WO2019155654A1 - スクラムジェットエンジン及び飛翔体 - Google Patents
スクラムジェットエンジン及び飛翔体 Download PDFInfo
- Publication number
- WO2019155654A1 WO2019155654A1 PCT/JP2018/026500 JP2018026500W WO2019155654A1 WO 2019155654 A1 WO2019155654 A1 WO 2019155654A1 JP 2018026500 W JP2018026500 W JP 2018026500W WO 2019155654 A1 WO2019155654 A1 WO 2019155654A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- forming member
- cavity
- region
- path forming
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02K—JET-PROPULSION PLANTS
- F02K7/00—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof
- F02K7/10—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof characterised by having ram-action compression, i.e. aero-thermo-dynamic-ducts or ram-jet engines
- F02K7/14—Plants in which the working fluid is used in a jet only, i.e. the plants not having a turbine or other engine driving a compressor or a ducted fan; Control thereof characterised by having ram-action compression, i.e. aero-thermo-dynamic-ducts or ram-jet engines with external combustion, e.g. scram-jet engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2220/00—Application
- F05D2220/10—Application in ram-jet engines or ram-jet driven vehicles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2240/00—Components
- F05D2240/35—Combustors or associated equipment
Definitions
- JP 2012-202226 A discloses a scramjet engine in which the fuel injection direction is variable.
- This publication discloses a technique for injecting fuel into an air stream from a lamp provided on a wall surface and a technique for injecting fuel into an air stream from upstream of a cavity.
- Japanese Patent Application Laid-Open No. 2004-84516 discloses a technology in which a projecting object having an acute angle facing the rear part is provided on the inner wall of the engine and the recirculation flow from the rear part is directed rearward by the projecting object.
- the second fuel injection device injects fuel so as to cross the discontinuous surface from a position downstream of the discontinuous surface generated by generation of a shock wave toward a position upstream of the discontinuous surface.
- the above scramjet engine may be mounted on a flying object and used.
- FIG. 1 is a perspective view showing a configuration of a flying object in one embodiment.
- FIG. 2 is a schematic diagram showing the structure of a scramjet engine in one embodiment.
- FIG. 3 is a cross-sectional view showing the configuration of the combustor in one embodiment.
- FIG. 4 is a perspective view showing the configuration of the combustor shown in FIG.
- FIG. 5 is a cross-sectional view showing the operation of the combustor of one embodiment.
- the combustor 5 includes fuel injection devices 11 and 12 provided in the cowl 2 and a fuel injection device 13 provided in the fuselage 1, and compressed air received from the inlet portion 4 by the fuel injection devices 11, 12, and 13. The fuel is injected into the fuel to burn the fuel.
- the surface 2 b (second surface) of the cowl 2 is connected to the downstream end of the protrusion 14.
- the surface 2b is parallel to the XZ plane.
- the height of the channel 20 in the surface 2b of the cowl 2, i.e., the distance of the plane 1a and the cowl second surface 2b of the fuselage 1 is H 2.
- the height H 2 of the flow path 20 on the surface 2 b located downstream of the protrusion 14 is higher than the height H 1 of the flow path 20 on the surface 2 a located upstream of the protrusion 14.
- the surface 2 a located upstream of the protrusion 14 and the surface 2 b located downstream of the protrusion 14 are connected by the surface 2 c of the cowl 2 formed between the adjacent protrusions 14. Has been.
- the cross-sectional area of the flow path 20 may increase toward the downstream in at least a part thereof. Such a structure contributes to allowing the combustion gas to flow smoothly downstream along the cowl 2 in the downstream region 24.
- the pressure becomes excessively high upstream and air cannot be taken in.
- an opening angle is provided in the cowl 2 in the downstream region 24. That is, the surface 2d facing the downstream region 24 of the cowl 2 is inclined so that the distance between the surface 1a of the body 1 and the surface 2d of the cowl 2 increases toward the downstream.
- the angle formed by the surface 1 a of the fuselage 1 and the surface 2 d of the cowl 2 is indicated by the symbol ⁇ 2 .
- the cross-sectional area of the flow path 20 increases toward the downstream, which is effective for smoothly ejecting the combustion gas.
- the angle ⁇ 2 may be set to 2 ° or more and 4 ° or less.
- FIG. 5 is a diagram illustrating the operation of the combustor 5 of the present embodiment.
- the inclination of the inclined surface 15 c of the cavity 15 is adjusted so that a shock wave is generated in the combustion region 23, thereby improving the combustion efficiency.
- the generation of a shock wave means that a pressure discontinuity 30 is formed.
- the discontinuous surface 30 is inclined with respect to the flow of the combustion gas, and an oblique shock wave is generated.
- the inventors findings when the gentle slope of the inclined surface 15c of the cavity 15, i.e., the inclined surface 15c is, reducing the surface 2a and the angle theta 1 of the cowl 2, to slow the flow in the cavity 15 acts Is weakened, but combustion is accelerated by the generation of shock waves.
- a shock wave is generated in the combustion region 23
- a pressure discontinuous surface 30 is formed in the combustion region 23. In the region near the upstream side of the discontinuous surface 30, the pressure and temperature rise, and combustion is performed in such a region, so that the combustion efficiency can be effectively improved.
- the inventors have confirmed by simulation that the inclined surface 15c of the cavity 15 to the surface 2a and the angle theta 1 of the cowl 2 to 45 ° or less is suitable for generation of the shock wave. Furthermore, it was confirmed by a combustion experiment that the combustion efficiency can be improved by about 30% by adjusting the inclination of the inclined surface 15c so that a shock wave is generated.
- the reason why the inclination of the inclined surface 15c is expressed with reference to the surface 2a of the cowl 2 is that the surface 2a of the cowl 2 determines the direction of the flow of compressed air and combustion gas as the entire combustor 5. It is.
- the angle ⁇ 1 formed by the inclined surface 15c of the cavity 15 and the surface 2a of the cowl 2 is preferably 20 ° or more.
- the structure in the turbulent flow formation region 22 of the combustor 5 of the present embodiment further improves the efficiency of air-fuel mixture formation.
- height H 2 of the flow channel 20 in the plane 2b located downstream of the protrusion 14 is higher than the height H 1 of the channel 20 in the surface 2a which is located upstream of the projection 14, the turbulent flow formation region
- the pressure in the portion facing the surface 2 b of 22 is lower than that in the upstream region 21.
- the surface 2 a located upstream of the protrusion 14 and the surface 2 b located downstream of the protrusion 14 are surfaces of the cowl 2 formed between the adjacent protrusions 14. 2c, a flow of compressed air is formed along the surface 2c between the adjacent protrusions 14. Thereby, formation of turbulent flow is promoted, and an air-fuel mixture in which fuel and compressed air are mixed can be efficiently generated.
- the air-fuel mixture generated in the turbulent flow formation region 22 is introduced into the combustion region 23.
- a part of the air-fuel mixture is decelerated by the cavity 15, whereby a circulating flow 15 d is formed in the cavity 15.
- Combustion is injected into the circulation flow 15 d from the fuel nozzle 12 a by the fuel injection device 12, and further ignited by the ignition device 16 to the circulation flow 15 d, whereby the flame is held in the cavity 15.
- the air-fuel mixture introduced into the combustion region 23 is ignited by the flame held in the cavity 15, and the air-fuel mixture burns to generate combustion gas.
- the discontinuous surface 30 reaches the inside of the cavity 15, and the fuel injection device 12 crosses the discontinuous surface 30 from a position downstream of the discontinuous surface 30 toward a position upstream of the discontinuous surface 30. Inject fuel into the tank. This is effective for promoting the mixing of the circulating flow 15d generated in the cavity 15 and the fuel and improving the combustion efficiency.
- Combustion gas generated in the combustion region 23 is introduced into the downstream region 24.
- the flow of the combustion gas flowing from the combustion region 23 is blocked by the fuel injection of the fuel injection device 13, and the speed of the combustion gas decreases. Thereby, combustion of the unburned fuel contained in combustion gas can be accelerated
- Combustion gas is introduced from the downstream region 24 into the nozzle unit 6 and ejected from the nozzle unit 6. Thereby, the driving force for propelling the flying object 100 is obtained.
- the combustion efficiency of the combustion gas can be improved by generating a shock wave in the combustion region 23.
- the fuel injection device 13 is provided in the fuselage 1, and the fuel injection devices 11, 12, the protrusion 14, the cavity 15, and the ignition device 16 are described in the cowl 2. It is not limited.
- the components described as being provided in the cowl 2 in the above-described embodiment may be provided in the body 1, and the components described as being provided in the body 1 may be provided in the cowl 2.
- the fuel injection device 13 for injecting fuel into the downstream region 24 may not be provided.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
Description
本実施形態の燃焼器5では、キャビティ15の傾斜面15cの傾きが、燃焼領域23において衝撃波が発生するように調節されており、これにより、燃焼効率が向上されている。ここで、衝撃波の発生は、圧力の不連続面30が形成されることを意味することに留意されたい。本実施形態では、不連続面30が燃焼ガスの流れに対して斜めであり、斜め衝撃波が発生していることになる。
Claims (8)
- 第1流路形成部材と、
前記第1流路形成部材に対向して設けられた第2流路形成部材と、
第1燃料噴射装置と、
第2燃料噴射装置
とを具備し、
前記第1流路形成部材と前記第2流路形成部材との間に流路が形成され、
前記流路が、
上流から圧縮空気が導入される乱流形成領域と、
前記乱流形成領域の下流に位置し、前記圧縮空気を用いた燃焼が行われる燃焼領域
とを含み、
前記第2流路形成部材には、前記乱流形成領域に位置し、前記第1流路形成部材に向かって突起する突起が形成され、
前記第1燃料噴射装置は、前記突起に設けられた第1燃料ノズルを介して前記圧縮空気に燃料を噴射し、
前記第2流路形成部材には、前記燃焼領域に位置するキャビティが形成され、
前記第2燃料噴射装置は、前記キャビティに設けられた第2燃料ノズルを介して前記圧縮空気に燃料を噴射し、
前記キャビティは、
底面と、
前記底面の下流側の端に接続する傾斜面
とを有し、
前記キャビティの前記傾斜面の傾きが、前記燃焼領域に衝撃波が発生するように調節されている
スクラムジェットエンジン。 - 請求項1に記載のスクラムジェットエンジンであって、
前記流路が、更に、前記圧縮空気を前記乱流形成領域に導入する上流領域を含み、
前記キャビティの前記傾斜面が、前記第2流路形成部材の前記上流領域に面する部分の面である第1面となす角が、45°以下である
スクラムジェットエンジン。 - 請求項2に記載のスクラムジェットエンジンであって、
前記キャビティの前記傾斜面が前記第2流路形成部材の前記第1面となす角が、20°以上である
スクラムジェットエンジン。 - 請求項1~3のいずれか1項に記載のスクラムジェットエンジンであって、
前記第2燃料噴射装置は、前記衝撃波の発生により発生する不連続面の下流の位置から前記不連続面の上流の位置に向けて、前記不連続面を横切るように燃料を噴射する
スクラムジェットエンジン。 - 請求項2又は3に記載のスクラムジェットエンジンであって、
前記第2流路形成部材は、前記乱流形成領域の前記突起の下流に位置する第2面を有し、
前記第2面と前記第1流路形成部材との間の距離が、前記第1面と前記第1流路形成部材との間の距離よりも大きい
スクラムジェットエンジン。 - 請求項5に記載のスクラムジェットエンジンであって、
前記キャビティの前壁の上端が前記第2面に接続され、
前記キャビティの前記底面の上流側の端が、前記前壁の下端に接続されている
スクラムジェットエンジン。 - 請求項1~4のいずれか1項に記載のスクラムジェットエンジンであって、
更に、前記第1流路形成部材の前記キャビティよりも下流の位置に設けられた第3燃料ノズルを介して前記第2流路形成部材に向けて燃料を噴射する第3燃料噴射装置を具備する
スクラムジェットエンジン。 - 請求項1乃至7のいずれか1項に記載のスクラムジェットエンジンを備える飛翔体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AU2018407616A AU2018407616B2 (en) | 2018-02-09 | 2018-07-13 | Scramjet engine and flying object |
US16/638,203 US11692514B2 (en) | 2018-02-09 | 2018-07-13 | Scramjet engine and flying object |
EP18905558.5A EP3647578B1 (en) | 2018-02-09 | 2018-07-13 | Scramjet engine and flying object |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018022332A JP7001489B2 (ja) | 2018-02-09 | 2018-02-09 | スクラムジェットエンジン及び飛翔体 |
JP2018-022332 | 2018-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019155654A1 true WO2019155654A1 (ja) | 2019-08-15 |
Family
ID=67548352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/026500 WO2019155654A1 (ja) | 2018-02-09 | 2018-07-13 | スクラムジェットエンジン及び飛翔体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11692514B2 (ja) |
EP (1) | EP3647578B1 (ja) |
JP (1) | JP7001489B2 (ja) |
AU (1) | AU2018407616B2 (ja) |
WO (1) | WO2019155654A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111664023A (zh) * | 2020-07-03 | 2020-09-15 | 中国空气动力研究与发展中心 | 一种超燃冲压发动机的燃料掺混装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11415080B2 (en) * | 2018-05-14 | 2022-08-16 | General Electric Company | Engine for an aircraft |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5202525A (en) * | 1990-01-29 | 1993-04-13 | General Electric Company | Scramjet engine having improved fuel/air mixing |
US5253474A (en) * | 1991-08-30 | 1993-10-19 | General Electric Company | Apparatus for supersonic combustion in a restricted length |
JP2000146184A (ja) * | 1998-11-06 | 2000-05-26 | Asea Brown Boveri Ag | 横断面段部を備えた流路 |
JP2004084516A (ja) | 2002-08-26 | 2004-03-18 | Japan Science & Technology Corp | 境界層剥離制御装置と燃料噴射器および制御方法 |
JP2012013007A (ja) * | 2010-07-01 | 2012-01-19 | Mitsubishi Heavy Ind Ltd | 超音速燃焼器 |
JP2012202226A (ja) | 2011-03-23 | 2012-10-22 | Mitsubishi Heavy Ind Ltd | ジェットエンジン |
JP2012207555A (ja) * | 2011-03-29 | 2012-10-25 | Mitsubishi Heavy Ind Ltd | スクラムジェットエンジン |
JP2016056692A (ja) * | 2014-09-05 | 2016-04-21 | 国立大学法人東北大学 | スクラムジェットエンジン用燃焼装置及びスクラムジェットエンジン |
JP2017166409A (ja) * | 2016-03-16 | 2017-09-21 | 三菱重工業株式会社 | ジェットエンジン、および、飛しょう体 |
JP2018022332A (ja) | 2016-08-03 | 2018-02-08 | ヤフー株式会社 | 判定装置、判定方法、及び判定プログラム |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2952123A (en) * | 1956-05-25 | 1960-09-13 | Lockheed Aircraft Corp | Directional controls for propulsive jets |
JPH0715264B2 (ja) * | 1989-01-31 | 1995-02-22 | 日産自動車株式会社 | 超音速空気取入装置 |
US5109670A (en) * | 1989-03-23 | 1992-05-05 | General Electric Company | Scramjet combustor |
US5072581A (en) * | 1989-03-23 | 1991-12-17 | General Electric Company | Scramjet combustor |
US5072582A (en) | 1989-03-23 | 1991-12-17 | General Electric Company | Scramjet combustor |
US5058826A (en) * | 1990-01-29 | 1991-10-22 | General Electric Company | Scramjet engine having a low pressure combustion cycle |
US5085048A (en) * | 1990-02-28 | 1992-02-04 | General Electric Company | Scramjet including integrated inlet and combustor |
US5791148A (en) * | 1995-06-07 | 1998-08-11 | General Electric Company | Liner of a gas turbine engine combustor having trapped vortex cavity |
JPH08334213A (ja) * | 1995-06-09 | 1996-12-17 | Ishikawajima Harima Heavy Ind Co Ltd | 超音速燃焼器とその着火方法 |
US6286298B1 (en) * | 1998-12-18 | 2001-09-11 | General Electric Company | Apparatus and method for rich-quench-lean (RQL) concept in a gas turbine engine combustor having trapped vortex cavity |
US6786040B2 (en) | 2002-02-20 | 2004-09-07 | Space Access, Llc | Ejector based engines |
US20080196414A1 (en) * | 2005-03-22 | 2008-08-21 | Andreadis Dean E | Strut cavity pilot and fuel injector assembly |
US20080060361A1 (en) * | 2006-09-07 | 2008-03-13 | Pratt & Whitney Rocketdyne, Inc. | Multi-height ramp injector scramjet combustor |
KR20090055412A (ko) * | 2007-11-28 | 2009-06-02 | 재단법인서울대학교산학협력재단 | 초음속 유동장 내 공동을 이용한 연료-공기 혼합 구조 |
US8484980B1 (en) * | 2009-11-19 | 2013-07-16 | The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration | Dual-mode combustor |
KR101046759B1 (ko) * | 2009-12-22 | 2011-07-06 | 한국항공우주연구원 | 스크램제트엔진 연소기용 연소증진보염기 |
JP5529651B2 (ja) * | 2010-07-01 | 2014-06-25 | 三菱重工業株式会社 | 超音速燃焼器の着火方法及び着火制御装置 |
JP6441695B2 (ja) * | 2015-01-28 | 2018-12-19 | 三菱重工業株式会社 | ジェットエンジン、飛しょう体及びジェットエンジンの動作方法 |
JP6688637B2 (ja) * | 2016-03-10 | 2020-04-28 | 三菱重工業株式会社 | スクラムジェットエンジン、飛翔体 |
JP6719933B2 (ja) * | 2016-03-16 | 2020-07-08 | 三菱重工業株式会社 | ジェットエンジン、飛しょう体、および、ジェットエンジンの動作方法 |
JP6628246B2 (ja) * | 2016-03-28 | 2020-01-08 | 三菱重工業株式会社 | スクラムジェットエンジン、飛しょう体 |
-
2018
- 2018-02-09 JP JP2018022332A patent/JP7001489B2/ja active Active
- 2018-07-13 WO PCT/JP2018/026500 patent/WO2019155654A1/ja unknown
- 2018-07-13 US US16/638,203 patent/US11692514B2/en active Active
- 2018-07-13 AU AU2018407616A patent/AU2018407616B2/en active Active
- 2018-07-13 EP EP18905558.5A patent/EP3647578B1/en active Active
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5202525A (en) * | 1990-01-29 | 1993-04-13 | General Electric Company | Scramjet engine having improved fuel/air mixing |
US5253474A (en) * | 1991-08-30 | 1993-10-19 | General Electric Company | Apparatus for supersonic combustion in a restricted length |
JP2000146184A (ja) * | 1998-11-06 | 2000-05-26 | Asea Brown Boveri Ag | 横断面段部を備えた流路 |
JP2004084516A (ja) | 2002-08-26 | 2004-03-18 | Japan Science & Technology Corp | 境界層剥離制御装置と燃料噴射器および制御方法 |
JP2012013007A (ja) * | 2010-07-01 | 2012-01-19 | Mitsubishi Heavy Ind Ltd | 超音速燃焼器 |
JP2012202226A (ja) | 2011-03-23 | 2012-10-22 | Mitsubishi Heavy Ind Ltd | ジェットエンジン |
JP2012207555A (ja) * | 2011-03-29 | 2012-10-25 | Mitsubishi Heavy Ind Ltd | スクラムジェットエンジン |
JP2016056692A (ja) * | 2014-09-05 | 2016-04-21 | 国立大学法人東北大学 | スクラムジェットエンジン用燃焼装置及びスクラムジェットエンジン |
JP2017166409A (ja) * | 2016-03-16 | 2017-09-21 | 三菱重工業株式会社 | ジェットエンジン、および、飛しょう体 |
JP2018022332A (ja) | 2016-08-03 | 2018-02-08 | ヤフー株式会社 | 判定装置、判定方法、及び判定プログラム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111664023A (zh) * | 2020-07-03 | 2020-09-15 | 中国空气动力研究与发展中心 | 一种超燃冲压发动机的燃料掺混装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3647578A4 (en) | 2020-07-22 |
JP2019138219A (ja) | 2019-08-22 |
US20200362795A1 (en) | 2020-11-19 |
AU2018407616B2 (en) | 2021-05-20 |
AU2018407616A1 (en) | 2020-02-27 |
JP7001489B2 (ja) | 2022-01-19 |
US11692514B2 (en) | 2023-07-04 |
EP3647578B1 (en) | 2024-02-14 |
EP3647578A1 (en) | 2020-05-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6719933B2 (ja) | ジェットエンジン、飛しょう体、および、ジェットエンジンの動作方法 | |
WO2019155654A1 (ja) | スクラムジェットエンジン及び飛翔体 | |
JP5791323B2 (ja) | スクラムジェットエンジン | |
JP6688637B2 (ja) | スクラムジェットエンジン、飛翔体 | |
JP6258101B2 (ja) | ジェットエンジン、飛しょう体及びジェットエンジンの動作方法 | |
RU2425241C2 (ru) | Реактивное сопло с ориентацией тяги, способ его функционирования, турбореактивный двигатель и беспилотный летательный аппарат, оборудованный таким соплом | |
US10697397B2 (en) | Combustor, jet engine, flying body, and operation method of jet engine | |
WO2018154908A1 (ja) | スクラムジェットエンジン | |
KR101954034B1 (ko) | 초음속 연료 분사 장치 | |
KR101608588B1 (ko) | 가스 유량 조절기 | |
RU2604975C2 (ru) | Гиперзвуковой летательный аппарат с прямоточным воздушно-реактивным двигателем с повышенными летно-техническими характеристиками | |
WO2017158856A1 (ja) | ジェットエンジン、および飛しょう体 | |
JP2017180109A (ja) | スクラムジェットエンジン、飛しょう体 | |
JP7121556B2 (ja) | ラムジェットエンジン | |
JP3994122B2 (ja) | 境界層剥離制御装置と燃料噴射器および制御方法 | |
JP3042206B2 (ja) | スクラムジェットエンジン | |
JPH06280679A (ja) | 燃焼器とその保炎方法 | |
JPH08165952A (ja) | ジェットエンジンの流体混合装置 | |
JPH11210554A (ja) | 燃焼装置 | |
JPH07139430A (ja) | ラム燃焼装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18905558 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2018905558 Country of ref document: EP Effective date: 20200128 |
|
ENP | Entry into the national phase |
Ref document number: 2018407616 Country of ref document: AU Date of ref document: 20180713 Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |