から構成される。複数の永久磁石32は、N極とS極とがロータコア31の周方向に交互に現れるように設けられている。シャフト33は、ロータコア31の中心に固定されており、中心軸11に沿って上下方向(Z方向)に延びている。なお、本明細書中における上下左右方向とは、図1に示されたモータ10を見たときの上下左右方向であり、実施形態を分かりやすく説明するためにそれらの方向を用いて説明している。本明細書中における上下左右方向と、モータ10が実際の製品(自動車等)に搭載された状態における上下左右方向とは必ずしも一致しないことは言うまでもない。
 軸受15および16は、ロータ30のシャフト33を回転可能に支持する。軸受15および16は、例えば、球体を介して外輪と内輪とを相対回転させるボールベアリングである。図1はボールベアリングを例示している。
 モータ10において、ステータ20のコイル21に駆動電流を流すと、積層体22の複数の積層歯23に径方向の磁束が発生する。複数の積層歯23と永久磁石32との間の磁束の作用によって周方向にトルクが発生し、ロータ30はステータ20に対して回転する。ロータ30が回転すると、例えば電動パワーステアリング装置に駆動力が発生する。
 シャフト33における隔壁14側の端部には、永久磁石41が固定されている。永久磁石41は、ロータ30とともに回転可能である。隔壁14の上部には、基板50が配置されている。基板50には電力変換装置100が搭載されている。隔壁14は、モータ10内部のステータ20およびロータ30が収納される空間と基板50が収納される空間とを隔てている。
 電力変換装置100は、電源からの電力をステータ20のコイル21に供給する電力に変換する。基板50には、電力変換装置100が備えるインバータの端子52が設けられている。端子52には電線51が接続されている。電線51は例えばコイル21の端部である。電線51とコイル21とは別々の部材であってもよい。電力変換装置100から出力された電力は、電線51を介してコイル21に供給される。電力変換装置100の詳細は後述する。
 基板50には磁気センサ40が設けられている。磁気センサ40は、シャフト33に固定された永久磁石41に対向する位置に配置されている。磁気センサ40は、シャフト33の中心軸11上に配置されている。磁気センサ40は、例えば磁気抵抗効果素子またはホール素子である。磁気センサ40は、シャフト33とともに回転する永久磁石41から発生する磁場を検出し、これによりロータ30の回転角を検出することができる。
 モータ10は、複数の端子17を介して、モータ10外部の各種制御装置およびバッテリ等と接続される。複数の端子17は、外部の電源から電力が供給される電源端子および外部機器とデータの送受信を行うための信号端子等を含む。
 次に、電力変換装置100を備えるモータ10の詳細を説明する。
 図2は、本実施形態による電力変換装置100を備えるモータ10の回路構成を模式的に示している。
 電力変換装置100は、第1インバータ110と、第2インバータ140とを備える。また、電力変換装置100は、図6に示す制御回路300を備える。
 コイル21(図1)として、ステータ20にはU相のコイル群201、V相のコイル群202およびW相のコイル群203が巻かれている。各相のコイル群は第1インバータ110と第2インバータ140とに接続される。具体的に説明すると、第1インバータ110は各相のコイル群の一端に接続され、第2インバータ140は各相のコイル群の他端に接続される。本願明細書において、電気回路内の部品同士の間の「接続」とは、主に電気的な接続を意味する。
 U相のコイル群201は、サブコイル群215およびサブコイル群216を含む。サブコイル群215は、互いに直列接続されたコイル211およびコイル212を含む。サブコイル群216は、互いに直列接続されたコイル213およびコイル214を含む。サブコイル群215とサブコイル群216とは互いに並列接続されている。言い換えると、直列接続されたコイル211および212と、直列接続されたコイル213および214とは、並列接続されている。
 V相のコイル群202は、サブコイル群225およびサブコイル群226を含む。サブコイル群225は、互いに直列接続されたコイル221およびコイル222を含む。サブコイル群226は、互いに直列接続されたコイル223およびコイル224を含む。サブコイル群225とサブコイル群226とは互いに並列接続されている。言い換えると、直列接続されたコイル221および222と、直列接続されたコイル223および224とは、並列接続されている。
 W相のコイル群203は、サブコイル群235およびサブコイル群236を含む。サブコイル群235は、互いに直列接続されたコイル231およびコイル232を含む。サブコイル群236は、互いに直列接続されたコイル233およびコイル234を含む。サブコイル群235とサブコイル群236とは互いに並列接続されている。言い換えると、直列接続されたコイル231および232と、直列接続されたコイル233および234とは、並列接続されている。
 図8は、ステータ20およびロータ30の一例を示す図である。この例では、ステータ20は12個の歯23を備える。ロータ30は8個の永久磁石32を備える。言い換えると、この例では、ステータ20には、隣り合う歯23の間に構成されコイル21が配置される溝(スロット)25が12個ある。ロータ30における極数は8である。このようなスロット数が12で磁極数が8の構造は、8P12S(8ポール12スロット)と称されることがある。この例では、モータ10は、三相(U相、V相、W相)の巻線を有する三相モータである。12個の歯23には、例えば、U、V、W、U、V、W、U、V、W、U、V、Wの順に、U相、V相、W相が割り当てられている。
 ロータ30の回転軸方向に平行な方向からロータ30を見たときの平面視において、ロータコア31の外形は、多角形である。この例では、平面視におけるロータコア31の外形は、八角形である。ロータコア31の外周部は、複数の側面34を有する。この例では、ロータコア31の外周部は、8個の側面34を有する。8個の側面34は、ロータコア31の周方向に隣り合って配置され、ロータコア31の外側面を構成する。平面視において、各側面34は、直線形状を有する。
 側面34のそれぞれには、永久磁石32が配置される。永久磁石32は、例えば、接着剤等によって側面34に固定される。各永久磁石32は、各歯23と径方向に対向する。なお、永久磁石32は、磁石ホルダなどの部材を用いてロータコア31に保持されてもよいし、他の方法によって固定されてもよい。
 ステータ20のコイルの巻線方式は、例えば集中巻き方式である。例えば、U相が割り当てられた複数の積層歯23には、コイル211、コイル212、コイル213、コイル214が巻かれる。V相が割り当てられた複数の積層歯23には、コイル221、コイル222、コイル223、コイル224が巻かれる。W相が割り当てられた複数の積層歯23には、コイル231、コイル232、コイル233、コイル234が巻かれる。
 なお、上記の磁極数およびスロット数は一例であり、別の数であってもよい。例えば、磁極数は、10、14または16であってもよい。
 第1インバータ110は、端子52(図1)として、各相に対応した端子U_L、V_LおよびW_Lを有する。第2インバータ140は、端子52として、各相に対応した端子U_R、V_RおよびW_Rを有する。第1インバータ110の端子U_Lは、U相のコイル群201の一端に接続され、端子V_Lは、V相のコイル群202の一端に接続され、端子W_Lは、W相のコイル群203の一端に接続される。第1インバータ110と同様に、第2インバータ140の端子U_Rは、U相のコイル群201の他端に接続され、端子V_Rは、V相のコイル群202の他端に接続され、端子W_Rは、W相のコイル群203の他端に接続される。このような結線は、いわゆるスター結線およびデルタ結線とは異なり、独立結線と呼ばれる場合がある。
 なお、同じ相のサブコイル群は互いに結線された状態で、第1インバータ110および第2インバータ140に接続されてもよいし、互いに独立して第1インバータ110および第2インバータ140に接続されてもよい。例えば、コイル211およびコイル213は、互いに結線された状態で第1インバータ110に接続されてもよいし、コイル211およびコイル213は互いに独立して第1インバータ110に接続されてもよい。また、例えば、コイル212およびコイル214は、互いに結線された状態で第2インバータ140に接続されてもよいし、コイル212およびコイル214は互いに独立して第2インバータ140に接続されてもよい。
 電力変換装置100では、第1インバータ110および第2インバータ140は、電源101およびGNDに接続されている。電力変換装置100を備えるモータ10は、例えば端子17(図1)を介して、外部の電源に接続され得る。
 本明細書中において、第1インバータ110を「ブリッジ回路L」と表記する場合がある。また、第2インバータ140を「ブリッジ回路R」と表記する場合がある。第1インバータ110および第2インバータ140のそれぞれは、ローサイドスイッチング素子およびハイサイドスイッチング素子を含むレグを3個備える。それらレグを構成する複数のスイッチング素子は、モータ10のコイル群を介して第1インバータ110と第2インバータ140との間で複数のHブリッジを構成する。
 第1インバータ110は、3個のレグから構成されるブリッジ回路を含む。図2に示されるスイッチング素子111L、112Lおよび113Lがローサイドスイッチング素子であり、スイッチング素子111H、112Hおよび113Hはハイサイドスイッチング素子である。スイッチング素子として、例えば電界効果トランジスタ(典型的にはMOSFET)または絶縁ゲートバイポーラトランジスタ(IGBT)を用いることができる。本願明細書において、インバータのスイッチング素子としてFETを用いる例を説明し、以下の説明ではスイッチング素子をFETと表記する場合がある。例えば、スイッチング素子111LはFET111Lと表記される。
 第1インバータ110は、U相、V相およびW相の各相のコイル群に流れる電流を検出するための電流センサ(図6を参照)として、3個のシャント抵抗111R、112Rおよび113Rを備える。電流センサ170は、各シャント抵抗に流れる電流を検出する電流検出回路(不図示)を含む。例えば、シャント抵抗111R、112Rおよび113Rは、第1インバータ110の3個のレグに含まれる3個のローサイドスイッチング素子とGNDとの間にそれぞれ接続される。具体的には、シャント抵抗111RはFET111LとGNDとの間に接続され、シャント抵抗112RはFET112LとGNDとの間に接続され、シャント抵抗113RはFET113LとGNDとの間に接続される。シャント抵抗の抵抗値は、例えば0.5mΩから1.0mΩ程度である。
 第1インバータ110と同様に、第2インバータ140は、3個のレグから構成されるブリッジ回路を含む。図2に示されるFET141L、142Lおよび143Lがローサイドスイッチング素子であり、FET141H、142Hおよび143Hはハイサイドスイッチング素子である。また、第2インバータ140は、3個のシャント抵抗141R、142Rおよび143Rを備える。それらのシャント抵抗は、3個のレグに含まれる3個のローサイドスイッチング素子とGNDとの間に接続される。第1および第2インバータ110、140の各FETは、例えばマイクロコントローラまたは専用ドライバによって制御され得る。
 図3、図4および図5は、電力変換装置100が有する3個のHブリッジ131、132および133を示す図である。
 第1インバータ110は、レグ121、123および125を有する。レグ121は、FET111HとFET111Lを有する。レグ123は、FET112HとFET112Lを有する。レグ125は、FET113HとFET113Lを有する。
 第2インバータ140は、レグ122、124および126を有する。レグ122は、FET141HとFET141Lを有する。レグ124は、FET142HとFET142Lを有する。レグ126は、FET143HとFET143Lを有する。
 図3に示すHブリッジ131は、レグ121とコイル群201とレグ122とを有する。図4に示すHブリッジ132は、レグ123とコイル群202とレグ124とを有する。図5に示すHブリッジ133は、レグ125とコイル群203とレグ126とを有する。
 電源101(図2)は、所定の電源電圧を生成する。電源101から第1および第2インバータ110、140に電力が供給される。電源101として、例えば直流電源が用いられる。ただし、電源101は、AC-DCコンバータまたはDC―DCコンバータであってもよいし、バッテリー(蓄電池)であってもよい。電源101は、第1および第2インバータ110、140に共通の単一電源であってもよいし、第1インバータ110用の第1電源および第2インバータ140用の第2電源を備えていてもよい。
 電源101と電力変換装置100との間にコイル102が設けられている。コイル102は、ノイズフィルタとして機能し、各インバータに供給する電圧波形に含まれる高周波ノイズ、または各インバータで発生する高周波ノイズを電源101側に流出させないように平滑化する。また、電源101と電力変換装置100との間には、コンデンサ103の一端が接続されている。コンデンサ103の他端はGNDに接続されている。コンデンサ103は、いわゆるバイパスコンデンサであり、電圧リプルを抑制する。コンデンサ103は、例えば電解コンデンサであり、容量および使用する個数は設計仕様などによって適宜決定される。
 図2には、インバータ毎の各レグに1個のシャント抵抗を配置する構成を例示している。第1および第2インバータ110、140は、6個以下のシャント抵抗を備え得る。6個以下のシャント抵抗は、第1および第2インバータ110、140が備える6個のレグのうちの6個以下のローサイドスイッチング素子とGNDとの間に接続され得る。さらにこれをn相モータに拡張すると、第1および第2インバータ110、140は、2n個以下のシャント抵抗を備え得る。2n個以下のシャント抵抗は、第1および第2インバータ110、140が備える2n個のレグのうちの2n個以下のローサイドスイッチング素子とGNDとの間に接続され得る。
 図6は、電力変換装置100を備えるモータ10のブロック構成を模式的に示している。電力変換装置100は制御回路300を備える。
 制御回路300は、例えば、電源回路310と、角度センサ320と、入力回路330と、マイクロコントローラ340と、駆動回路350と、ROM360とを備える。制御回路300は、電力変換装置100の全体の動作を制御することによりモータ10を駆動する。具体的には、制御回路300は、目的とするロータの位置、回転速度、および電流などを制御してクローズドループ制御を実現することができる。なお、制御回路300は、角度センサに代えてトルクセンサを備えてもよい。この場合、制御回路300は、目的とするモータトルクを制御することができる。
 電源回路310は、回路内の各ブロックに必要なDC電圧(例えば3V、5V)を生成する。角度センサ320は、例えばレゾルバまたはホールICである。角度センサ320として、磁気抵抗効果素子とマグネットが用いられてもよい。角度センサ320は、モータ10のロータの回転角(以下、「回転信号」と表記する。)を検出し、回転信号をマイクロコントローラ340に出力する。入力回路330は、電流センサ170によって検出されたモータ電流値(以下、「実電流値」と表記する。)を受け取り、必要に応じて、実電流値のレベルをマイクロコントローラ340の入力レベルに変換し、実電流値をマイクロコントローラ340に出力する。
 マイクロコントローラ340は、第1インバータ110と第2インバータ140の各FETのスイッチング動作(ターンオンまたはターンオフ)を制御する。マイクロコントローラ340は、実電流値およびロータの回転信号などに従って目標電流値を設定してPWM信号を生成し、それを駆動回路350に出力する。
 駆動回路350は、典型的にはゲートドライバである。駆動回路350は、第1および第2インバータ110、140における各FETのスイッチング動作を制御する制御信号(ゲート制御信号)をPWM信号に従って生成し、各FETのゲートに制御信号を与える。なお、マイクロコントローラ340が駆動回路350の機能を備えていてもよい。その場合、制御回路300は駆動回路350を備えていなくてもよい。
 ROM360は、例えば書き込み可能なメモリ、書き換え可能なメモリまたは読み出し専用のメモリである。ROM360は、マイクロコントローラ340に電力変換装置100を制御させるための命令群を含む制御プログラムを格納している。例えば、制御プログラムはブート時にRAM(不図示)に一旦展開される。
 次に、電力変換装置100の制御方法の具体例を説明する。制御回路300は、第1および第2インバータ110、140の両方を用いて三相通電制御することによってモータ10を駆動する。具体的に、制御回路300は、第1インバータ110のFETと第2インバータ140のFETとを互いに逆位相(位相差=180°)でスイッチング制御することにより三相通電制御を行う。例えば、FET111L、111H、141Lおよび141Hを含むHブリッジに着目すると、FET111Lがオンすると、FET141Lはオフし、FET111Lがオフすると、FET141Lはオンする。これと同様に、FET111Hがオンすると、FET141Hはオフし、FET111Hがオフすると、FET141Hはオンする。電源101から出力された電流は、ハイサイドスイッチング素子、コイル群、ローサイドスイッチング素子を通ってGNDに流れる。
 ここで、U相のコイル群201を流れる電流の経路を説明する。FET111HおよびFET141Lがオンであり、FET141HおよびFET111Lがオフのとき、電流は、電源101、FET111H、コイル群201、FET141L、GNDの順に流れる。FET141HおよびFET111Lがオンであり、FET111HおよびFET141Lがオフのとき、電流は、電源101、FET141H、コイル群201、FET111L、GNDの順に流れる。
 次に、V相のコイル群202を流れる電流の経路を説明する。FET112HおよびFET142Lがオンであり、FET142HおよびFET112Lがオフのとき、電流は、電源101、FET112H、コイル群202、FET142L、GNDの順に流れる。FET142HおよびFET112Lがオンであり、FET112HおよびFET142Lがオフのとき、電流は、電源101、FET142H、コイル群202、FET112L、GNDの順に流れる。
 次に、W相のコイル群203を流れる電流の経路を説明する。FET113HおよびFET143Lがオンであり、FET143HおよびFET113Lがオフのとき、電流は、電源101、FET113H、コイル群203、FET143L、GNDの順に流れる。FET143HおよびFET113Lがオンであり、FET113HおよびFET143Lがオフのとき、電流は、電源101、FET143H、コイル群203、FET113L、GNDの順に流れる。
 図7は、三相通電制御に従って電力変換装置100を制御したときにモータ10のU相、V相およびW相の各コイル群に流れる電流値をプロットして得られる電流波形(正弦波)を例示している。横軸は、モータ電気角(deg)を示し、縦軸は電流値(A)を示している。図7の電流波形において、電気角30°毎に電流値をプロットしている。Ipkは各相の最大電流値(ピーク電流値)を表している。
 表1は、図7の正弦波において電気角毎に、各インバータの端子に流れる電流値を示している。表1は、具体的に、第1インバータ110(ブリッジ回路L)の端子U_L、V_LおよびW_Lに流れる、電気角30°毎の電流値、および、第2インバータ140(ブリッジ回路R)の端子U_R、V_RおよびW_Rに流れる、電気角30°毎の電流値を示している。ここで、ブリッジ回路Lに対しては、ブリッジ回路Lの端子からブリッジ回路Rの端子に流れる電流方向を正の方向と定義する。図7に示される電流の向きはこの定義に従う。また、ブリッジ回路Rに対しては、ブリッジ回路Rの端子からブリッジ回路Lの端子に流れる電流方向を正の方向と定義する。従って、ブリッジ回路Lの電流とブリッジ回路Rの電流との位相差は180°となる。表1において、電流値Iの大きさは〔(3)1/2/2〕*Ipkであり、電流値Iの大きさはIpk/2である。
Figure JPOXMLDOC01-appb-T000001
 電気角0°において、U相のコイル群201には電流は流れない。V相のコイル群202にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、W相のコイル群203にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。
 電気角30°において、U相のコイル群201にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、V相のコイル群202にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、W相のコイル群203にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。
 電気角60°において、U相のコイル群201にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、V相のコイル群202にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。W相のコイル群203には電流は流れない。
 電気角90°において、U相のコイル群201にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れ、V相のコイル群202にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、W相のコイル群203にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。
 電気角120°において、U相のコイル群201にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、W相のコイル群203にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。V相のコイル群202には電流は流れない。
 電気角150°において、U相のコイル群201にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、V相のコイル群202にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、W相のコイル群203にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れる。
 電気角180°において、U相のコイル群201には電流は流れない。V相のコイル群202にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、W相のコイル群203にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。
 電気角210°において、U相のコイル群201にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、V相のコイル群202にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れ、W相のコイル群203にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れる。
 電気角240°において、U相のコイル群201にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、V相のコイル群202にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。W相のコイル群203には電流は流れない。
 電気角270°において、U相のコイル群201にはブリッジ回路Rからブリッジ回路Lに大きさIpkの電流が流れ、V相のコイル群202にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れ、W相のコイル群203にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。
 電気角300°において、U相のコイル群201にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、W相のコイル群203にはブリッジ回路Lからブリッジ回路Rに大きさIの電流が流れる。V相のコイル群202には電流は流れない。
 電気角330°において、U相のコイル群201にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、V相のコイル群202にはブリッジ回路Rからブリッジ回路Lに大きさIの電流が流れ、W相のコイル群203にはブリッジ回路Lからブリッジ回路Rに大きさIpkの電流が流れる。
 例えば、制御回路300は、図7に示される電流波形が得られるようなPWM制御によってブリッジ回路LおよびRの各FETのスイッチング動作を制御する。
 上述したように、モータにおいては出力を大きくすることが求められている。特に、車載用モータにおいては、バッテリから供給される電圧レベルにおいて高出力化を図ることになる。
 本願発明者の研究によれば、上述した独立結線方式を採用したモータは、スター結線方式を採用したモータおよびデルタ結線方式を採用したモータよりも相電圧を大きくすることができるという結果が得られている。
 独立結線方式を採用したモータにおいて、出力をさらに大きくしようとした場合は、より大きな電流を流すことができるようにすることが考えられる。大きな電流を流そうとすると、コイルの線径を大きくする必要がある。しかし、コイルの線径が大きくなると、ステータの積層歯にコイルを巻くことが困難になる。また、一般に、コイルの最小曲げ半径は線径に比例するため、線径が大きくなるほどコイルエンドも大きくなってしまう。また、コイルの線径が大きくなるほど、コイル間の空隙が増え、トルク低下の要因にもなる。
 本実施形態のコイル群では、直列接続された2つのコイルと、別の直列接続された2つのコイルとが並列接続されている。例えば、同じ相が割り当てられた4つの積層歯23に4つのコイルが巻かれる。これにより、コイルの線径を小さくすることができる。言い換えると、コイルの断面積を小さくすることができる。例えば、ステータ20の外径が70から100mmのモータ10において、線径が1.2から2.0mmのコイルを用いることができる。この場合のコイルの断面積は、1.13から3.14mmである。また、例えば、外径が85mm、回転軸方向の長さ36mmのモータ10において、線径が1.8mm以下のコイルを用いて高出力化を図ることができる。コイルの線径を小さくできることにより、積層歯23にコイルを巻くことが容易になる。また、コイルの最小曲げ半径を小さくできるため、コイルエンドを小さくすることができる。
 図9は、コイルの線径と出力との関係を示す図である。図9の縦軸は正規化されたモータの出力を示し、横軸はコイルの線径を示している。図9中の実線401は、本実施形態の独立結線方式のモータ10におけるコイルの線径と出力との関係を示している。図9中の破線402は、比較例であるスター結線方式のモータにおけるコイルの線径と出力との関係を示している。図9に示すように、コイルの線径が1.2から2.0mmの範囲において、独立結線方式のモータ10の出力は大きくなっていることが分かる。このように、独立結線方式を採用したモータ10は、他の結線方式を採用したモータよりも出力を大きくすることができる。
 なお、1つの相に割り当てられた4つのコイル全てを互いに並列接続することも考えられる。例えば、U相に割り当てられた4つのコイル211、212、213、214の全てを互いに並列接続することが考えられる。しかし、全てのコイルを互いに並列接続させると結線の数が大きくなり、製造コストが増大することになる。それと比較して、本実施形態のコイル群201、202、203の構成では、結線の数を小さくでき、製造コストを低減できる。
 本実施形態のモータ10では、結線の数が少なく、相電圧を大きくすることができるため、出力を大きくすることができる。また、求められる出力が同じであるならば、本実施形態のモータ10は、従来のモータよりもサイズを小さくすることができる。
 (実施形態2)
 自動車等の車両は一般的に、電動パワーステアリング装置を備えている。電動パワーステアリング装置は、運転者がステアリングハンドルを操作することによって発生するステアリング系の操舵トルクを補助するための補助トルクを生成する。補助トルクは、補助トルク機構によって生成され、運転者の操作の負担を軽減することができる。例えば、補助トルク機構は、操舵トルクセンサ、ECU、モータおよび減速機構などを備える。操舵トルクセンサは、ステアリング系における操舵トルクを検出する。ECUは、操舵トルクセンサの検出信号に基づいて駆動信号を生成する。モータは、駆動信号に基づいて操舵トルクに応じた補助トルクを生成し、減速機構を介してステアリング系に補助トルクを伝達する。
 本開示のモータ10は、電動パワーステアリング装置に好適に利用される。図10は、本実施形態に係る電動パワーステアリング装置500を模式的に示している。電動パワーステアリング装置500は、ステアリング系520および補助トルク機構540を備える。
 ステアリング系520は、例えば、ステアリングハンドル521、ステアリングシャフト522(「ステアリングコラム」とも称される。)、自在軸継手523A、523B、回転軸524(「ピニオン軸」または「入力軸」とも称される。)、ラックアンドピニオン機構525、ラック軸526、左右のボールジョイント552A、552B、タイロッド527A、527B、ナックル528A、528B、および左右の操舵車輪(例えば左右の前輪)529A、529Bを備える。ステアリングハンドル521は、ステアリングシャフト522と自在軸継手523A、523Bとを介して回転軸524に連結される。回転軸524にはラックアンドピニオン機構525を介してラック軸526が連結される。ラックアンドピニオン機構525は、回転軸524に設けられたピニオン531と、ラック軸526に設けられたラック532とを有する。ラック軸526の右端には、ボールジョイント552A、タイロッド527Aおよびナックル528Aをこの順番で介して右の操舵車輪529Aが連結される。右側と同様に、ラック軸526の左端には、ボールジョイント552B、タイロッド527Bおよびナックル528Bをこの順番で介して左の操舵車輪529Bが連結される。ここで、右側および左側は、座席に座った運転者から見た右側および左側にそれぞれ一致する。
 ステアリング系520によれば、運転者がステアリングハンドル521を操作することによって操舵トルクが発生し、ラックアンドピニオン機構525を介して左右の操舵車輪529A、529Bに伝わる。これにより、運転者は左右の操舵車輪529A、529Bを操作することができる。
 補助トルク機構540は、例えば、操舵トルクセンサ541、ECU542、モータ543、減速機構544および電力変換装置545を備える。補助トルク機構540は、ステアリングハンドル521から左右の操舵車輪529A、529Bに至るステアリング系520に補助トルクを与える。なお、補助トルクは「付加トルク」と称されることがある。
 ECU542として、実施形態に係る制御回路300を用いることができ、電力変換装置545として、実施形態に係る電力変換装置100を用いることができる。また、モータ543は、実施形態におけるモータ10に相当する。ECU542、モータ543および電力変換装置545を備える機電一体型ユニットとして、実施形態に係るモータ10を好適に用いることができる。
 操舵トルクセンサ541は、ステアリングハンドル521によって付与されたステアリング系520の操舵トルクを検出する。ECU542は、操舵トルクセンサ541からの検出信号(以下、「トルク信号」と表記する。)に基づいてモータ543を駆動するための駆動信号を生成する。モータ543は、操舵トルクに応じた補助トルクを駆動信号に基づいて発生する。補助トルクは、減速機構544を介してステアリング系520の回転軸524に伝達される。減速機構544は、例えばウォームギヤ機構である。補助トルクはさらに、回転軸524からラックアンドピニオン機構525に伝達される。
 電動パワーステアリング装置500は、補助トルクがステアリング系520に付与される箇所によって、ピニオンアシスト型、ラックアシスト型、およびコラムアシスト型等に分類することができる。図22には、ピニオンアシスト型の電動パワーステアリング装置500を例示している。ただし、電動パワーステアリング装置500は、ラックアシスト型、コラムアシスト型等であってもよい。
 ECU542には、トルク信号だけでなく、例えば車速信号も入力され得る。外部機器560は例えば車速センサである。または、外部機器560は、例えばCAN(Controller Area Network)等の車内ネットワークで通信可能な他のECUであってもよい。ECU542のマイクロコントローラは、トルク信号や車速信号などに基づいてモータ543をベクトル制御等により制御することができる。
 ECU542は、少なくともトルク信号に基づいて目標電流値を設定する。ECU542は、車速センサによって検出された車速信号を考慮し、さらに角度センサ320によって検出されたロータの回転信号を考慮して、目標電流値を設定することが好ましい。ECU542は、電流センサ170によって検出された実電流値が目標電流値に一致するように、モータ543の駆動信号、つまり、駆動電流を制御することができる。
 電動パワーステアリング装置500によれば、運転者の操舵トルクにモータ543の補助トルクを加えた複合トルクを利用してラック軸526によって左右の操舵車輪529A、529Bを操作することができる。特に、上述した機電一体型ユニットに、本開示のモータ10を利用することにより、部品の品質が向上し、かつ、正常時および異常時のいずれにおいても適切な電流制御が可能となる、モータを備える電動パワーステアリング装置が提供される。
 以上、本開示にかかる実施形態を説明した。上述の実施形態の説明は例示であり、本開示の技術を限定するものではない。また、上述の実施形態で説明した各構成要素を適宜組み合わせた実施形態も可能である。
 本開示の実施形態は、掃除機、ドライヤ、シーリングファン、洗濯機、冷蔵庫および電動パワーステアリング装置などの、各種モータを備える多様な機器に幅広く利用され得る。
 10:モータ、11:中心軸、20:ステータ、21:コイル、22:積層体、23:積層歯、24:コアバック、30:ロータ、31:ロータコア、32:永久磁石、33:シャフト、100:電力変換装置、101:電源、102:コイル、103:コンデンサ、110:第1インバータ、140:第2インバータ、201、202、203:コイル群、211、212、213、214:コイル、221、222、223、224:コイル、231、232、233、234:コイル、215、216、225、226、235、236:サブコイル群、300:制御回路、310:電源回路、320:角度センサ、330:入力回路、340:マイクロコントローラ、350:駆動回路、360:ROM、500:電動パワーステアリング装置

 

Claims (7)

  1.  n相(nは3以上の整数)のコイル群と、
     前記n相のコイル群の一端に接続される第1インバータと、
     前記n相のコイル群の他端に接続される第2インバータと、
     前記n相のコイル群が巻かれたステータと、
     前記ステータに対して相対的に回転可能なロータと、
     を備えたモータであって、
     前記n相のコイル群のうちの少なくとも1つのコイル群は、
     互いに直列接続された第1コイルおよび第2コイルを含む第1サブコイル群と、
     互いに直列接続された第3コイルおよび第4コイルを含む第2サブコイル群と、
     を含み、
     前記第1サブコイル群と前記第2サブコイル群とは互いに並列接続されている、モータ。
  2.  前記ステータのコイルの巻線方式は集中巻き方式である、請求項1に記載のモータ。
  3.  前記n相のコイル群のそれぞれは、前記第1サブコイル群および前記第2サブコイル群を含み、
     前記n相のコイル群のそれぞれにおいて、前記第1サブコイル群と前記第2サブコイル群とは互いに並列接続されている、請求項1または2に記載のモータ。
  4.  前記第1の相のコイル群が含むコイルの断面積は、1.13から3.14mmである、請求項1から3のいずれかに記載のモータ。
  5.  前記ステータの外径は70から100mmであり、且つ、前記第1の相のコイル群が含むコイルの線径は1.2から2.0mmである、請求項1から4のいずれかに記載のモータ。
  6.  前記ステータのスロット数は12である、請求項1から5のいずれかに記載のモータ。
  7.  請求項1から6のいずれかに記載のモータを備えた、電動パワーステアリング装置。

     
PCT/JP2019/042390 2018-11-15 2019-10-29 モータおよび電動パワーステアリング装置 WO2020100580A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE112019005725.1T DE112019005725T5 (de) 2018-11-15 2019-10-29 Motor und elektrische servolenkung
CN201980074833.3A CN113016118A (zh) 2018-11-15 2019-10-29 马达以及电动助力转向装置
JP2020555986A JPWO2020100580A1 (ja) 2018-11-15 2019-10-29 モータおよび電動パワーステアリング装置
US17/292,704 US20220014136A1 (en) 2018-11-15 2019-10-29 Motor and electric power steering device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018214496 2018-11-15
JP2018-214496 2018-11-15

Publications (1)

Publication Number Publication Date
WO2020100580A1 true WO2020100580A1 (ja) 2020-05-22

Family

ID=70730518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042390 WO2020100580A1 (ja) 2018-11-15 2019-10-29 モータおよび電動パワーステアリング装置

Country Status (5)

Country Link
US (1) US20220014136A1 (ja)
JP (1) JPWO2020100580A1 (ja)
CN (1) CN113016118A (ja)
DE (1) DE112019005725T5 (ja)
WO (1) WO2020100580A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119001A (ja) * 2000-10-04 2002-04-19 Toyota Motor Corp 集中巻電動機
WO2009139067A1 (ja) * 2008-05-16 2009-11-19 三菱電機株式会社 回転電機
JP2013128362A (ja) * 2011-12-19 2013-06-27 Aisin Seiki Co Ltd 3相回転電機の波巻き巻線
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法
JP2014192950A (ja) * 2013-03-26 2014-10-06 Denso Corp 電力変換装置
JP2015167446A (ja) * 2014-03-04 2015-09-24 株式会社ジェイテクト 車載用モータ制御装置
WO2017150641A1 (ja) * 2016-03-04 2017-09-08 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2018173424A1 (ja) * 2017-03-24 2018-09-27 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002119001A (ja) * 2000-10-04 2002-04-19 Toyota Motor Corp 集中巻電動機
WO2009139067A1 (ja) * 2008-05-16 2009-11-19 三菱電機株式会社 回転電機
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法
JP2013128362A (ja) * 2011-12-19 2013-06-27 Aisin Seiki Co Ltd 3相回転電機の波巻き巻線
JP2014192950A (ja) * 2013-03-26 2014-10-06 Denso Corp 電力変換装置
JP2015167446A (ja) * 2014-03-04 2015-09-24 株式会社ジェイテクト 車載用モータ制御装置
WO2017150641A1 (ja) * 2016-03-04 2017-09-08 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2018173424A1 (ja) * 2017-03-24 2018-09-27 日本電産株式会社 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置

Also Published As

Publication number Publication date
DE112019005725T5 (de) 2021-07-29
US20220014136A1 (en) 2022-01-13
CN113016118A (zh) 2021-06-22
JPWO2020100580A1 (ja) 2021-09-30

Similar Documents

Publication Publication Date Title
JP7063323B2 (ja) モータおよび電動パワーステアリング装置
JP7120216B2 (ja) モータおよび電動パワーステアリング装置
JP6888609B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6874758B2 (ja) 電力変換装置、モータ駆動ユニット、電動パワーステアリング装置およびリレーモジュール
WO2018173424A1 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP7078051B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
JP6977766B2 (ja) 電力変換装置、モータ駆動ユニットおよび電動パワーステアリング装置
WO2019070067A1 (ja) モータモジュールおよび電動パワーステアリング装置
CN109075633B (zh) 马达和电动助力转向装置
CN110463024B (zh) 电力转换装置、马达驱动单元以及电动助力转向装置
WO2020100580A1 (ja) モータおよび電動パワーステアリング装置
WO2019070068A1 (ja) モータモジュールおよび電動パワーステアリング装置
JPWO2019070064A1 (ja) モータモジュールおよび電動パワーステアリング装置
WO2019155918A1 (ja) 電力変換装置、モータおよび電動パワーステアリング装置
JP2009071953A (ja) 駆動装置
JPWO2019069918A1 (ja) モータおよび電動パワーステアリング装置
WO2019070065A1 (ja) モータモジュールおよび電動パワーステアリング装置
WO2019070066A1 (ja) モータモジュールおよび電動パワーステアリング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19884988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020555986

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19884988

Country of ref document: EP

Kind code of ref document: A1