WO2019153980A1 - 一种喹啉三唑类稀土配合物及其制备方法和应用 - Google Patents

一种喹啉三唑类稀土配合物及其制备方法和应用 Download PDF

Info

Publication number
WO2019153980A1
WO2019153980A1 PCT/CN2019/070031 CN2019070031W WO2019153980A1 WO 2019153980 A1 WO2019153980 A1 WO 2019153980A1 CN 2019070031 W CN2019070031 W CN 2019070031W WO 2019153980 A1 WO2019153980 A1 WO 2019153980A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
quinoline
reaction
earth complex
carboxylic acid
Prior art date
Application number
PCT/CN2019/070031
Other languages
English (en)
French (fr)
Inventor
史华红
麦裕良
梁东
陈捷
陈少渠
Original Assignee
广东省石油与精细化工研究院
广东鑫钰新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东省石油与精细化工研究院, 广东鑫钰新材料股份有限公司 filed Critical 广东省石油与精细化工研究院
Publication of WO2019153980A1 publication Critical patent/WO2019153980A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/351Metal complexes comprising lanthanides or actinides, e.g. comprising europium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/18Metal complexes
    • C09K2211/182Metal complexes of the rare earth metals, i.e. Sc, Y or lanthanide

Definitions

  • the invention relates to a quinoline triazole rare earth complex and a preparation method and application thereof.
  • OLED Organic Light-Emitting Diode
  • Y 2 O 2 S:Tb is used as green powder
  • Y 2 O 3 :Eu/Y 2 O 2 S:Eu is used as red powder
  • Tb 3+ :LaPO 4 , Ce 3+ : LaPO 4 and Eu 3+ : Y 2 O 3 are used as green powder, blue powder and red powder, respectively
  • yellow powder YAG Y 3 Al 5 O 12 :Ce
  • these inorganic rare earth phosphors are not suitable for use in new OLED technologies.
  • Rare earth organic luminescent materials inherit the excellent characteristics of rare earth materials in optical properties, such as materials with narrow emission peaks (half-peak width less than 10 nm); chromatic saturation is bright ( ⁇ complex OLED devices can obtain chromatic saturation red Light, while ruthenium complex OLED devices can achieve pure color green light); and have ultra-high photon efficiency (reported solid iridium complexes have a photon efficiency of 85%) (Coordination Chemistry Reviews, 2000, 196: 165 However, due to the poor film-forming properties of small-molecule rare earth complexes and poor light and thermal stability, the efficiency and lifetime of these rare earth organic devices are far from their theoretical expectations, thus limiting their use in OLEDs. Applications in technology.
  • organic luminescent materials on the market, such as small molecule organic luminescent materials, polymer luminescent materials, noble metal complexes such as ruthenium, platinum and gold, etc., although the emission peak width, the half width is usually 80 Between -100nm, the color is dim compared to rare earth luminescent materials, but the device efficiency and lifetime of these luminescent materials have reached A practical request has been made.
  • the shortcomings of the existing rare earth organic materials may be related to their structural characteristics.
  • the ligands used in the research field mostly use a plurality of different types of compounds as mixed ligands to coordinate with rare earth center ions, such as 1,10-phenanthroline, ⁇ -diketone, and picolinic acid compounds. Or provide a negative charge.
  • the rare earth lanthanum organic complex used in the device is tris(2-thienyltrifluoroacetylacetone)-mono(1,10-phenanthroline) ruthenium (Eu(TTA) 3 (Phen) , tris(2-thienyltrifluoroacetylacetone)-mono(3,4,7,8-tetramethyl-1,10-phenanthroline) ruthenium (Eu(TTA) 3 (TmPhen))
  • This type of rare earth complexes due to the triazole group in the ligand as a negative ion donor, combines with the central rare earth metal cation to achieve electrical neutrality of the complex, so the bond energy of the ligand and the central ion, in addition to the coordinate bond And the positive and negative charge interaction forces between them exist, thereby improving the stability of the complex as a whole.
  • the complexes formed by these triazole-based ligands have high light and thermal stability, and have broad application prospects in emerging fields such as OLED display, 4K display, illumination, organic photovoltaic, light conversion, and blue light absorption.
  • One of the objects of the present invention is to provide a quinoline triazole rare earth complex
  • the second object of the present invention is to provide a method for preparing the quinoline triazole rare earth complex
  • the third object of the present invention is to provide The application of a quinoline triazole rare earth complex.
  • a quinoline triazole rare earth complex having a structural formula as shown in formula (1):
  • R1 is selected from hydrogen, alkyl, haloalkyl or aryl
  • Ln is selected from the group consisting of ruthenium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium. Any one of them.
  • the preparation method of the quinoline triazole rare earth complex comprises the following steps:
  • the oxidizing agent used for the oxidation reaction is at least one of m-chloroperoxybenzoic acid and hydrogen peroxide; the molar ratio of the oxidizing agent to the quinoline is 1:1 or more; and the temperature of the oxidation reaction is 60 ° C. ⁇ 110° C.
  • the solvent for the oxidation reaction is at least one of a carboxylic acid, an alkyl halide, and an alcohol.
  • the cyano reagent used for the cyano substitution reaction is at least one of NaCN, KCN, CuCN, Zn(CN) 2 , (CH 3 ) 3 SiCN; the reaction temperature of the cyano substitution is 0.
  • the reaction time is from 1 day to 7 days from °C to 40 °C.
  • the step 3) of the preparation method is specifically: firstly dissolving 2-cyanoquinoline in an organic solvent, and then reacting with hydrazine at 0 ° C to 40 ° C for 1 h to 24 h, and then forming the solid substance with a carboxylic acid or a carboxylic acid.
  • the derivative is mixed and reacted at -20 ° C to 50 ° C for 1 h to 24 h, and the obtained solid product is purified to obtain a ligand compound.
  • the amount of ruthenium is not less than 1.0 equivalent; and the amount of the carboxylic acid or carboxylic acid derivative is not less than 1.0 equivalent.
  • the hydrazine is hydrazine hydrate;
  • the carboxylic acid derivative is at least one of a substituted carboxylic acid, an acid anhydride, an acid halide, and an ester.
  • the step 4) of the preparation method is specifically: firstly dissolving the ligand compound and the rare earth metal salt in an aqueous alcohol solution, mixing and stirring the aqueous solution of the ligand compound with the alkali, and then adding the aqueous solution of the rare earth metal salt at 0 ° C.
  • the reaction was stirred at -60 ° C for 1 h to 48 h, and the obtained solid product was purified to obtain a quinoline triazole rare earth complex.
  • the equivalent ratio of the ligand compound to the rare earth metal salt is (2 to 4):1;
  • the aqueous alcohol solution is a mixture of alcohol and water in a volume ratio (0.2 to 5):1; Not less than 1.0 equivalent.
  • the invention prepares a rare earth complex by preparing a series of organic ligands having both a quinoline structure and a triazole structure, and the novel rare earth complexes combining the two structural characteristics of quinoline and triazole, inheriting two kinds of
  • the structure has advantages in terms of luminescent properties and stability, and achieves the purpose of improving the performance of rare earth organic luminescent materials.
  • the present invention has the following advantages:
  • the novel organic ligand prepared by the present invention is based on the structure of quinoline, and is connected with a 1,2,4-1H-triazole unit, thereby realizing the novelty of the ligand itself.
  • the ligands are different from the widely studied 8-hydroxyquinoline series ligands.
  • the 8-hydroxyquinoline series ligands are coordinated to the metal central ions by "nitrogen atoms” and "hydroxyl atoms" on two adjacent six-membered rings; and the quinoline triazole ligands employed in the present invention are Coordination is formed by the "nitrogen atom" on the quinoline ring and the "nitrogen atom” on the triazole.
  • the two coordinated "nitrogen atoms" are not in the same environment.
  • One is a quinoline fused ring and the other is a triazole.
  • the five-membered ring; another difference between the present invention and the prior art is that a quinoline triazole ligand is used as the uniform ligand L, and the ring of the nitrogen atom coordinated by the quinoline triazole ligand is respectively "Quinoline ring" and "1,2,4-triazole ring", that is, the structure of "multiple ring-five ring".
  • the structure of the compound determines the properties and stability of the compound itself.
  • the homogeneous ligand L of the present invention two different sizes of coordinated nitrogen heterocycles are simultaneously present, and the bond length, bond angle, electron cloud density and the like of each coordination nitrogen heterocycle form a coordination bond with the rare earth center ion
  • this feature of the structure can make the energy level matching between the rare earth center ion of the target rare earth complex and the ligand L more adaptive, so that the photoelectric properties of the target rare earth complex can be obtained. More possibilities for improvement and greater room for improvement.
  • Such rare earth organic complexes have high thermal stability and are completely suitable for the needs of existing vapor deposition film forming processes to form devices.
  • rare earth organic complexes which are easily soluble in an organic solvent or even water, and the improvement in processability is advantageous for forming a device by a solution forming process of a solution.
  • Such rare earth organic complexes are widely used in the fields of display, illumination, organic photovoltaic, light conversion, blue light absorption, etc. due to their superior optical and thermal stability.
  • the preparation method of the invention has the advantages of high yield, good product purity, short reaction time and simple operation, and greatly reduces the cost.
  • FIG. 1 is a synthetic circuit diagram of a method for preparing a quinoline triazole rare earth complex of the present invention
  • Figure 2 is a mass spectrum of 5-(quinolin-2-yl)-1,2,4-1H-triazole
  • Figure 3 is a nuclear magnetic resonance spectrum of 3-(trifluoromethyl)-5-(quinolin-2-yl)-1,2,4-1H-triazole;
  • Figure 4 is a mass spectrum of 3-(trifluoromethyl)-5-(quinolin-2-yl)-1,2,4-1H-triazole;
  • Figure 5 is a mass spectrum of tris[3-(trifluoromethyl)-5-(quinolin-2-yl)-1,2,4-1H-triazole] ruthenium (III).
  • a quinoline triazole rare earth complex having the general formula LnL 3 and L being a quinoline triazole ligand; the specific structural formula is as shown in formula (1):
  • R1 is selected from hydrogen, alkyl, haloalkyl or aryl
  • Ln is selected from the group consisting of ruthenium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium, osmium, iridium. Any one of them.
  • R1 is at least one selected from the group consisting of hydrogen and trifluoromethyl.
  • the preparation method of the quinoline triazole rare earth complex comprises the following steps:
  • FIG. 1 A synthetic route diagram for the preparation of such a quinoline triazole rare earth complex is shown in FIG. 1
  • the oxidation reaction is specifically carried out by adding an oxidizing agent; the oxidizing agent used in the oxidation reaction is at least one of m-chloroperoxybenzoic acid and hydrogen peroxide; and the molar ratio of the oxidizing agent to the quinoline is greater than or equal to 1:1.
  • the temperature of the oxidation reaction is from 60 ° C to 110 ° C.
  • the oxidation reaction time is from 3 h to 12 h.
  • the solvent for the oxidation reaction is at least one of a carboxylic acid, an alkyl halide, and an alcohol; and further preferably, in the step 1) of the preparation method, the solvent for the oxidation reaction is acetic acid or trichloroc One of the methane; further, in the step 1) of the preparation method, the minimum amount of the solvent is just dissolved.
  • the cyano reagent used in the cyano substitution reaction is NaCN, KCN, CuCN, Zn(CN) 2 , (CH 3 ) 3 SiCN (TMSCN, trimethylcyanosilane) At least one of; further preferably, in the step 2) of the preparation method, the cyano reagent used for the cyano substitution reaction is (CH 3 ) 3 SiCN.
  • the reaction temperature of the cyano substitution is from 0 ° C to 40 ° C, and the reaction time is from 1 day to 7 days; further preferably, in the step 2) of the preparation method, the cyano substitution reaction The temperature is from 0 ° C to 25 ° C.
  • the step 3) of the preparation method is: firstly dissolving 2-cyanoquinoline in an organic solvent, and reacting with hydrazine at 0 ° C to 40 ° C for 1 h to 24 h, and then forming the solid matter with the carboxylic acid. Or the carboxylic acid derivative is mixed and reacted at -20 ° C to 50 ° C for 1 h to 24 h, and the obtained solid product is purified to obtain a ligand compound.
  • the amount of ruthenium is not less than 1.0 equivalent; and the amount of the carboxylic acid or carboxylic acid derivative is not less than 1.0 equivalent.
  • the hydrazine is hydrazine hydrate;
  • the carboxylic acid derivative is at least one of a substituted carboxylic acid, an acid anhydride, an acid halide, and an ester; and the carboxylic acid derivative contains an R1 group.
  • the organic solvent is at least one of an alcohol, an ether, a ketone, an alcohol ether, an ester, an amide, a hydrocarbon, and a nitrile solvent; further, the preparation method In step 3), the minimum amount of organic solvent is just dissolved in the raw material.
  • the specific method for purifying the solid product is: crystallizing the product, filtering, and recrystallization.
  • the reaction temperature is from room temperature to reflux depending on the different reaction substrates.
  • the step 4) of the preparation method is specifically: separately dissolving the ligand compound and the rare earth metal salt in an aqueous alcohol solution, mixing and stirring the aqueous solution of the ligand compound with the alkali, and then adding the aqueous solution of the rare earth metal salt.
  • the reaction was stirred at 0 ° C to 60 ° C for 1 h to 48 h, and the obtained solid product was purified to obtain a quinoline triazole rare earth complex.
  • the equivalent ratio of the ligand compound to the rare earth metal salt is (2 to 4): 1; further preferably, in the step 4) of the preparation method, the rare earth metal salt is used in an amount of 1.0 equivalent.
  • the ligand compound was used in an amount of 3.0 equivalents.
  • the rare earth metal salt is a rare earth metal halide, a nitrate, a sulfate, a perchlorate, a phosphate, a carboxylate, a sulfonate, a fluoroborate or a hexafluorocarbon. At least one of phosphates.
  • the aqueous alcohol solution is a mixed liquid of an alcohol and water in a volume ratio (0.2 to 5):1; further preferably, in the step 4) of the preparation method, the alcohol in the aqueous alcohol solution is ethanol. At least one of 2-ethoxyethanol, 2-methoxyethanol, 1,3-propanediol, 1,2-propanediol, ethylene glycol, and glycerin; further, in the step 4) of the preparation method The minimum amount of aqueous alcohol solution is just dissolved in the raw material.
  • the amount of the base is not less than 1.0 equivalent.
  • the base is an inorganic base or an organic base; further preferably, in the step 4) of the preparation method, the alkali is an alkali metal hydroxide; and further preferably, the step 4) of the preparation method is The base is sodium hydroxide.
  • the solid product is purified by a method of: evaporating the solvent under reduced pressure and drying.
  • Second step preparation of 2-cyano-quinoline (compound 3)
  • the oil obtained in the previous step was first dissolved in 500 mL of dichloromethane, transferred to a 2 L three-necked flask, and cooled to below 10 ° C in an ice bath.
  • Trimethylcyanosilane TMSCN, 300 mL
  • TMSCN Trimethylcyanosilane
  • Benzoyl chloride 90 mL was added dropwise maintaining the internal temperature to less than 25 °C.
  • the reaction was carried out at room temperature for 48 hours.
  • the ice salt bath is cooled to lower the internal temperature to below 0 °C.
  • the third step preparation of 5-(quinolin-2-yl)-1,2,4-1H-triazole (compound 4)
  • the desiccant was filtered off, and concentrated to dryness to dryness crystals. Filter, drain and filter cake washed with petroleum ether (200 mL). The filter cake was then vacuum dried at 40 ° C for 8 hours to obtain 27 g of a white solid powder.
  • Step 4 Preparation of tris[5-(quinolin-2-yl)-1,2,4-1H-triazole] ruthenium (III) (Compound 5)
  • quinoline Compound 1, 129 g
  • chloroform 600 mL
  • m-chloroperoxybenzoic acid 180 g
  • 500 mL 500 mL
  • the temperature was gradually raised to room temperature, and the reaction was stirred for 3 hours; heating was continued to 60-70 ° C, and further reaction was carried out for 3 hours.
  • the chloroform was concentrated under reduced pressure, diluted with water (1000 mL), and adjusted to pH 8-9 using solid sodium carbonate.
  • the mixture was heated to 90-95 ° C for half an hour, cooled, and suction filtered to remove the unreacted starting material quinoline.
  • the obtained filtrate was extracted with dichloromethane (1000 mL + 500 mL ⁇ 3). Filtration and concentration of the filtrate under reduced pressure gave an orange-brown oil which was taken directly to the next reaction without purification.
  • the oil obtained in the previous step was first dissolved in 500 mL of dichloromethane, transferred to a 2 L three-necked flask, and cooled to below 10 ° C in an ice bath.
  • Trimethylcyanosilane TMSCN, 300 mL
  • TMSCN Trimethylcyanosilane
  • Benzoyl chloride 90 mL was added dropwise maintaining the internal temperature to less than 25 °C.
  • the reaction was carried out at room temperature for 72 hours.
  • the ice salt bath is cooled to lower the internal temperature to below 0 °C.
  • Trifluoroacetic acid 300 mL was added to a 1 L three-necked flask, and the ice salt bath was cooled to below 0 ° C, and then the solid obtained above was added in portions to maintain an internal temperature of less than 5 °C. After the addition, the reaction was carried out for 2 hours under ice bath conditions, and the solution was pale yellow. The reaction was heated under reflux for 4 hours, and the reaction mixture gradually turned orange-red. Cool to room temperature. The solvent was concentrated, and the obtained residue was diluted with water (1000 mL). The pH was adjusted to about 9 with sodium carbonate solid and extracted with ethyl acetate (1000 mL + 500 mL x 2).
  • Step 4 Preparation of tris[3-(trifluoromethyl)-5-(quinolin-2-yl)-1,2,4-1H-triazole] ruthenium (III) (Compound 8)
  • the quinoline triazole rare earth complex prepared by the invention can be applied to prepare an organic electroluminescent material, and exhibits different colors according to different rare earth ions in the center of the complex.
  • rare earth ions Ln are red light
  • the main peak of the emission spectrum is 621nm; green light, main peak 545nm; blue light, main peak 470nm; pink light, main peak 640nm; yellow light, main peak 570nm;
  • Infrared light is emitted from ⁇ , ⁇ , and , and the main peaks are 1065 nm, 1509 nm, and 978 nm, respectively.
  • the organic electroluminescent material prepared by the quinoline triazole rare earth complex of the invention can be applied to various fields such as OLED, and has broad application prospects.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)

Abstract

一种结构式如式 (1) 稀土配合物及其制备方法和应用:(I) 其中: R1选自氢、烷基、卤代烷基或芳香基;Ln选自钇、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥中的任意一种。该稀土配合物结合了喹啉与三唑两种结构特点的,继承两种结构在发光性能和稳定性等方面的特长,达到提高稀土有机发光材料性能的目的。

Description

一种喹啉三唑类稀土配合物及其制备方法和应用 技术领域
本发明涉及一种喹啉三唑类稀土配合物及其制备方法和应用。
背景技术
OLED(Organic Light-Emitting Diode有机发光二极管)技术是全球的研发和商业机构公认的下一代的显示和照明技术,与现有技术相比,OLED具有轻质、超薄、可弯曲、颜色鲜明饱和、对比度高和节能等重大优点。
最早报道有机电致发光应追溯到1963年,Pope等人用蒽单晶制备了有机电致发光器件。但是引起广泛关注高效的OLEDs,是直到1987年C W Tang等成功用苯胺-TPD做空穴传输层,铝与8-羟基喹啉络合物(Alq3)作为发光层研制出一种有机发光二极管,其工作电压小于10V,亮度高达1000cd/m 2,这样的亮度足以用于实际应用。这个突破性进展使得8-羟基喹啉系列络合物成为OLED领域近30年来的一个研究热点。以8-羟基喹啉铝(Alq3)、8-羟基喹啉锌(Znq2)等为代表的电致发光材料的研究及应用,每年都有大量的成果见诸报道。由此可见,喹啉类型的化合物结构作为电致发光配合物的配体是有非常充分的研究及应用基础的。
另一方面,自从1990年Kido小组首次证实铽的β-二酮配合物可用作OLED器件的发光材料以来,稀土有机发光材料的发展再次引起科学界的高度关注。从显示和照明技术的发展历史上来看,稀土荧光粉由于光学性能优异,在技术的发展和应用过程中,成为了毫无疑问的垄断性材料。例如:在阴极射线管中,Y 2O 2S:Tb用作绿粉、Y 2O 3:Eu/Y 2O 2S:Eu用作红粉;在节能灯中,Tb 3+:LaPO 4、Ce 3+:LaPO 4和Eu 3+:Y 2O 3分别用作绿粉、蓝粉和红粉;在白光LED中,黄粉YAG(Y 3Al 5O 12:Ce)与465nm蓝光芯片组合发出白光。但是,这些无机稀土荧光粉并不能适用于新的OLED技术中去。
稀土有机发光材料继承了稀土材料在光学性能方面的优异特点,譬如材料具有很窄的发射峰(半峰宽小于10nm);色度饱和鲜艳(铕配合物的OLED器件可以获得色度饱和的红光,而铽配合物的OLED器件可以得到色度纯正的绿光);以及具有超高的光量子效率(已报道的固体铕配合物的光量子效率达到85%(Coordination Chemistry Reviews,2000,196:165)等。但是,由于小分子稀土配合物的成膜性差以及光和热稳定性差等因素影响,这些稀土有机材料器件的效率和寿命却远远没有达到它们的理论期望值,从而限制了它们在OLED技术中的应用。而市场上其它类型的有机发光材料,如小分子有机发光材料,高分子发光材料,铱、 铂和金等贵金属配合物等等,尽管发射峰宽,半峰宽通常在80-100nm之间,与稀土发光材料相比,颜色暗淡,但是,这些发光材料的器件效率和寿命已经达到了实用的要求。
现有稀土有机材料在应用上的不足,可能与其结构特性相关。现阶段研究领域所使用的配体,多以多个不同类型化合物作为混合配体与稀土中心离子配位,例如1,10-邻菲啰啉、β-二酮、吡啶甲酸类化合物做配体或提供负电荷。以CN1545370A为例,其器件使用的稀土铕有机配合物就为三(2-噻吩基三氟乙酰丙酮)-单(1,10-邻菲啰啉)合铕(Eu(TTA) 3(Phen)),三(2-噻吩基三氟乙酰丙酮)-单(3,4,7,8-四甲基-1,10-邻菲啰啉)合铕(Eu(TTA) 3(TmPhen))类混合配体。这些混合配体的稀土配合物的稳定性尤其是光稳定性普遍不好。
广东鑫钰新材料股份有限公司采用均一配体在CN103044466A中描述了联吡啶三唑类稀土配合物,在CN103172649A中描述了邻菲啰啉三唑类稀土配合物。这些配合物都是以三个均一配体结合一个稀土中心离子的模式,制备得到的新型稀土有机材料。这种类型的稀土配合物由于配体中三唑基团作为负离子提供者,与中心稀土金属阳离子结合实现配合物电中性,因此配体和中心离子的连接键能,除了配位键之外,还有它们之间的正负电荷相互作用力存在,从而整体上提高了配合物的稳定性。这些三唑类结构的配体形成的配合物光、热稳定性高,在OLED显示、4K显示、照明、有机光伏、光转换、蓝光吸收等新兴领域都有广阔的应用前景。
发明内容
本发明的目的之一在于提供一种喹啉三唑类稀土配合物,本发明的目的之二在于提供及这种喹啉三唑类稀土配合物制备方法,本发明的目的之三在于提供这种喹啉三唑类稀土配合物的应用。
本发明所采取的技术方案是:
一种喹啉三唑类稀土配合物,其结构式如式(1)所示:
Figure PCTCN2019070031-appb-000001
式(1)中,R1选自氢、烷基、卤代烷基或芳香基;Ln选自钇、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥中的任意一种。
这种喹啉三唑类稀土配合物的制备方法,包括以下步骤:
1)将喹啉氧化成氮氧化物
Figure PCTCN2019070031-appb-000002
2)将氮氧化物
Figure PCTCN2019070031-appb-000003
进行氰基取代,得到2-氰基喹啉
Figure PCTCN2019070031-appb-000004
3)将2-氰基喹啉
Figure PCTCN2019070031-appb-000005
肼与羧酸或羧酸衍生物反应,得到配体化合物
Figure PCTCN2019070031-appb-000006
4)将配体化合物和稀土金属盐反应,得到式(1)所示结构的喹啉三唑类稀土配合物。
制备方法的步骤1)中,氧化反应所用的氧化剂为间氯过氧苯甲酸、过氧化氢中的至少一种;氧化剂与喹啉的摩尔比大于等于1:1;氧化反应的温度为60℃~110℃;氧化反应的溶剂为羧酸、卤代烷、醇中的至少一种。
制备方法的步骤2)中,氰基取代反应所用的氰基试剂为NaCN、KCN、CuCN、Zn(CN) 2、(CH 3) 3SiCN中的至少一种;氰基取代的反应温度为0℃~40℃,反应时间为1天~7天。
制备方法的步骤3)具体为:先将2-氰基喹啉溶于有机溶剂中,再与肼在0℃~40℃下反应1h~24h,然后把生成的固体物质与羧酸或羧酸衍生物在-20℃~50℃下混合反应1h~24h,所得的固体产物提纯后,得到配体化合物。
制备方法的步骤3)中,肼的用量不小于1.0当量;羧酸或羧酸衍生物的用量不小于1.0当量。
制备方法的步骤3)中,肼为水合肼;羧酸衍生物为取代羧酸、酸酐、酰卤、酯中的至少一种。
制备方法的步骤4)具体为:先分别将配体化合物和稀土金属盐溶于醇水溶液中,再把配 体化合物的醇水溶液与碱混合搅拌,然后加入稀土金属盐的醇水溶液,在0℃~60℃下搅拌反应1h~48h,所得的固体产物提纯后,得到喹啉三唑类稀土配合物。
制备方法的步骤4)中,配体化合物和稀土金属盐的当量比为(2~4):1;醇水溶液为醇和水以体积比(0.2~5):1组成的混合液;碱的用量不少于1.0当量。
这种喹啉三唑类稀土配合物在制备有机电致发光材料中的应用。
本发明的有益效果是:
本发明通过制备一系列同时具有喹啉结构和三唑结构的有机配体,进而制备其稀土配合物,这一类结合了喹啉与三唑两种结构特点的新型稀土配合物,继承两种结构在发光性能和稳定性等方面的特长,达到提高稀土有机发光材料性能的目的。
具体而言,本发明具有以下优点:
1)本发明制备的新型有机配体,是在喹啉结构的基础上,连接上一个1,2,4-1H-三唑单元,从而实现配体本身的新颖性。本发明与现有技术的不同之处主要有两点:一是配体与现有广泛研究的8-羟基喹啉系列配体采取的配位方式不同。8-羟基喹啉系列配体是相邻两个六元环上分别以“氮原子”和“羟基氧原子”与金属中心离子形成配位;而本发明采取的喹啉三唑配体,是以喹啉环上的“氮原子”及三唑上“氮原子”形成配位,两个配位“氮原子”所处的环境并不等同,一个是喹啉稠环,另一个是三唑的五元环;本发明与现有技术的另外一个不同之处就在于采用喹啉三唑类配体作为均一配体L,且喹啉三唑类配体配位的氮原子所在环分别为“喹啉环”和“1,2,4-三唑环”,即“多元环-五元环”的结构。
2)化合物的结构决定化合物自身的性能和稳定性。本发明所述的均一配体L中同时存在两种不同大小的配位氮杂环,各个配位氮杂环与稀土中心离子形成配位键的键长、键角、电子云密度等参数相互间必然有所差异,结构上的这个特点可以使目标稀土配合物的稀土中心离子与配体L之间的能级匹配具有更多的调适性,从而使目标稀土配合物的各项光电性能获得更多的改善可能性与更大的提升空间。这类稀土有机配合物的热稳定性高,完全适合现有蒸镀成膜的制作工艺制成器件的需求。另外,通过R1官能团的修饰,可以合成易溶于有机溶剂,甚至水的稀土配合物,加工性能方面的改善,有利于它们通过溶液成膜的制备工艺制成器件。这类稀土有机配合物由于光、热稳定性优越,可广泛应用于显示、照明、有机光伏、光转换、蓝光吸收等领域。
3)本发明的制备方法具有产率高、产物纯度好、反应时间短,操作简单的优点,极大的降低了成本。
附图说明
图1是本发明喹啉三唑类稀土配合物制备方法的合成线路图;
图2是5-(喹啉-2-基)-1,2,4-1H-三唑的质谱图;
图3是3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑的核磁氢谱图;
图4是3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑的质谱图;
图5是三[3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑]合铕(III)的质谱图。
具体实施方式
一种喹啉三唑类稀土配合物,其通式为LnL 3,L为喹啉三唑类配体;具体的结构式如式(1)所示:
Figure PCTCN2019070031-appb-000007
式(1)中,R1选自氢、烷基、卤代烷基或芳香基;Ln选自钇、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥中的任意一种。
优选的,式(1)中,R1选自氢、三氟甲基中的至少一种。
这种喹啉三唑类稀土配合物的制备方法,包括以下步骤:
1)将喹啉氧化成氮氧化物
Figure PCTCN2019070031-appb-000008
2)将氮氧化物
Figure PCTCN2019070031-appb-000009
进行氰基取代,得到2-氰基喹啉
Figure PCTCN2019070031-appb-000010
3)将2-氰基喹啉
Figure PCTCN2019070031-appb-000011
肼与羧酸或羧酸衍生物反应,得到配体化合物
Figure PCTCN2019070031-appb-000012
4)将配体化合物和稀土金属盐反应,得到式(1)所示结构的喹啉三唑类稀土配合物。
这种喹啉三唑类稀土配合物制备方法的合成路线图见附图1。
优选的,制备方法的步骤1)中,具体为加入氧化剂进行氧化反应;氧化反应所用的氧化剂为间氯过氧苯甲酸、过氧化氢中的至少一种;氧化剂与喹啉的摩尔比大于等于1:1。
优选的,制备方法的步骤1)中,氧化反应的温度为60℃~110℃。
优选的,制备方法的步骤1)中,氧化反应的时间为3h~12h。
优选的,制备方法的步骤1)中,氧化反应的溶剂为羧酸、卤代烷、醇中的至少一种;再进一步优选的,制备方法的步骤1)中,氧化反应的溶剂为乙酸、三氯甲烷中的其中一种;进一步的,制备方法的步骤1)中,溶剂的最小用量为刚好溶解原料。
优选的,制备方法的步骤2)中,氰基取代反应所用的氰基试剂为NaCN、KCN、CuCN、Zn(CN) 2、(CH 3) 3SiCN(TMSCN,三甲基氰硅烷))中的至少一种;进一步优选的,制备方法的步骤2)中,氰基取代反应所用的氰基试剂为(CH 3) 3SiCN。
优选的,制备方法的步骤2)中,氰基取代的反应温度为0℃~40℃,反应时间为1天~7天;进一步优选的,制备方法的步骤2)中,氰基取代的反应温度为0℃~25℃。
优选的,制备方法的步骤3)具体为:先将2-氰基喹啉溶于有机溶剂中,再与肼在0℃~40℃下反应1h~24h,然后把生成的固体物质与羧酸或羧酸衍生物在-20℃~50℃下混合反应1h~24h,所得的固体产物提纯后,得到配体化合物。
优选的,制备方法的步骤3)中,肼的用量不小于1.0当量;羧酸或羧酸衍生物的用量不小于1.0当量。
优选的,制备方法的步骤3)中,肼为水合肼;羧酸衍生物为取代羧酸、酸酐、酰卤、酯中的至少一种;所述的羧酸衍生物含有R1基团。
优选的,制备方法的步骤3)中,有机溶剂为醇类、醚类、酮类、醇醚类、酯类、酰胺类、烃类、腈类溶剂中的至少一种;进一步的,制备方法的步骤3)中,有机溶剂的最小用量为刚好溶解原料。
优选的,制备方法的步骤3)中,固体产物提纯的具体方法为:将产物结晶,过滤,重结晶。
进一步的,制备方法的步骤3)中,反应温度根据不同反应底物从室温到回流。
优选的,制备方法的步骤4)具体为:先分别将配体化合物和稀土金属盐溶于醇水溶液中,再把配体化合物的醇水溶液与碱混合搅拌,然后加入稀土金属盐的醇水溶液,在0℃~60℃下搅拌反应1h~48h,所得的固体产物提纯后,得到喹啉三唑类稀土配合物。
优选的,制备方法的步骤4)中,配体化合物和稀土金属盐的当量比为(2~4):1;进一步优选的,制备方法的步骤4)中,稀土金属盐的用量为1.0当量时,配体化合物的用量为3.0当量。
优选的,制备方法的步骤4)中,稀土金属盐为稀土金属的卤化物、硝酸盐、硫酸盐、高氯酸盐、磷酸盐、羧酸盐、磺酸盐、氟硼酸盐、六氟磷酸盐中的至少一种。
优选的,制备方法的步骤4)中,醇水溶液为醇和水以体积比(0.2~5):1组成的混合液;进一步优选的,制备方法的步骤4)中,醇水溶液中的醇为乙醇、2-乙氧基乙醇、2-甲氧基乙醇、1,3-丙二醇、1,2-丙二醇、乙二醇、丙三醇中的至少一种;进一步的,制备方法的步骤4)中,醇水溶液的最小用量为刚好溶解原料。
优选的,制备方法的步骤4)中,碱的用量不少于1.0当量。
优选的,制备方法的步骤4)中,碱为无机碱或有机碱;进一步优选的,制备方法的步骤4)中,碱为碱金属氢氧化物;再进一步优选的,制备方法的步骤4)中,碱为氢氧化钠。
优选的,制备方法的步骤4)中,固体产物提纯的具体方法为:减压蒸干溶剂,干燥。
这种喹啉三唑类稀土配合物在制备有机电致发光材料中的应用。
以下结合图1,通过具体的实施例对本发明的内容作进一步详细的说明。
实施例1:
三[5-(喹啉-2-基)-1,2,4-1H-三唑]合铕(III)(化合物5)的合成
第一步:N-氧-喹啉(化合物2)的制备
Figure PCTCN2019070031-appb-000013
首先将喹啉(化合物1,129g)以及醋酸(600mL)加入到2L的三口瓶中,搅拌均匀,加入质量分数为30%H 2O 2(100mL),加热到70-75℃,搅拌反应3小时,冷却到室温,加入质量分数为30%H 2O 2(100mL),继续加热到60-110℃,反应3小时。冷却到室温,减压浓缩掉醋酸,得到红色粘稠油状物,用水(1000mL)稀释,用固体碳酸钠调pH到8~9。得到的溶液用二氯甲烷(1000mL+500mL×3)萃取,合并有机相,用无水硫酸干燥。过滤,滤液加 压浓缩得到桔红色油状物,无需纯化直接投入下一步反应。
第二步:2-氰基-喹啉(化合物3)的制备
Figure PCTCN2019070031-appb-000014
首先将上一步得到的油状物溶解在500mL的二氯甲烷中,转入到2L的三口瓶中,冰浴冷却到10℃以下。滴加三甲基氰硅烷(TMSCN,300mL),保持内温小于25℃,滴加完毕后,冰水浴反应半小时。滴加苯甲酰氯(90mL),保持内温小于25℃。滴加完毕后,室温反应48小时。冰盐浴降温,使内温降到0℃以下。滴加饱和碳酸氢钠溶液(1000mL),保持内温小于10℃,滴加完毕后室温搅拌反应1小时。然后将反应体系装入到5L的分液漏斗中,加入二氯甲烷(2000mL)。有机层用水洗(1000mL×3),然后用饱和食盐水(1000mL×2)洗涤,无水硫酸钠干燥。过滤掉干燥剂。减压浓缩干燥,得到淡红棕色固体,用500mL的石油醚搅拌洗涤4小时。过滤,滤饼用石油醚(100mL)洗涤。湿品40℃真空干燥8小时,得到102g淡红棕色固体粉末(化合物3)。
第三步:5-(喹啉-2-基)-1,2,4-1H-三唑(化合物4)的制备
Figure PCTCN2019070031-appb-000015
将化合物3(30.8g),无水乙醇(500mL)以及水合肼(80%,120mL)加入到1L的三口瓶,室温搅拌反应8小时后,将反应液继续冰浴搅拌3小时。过滤出固体,用冷乙醇(150mL)洗涤,抽干。得到固体无需干燥直接投入下一步反应。
将80%甲酸(400mL)加入到1L的三口瓶中,冰盐浴冷却到0℃以下,然后分批加入上面得到的固体,保持内温小于5℃。加完后冰浴条件下反应1小时。加热回流反应2小时。冷却到室温。浓缩掉溶剂。得到的残渣用水(1000mL)稀释。用碳酸钠固体调pH到9左右,乙酸乙酯萃取(1000mL+500mL×2)。合并有机相,无水硫酸钠干燥。过滤掉干燥剂,减压浓缩干燥,得到类白色固体,用石油醚:乙酸乙酯=2:1(V:V)(1000mL)搅拌洗涤16小时。过滤,抽干,滤饼用石油醚(200mL)洗涤。然后滤饼在40℃下真空干燥8小时,得到类白色 固体粉末27g。
1HNMR(400MHz,DMSO),ppm:7.71(1H,s),7.83(1H,dd),8.22-8.04(3H,m),8.25(1H,d),8.74(1H,d),14.94(1H,s)。
MS:[M+1]197.1,C 11H 8N 4M.W.=196,检测到197(M+H峰)与219(M+Na峰)。可见附图2的5-(喹啉-2-基)-1,2,4-1H-三唑质谱图。
第四步:三[5-(喹啉-2-基)-1,2,4-1H-三唑]合铕(III)(化合物5)的制备
Figure PCTCN2019070031-appb-000016
将化合物4(5.9g)和六水合三氯化铕(3.7g)分别溶于50mL无水乙醇:水(V:V)=1:3的混合溶剂中,配成溶液A及B。往A溶液里面加入1.2g氢氧化钠,搅拌反应半小时。然后将B溶液滴加入到A溶液的反应瓶中,室温搅拌反应8小时。反应结束后减压蒸干溶剂,固体在50℃下真空干燥3小时,得灰白色的粉末7.2g。
MS:[M+1]739.2,EuC 33H 21N 12M.W.=737,检测到M+H峰737与739峰高比例接近Eu的同位素丰度比1:1。
实施例2:
三[5-(喹啉-2-基)-1,2,4-1H-三唑]合钐(III)(化合物6)的制备
Figure PCTCN2019070031-appb-000017
将实施例1中所制得的化合物4(5.9g)和六水合三氯化钐(3.7g)分别溶于50mL 2-乙氧基乙醇:水(V:V)=1:3的混合溶剂中,配成溶液C及D。往C溶液里面加入1.2g氢氧化钠,搅拌反应半小时。然后将D溶液滴加入到C溶液的反应瓶中,室温搅拌反应8小时。反应结束后减压蒸干溶剂,固体在50℃下真空干燥3小时,得灰黄色的粉末6.5g。
MS:[M+1]735.9,SmC 33H 21N 12M.W.=735,检测到M+H峰735.9与M+Na峰758.1。
实施例3:
三[3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑]合铕(III)(化合物8)的合成
第一步:N-氧-喹啉(化合物2)的制备
Figure PCTCN2019070031-appb-000018
首先将喹啉(化合物1,129g)以及三氯甲烷(600mL)加入到2L的三口瓶中,搅拌均匀并冷至0℃,缓慢滴加入间氯过氧苯甲酸(180g)的三氯甲烷(500mL)溶液。逐渐升至室温,搅拌反应3小时;继续加热到60-70℃,再反应3小时。冷却到室温,减压浓缩掉三氯甲烷,用水(1000mL)稀释,用固体碳酸钠调pH到8~9。混合物加热到90-95℃半小时,降温,抽滤以除去未反应完全的原料喹啉。得到的滤液用二氯甲烷(1000mL+500mL×3)萃取,合并有机相,用无水硫酸干燥。过滤,滤液加压浓缩得到桔红色油状物,无需纯化直接投入下一步反应。
第二步:2-氰基喹啉(化合物3)的制备
Figure PCTCN2019070031-appb-000019
首先将上一步得到的油状物溶解在500mL的二氯甲烷中,转入到2L的三口瓶中,冰浴冷却到10℃以下。滴加三甲基氰硅烷(TMSCN,300mL),保持内温小于25℃。滴加完毕后,冰水浴反应半小时。滴加苯甲酰氯(90mL),保持内温小于25℃。滴加完毕后,室温反应72小时。冰盐浴降温,使内温降到0℃以下。滴加饱和碳酸氢钠溶液(1000mL),保持内温小于10℃,滴加完毕后室温搅拌反应1小时。然后将反应体系装入到5L的分液漏斗中,加入二氯甲烷(2000mL)。有机层用水洗(1000mL×3),然后用饱和食盐水(1000mL×2)洗涤,无水硫酸钠干燥。过滤掉干燥剂。减压浓缩干燥,得到淡红棕色固体,用500mL的石油醚搅拌洗涤4小时。过滤,滤饼用石油醚(100mL)洗涤。湿品40℃真空干燥8小时,得到104g淡红棕色固体粉末(化合物3)。
第三步:3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑(化合物7)的制备
Figure PCTCN2019070031-appb-000020
将化合物3(30.8g),无水乙醇(500mL)以及水合肼(80%,120mL)加入到1L的三口瓶,室温搅拌反应8小时后,将反应液继续冰浴搅拌3小时。过滤出固体,用冷乙醇(150mL)洗涤,抽干。得到固体无需干燥直接投入下一步反应。
将三氟乙酸(300mL)加入到1L的三口瓶中,冰盐浴冷却到0℃以下,然后分批加入上面得到的固体,保持内温小于5℃。加完后冰浴条件下反应2小时,溶液呈淡黄色。加热回流反应4小时,反应液逐渐变为橙红色。冷却到室温。浓缩掉溶剂,得到的残渣用水(1000mL)稀释。用碳酸钠固体调pH到9左右,乙酸乙酯萃取(1000mL+500mL×2)。合并有机相,无水硫酸钠干燥。过滤掉干燥剂,减压浓缩干燥,得到灰白色固体,用石油醚:乙酸乙酯=2:1(V:V)(1000mL)搅拌洗涤16小时。过滤,抽干,滤饼用石油醚(200mL)洗涤。然后滤饼在40℃下真空干燥8小时,得到类白色固体粉末41.5g。
1HNMR(400MHz,DMSO),ppm:7.75(1H,t),7.90(1H,t),8.10(1H,d),8.18(1H,d),8.26(1H,d),8.65(1H,d),15.93(1H,s)。可见附图3的3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑的核磁氢谱图。
MS:[M+1]265.1,C 12H 7N 4F 3M.W.=264,检测到265(M+H峰)与287(M+Na峰)。可见附图4的3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑的质谱图。
第四步:三[3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑]合铕(III)(化合物8)的制备
Figure PCTCN2019070031-appb-000021
将化合物7(7.9g)和六水合三氯化铕(3.7g)分别溶于50mL乙二醇:水(V:V)=1:1的混合溶剂中,配成溶液E及F。往E溶液里面加入1.2g氢氧化钠,搅拌反应半小时。然后将F溶液滴加入到E溶液的反应瓶中,室温搅拌反应12小时。反应结束后减压蒸干溶剂,固体 在50℃下真空干燥3小时,得灰白色的粉末8.4g。
MS:[M+1]942.9,EuC 36H 18N 12F 9M.W.=941,检测到M+H峰941与943峰高比例接近Eu的同位素丰度比1:1。可见附图5的三[3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑]合铕(III)的质谱图。
实施例4:
三[3-(三氟甲基)-5-(喹啉-2-基)-1,2,4-1H-三唑]合铽(III)(化合物9)的制备
Figure PCTCN2019070031-appb-000022
将实施例3所制得化合物7(7.9g)和六水合三氯化铽(3.7g)分别溶于50mL 1,3-丙二醇:水(V:V)=2:1的混合溶剂中,配成溶液G及H。往G溶液里面加入1.2g氢氧化钠,搅拌反应半小时。然后将H溶液滴加入到G溶液的反应瓶中,室温搅拌反应16小时。反应结束后减压蒸干溶剂,固体在50℃下真空干燥3小时,得黄色的粉末8.0g。
MS:[M+1]949.1,EuC 36H 18N 12F 9M.W.=948,检测到M+H峰949与950峰高比例接近Tb的同位素丰度比2:1。
本发明制备的喹啉三唑类稀土配合物可应用于制备有机电致发光材料,并根据配合物中心稀土离子的不同,呈现不同的色彩。例如:稀土离子Ln是铕则发红光,其发射光谱主峰为621nm;铽发绿光,主峰545nm;铥发蓝光,主峰470nm;钐发粉红色光,主峰640nm;镝发黄光,主峰570nm;钕、铒、镱发红外光,主峰分别为1065nm,1509nm和978nm。由本发明喹啉三唑类稀土配合物制备得到的有机电致发光材料可应用于OLED等多种领域,具有广阔的应用前景。

Claims (10)

  1. 一种喹啉三唑类稀土配合物,其结构式如式(1)所示:
    Figure PCTCN2019070031-appb-100001
    式(1)中,R1选自氢、烷基、卤代烷基或芳香基;Ln选自钇、镧、铈、镨、钕、钐、铕、钆、铽、镝、钬、铒、铥、镱、镥中的任意一种。
  2. 权利要求1所述的一种喹啉三唑类稀土配合物的制备方法,其特征在于:包括以下步骤:
    1)将喹啉氧化成氮氧化物
    Figure PCTCN2019070031-appb-100002
    2)将氮氧化物
    Figure PCTCN2019070031-appb-100003
    进行氰基取代,得到2-氰基喹啉
    Figure PCTCN2019070031-appb-100004
    3)将2-氰基喹啉
    Figure PCTCN2019070031-appb-100005
    肼与羧酸或羧酸衍生物反应,得到配体化合物
    Figure PCTCN2019070031-appb-100006
    4)将配体化合物和稀土金属盐反应,得到式(1)所示结构的喹啉三唑类稀土配合物。
  3. 根据权利要求2所述的一种喹啉三唑类稀土配合物的制备方法,其特征在于:步骤1)中,氧化反应所用的氧化剂为间氯过氧苯甲酸、过氧化氢中的至少一种;氧化剂与喹啉的摩尔比大于等于1:1;氧化反应的温度为60℃~110℃;氧化反应的溶剂为羧酸、卤代烷、醇中的至少一种。
  4. 根据权利要求2所述的一种喹啉三唑类稀土配合物的制备方法,其特征在于:步骤2)中,氰基取代反应所用的氰基试剂为NaCN、KCN、CuCN、Zn(CN) 2、(CH 3) 3SiCN中的至少一种;氰基取代的反应温度为0℃~40℃,反应时间为1天~7天。
  5. 根据权利要求2所述的一种喹啉三唑类稀土配合物的制备方法,其特征在于:步骤3)具体为:先将2-氰基喹啉溶于有机溶剂中,再与肼在0℃~40℃下反应1h~24h,然后把生成的固体物质与羧酸或羧酸衍生物在-20℃~50℃下混合反应1h~24h,所得的固体产物提纯后,得到配体化合物。
  6. 根据权利要求5所述的一种喹啉三唑类稀土配合物的制备方法,其特征在于:步骤3)中,肼的用量不小于1.0当量;羧酸或羧酸衍生物的用量不小于1.0当量。
  7. 根据权利要求6所述的一种喹啉三唑类稀土配合物的制备方法,其特征在于:步骤3)中,肼为水合肼;羧酸衍生物为取代羧酸、酸酐、酰卤、酯中的至少一种。
  8. 根据权利要求2所述的一种喹啉三唑类稀土配合物的制备方法,其特征在于:步骤4)具体为:先分别将配体化合物和稀土金属盐溶于醇水溶液中,再把配体化合物的醇水溶液与碱混合搅拌,然后加入稀土金属盐的醇水溶液,在0℃~60℃下搅拌反应1h~48h,所得的固体产物提纯后,得到喹啉三唑类稀土配合物。
  9. 根据权利要求8所述的一种喹啉三唑类稀土配合物的制备方法,其特征在于:步骤4)中,配体化合物和稀土金属盐的当量比为(2~4):1;醇水溶液为醇和水以体积比(0.2~5):1组成的混合液;碱的用量不少于1.0当量。
  10. 权利要求1所述的一种喹啉三唑类稀土配合物在制备有机电致发光材料中的应用。
PCT/CN2019/070031 2018-02-09 2019-01-02 一种喹啉三唑类稀土配合物及其制备方法和应用 WO2019153980A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810131422.0A CN108191827A (zh) 2018-02-09 2018-02-09 一种喹啉三唑类稀土配合物及其制备方法和应用
CN201810131422.0 2018-02-09

Publications (1)

Publication Number Publication Date
WO2019153980A1 true WO2019153980A1 (zh) 2019-08-15

Family

ID=62593452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070031 WO2019153980A1 (zh) 2018-02-09 2019-01-02 一种喹啉三唑类稀土配合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN108191827A (zh)
WO (1) WO2019153980A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141381A (zh) * 2022-08-16 2022-10-04 河西学院 一种稀土金属镨(iii)配合物及其制备方法
CN116814245A (zh) * 2023-07-07 2023-09-29 山东首明科技有限公司 一种用于制作发光牌的复合材料及其制备方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108191827A (zh) * 2018-02-09 2018-06-22 广东省石油与精细化工研究院 一种喹啉三唑类稀土配合物及其制备方法和应用
CN109652063B (zh) * 2018-12-29 2022-03-01 宁波大榭开发区综研化学有限公司 一种蓝光转化剂、防蓝光胶黏剂和防蓝光胶带及其制备方法
CN110256342B (zh) * 2019-07-16 2022-06-07 河南省科学院化学研究所有限公司 一种2-氰基喹啉衍生物的合成方法
CN111662644A (zh) * 2020-05-06 2020-09-15 佛山华铕光电材料股份有限公司 一种光伏封装胶膜及其制备方法和应用
CN112592529A (zh) * 2020-11-19 2021-04-02 广东省科学院化工研究所 一种转光膜及其制备方法和应用
CN113801651B (zh) * 2021-09-24 2023-10-13 广东省科学院化工研究所 一种复合发光材料及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255890A (ja) * 2004-03-12 2005-09-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
CN103172649A (zh) * 2012-10-26 2013-06-26 广东鑫钰新材料股份有限公司 邻菲啰啉三唑类稀土配合物及其制备方法
CN106928282A (zh) * 2015-12-31 2017-07-07 季昀 铂错合物及使用其的有机发光二极管
CN108191827A (zh) * 2018-02-09 2018-06-22 广东省石油与精细化工研究院 一种喹啉三唑类稀土配合物及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101058620B (zh) * 2007-04-30 2010-05-19 中国科学院广州化学研究所 含有空穴传输单元的8-羟基喹啉金属配合物的线性聚合物及其制备方法
WO2008143113A1 (en) * 2007-05-18 2008-11-27 Semiconductor Energy Laboratory Co., Ltd. Organometallic complex, composition and light emitting element including the organometallic complex
WO2011051404A1 (de) * 2009-10-28 2011-05-05 Basf Se Heteroleptische carben-komplexe und deren verwendung in der organischen elektronik
CN103265567B (zh) * 2012-11-28 2015-09-02 广东鑫钰新材料股份有限公司 含氮双齿杂环取代的1,2,3-三唑类稀土配合物及其合成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005255890A (ja) * 2004-03-12 2005-09-22 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用材料およびそれを用いた有機エレクトロルミネッセンス素子
CN103172649A (zh) * 2012-10-26 2013-06-26 广东鑫钰新材料股份有限公司 邻菲啰啉三唑类稀土配合物及其制备方法
CN106928282A (zh) * 2015-12-31 2017-07-07 季昀 铂错合物及使用其的有机发光二极管
CN108191827A (zh) * 2018-02-09 2018-06-22 广东省石油与精细化工研究院 一种喹啉三唑类稀土配合物及其制备方法和应用

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115141381A (zh) * 2022-08-16 2022-10-04 河西学院 一种稀土金属镨(iii)配合物及其制备方法
CN116814245A (zh) * 2023-07-07 2023-09-29 山东首明科技有限公司 一种用于制作发光牌的复合材料及其制备方法
CN116814245B (zh) * 2023-07-07 2023-12-19 山东首明科技有限公司 一种用于制作发光牌的复合材料及其制备方法

Also Published As

Publication number Publication date
CN108191827A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
WO2019153980A1 (zh) 一种喹啉三唑类稀土配合物及其制备方法和应用
CN106459095B (zh) 金属有机骨架(mof)黄色磷光体及其在白光发射器件中的应用
JP7458483B2 (ja) 金属錯体及びその用途
WO2014000581A1 (zh) 联吡啶三唑类稀土配合物及其制备方法
JP5957518B2 (ja) 希土類ユーロピウム錯体および発光材料としてのその使用
CN110551157A (zh) 一种二价铂配合物及其制备方法和应用
CN109942637A (zh) 金属配合物、有机电致发光器件
Su et al. Four-membered red iridium (iii) complexes with Ir–S–C–S structures for efficient organic light-emitting diodes
Yu et al. Synthesis and characterization of green-emitting Ir (III) complexes based on a functionalized benzimidazole ligand
Su et al. Highly efficient green electroluminescence of iridium (iii) complexes based on (1 H-pyrazol-5-yl) pyridine derivatives ancillary ligands with low efficiency roll-off
CN103588795A (zh) 一类离子型一价铜发光配合物及其应用
TW201524968A (zh) 2,6 -雙[3'-(n-咔唑基)苯基] 吡啶類化合物的合成方法
CN107573386A (zh) 含噻吩并[2,3‑d]嘧啶基团的铱配合物及在电致发光器件中的应用
RU2463304C1 (ru) Трисдикетонатные комплексы лантанидов с лигандами пиридинового ряда в качестве люминофоров и способ их получения
JP5506306B2 (ja) 発光物質
CN110229192B (zh) 一种氘代铱配合物及其制备方法和应用
TWI421329B (zh) 銥錯合物及包括此錯合物之有機發光二極體
Takizawa et al. Synthesis, characterization and electroluminescence properties of new iridium complexes based on cyclic phenylvinylpyridine derivatives: tuning of emission colour and efficiency by structural control
CN110615787A (zh) 一种铂配合物及其应用、包含其的有机光电装置
TWI387634B (zh) 綠色磷光銥錯合物及其製造方法及包括此錯合物之有機發光二極體
CN107311999A (zh) 一种有机金属配合物、制备方法及其有机发光器件
CN111909185B (zh) 一种蓝光激发的锌配合物及其制备方法及应用
CN112812049B (zh) 一种二甲川胆色素类稀土配合物及其制备方法和应用
CN111675709B (zh) 一种荧光材料及其合成方法
CN108610381B (zh) 一种基于芴基噁二唑类铱配合物、制备及应用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19750581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 15/12/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 19750581

Country of ref document: EP

Kind code of ref document: A1