WO2019153619A1 - 一种硫氮共掺杂石墨烯基气凝胶及其制备方法 - Google Patents

一种硫氮共掺杂石墨烯基气凝胶及其制备方法 Download PDF

Info

Publication number
WO2019153619A1
WO2019153619A1 PCT/CN2018/091547 CN2018091547W WO2019153619A1 WO 2019153619 A1 WO2019153619 A1 WO 2019153619A1 CN 2018091547 W CN2018091547 W CN 2018091547W WO 2019153619 A1 WO2019153619 A1 WO 2019153619A1
Authority
WO
WIPO (PCT)
Prior art keywords
nitrogen
sulfur
doped graphene
aerogel
graphene
Prior art date
Application number
PCT/CN2018/091547
Other languages
English (en)
French (fr)
Inventor
慈立杰
任小花
郭焕焕
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2019153619A1 publication Critical patent/WO2019153619A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • B01J20/205Carbon nanostructures, e.g. nanotubes, nanohorns, nanocones, nanoballs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28011Other properties, e.g. density, crush strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2204/00Structure or properties of graphene
    • C01B2204/20Graphene characterized by its properties
    • C01B2204/32Size or surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/85Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by XPS, EDX or EDAX data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes

Definitions

  • the invention belongs to the field of carbon nano material and oil-water separation, and relates to a superhydrophobic high oil absorption performance sulfur-nitrogen co-doped graphene-based aerogel and a preparation method thereof.
  • Carbon-based ultra-light adsorption materials (such as graphene and carbon nanotube aerogel) have the characteristics of hydrophobic/lipophilic, porous, low density and chemical stability, and have a good application prospect in oil absorbing.
  • graphene is an excellent material for constructing multifunctional, high-performance macroscopic three-dimensional aerogels.
  • graphene aerogel As one of the most attractive carbon materials, graphene aerogel has unique properties such as ultra-low density, superelasticity, high specific surface area and excellent thermal stability, making them energy storage, pressure sensors, pollutant adsorption, etc. Aspects show great potential.
  • an aerogel assembled by simply using graphene oxide as a precursor is easily agglomerated, has low mechanical strength, and is poor in hydrophobicity.
  • Chinese patent (CN 102874796 A) provides a nitrogen-doped graphene hydrogel or aerogel and a preparation method thereof, the main steps include: ultrasonically oxidizing graphite to form a graphene oxide dispersion; then adding a nitrogen source to prepare nitrogen by self-assembly Doped graphene hydrogel; finally dried to obtain a nitrogen-doped graphene aerogel.
  • the nitrogen-doped graphene aerogel prepared by the method has a rough surface and agglomerates, and has low mechanical strength.
  • the Chinese patent (CN 106006616 A) provides a method for preparing a graphene aerogel with high adsorption performance, as long as the steps include: adding graphene oxide to deionized water, ultrasonically preparing an aqueous solution of graphene oxide; adding an aqueous solution of ammonia borane And the aqueous solution of ferrous sulfate is uniformly mixed; then the graphene hydrogel is prepared by constant temperature hydrothermal reaction; finally, the immersion, pre-freezing and freeze-drying are used to obtain a graphene aerogel with high adsorption performance.
  • the graphene aerogel prepared by the method has large pore size, small specific surface area and low adsorption efficiency; in addition, the metal ions contained in the raw material cause secondary heavy metal pollution to the water body.
  • one of the objects of the present invention is to provide a method for preparing a sulfur-nitrogen co-doped graphene-based aerogel.
  • the sulfur-nitrogen co-doped graphene aerogel prepared by the method has superhydrophobicity. Performance and lipophilic properties, good mechanical properties, high oil absorption and organic solvent ratio.
  • the preparation method is simple, the raw materials are widely sourced, and the environment is green.
  • the sulfur-nitrogen co-doped graphene aerogel has a good application prospect in oil spill accidents and organic solvent leakage treatment.
  • a preparation method of sulfur-nitrogen co-doped graphene-based aerogel preparing a sulfur-nitrogen co-doped graphene hydrogel precursor by hydrothermal reaction method using graphene oxide and thiourea as raw materials, and obtaining precursors
  • a sulfur-nitrogen co-doped graphene-based aerogel can be obtained by performing carbonization after vacuum freeze-drying.
  • the invention realizes simultaneous doping of nitrogen and sulfur into the graphene aerogel by adding thiourea, and the incorporation of sulfur not only enhances the hydrophobic property of the graphene-based aerogel, but also increases the mechanical strength thereof.
  • the invention adopts sulfur-nitrogen co-doped graphene aerogel as adsorbent for adsorption of oil and organic solvent, has high adsorption capacity and good recycling performance.
  • the invention does not need the addition of metal elements, avoids causing metal pollution of water bodies, and is environmentally friendly.
  • Another object of the present invention is to provide a sulfur-nitrogen co-doped graphene-based aerogel obtained by the above production method.
  • a third object of the present invention is to provide an application of the above sulfur-nitrogen co-doped graphene-based aerogel in oil-water separation.
  • the invention has the beneficial effects that the prepared sulfur-nitrogen co-doped graphene aerogel has superhydrophobic property, the water contact angle is greater than 150°, and has high lipophilicity, and the oil contact angle is less than 10°; the graphene-based aerogel It has high oil absorption and organic solvent ratio, about 65-190g/g; the graphene-based aerogel has good compression performance, maintains three-dimensional porous structure after 1000 times of compression, and has good recycling performance;
  • the doped graphene-based aerogel has simple preparation method, wide source of raw materials, low price, high adsorption capacity and good recycling performance, and has good application prospects in oil spill accidents and organic solvent leakage treatment.
  • SEM scanning electron microscope
  • XPS X-ray photoelectron spectroscopy
  • Figure 5 is a stress-strain diagram of the prepared sulfur-nitrogen co-doped graphene aerogel
  • FIG. 7 is a diagram showing adsorption of oil and organic solvents by a sulfur-nitrogen co-doped graphene aerogel
  • Figure 8 is a diagram showing the adsorption of pump oil and ethanol after the sulfur-nitrogen co-doped graphene aerogel is compressed 1000 times;
  • Figure 9 is a cyclic adsorption performance of the prepared sulfur-nitrogen co-doped graphene aerogel.
  • the hydrothermal reaction described in the present application refers to a reaction carried out under high temperature and high pressure in a sealed pressure vessel using water as a solvent.
  • the high temperature refers to 100 to 1000 ° C
  • the high pressure refers to 1 MPa to 1 GPa.
  • Carbonization as used herein refers to the process of thermal decomposition under anoxic conditions.
  • the present application proposes a sulfur-nitrogen co-doped graphite. Alkenyl aerogel and preparation method thereof.
  • An exemplary embodiment of the present application provides a method for preparing a sulfur-nitrogen co-doped graphene-based aerogel, which comprises preparing a sulfur-nitrogen co-doped graphene by hydrothermal synthesis using graphene oxide and thiourea as raw materials.
  • the hydrogel precursor is obtained by subjecting the obtained precursor to vacuum freeze-drying and then carbonizing to obtain a sulfur-nitrogen co-doped graphene-based aerogel.
  • the present application achieves simultaneous doping of nitrogen and sulfur into the graphene aerogel by adding thiourea.
  • the incorporation of sulfur not only enhances the hydrophobic properties of the graphene alkane, but also increases its mechanical strength.
  • the sulfur-nitrogen co-doped graphene aerogel is used as an adsorbent for the adsorption of oils and organic solvents, and has high adsorption capacity and good recycling performance. This application does not require the addition of metal elements to avoid causing metal pollution in water bodies and is environmentally friendly.
  • the hydrothermal reaction conditions are: a temperature of 160 to 200 ° C, and a reaction time of 8 to 12 h.
  • the volume ratio of the material volume to the volume of the reactor is 3 to 4:5.
  • the conditions of vacuum freeze-drying are: a temperature of -80 to -60 ° C, and a time of 48 to 72 h.
  • the carbonization process is: the lyophilized precursor is heated to 600-800 ° C for 0.5 to 2 h under an inert gas atmosphere.
  • the mass ratio of thiourea to graphene oxide is from 10 to 50:1.
  • the thiourea is added to the aqueous graphene oxide solution and mixed uniformly, followed by a hydrothermal reaction.
  • the concentration of graphene oxide in the aqueous graphene oxide solution is 2 to 4 mg/mL.
  • ultrasonic vibration assisted mixing was employed in the preparation of the aqueous graphene oxide solution and the addition of thiourea to the aqueous graphene oxide solution for mixing.
  • the soaking time is 48 to 72 hours.
  • pre-freezing is carried out at -60 to -20 °C before vacuum drying.
  • the pre-freezing time is 2 to 6 hours.
  • a third embodiment of the present application provides the use of the above sulfur-nitrogen co-doped graphene-based aerogel in oil-water separation.
  • the oil is carbon tetrachloride.
  • the graphene oxide in the present application may be a commercially available graphene oxide, or may be prepared according to a preparation method of other literatures.
  • the present application provides a method for preparing graphene oxide, the steps of which are:
  • the mixed aqueous solution obtained in the step (2) is transferred to a high-pressure reaction vessel having a volume of 50 mL, and hydrothermally reacted at 160 ° C for 12 hours, and then naturally cooled to obtain a sulfur-nitrogen co-doped graphene hydrogel precursor. body.
  • Figure 1 shows that the prepared sulfur-nitroco-doped graphene aerogel has a continuous porous three-dimensional structure.
  • Figure 2 shows that the prepared sulfur-nitrogen co-doped graphene aerogel has superhydrophobic properties (a) and lipophilic properties (b), and it can be seen that the water contact angle of the sulfur-nitrogen co-doped graphene aerogel is 151.5°.
  • the oil contact angle is 9.5°.
  • Figure 6 is an SEM image after 1000 compressions. It can be seen that the sulfur-nitrogen co-doped graphene aerogel still maintains a good three-dimensional porous structure after 1000 compressions.
  • Figure 8 is a diagram showing the adsorption of pump oil and ethanol after 1000 times of sulfur-nitrogen co-doped graphene aerogel. The results show that the sulfur-nitrogen co-doped graphene aerogel still has good after 1000 compressions. Adsorption capacity.
  • Figure 9 is a cyclic adsorption diagram of sulfur-nitrogen co-doped graphene aerogel on pump oil and ethanol.
  • the point of about 400-500 mg (the upper two rows in the figure) represents the total mass of the aerogel adsorption pump oil or ethanol.
  • the dots of about 0 to 30 mg (the lower two rows in the figure) represent the initial mass of the aerogel and the mass after compression and removal of the organic solvent. It shows that the prepared sulfur-nitrogen co-doped graphene aerogel has good recycling performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种硫氮共掺杂石墨烯基气凝胶及其制备方法。以氧化石墨烯和硫脲作为原料采用水热合成方法制备硫氮共掺杂石墨烯水凝胶前驱体,对获得的前驱体进行真空冷冻干燥后进行碳化即可获得硫氮共掺杂石墨烯基气凝胶。该方法制备的硫氮共掺杂石墨烯气凝胶具有超疏水性能和亲油性能,机械性能良好,具有高吸油和有机溶剂倍率。另外,制备方法简单,原材料来源广泛,绿色环保。

Description

一种硫氮共掺杂石墨烯基气凝胶及其制备方法 技术领域
本发明属于碳纳米材料和油水分离领域,涉及一种超疏水高吸油性能硫氮共掺杂石墨烯基气凝胶及其制备方法。
背景技术
海上溢油、工业含油废水和有机溶剂的泄漏对水生生态系统和人体健康造成严重危害,迫切需要开发能从水面高效清洁此类污染的新材料和新技术。目前,常用的材料和技术主要包括化学固化法,原位燃烧法,生物修复法,和机械修复法(吸附剂和撇油机)等四种类型,其中吸附剂吸附法因具有原位完全清除浮油的潜力,同时对生态系统没有不良影响而备受关注。
作为良好的浮油吸附材料,应具有疏水性和亲油性、高吸油容量、成本低并能在水面稳定漂浮等特点。但是,传统的浮油吸附剂面临着油/水分离效率低、吸油容量低、材料成本高等问题。基于碳的超轻吸附材料(如石墨烯和碳纳米管气凝胶)具有疏水/亲油、多孔、低密度和化学性质稳定等特点,在浮油吸附方面具有很好的应用前景。其中,石墨烯是构筑多功能、高性能宏观三维气凝胶的优异材料。石墨烯气凝胶作为最具吸引力的碳材料之一,具有超低密度、超弹性、高比表面积和优异的热稳定性等独特性能,使得它们在能源存储、压力传感器、污染物吸附等方面显示出巨大的潜力。但是,单纯以氧化石墨烯为前驱体组装成的气凝胶易团聚,机械强度低,且疏水性较差。
中国专利(CN 102874796 A)提供了一种氮掺杂石墨烯水凝胶或气凝胶及制备方法,主要步骤包括:超声氧化石墨形成氧化石墨烯分散液;然后加入氮源,自组装制备氮掺杂石墨烯水凝胶;最后干燥制得氮掺杂石墨烯气凝胶。该方法制备的氮掺杂石墨烯气凝胶表面粗糙且发生团聚,机械强度低。
中国专利(CN 106006616 A)提供了一种高吸附性能石墨烯气凝胶的制备方法,只要步骤包括:将氧化石墨烯加入到去离子水中,超声制得氧化石墨烯水溶液;加入氨硼烷水溶液和硫酸亚铁水溶液,混合均匀;然后恒温水热反应制得石墨烯水凝胶;最后浸泡,预冷冻,冷冻干燥制得高吸附性能石墨烯气凝胶。该方法制备的石墨烯气凝胶孔径大,比表面积较小,吸附效率低;另外,原料中含有金属铁离子,会对水体造成二次重金属污染。
发明内容
为了解决现有技术的不足,本发明的目的之一是提供一种硫氮共掺杂石墨烯基气凝胶 的制备方法,该方法制备的硫氮共掺杂石墨烯气凝胶具有超疏水性能和亲油性能,机械性能良好,具有高吸油和有机溶剂倍率。另外,制备方法简单,原材料来源广泛,绿色环保。该硫氮共掺杂石墨烯气凝胶在溢油事故和有机溶剂泄漏处理方面具有良好的应用前景。
为了实现上述目的,本发明的技术方案为:
一种硫氮共掺杂石墨烯基气凝胶的制备方法,以氧化石墨烯和硫脲作为原料采用水热反应方法制备硫氮共掺杂石墨烯水凝胶前驱体,对获得的前驱体进行真空冷冻干燥后进行碳化即可获得硫氮共掺杂石墨烯基气凝胶。
本发明通过添加硫脲实现了同时向石墨烯气凝胶中掺杂氮和硫,硫的掺入不仅增强了石墨烯基气凝胶的疏水性能,而且增加了其机械强度。本发明将硫氮共掺杂石墨烯气凝胶作为吸附剂用于油类和有机溶剂的吸附,吸附容量高,循环利用性能好。本发明不需要金属元素的加入,避免造成水体金属污染,绿色环保。
本发明的目的之二是提供一种上述制备方法获得的硫氮共掺杂石墨烯基气凝胶。
本发明的目的之三是提供一种上述硫氮共掺杂石墨烯基气凝胶在油水分离中的应用。
本发明的有益效果:制备的硫氮共掺杂石墨烯气凝胶具有超疏水性能,水接触角大于150°,同时具有高亲油性,油接触角小于10°;该石墨烯基气凝胶具有高的吸油和有机溶剂倍率,约为65~190g/g;该石墨烯基气凝胶压缩性能好,压缩1000次后仍保持三维多孔结构,循环利用性能好;本发明提出的硫氮共掺杂石墨烯基气凝胶的制备方法简单,原材料来源广泛,价格低廉,吸附容量高,循环利用性能好,在溢油事故和有机溶剂泄漏处理方面具有良好的应用前景。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1为硫氮共掺杂石墨烯气凝胶的扫描电镜(SEM)图;
图2为制得的硫氮共掺杂石墨烯气凝胶的水和油接触角图;
图3为制得的硫氮共掺杂石墨烯气凝胶的X射线光电子能谱(XPS)图;
图4为制得的硫氮共掺杂石墨烯气凝胶的N 2吸附-脱吸附图;
图5为制得的硫氮共掺杂石墨烯气凝胶的应力-应变图;
图6为制得的硫氮共掺杂石墨烯气凝胶压缩1000次后的SEM图;
图7为制得的硫氮共掺杂石墨烯气凝胶对油类和有机溶剂的吸附图;
图8为制得的硫氮共掺杂石墨烯气凝胶压缩1000次后对泵油和乙醇的吸附图;
图9为制得的硫氮共掺杂石墨烯气凝胶的循环吸附性能。
具体实施方式
应该指出,以下详细说明都是示例性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
本申请所述的水热反应是指在密封的压力容器中,以水为溶剂,在高温高压的条件下进行的反应。其中所述的高温指100~1000℃,高压指1MPa~1GPa。
本申请所述的碳化是指在缺氧条件下进行加热分解的过程。
正如背景技术所介绍的,现有技术中存在石墨烯气凝胶易团聚、机械强度低、疏水性较差等不足,为了解决如上的技术问题,本申请提出了一种硫氮共掺杂石墨烯基气凝胶及其制备方法。
本申请的一种典型实施方式,提供了一种硫氮共掺杂石墨烯基气凝胶的制备方法,以氧化石墨烯和硫脲作为原料采用水热合成方法制备硫氮共掺杂石墨烯水凝胶前驱体,对获得的前驱体进行真空冷冻干燥后进行碳化即可获得硫氮共掺杂石墨烯基气凝胶。
本申请通过添加硫脲实现了同时向石墨烯气凝胶中掺杂氮和硫,硫的掺入不仅增强了石墨烯基气凝胶的疏水性能,而且增加了其机械强度。本申请将硫氮共掺杂石墨烯气凝胶作为吸附剂用于油类和有机溶剂的吸附,吸附容量高,循环利用性能好。本申请不需要金属元素的加入,避免造成水体金属污染,绿色环保。
优选的,所述水热反应的条件为:温度160~200℃,反应时间为8~12h。物料体积与反应釜容积的体积比3~4:5。
优选的,真空冷冻干燥的条件为:温度为-80~-60℃,时间为48~72h。
优选的,碳化的过程为:冷冻干燥后的前驱体在惰性气体氛围下加热至600~800℃碳化0.5~2h。
优选的,硫脲与氧化石墨烯的质量比为10~50:1。
优选的,将硫脲加入至氧化石墨烯水溶液中混合均匀后再进行水热反应。
进一步优选的,氧化石墨烯水溶液中氧化石墨烯的浓度为2~4mg/mL。为了加速混合速率,在氧化石墨烯水溶液的制备及将硫脲加入至氧化石墨烯水溶液进行混合的过程中均采 用超声振动辅助混合。
为了去除游离的硫脲,优选的,进行水热反应后在水中浸泡一段时间。进一步优选的,浸泡时间为48~72h。
优选的,进行真空干燥之前进行在-60~-20℃下进行预冷冻。预冷冻时间为2~6h。
本申请的另一种实施方式,提供了一种上述制备方法获得的硫氮共掺杂石墨烯基气凝胶。
本申请的第三种实施方式,提供了一种上述硫氮共掺杂石墨烯基气凝胶在油水分离中的应用。优选的,所述油为四氯化碳。
为了使得本领域技术人员能够更加清楚地了解本申请的技术方案,以下将结合具体的实施例详细说明本申请的技术方案。
本申请中的氧化石墨烯可以为市售的氧化石墨烯,也可以根据其他文献的制备方法进行制备,本申请提供了一种氧化石墨烯的制备方法,其步骤为:
在0℃冰浴条件下,将18g高锰酸钾和3g硝酸钠缓慢加入到138mL浓硫酸中,同时采用200~500rpm的速率进行机械搅拌,待高锰酸钾和硝酸钠完全溶解后,缓慢加入3g膨胀石墨,待膨胀石墨完全搅拌均匀后,封口放在冰箱中,在0℃保温24h;然后将反应体系转移到35℃恒温油浴中搅拌反应30min,然后边升温边缓慢滴加去离子水,滴加总量为300mL的去离子水,此时温度恰好升至98℃,在98℃下保温搅拌15min,然后用10~15mL30%的双氧水中和剩余的氧化剂,混合物由黑色变为金黄色;用5%的盐酸洗涤3~5次,再用去离子水充分洗涤,直至pH为6~8,然后在8000rpm转速下离心,将最终产物进行冷冻干燥,得到氧化石墨烯。
实施例1
一种硫氮共掺杂石墨烯基气凝胶的制备方法,
(1)将80mg氧化石墨烯加入到40mL去离子水中,经过超声分散1h直至混合均匀,得到2mg/mL的氧化石墨烯水溶液。
(2)称取1.6g硫脲作为硫氮源,将其与步骤(1)所得氧化石墨烯水溶液混合,并超声15min使其完全溶解,得到氧化石墨烯与硫脲的混合水溶液。
(3)将步骤(2)所得的混合水溶液,转移到容积为50mL的高压反应釜中,在160℃下恒温水热反应12h,自然冷却后,得到硫氮共掺杂石墨烯水凝胶前驱体。
(4)将步骤(3)制得的硫氮共掺杂石墨烯水凝胶前驱体在去离子水中浸泡48h,期间更换3次去离子水。
(5)将步骤(4)浸泡后的水凝胶,在-20℃下进行预冷冻6h,再经-80℃真空冷冻干燥 48h,制得冷冻干燥后的硫氮共掺杂石墨烯气凝胶前驱体。
(6)将步骤(5)制得的冷冻干燥后的硫氮共掺杂石墨烯气凝胶前驱体在氩气氛围下600℃下碳化2h,制得超疏水高吸油性能硫氮共掺杂石墨烯气凝胶。
对该实施例制备的气凝胶进行表征,表征结果如图1~9所示。
图1表明制备的硫氮共掺杂石墨烯气凝胶具有连续多孔的三维结构。
图2表明制备的硫氮共掺杂石墨烯气凝胶具有超疏水特性(a)和亲油特性(b),可以看出该硫氮共掺杂石墨烯气凝胶的水接触角为151.5°,油接触角为9.5°。
图3表征结果表明制备的硫氮共掺杂石墨烯气凝胶含有C,S,N和O元素。
图4表征结果表明制备的硫氮共掺杂石墨烯气凝胶具有较大的BET比较面积,为406.80m 2/g。
图5表征结果表明制备的硫氮共掺杂石墨烯气凝胶具有良好的机械性能和压缩-恢复性能,在90%的压缩程度下仍能快速恢复到初始状态。
图6为压缩1000次后的SEM图,可以看出,压缩1000次后硫氮共掺杂石墨烯气凝胶仍保持良好的三维多孔结构。
图7制得的硫氮共掺杂石墨烯气凝胶对油类和有机溶剂的吸附,可以看出其对各种油类和有机溶剂均具有较好的吸附性能,其中,尤其对四氯化碳的吸附效果最佳。
图8为制得的硫氮共掺杂石墨烯气凝胶压缩1000次后对泵油和乙醇的吸附图,结果表明压缩1000次后硫氮共掺杂石墨烯气凝胶仍具有很好的吸附容量。
图9为硫氮共掺杂石墨烯气凝胶对泵油和乙醇的循环吸附图,400~500mg左右的点(图中上面两排)代表气凝胶吸附泵油或乙醇后的总质量,0~30mg左右的点(图中下面两排)代表气凝胶起始质量和压缩除去有机溶剂后的质量。表明制备的硫氮共掺杂石墨烯气凝胶具有良好的循环利用性能。
实施例2
一种硫氮共掺杂石墨烯基气凝胶的制备方法,
(1)将120mg氧化石墨烯加入到40mL去离子水中,经过超声分散2h直至混合均匀,得到3mg/mL的氧化石墨烯水溶液。
(2)称取3.6g硫脲作为硫氮源,将其与步骤(1)所得氧化石墨烯水溶液混合,并超声20min使其完全溶解,得到氧化石墨烯与硫脲的混合水溶液。
(3)将步骤(2)所得的混合水溶液,转移到容积为50mL的高压反应釜中,在200℃下恒温水热反应8h,自然冷却后,得到硫氮共掺杂石墨烯水凝胶前驱体。
(4)将步骤(3)制得的硫氮共掺杂石墨烯水凝胶前驱体在去离子水中浸泡72h,期间更 换5次去离子水。
(5)将步骤(4)浸泡后的水凝胶,在-60℃下进行预冷冻2h,再经-80℃真空冷冻干燥72h,制得冷冻干燥后的硫氮共掺杂石墨烯气凝胶前驱体。
(6)将步骤(5)制得的冷冻干燥后的硫氮共掺杂石墨烯气凝胶前驱体在氩气氛围下800℃下碳化0.5h,制得超疏水高吸油性能硫氮共掺杂石墨烯气凝胶。
实施例3
一种硫氮共掺杂石墨烯基气凝胶的制备方法,
(1)将160mg氧化石墨烯加入到40mL去离子水中,经过超声分散1.5h直至混合均匀,得到4mg/mL的氧化石墨烯水溶液。
(2)称取1.6g硫脲作为硫氮源,将其与步骤(1)所得氧化石墨烯水溶液混合,并超声15min使其完全溶解,得到氧化石墨烯与硫脲的混合水溶液。
(3)将步骤(2)所得的混合水溶液,转移到容积为50mL的高压反应釜中,在180℃下恒温水热反应10h,自然冷却后,得到硫氮共掺杂石墨烯水凝胶前驱体。
(4)将步骤(3)制得的硫氮共掺杂石墨烯水凝胶前驱体在去离子水中浸泡60h,期间更换4次去离子水。
(5)将步骤(4)浸泡后的水凝胶,在-40℃下进行预冷冻4h,再经-80℃真空冷冻干燥48h,制得冷冻干燥后的硫氮共掺杂石墨烯气凝胶前驱体。
(6)将步骤(5)制得的冷冻干燥后的硫氮共掺杂石墨烯气凝胶前驱体在氩气氛围下700℃下碳化1h,制得超疏水高吸油性能硫氮共掺杂石墨烯气凝胶。
实施例2~3的表征结果与实施例1相同。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种硫氮共掺杂石墨烯基气凝胶的制备方法,其特征是,以氧化石墨烯和硫脲作为原料采用水热合成方法制备硫氮共掺杂石墨烯水凝胶前驱体,对获得的前驱体进行真空冷冻干燥后进行碳化即可获得硫氮共掺杂石墨烯基气凝胶。
  2. 如权利要求1所述的制备方法,其特征是,所述水热反应的条件为:温度160~200℃,反应时间为8~12h。
  3. 如权利要求1所述的制备方法,其特征是,真空冷冻干燥的条件为:温度为-60~-80℃,时间为48~72h。
  4. 如权利要求1所述的制备方法,其特征是,碳化的过程为:冷冻干燥后的前驱体在惰性气体氛围下加热至600~800℃碳化0.5~2h。
  5. 如权利要求1所述的制备方法,其特征是,硫脲与氧化石墨烯的质量比为10~50:1。
  6. 如权利要求1所述的制备方法,其特征是,将硫脲加入至氧化石墨烯水溶液中混合均匀后再进行水热反应。
  7. 如权利要求1所述的制备方法,其特征是,进行水热反应后在水中浸泡一段时间。进一步优选的,浸泡时间为48~72h。
  8. 如权利要求1所述的制备方法,其特征是,进行真空干燥之前进行在-60~-20℃下进行预冷冻。
  9. 一种权利要求1~8任一所述的制备方法获得的硫氮共掺杂石墨烯基气凝胶。
  10. 一种权利要求9所述的硫氮共掺杂石墨烯基气凝胶在油水分离中的应用。
PCT/CN2018/091547 2018-02-07 2018-06-15 一种硫氮共掺杂石墨烯基气凝胶及其制备方法 WO2019153619A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810122085.9A CN108439372B (zh) 2018-02-07 2018-02-07 一种硫氮共掺杂石墨烯基气凝胶及其制备方法
CN201810122085.9 2018-02-07

Publications (1)

Publication Number Publication Date
WO2019153619A1 true WO2019153619A1 (zh) 2019-08-15

Family

ID=63191635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091547 WO2019153619A1 (zh) 2018-02-07 2018-06-15 一种硫氮共掺杂石墨烯基气凝胶及其制备方法

Country Status (2)

Country Link
CN (1) CN108439372B (zh)
WO (1) WO2019153619A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559724A (zh) * 2021-07-12 2021-10-29 太原理工大学 一种基于氮硫共掺杂多孔碳球混合基质膜的制备方法及应用
CN113897088A (zh) * 2021-11-11 2022-01-07 河北科技大学 氟氮共掺杂氧化石墨烯水凝胶在苯丙乳液中的应用

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108439372B (zh) * 2018-02-07 2020-09-25 山东大学 一种硫氮共掺杂石墨烯基气凝胶及其制备方法
CN109513425B (zh) * 2018-09-25 2021-08-10 山东大学 一种花生壳石墨烯复合气凝胶吸油材料及其制备方法
CN109518219B (zh) * 2018-12-24 2021-04-20 江苏大学 一种石墨烯基镍钴双金属析氧催化剂的制备方法及其应用
CN110093032B (zh) * 2019-04-28 2021-09-24 中科广化(重庆)新材料研究院有限公司 一种氮硫共掺杂石墨烯/聚苯胺气凝胶及其制备方法与应用
CN110538635A (zh) * 2019-08-30 2019-12-06 江苏正业智造技术有限公司 一种氮硫共掺多孔磁性碳材料及其所制成的吸附剂
TWI704109B (zh) * 2019-09-20 2020-09-11 國立臺灣大學 使用硫脲石墨烯之回收金的方法
CN113398967B (zh) * 2021-05-21 2023-07-25 北京化工大学 一种硫氮双掺杂氧改性碳布材料的制备方法
CN115025754A (zh) * 2021-12-28 2022-09-09 淮阴师范学院 一种图案化氮硫共掺杂石墨烯气凝胶的制备方法
CN115068979B (zh) * 2022-06-09 2023-07-28 东莞理工学院 具有优良电热、光热效应的超疏水木材及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847510A (zh) * 2012-08-31 2013-01-02 中国科学院金属研究所 一种石墨烯基净水材料及其制备方法和应用
CN106000439A (zh) * 2016-06-03 2016-10-12 常州大学 一种硫、氮共掺杂三维石墨烯/硫化锰复合材料的制备及其应用于氧的电催化还原
CN108439372A (zh) * 2018-02-07 2018-08-24 山东大学 一种硫氮共掺杂石墨烯基气凝胶及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102847510A (zh) * 2012-08-31 2013-01-02 中国科学院金属研究所 一种石墨烯基净水材料及其制备方法和应用
CN106000439A (zh) * 2016-06-03 2016-10-12 常州大学 一种硫、氮共掺杂三维石墨烯/硫化锰复合材料的制备及其应用于氧的电催化还原
CN108439372A (zh) * 2018-02-07 2018-08-24 山东大学 一种硫氮共掺杂石墨烯基气凝胶及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113559724A (zh) * 2021-07-12 2021-10-29 太原理工大学 一种基于氮硫共掺杂多孔碳球混合基质膜的制备方法及应用
CN113559724B (zh) * 2021-07-12 2023-11-24 太原理工大学 一种基于氮硫共掺杂多孔碳球混合基质膜的制备方法及应用
CN113897088A (zh) * 2021-11-11 2022-01-07 河北科技大学 氟氮共掺杂氧化石墨烯水凝胶在苯丙乳液中的应用

Also Published As

Publication number Publication date
CN108439372A (zh) 2018-08-24
CN108439372B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
WO2019153619A1 (zh) 一种硫氮共掺杂石墨烯基气凝胶及其制备方法
Zhao et al. Human hair-derived nitrogen and sulfur co-doped porous carbon materials for gas adsorption
CN106024410B (zh) 一种高容量石墨烯基超级电容器电极材料及其制备方法
WO2021258515A1 (zh) 柚子皮生物碳应用于催化臭氧氧化降解废水中的有机污染物
WO2015184816A1 (zh) 一种氮掺杂石墨烯片及其制备方法和应用
CN111318254B (zh) 一种高效再生活性炭的制备方法
CN104250003A (zh) 一种氮掺杂多孔碳纳米片的制备方法
CN109395763B (zh) 一种硫掺杂g-C3N4/C-dot多孔复合光催化剂及其制备方法与应用
CN110652962A (zh) 一种三维多孔石墨烯/凹凸棒复合气凝胶及其制备方法
CN109603760B (zh) 一种吸附盐酸四环素的磁性纳米材料NiFe2O4@ N–C的制备方法
CN106423100B (zh) 一种聚丙烯腈/石墨烯基复合气凝胶吸附材料及其制备方法
Rukman et al. GO-Fe3O4 Nanocomposite from coconut shell: synthesis and characterization
CN113617351A (zh) 类石墨相氮化碳/石墨烯/氧化石墨烯复合气凝胶及方法
Cao et al. Enhanced capacitive deionization of toxic metal ions using nanoporous walnut shell-derived carbon
Shen et al. Recent progress and applications of aerogels in China
CN115090264A (zh) 以煤气化渣为原料制备的超疏水/超亲油吸附剂及其制备方法和应用
CN108439373B (zh) 一种双亲性Janus结构石墨烯基气凝胶及其制备方法
Saka Surface modification of graphitic carbon nitride nanoparticles with B, O and S doping/carbon vacancy for efficient dehydrogenation of sodium borohydride in methanol
Bian et al. Optimized mesopores enable enhanced capacitance of electrochemical capacitors using ultrahigh surface area carbon derived from waste feathers
Qin et al. Self-activation of potassium/iron citrate-assisted production of porous carbon/porous biochar composites from macroalgae for high-performance sorption of sulfamethoxazole
Fan et al. Highly elastic photothermal nanofibrillated cellulose aerogels for solar-assisted efficient cleanup of viscous oil spill
CN107008482A (zh) 一种可在无光条件下使用的不含金属元素的光催化剂及其制备方法
CN108455573B (zh) 一种手撕面包状的疏松层状石墨烯气凝胶的制备方法
CN112142032B (zh) 一种含三维非晶碳框架多孔木炭及其制备方法和应用
CN115072845A (zh) 一种纳米多孔碳改性石墨毡阴极材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905364

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18905364

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18905364

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/01/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18905364

Country of ref document: EP

Kind code of ref document: A1