WO2019151340A1 - Actuator and wire bonding device - Google Patents

Actuator and wire bonding device Download PDF

Info

Publication number
WO2019151340A1
WO2019151340A1 PCT/JP2019/003217 JP2019003217W WO2019151340A1 WO 2019151340 A1 WO2019151340 A1 WO 2019151340A1 JP 2019003217 W JP2019003217 W JP 2019003217W WO 2019151340 A1 WO2019151340 A1 WO 2019151340A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
force
generation unit
carriage
drive shaft
Prior art date
Application number
PCT/JP2019/003217
Other languages
French (fr)
Japanese (ja)
Inventor
洋平 内田
尚也 平良
Original Assignee
株式会社新川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社新川 filed Critical 株式会社新川
Priority to CN201980010485.3A priority Critical patent/CN111656502B/en
Priority to KR1020207022535A priority patent/KR102420211B1/en
Priority to JP2019569186A priority patent/JP7002148B2/en
Publication of WO2019151340A1 publication Critical patent/WO2019151340A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors

Definitions

  • the present disclosure relates to an actuator and a wire bonding apparatus.
  • Patent Document 1 discloses a wire bonding apparatus.
  • the wire bonding apparatus has a capillary which is a bonding tool.
  • the wire bonding apparatus connects a wire to an electrode by applying heat or ultrasonic vibration to the wire using the capillary.
  • a manufacturing apparatus such as a wire bonding apparatus disclosed in Patent Document 1 requires a plurality of moving mechanisms.
  • the operation of the manufacturing apparatus includes movement of a processing target component to be processed and movement of a tool with respect to the processing target component. Therefore, the manufacturing apparatus requires an actuator for realizing the movement mode required for each of the component to be processed and the tool.
  • the present disclosure describes an actuator and a wire bonding apparatus capable of a plurality of operations.
  • An actuator includes a first force generation unit that generates a force in a positive direction along a first direction and a force in a negative direction opposite to the positive direction along the first direction. And a second force generator that is spaced apart in a second direction orthogonal to the first direction with respect to the first force generator, and that generates a force in the positive direction and a force in the negative direction, A control unit that controls the direction and magnitude of the force generated by the first force generation unit and the second force generation unit, and a moving body that is stretched over the first force generation unit and the second force generation unit. The unit translates the moving body along the first direction by matching the direction of the force generated by the first force generation unit and the direction of the force generated by the second force generation unit. By making the direction of the force generated by the generator opposite to the direction of the force generated by the second force generator , It is rotated about the center of gravity of the moving body.
  • the actuator includes a first force generator and a second force generator.
  • the force generated by each force generator is controlled by the controller.
  • the moving body can be moved along the first direction by matching the direction of the force of the first force generation unit and the direction of the force of the second force generation unit.
  • the torque around the center of gravity can be provided to the moving body by reversing the direction of the force of the second force generation unit with respect to the direction of the force of the first force generation unit.
  • the moving body can be rotated around the center of gravity.
  • the actuator can provide the moving body with a plurality of operations such as translation along the first direction and rotation around the center of gravity.
  • the first force generation unit and the second force generation unit may be arranged with the center of gravity of the moving body sandwiched along the second direction. According to this configuration, the moving body can be efficiently rotated.
  • the first force generation unit and the second force generation unit are connected to the control unit and include an ultrasonic generation unit that is controlled by the control unit, and a contact unit that extends in the first direction and contacts the moving body. And a drive shaft that is fixed to the ultrasonic wave generation unit and receives ultrasonic vibration generated by the ultrasonic wave generation unit.
  • the force generated by the first force generation part and the second force generation part may be a frictional force at the contact part.
  • the frictional force may be controlled by the ultrasonic frequency.
  • the table may have a main surface and a back surface.
  • One of the main surface and the back surface may include a contact portion.
  • a wire bonding apparatus includes a bonding tool that detachably holds a capillary, and a capillary replacement unit that attaches or detaches the capillary to or from the bonding tool, and the capillary replacement unit includes the actuator described above.
  • the capillary replacement unit includes the actuator described above.
  • This wire bonding apparatus includes a capillary replacement unit including the actuator described above.
  • This actuator can perform two operations, translation and rotation. Therefore, it is possible to suppress an increase in size of the capillary replacement part while providing a capillary replacement function to the wire bonding apparatus. Therefore, it is possible to achieve both high functionality and downsizing of the wire bonding apparatus.
  • an actuator and a wire bonding apparatus capable of a plurality of operations are described.
  • FIG. 1 is a perspective view showing a wire bonding apparatus according to an embodiment.
  • FIG. 2 is an enlarged perspective view showing the capillary exchange part of the wire bonding apparatus shown in FIG.
  • FIG. 3 is a perspective view showing a part of the capillary holding section in a cross-sectional view.
  • FIG. 4 is a diagram for explaining the operation of the capillary holder.
  • FIG. 5 is a perspective view showing a part of the capillary guide section in a cross-sectional view.
  • FIG. 6 is a diagram showing a capillary guide function played by the capillary holding part and the capillary guide part.
  • FIG. 7 is a diagram showing another guide function of the capillary played by the capillary holding part and the capillary guide part.
  • FIG. 1 is a perspective view showing a wire bonding apparatus according to an embodiment.
  • FIG. 2 is an enlarged perspective view showing the capillary exchange part of the wire bonding apparatus shown in FIG.
  • FIG. 3 is a
  • FIG. 8 is a plan view showing the main part of the actuator included in the capillary exchange part shown in FIG.
  • FIG. 9 is a diagram illustrating the operating principle of the actuator.
  • FIG. 10 is a diagram illustrating specific control of the actuator.
  • FIG. 11 is a diagram illustrating specific control of the actuator.
  • FIG. 12 is a diagram illustrating main operations of the capillary exchange unit.
  • FIG. 13 is a diagram showing the main operation of the capillary exchange unit following FIG.
  • FIG. 14 is a diagram showing the main operation of the capillary exchange unit following FIG.
  • FIG. 15 is a diagram showing the main operation of the capillary exchange unit following FIG.
  • FIG. 16 is a perspective view showing a cross section of a capillary holding part according to a modification.
  • the wire bonding apparatus 1 shown in FIG. 1 electrically connects, for example, an electrode provided on a printed board or the like and an electrode of a conductor element attached to the printed board using a thin metal wire.
  • the wire bonding apparatus 1 provides heat, ultrasonic waves or pressure to the wire in order to connect the wire to the electrode.
  • the wire bonding apparatus 1 includes a base 2, a bonding unit 3, and a transport unit 4.
  • the bonding unit 3 performs the above connection work.
  • the transport unit 4 transports a printed circuit board, which is a component to be processed, to a bonding area.
  • the bonding unit 3 includes the bonding tool 6, and an ultrasonic horn 7 is provided at the tip of the bonding tool 6.
  • a capillary 8 is detachably provided at the tip of the ultrasonic horn 7. The capillary 8 provides heat, ultrasound or pressure to the wire.
  • the direction in which the ultrasonic horn 7 extends is the X axis.
  • the direction in which the printed circuit board is conveyed by the conveyance unit 4 is defined as a Y axis (second direction).
  • the direction in which the capillary 8 moves when performing the bonding operation is taken as the Z-axis.
  • the wire bonding apparatus 1 includes a capillary exchange unit 9.
  • the capillary exchange unit 9 automatically exchanges the capillary 8 without any operator operation.
  • the capillary exchange unit 9 collects the capillary 8 attached to the ultrasonic horn 7. Further, the capillary exchange unit 9 attaches the capillary 8 to the ultrasonic horn 7.
  • the replacement operation of the capillary 8 includes an operation of collecting the capillary 8 and an operation of mounting the capillary 8.
  • the replacement operation of the capillary 8 is automatically performed when a preset condition is satisfied.
  • the condition may be the number of bonding operations. That is, every time a predetermined number of bonding operations are performed, the operation of replacing the capillary 8 may be performed.
  • the capillary exchange unit 9 includes a capillary holding unit 11, a capillary guide unit 12, and an actuator 13 as main components. Further, as an additional component, the capillary exchange unit 9 includes an attaching / detaching jig 15 and a jig driving unit 20 that drives the attaching / detaching jig 15.
  • the capillary holding unit 11 holds the capillary 8.
  • the capillary holder 11 is attached to the actuator 13 via the holder 14.
  • the shape of the capillary holding part 11 is a cylinder extending in the Z-axis direction.
  • the lower end of the capillary holder 11 is held by a holder 14.
  • a capillary 8 is detachably inserted into the upper end of the capillary holding part 11.
  • the capillary holding part 11 includes, as main components, an upper socket 16, a coil spring 17 (elastic part), a lower socket 18 (capillary base part), and an O-ring 19 (restraining part).
  • the upper socket 16, the coil spring 17, and the lower socket 18 are disposed on a common axis. Specifically, the upper socket 16, the coil spring 17, and the lower socket 18 are arranged in this order from the top.
  • the shape of the upper socket 16 is substantially a cylinder.
  • the upper socket 16 has a through hole 16h extending from the upper end surface 16a to the lower end surface 16b.
  • the upper socket 16 holds the tapered surface 8 a of the capillary 8.
  • the inner diameter of the through hole 16 h corresponds to the outer diameter of the tapered surface 8 a of the capillary 8.
  • the inner diameter of the through hole 16h is smaller than the outer diameter of the capillary body 8b.
  • a counterbore 16c for the O-ring 19 is provided on the upper end surface 16a side of the through hole 16h.
  • the counterbore 16c has a dimension that can accommodate the O-ring 19.
  • the depth of the counterbore 16c is approximately the same as the height of the O-ring 19.
  • the inner diameter of the counterbore 16c is approximately the same as the outer diameter of the O-ring 19.
  • the shape of the O-ring 19 is a so-called torus.
  • the O-ring 19 is in direct contact with the tapered surface 8 a of the capillary 8. That is, the O-ring 19 of the capillary holder 11 holds the capillary 8. This holding is performed by an adhesive layer formed on the surface of the O-ring 19.
  • the inner diameter of the O-ring 19 is approximately the same as the inner diameter of the through hole 16h.
  • the tapered surface 8 a of the capillary 8 is inserted into the O-ring 19.
  • the upper socket 16 has a step 16d provided on the outer peripheral surface. Accordingly, the outer diameter of the upper socket 16 on the upper end surface 16a side is different from the outer diameter of the upper socket 16 on the lower end surface 16b side. Specifically, the outer diameter on the lower end surface 16b side is slightly smaller than the outer diameter on the upper end surface 16a side. A coil spring 17 is fitted into the small diameter portion 16e on the lower end surface 16b side.
  • the shape of the lower socket 18 is substantially a cylinder.
  • the upper end surface 18 a of the lower socket 18 faces the lower end surface 16 b of the upper socket 16.
  • the outer shape of the lower socket 18 is the same as the outer shape of the upper socket 16.
  • a step 18 d is provided on the outer peripheral surface of the lower socket 18.
  • the upper socket 18a side of the lower socket 18 is a small diameter portion 18e.
  • a coil spring 17 is fitted into the small diameter portion 18e on the upper end surface 18a side.
  • the large diameter portion 18 f on the lower end surface 18 b side of the lower socket 18 is sandwiched by the holder 14.
  • the coil spring 17 is a compression spring.
  • the upper end side of the coil spring 17 is fitted into the small diameter portion 16 e of the upper socket 16.
  • the lower end side of the coil spring 17 is inserted into the small diameter portion 18 e of the lower socket 18.
  • the upper socket 16 and the coil spring 17 constitute the flexible part 10. Therefore, the upper socket 16 and the lower socket 18 are connected by the coil spring 17.
  • the coil spring 17 has elasticity along the direction of the axis 17A and elasticity along the direction intersecting the axis 17A. As a result, the upper socket 16 can change its position relative to the lower socket 18.
  • the capillary holding part 11 having the above configuration has a holding mode shown in FIG. Part (a) of FIG. 4 shows the capillary holding part 11 in the initial mode. Part (b) of FIG. 4 shows the capillary holding part 11 in the first modification. Part (c) of FIG. 4 shows the capillary holding part 11 in the second modification.
  • the axis 16A of the upper socket 16 overlaps with the axis 18A of the lower socket 18. Furthermore, the axis 8A of the capillary 8 also overlaps with the axes 16A and 18A.
  • the axis 16A of the upper socket 16 does not overlap the axis 18A of the lower socket 18.
  • the lower socket 18 is held by the holder 14 and its position is maintained.
  • the upper socket 16 moves in the X-axis and Y-axis directions with respect to such a lower socket 18.
  • the axis 16A of the upper socket 16 is parallel to the axis 18A of the lower socket 18.
  • the axis 16A of the upper socket 16 overlaps the axis 18A of the lower socket 18. That is, these configurations are the same as those in the first holding mode.
  • the axis 8A of the capillary 8 is inclined with respect to the axis 16A of the upper socket 16.
  • the O-ring 19 has a torus shape. Therefore, the inner peripheral surface into which the tapered surface 8a of the capillary 8 is inserted is a curved surface.
  • the cross-sectional shape of the O-ring 19 in a cross section parallel to the Z axis is a circle.
  • the contact mode between the O-ring 19 and the capillary 8 is a line contact that makes contact at an annular contact line CL (see FIG. 3).
  • the capillary 8 is allowed to tilt with respect to the axis 19 ⁇ / b> A of the O-ring 19.
  • the capillary guide portion 12 guides the capillary 8 when the capillary 8 is inserted into the hole 7 h (capillary holding hole) of the ultrasonic horn 7.
  • the capillary guide 12 is provided in the actuator 13. Therefore, the relative positional relationship between the capillary guide portion 12 and the parts constituting the actuator 13 is preserved.
  • the capillary guide portion 12 is a cantilever beam extending from the actuator 13 toward the ultrasonic horn 7.
  • FIG. 5 is a perspective view of the main part of the capillary guide portion 12 as a cross-sectional view.
  • a guide hole 12 h is provided in the free end portion of the capillary guide portion 12.
  • the guide hole 12 h receives the capillary body 8 b of the capillary 8.
  • the guide hole 12 h guides the capillary 8 to the hole 7 h of the ultrasonic horn 7.
  • the guide hole 12h is a through hole.
  • the guide hole 12h extends from the upper surface 12a of the capillary guide portion 12 to the lower surface 12b.
  • the guide hole 12h is also opened in the front end surface 12c of the capillary guide portion 12.
  • the guide hole 12h can receive the capillary 8 from the lower surface 12b and the front end surface 12c.
  • the guide hole 12h includes a tapered hole portion 12t and a parallel hole portion 12p.
  • the lower end of the tapered hole portion 12t opens to the lower surface 12b.
  • the upper end of the parallel hole 12p opens to the upper surface 12a.
  • the inner diameter of the tapered hole portion 12t on the lower surface 12b is larger than the inner diameter of the parallel hole portion 12p on the upper surface 12a.
  • This inner diameter is larger than the outer diameter at the upper end of the capillary 8. That is, the inner diameter of the guide hole 12h gradually decreases from the lower surface 12b toward the upper surface 12a.
  • the inner diameter of the guide hole 12h is minimum at a position where the tapered hole portion 12t and the parallel hole portion 12p are connected. This inner diameter is substantially the same as the outer diameter at the upper end of the capillary 8. And the internal diameter of the parallel hole part 12p is constant.
  • FIG. 6 shows how the capillary 8 is guided by the capillary guide 12.
  • the axis 7 ⁇ / b> A of the hole 7 h of the ultrasonic horn 7 overlaps the axis 12 ⁇ / b> A of the guide hole 12 h of the capillary guide 12.
  • the axis 8A of the capillary 8 held by the capillary holder 11 is shifted in parallel to the direction of the X axis with respect to the axes 7A and 12A.
  • the capillary holder 11 is moved in the Z-axis direction.
  • the upper end of the capillary 8 is in contact with the wall surface of the tapered hole portion 12t.
  • the capillary holding part 11 moves upward, the capillary 8 moves along the wall surface.
  • This movement includes a horizontal component (X-axis direction) in addition to an upward component (Z-axis direction).
  • the upper socket 16 moves relative to the lower socket 18 by the coil spring 17. That is, when the lower socket 18 is moved upward, the upper socket 16 is also moved in the horizontal direction by the coil spring 17 while being moved upward.
  • the axis 8A of the capillary 8 gradually approaches the axis 7A of the hole 7h.
  • the axis 8A of the capillary 8 overlaps with the axis 7A of the hole 7h. Accordingly, the capillary 8 is inserted into the hole 7 h of the ultrasonic horn 7.
  • the positional relationship between the ultrasonic horn 7 and the capillary guide portion 12 is ideal.
  • the axis 7 ⁇ / b> A of the hole 7 h of the ultrasonic horn 7 is inclined with respect to the axis 12 ⁇ / b> A of the capillary guide 12.
  • the capillary holding part 11 is capable of shifting the upper socket 16 with respect to the lower socket 18. Further, the capillary 8 can be inclined with respect to the axis 16 ⁇ / b> A of the upper socket 16. According to these actions, as shown in part (c) of FIG. 7, as the capillary holding part 11 is raised, the axis 8A of the capillary 8 gradually approaches the axis 7A of the hole 7h. Finally, the capillary 8 can be inserted into the hole 7h. That is, the capillary holding part 11 holds the capillary 8 flexibly. As a result, the displacement between the capillary 8 and the capillary guide 12 can be absorbed.
  • the displacement between the capillary 8 and the hole 7h of the ultrasonic horn 7 can be absorbed. Therefore, according to the capillary holding portion 11 and the capillary guide portion 12, the capillary 8 can be reliably attached to the ultrasonic horn 7.
  • the actuator 13 moves the capillary 8 to be replaced and the new capillary 8.
  • the actuator 13 holds the capillary 8 at a predetermined position and posture.
  • the actuator 13 reciprocates the capillary 8 along the direction of a predetermined translation axis (Z axis).
  • the translation axis is along the vertical direction (Z-axis). Therefore, the actuator 13 moves the capillary 8 upward and downward along the vertical direction.
  • the actuator 13 rotates the capillary 8 around the rotation axis (X axis).
  • the rotation axis is orthogonal to the vertical direction (Z axis). That is, the rotation axis is along the horizontal direction (X axis). Accordingly, the actuator 13 rotates the capillary 8 around the horizontal direction.
  • the actuator 13 includes an actuator base 21 (base portion), a pair of linear motors 22A and 22B (first force generating portion and second force generating portion), a linear guide 24, a carriage 26 (moving body), and a control device. 27 (control unit, see FIG. 1 and the like).
  • the shape of the actuator base 21 is a flat plate.
  • the actuator base 21 has a main surface 21a.
  • the normal direction of the main surface 21a is along the horizontal direction (X-axis direction).
  • Linear motors 22A and 22B, a linear guide 24, and a carriage 26 are arranged on the main surface 21a.
  • the linear motor 22A moves the carriage 26.
  • the linear motor 22A is an ultrasonic motor based on a so-called impact drive system.
  • the linear motor 22A includes a drive shaft 28A and an ultrasonic element 29A (ultrasonic wave generator).
  • the drive shaft 28A is a metal round bar.
  • the axis of the drive shaft 28 ⁇ / b> A is parallel to the main surface 21 a of the actuator base 21.
  • the carriage 26 moves along the drive shaft 28A. Accordingly, the length of the drive shaft 28A determines the movement range of the carriage 26.
  • the lower end of the drive shaft 28A is fixed to the ultrasonic element 29A.
  • the upper end of the drive shaft 28A is supported by the guide 31.
  • the guide 31 protrudes from the main surface 21 a of the actuator base 21.
  • the upper end of the drive shaft 28 ⁇ / b> A may be fixed to the guide 31. Further, the upper end of the drive shaft 28 ⁇ / b> A may contact the guide 31. That is, the lower end of the drive shaft 28A is a fixed end. The upper end of the drive shaft 28A is a fixed end or a free end.
  • the ultrasonic element 29A provides ultrasonic vibration to the drive shaft 28A.
  • the drive shaft 28A provided with the ultrasonic vibration vibrates slightly along the Z axis.
  • a piezoelectric element that is a piezoelectric element may be employed as the ultrasonic element 29A.
  • the piezo element is deformed according to the applied voltage. Therefore, when a high frequency voltage is applied to the piezoelectric element, the piezoelectric element is repeatedly deformed according to the frequency and the magnitude of the voltage. That is, the piezo element generates ultrasonic vibration.
  • the ultrasonic element 29A is fixed to a guide 32 protruding from the actuator base 21.
  • the control device 27 is electrically connected to the ultrasonic element 29A.
  • the ultrasonic element 29A receives a driving voltage generated by the control device 27.
  • the control device 27 controls the frequency and amplitude of the AC voltage provided to the ultrasonic element 29A.
  • the single motor configuration of the linear motor 22B is the same as that of the linear motor 22A.
  • the linear motor 22B is disposed away from the linear motor 22A in the direction of the Y axis that intersects the Z axis.
  • the drive shaft 28B of the linear motor 22B is parallel to the drive shaft 28A of the linear motor 22A.
  • the height of the upper end of the linear motor 22B is the same as the height of the upper end of the linear motor 22A.
  • the height of the lower end of the linear motor 22B is the same as the height of the lower end of the linear motor 22A.
  • the carriage 26 is a moving body.
  • the moving body is translated and rotated by the linear motors 22A and 22B.
  • the shape of the carriage 26 is a disk.
  • the carriage 26 is stretched between the linear motors 22A and 22B.
  • a linear guide 24 is provided between the actuator base 21 and the carriage 26 to guide the carriage 26 in the Z-axis direction.
  • the carriage 26 is guided in the Z-axis direction by the linear guide 24.
  • the linear guide 24 regulates the moving direction of the carriage 26.
  • the linear guide 24 does not provide the carriage 26 with a driving force in the Z-axis direction.
  • the carriage 26 has a front disk 33, a pressurized disk 34, and a rear disk 36.
  • the outer diameters of these disks are the same as each other. These disks are stacked along a common axis.
  • a shaft body 37 is sandwiched between the front disk 33 and the pressurized disk 34.
  • the outer diameter of the shaft body 37 is smaller than the outer diameters of the front disk 33 and the pressurized disk 34. Therefore, a gap is formed between the outer peripheral portion of the front disk 33 and the outer peripheral portion of the pressurized disk 34.
  • the shaft body 38 is also sandwiched between the rear disk 36 and the pressurized disk 34.
  • the outer diameter of the shaft body 37 is also smaller than the outer diameters of the rear disk 36 and the pressurized disk 34. Therefore, a gap is also formed between the outer peripheral portion of the rear disk 36 and the outer peripheral portion of the pressurizing disk 34.
  • the rear disk 36 is connected to the table 24a of the linear guide 24.
  • the rear disk 36 is rotatably connected to the table 24a.
  • the pressurized disk 34 and the front disk 33 are mechanically fixed to the rear disk 36. Therefore, the pressurized disk 34 and the front disk 33 do not rotate with respect to the rear disk 36. Therefore, the entire carriage 26 including the front disk 33, the pressurizing disk 34 and the rear disk 36 can rotate with respect to the table 24 a of the linear guide 24.
  • the drive shafts 28 ⁇ / b> A and 28 ⁇ / b> B are sandwiched in a gap G ⁇ b> 1 between the pressurizing disk 34 and the rear disk 36.
  • the pair of drive shafts 28 ⁇ / b> A and 28 ⁇ / b> B sandwich the center of gravity of the carriage 26.
  • the drive shafts 28 ⁇ / b> A and 28 ⁇ / b> B are in contact with the back surface 34 b of the pressurizing disk 34 and the main surface 36 a of the rear disk 36.
  • the drive shafts 28A and 28B do not contact the outer peripheral surface 38a of the shaft body 38.
  • the outer diameter of the gap G ⁇ b> 1 is smaller than the outer diameter of the pressurizing disk 34 and the outer diameter of the rear disk 36. Further, the outer diameter of the gap G ⁇ b> 1 is larger than the outer diameter of the shaft body 38. The difference between the outer diameter of the shaft body 38 and the outer diameter of the rear disk 36 is larger than the difference between the outer diameter of the drive shaft 28A and the outer diameter of the drive shaft 28B. Similarly, the difference between the outer diameter of the shaft body 37 and the outer diameter of the pressurizing disk 34 is larger than the difference between the outer diameter of the drive shaft 28A and the outer diameter of the drive shaft 28B.
  • the gap G1 is slightly smaller than the outer diameter of the drive shaft 28A and the outer diameter of the drive shaft 28B.
  • a gap G ⁇ b> 2 is formed between the front disk 33 and the pressurized disk 34.
  • FIG. 9 (a), FIG. 9 (b) and FIG. 9 (c) show the operating principle of the actuator 13.
  • FIG. 9 For convenience of explanation, in FIG. 9, one linear motor 22A and the carriage 26 are shown, and the other linear motor 22B and the like are not shown.
  • FIG. 9 (a) shows a mode in which the position of the carriage 26 is held.
  • the drive shaft 28 ⁇ / b> A of the carriage 26 is sandwiched between the pressurizing disk 34 and the rear disk 36.
  • the position of the carriage 26 is maintained by the pressurization resulting from this pinching. More specifically, the position of the carriage 26 is maintained by a frictional resistance force in which the applied pressure is a vertical drag.
  • the control device 27 does not provide a voltage to the ultrasonic element 29A. That is, as indicated by the voltage E1, the voltage value is zero. Note that the control device 27 may provide a direct current having a predetermined voltage value to the ultrasonic element 29A.
  • the position of the carriage 26 is maintained by the frictional resistance with the drive shaft 28A.
  • a mode of moving the drive shaft 28A a first mode in which the carriage 26 moves along with the drive shaft 28A, and a second mode in which the carriage 26 does not accompany the drive shaft 28A and continues to maintain the position due to its inertia.
  • the first mode or the second mode can be selected depending on the speed of moving the drive shaft 28A.
  • the speed at which the drive shaft 28A is moved is related to the frequency of the ultrasonic vibration. Therefore, as the mode of moving the drive shaft 28A, the first mode or the second mode can be selected according to the frequency of the ultrasonic vibration.
  • the carriage 26 moves along with the drive shaft 28A.
  • the frequency of ultrasonic vibration is a relatively low frequency (15 kHz to 30 kHz)
  • the carriage 26 moves along with the drive shaft 28A.
  • the frequency of ultrasonic vibration is a relatively high frequency (100 kHz to 150 kHz)
  • the carriage 26 maintains its position regardless of the drive shaft 28A.
  • FIG. 10 (a) shows an operation for maintaining the position of the carriage 26.
  • the control device 27 provides a constant voltage (see voltages E4 and E5 in part (a) of FIG. 10) to each of the ultrasonic element 29A and the ultrasonic element 29B.
  • FIG. 10B shows an operation for moving the carriage 26 upward.
  • the control device 27 provides the AC voltage indicated by the voltage E6 in part (b) of FIG. 10 to one ultrasonic element 29A.
  • the cycle of the voltage that moves the drive shaft 28A upward is longer than the cycle of the voltage that moves the drive shaft 28A downward.
  • the control device 27 provides the other ultrasonic element 29B with the alternating current indicated by the voltage E7 in part (b) of FIG.
  • the cycle of the voltage that moves the drive shaft 28B upward is longer than the cycle of the voltage that moves the drive shaft 28B downward. That is, the control device 27 provides the same AC voltage to the ultrasonic element 29A and the ultrasonic element 26B.
  • the control device 27 matches the timing for moving one drive shaft 28A upward with the timing for moving the other drive shaft 28B upward. That is, the control device 27 sets the phase of the voltage provided to one ultrasonic element 29A and the phase of the voltage provided to the other ultrasonic element 29A to have the same phase relationship. Therefore, the contact part P1 and the contact part P2 move upward by the same distance.
  • the contact portion P1 is a portion that is pressed by the pressurizing disk 34 and the rear disk 36 on one drive shaft 28A.
  • the contact portion P2 is a portion that is pressed by the pressurizing disk 34 and the rear disk 36 on the other drive shaft 28B.
  • the contact part P1 and the contact part P2 move upward while maintaining a parallel state. That is, the carriage 26 translates upward without rotating around the center of gravity.
  • FIG. 10 (c) shows an operation of moving the carriage 26 downward.
  • the control device 27 provides the alternating current indicated by the voltage E8 in part (c) of FIG. 10 to one ultrasonic element 29A.
  • the cycle of the voltage that moves the drive shaft 28A upward is shorter than the cycle of the voltage that moves the drive shaft 28A downward.
  • the control device 27 provides the other ultrasonic element 29B with the AC voltage indicated by the voltage E9 in part (c) of FIG.
  • the cycle of the voltage that moves the drive shaft 28B upward is shorter than the cycle of the voltage that moves the drive shaft 28B downward.
  • the contact portion P1 on one drive shaft 28A and the contact portion P2 on the other drive shaft 28B move downward by the same distance.
  • the contact part P1 and the contact part P2 move downward while maintaining a parallel state. That is, the carriage 26 translates downward without rotating around the center of gravity.
  • the translation for moving the carriage 26 upward and downward can be realized by a single linear motor 22A. Since the actuator 13 according to the embodiment includes the two linear motors 22A and 22B, the driving force can be increased as compared with the configuration including the single linear motor 22A.
  • the control device 27 provides the alternating current indicated by the voltage E10 in part (a) of FIG. 11 to one ultrasonic element 29A.
  • the cycle of the voltage that moves the drive shaft 28A upward is shorter than the cycle of the voltage that moves the drive shaft 28A downward.
  • the control device 27 provides the other ultrasonic element 29B with the alternating current indicated by the voltage E11 in part (a) of FIG.
  • the cycle of the voltage that moves the drive shaft 28B upward is longer than the cycle of the voltage that moves the drive shaft 28B downward. That is, the voltage provided to the ultrasonic element 29A is different from the voltage provided to the ultrasonic element 29B.
  • the control device 27 matches the timing for moving the one drive shaft 28A upward with the timing for moving the other drive shaft 28B downward. That is, the phase of the voltage provided to one ultrasonic element 29A is opposite to the phase of the voltage provided to the other ultrasonic element 29B. Then, the contact portion P1 of one drive shaft 28A moves downward and the contact portion P2 of the other drive shaft 28B moves upward. The contact part P1 and the contact part P2 move in opposite directions. If these movement amounts match, the carriage 26 rotates clockwise while maintaining the position in the Z-axis direction.
  • (B) part of FIG. 11 shows the operation
  • the control device 27 provides the AC voltage indicated by the voltage E12 in part (b) of FIG. 11 to one ultrasonic element 29A.
  • the cycle of the voltage that moves the drive shaft 28A upward is longer than the cycle of the voltage that moves the drive shaft 28A downward.
  • the control device 27 provides the other ultrasonic element 29B with the AC voltage shown in the voltage E13 reference in part (b) of FIG.
  • the cycle of the voltage that moves the drive shaft 28B upward is shorter than the cycle of the voltage that moves the drive shaft 28B downward.
  • the contact portion P1 of one drive shaft 28A moves upward, and the contact portion P2 of the other drive shaft 28B moves downward. That is, the contact parts P1 and P2 move in opposite directions. If these movement amounts match, the carriage 26 rotates counterclockwise while maintaining its position in the Z-axis direction.
  • the capillary exchange unit 9 includes a capillary stocker 39 and a capillary recovery unit 41 as additional components in addition to the capillary holding unit 11, the capillary guide unit 12, and the actuator 13.
  • the capillary stocker 39 accommodates a plurality of replacement capillaries 8N.
  • the capillary recovery unit 41 accommodates the used capillary 8U.
  • FIG. 12 (a) shows a state in which wire bonding work is being performed by, for example, a capillary 8U attached to the ultrasonic horn 7.
  • FIG. The capillary exchange unit 9 may be retracted to a position that does not interfere with the wire bonding operation.
  • (B) part of Drawing 12 shows the state of the 1st step in exchange operation.
  • the capillary exchange unit 9 causes the control device 27 to rotate the carriage 26 in the clockwise direction. This rotation corresponds to the operation shown in part (a) of FIG. By this rotation, the capillary holder 11 that has been retracted to a position that does not hinder the wire bonding operation is positioned below the capillary 8U.
  • Part (a) of FIG. 13 shows the state of the second step in the exchange operation.
  • the capillary exchange unit 9 moves the carriage 26 upward by the control device 27. This movement corresponds to the operation shown in part (b) of FIG. By this movement, the capillary holder 11 holds the capillary 8U attached to the ultrasonic horn 7.
  • (B) part of Drawing 13 shows the state of the 3rd step in exchange operation.
  • the capillary exchange unit 9 moves the carriage 26 downward by the control device 27. This movement corresponds to the operation shown in part (c) of FIG. By this movement, the capillary 8U held by the capillary holder 11 is removed from the ultrasonic horn 7.
  • FIG. 14 shows the state of the 4th step in exchange operation.
  • the capillary exchange unit 9 causes the control device 27 to rotate the carriage 26 in the clockwise direction. This movement corresponds to the operation shown in part (a) of FIG.
  • the capillary 8U held in the capillary holding part 11 is conveyed to the capillary recovery part 41. As a result, the capillary 8U is recovered as a used one.
  • FIG. 15 shows the state of the 6th step in exchange operation.
  • the capillary exchange unit 9 causes the control device 27 to rotate the carriage 26 in the clockwise direction. This movement corresponds to the operation shown in part (a) of FIG. By this movement, the new capillary 8N held in the capillary holding part 11 is positioned below the hole 7h of the ultrasonic horn 7.
  • (B) part of Drawing 15 shows the state of the 7th step in exchange operation.
  • the capillary exchange unit 9 moves the carriage 26 upward by the control device 27. This movement corresponds to the operation shown in part (b) of FIG.
  • the new capillary 8N held in the capillary holder 11 is inserted into the hole 7h of the ultrasonic horn 7.
  • the displacement between the capillary 8N and the capillary guide portion 12, and the hole 7h between the capillary 8N and the ultrasonic horn 7 are obtained.
  • the deviation is eliminated.
  • the capillary 8N can be securely attached to the hole 7h.
  • the actuator 13 includes a pair of linear motors 22A and 22B.
  • the force generated by each of the linear motors 22A and 22B is controlled by the control device 27.
  • the carriage 26 can be translated by matching the direction of the force generated by the pair of linear motors 22A and 22B.
  • the direction of the force generated by the linear motors 22A and 22B is made opposite to each other, whereby torque around the center of gravity can be provided to the carriage 26.
  • the carriage 26 can be rotated around the center of gravity. Therefore, the actuator 13 can provide the carriage 26 with a plurality of operations of translation and rotation.
  • the actuator 13 according to the present disclosure can perform translation and rotation. Furthermore, it is not necessary for the actuator 13 to prepare a drive mechanism only for translation and a drive mechanism only for rotation. Therefore, the actuator 13 can be reduced in size as compared with the configuration in which each of the translation drive mechanism and the rotation drive mechanism is prepared.
  • the wire bonding apparatus 1 includes a capillary exchange unit 9 including an actuator 13.
  • the actuator 13 can provide the carriage 26 with two operations of translation and rotation. Therefore, it is possible to provide the wire bonding apparatus 1 with a function of replacing the capillary 8 and to suppress an increase in the size of the capillary replacement unit 9. Therefore, it is possible to achieve both high functionality and downsizing of the wire bonding apparatus 1.
  • the capillary 8 held by the capillary holder 11 is inserted into the hole 7h while being guided by the capillary guide 12. Therefore, even if the capillary 8 is displaced with respect to the hole 7h, the displacement is corrected by the capillary guide portion 12.
  • the capillary holding portion 11 holds the flexible portion 10 including the upper socket 16 and the coil spring 17 so that the position of the capillary 8 can be displaced relative to the lower socket 18 fixed to the actuator 13.
  • the posture of the capillary 8 is such that the capillary 8 follows the capillary guide portion 12 and the hole 7h. Can be inserted while changing. Therefore, the new capillary 8 can be automatically attached to the wire bonding apparatus 1 regardless of the operator's hand.
  • the ultrasonic drive motor based on the principle of the impact drive method using the law of inertia is illustrated.
  • the first force generation unit and the second force generation unit are not limited to this configuration, and a mechanism capable of generating a force along a predetermined direction may be adopted as the first force generation unit and the second force generation unit.
  • a linear guide using a ball screw may be employed as the first force generation unit and the second force generation unit.
  • the capillary holding part only needs to hold the capillary 8 in such a manner that the posture of the capillary 8 can be flexibly changed. Therefore, it is not limited to the configuration of the capillary holding part.
  • FIG. 16 shows a capillary holder 11A according to a modification.
  • the capillary holding part 11A includes a metal pipe 42, a silicone resin tube 43, and a cap 44 as main components.
  • the shape of the pipe 42 is cylindrical.
  • the pipe 42 accommodates the tube 43 therein.
  • One end of the pipe 42 is closed by a cap 44.
  • One end of the tube 43 is closed by a cap 44.
  • the cap 44 is held by the holder 14.
  • An upper end 43 a (upper end opening edge) of the tube 43 substantially coincides with the upper end 42 a of the pipe 42.
  • the outer diameter of the tube 43 is smaller than the inner diameter of the pipe 42. That is, a slight gap is formed between the outer peripheral surface of the tube 43 and the inner peripheral surface of the pipe 42.
  • the upper end 43 a of the tube 43 holds the tapered surface 8 a of the capillary 8.
  • the tube 43 of the capillary holding part 11A has a predetermined flexibility. Therefore, the capillary holding portion 11 ⁇ / b> A can change the attitude of the capillary 8 by the gap formed between the outer peripheral surface of the tube 43 and the inner peripheral surface of the pipe 42. Specifically, the capillary holding portion 11A can allow eccentricity and inclination in a direction intersecting the axis 42A of the pipe 42.
  • the capillary holding part 11 ⁇ / b> A includes only the tube 43, since the rigidity of the tube 43 is insufficient, the capillary 8 may not be held depending on the posture of the capillary 8. However, the pipe 42 having higher rigidity than the tube 43 exists outside the tube 43. Therefore, even when the rigidity of the tube 43 is insufficient, the displacement of the capillary 8 can be kept within an allowable range by the pipe 42.
  • the capillary 8 When the capillary 8 is inserted into the tube 43, the contact state between the inner peripheral edge of the upper end 43a and the tapered surface 8a is a line contact. Accordingly, the capillary 8 can be tilted and held in the same manner as the capillary holding portion 11A according to the present disclosure.

Abstract

An actuator 13 is equipped with a pair of linear motors 22A, 22B, a control device 27 for controlling the size and direction of the force generated by the pair of linear motors 22A, 22B, and a carriage 26 which spans the pair of linear motors 22A, 22B. The control device 27 translates the carriage 26 by making the direction of the force generated by one linear motor 22A and the direction of the force generated by the other linear motor 22B identical. In addition, the control device 27 rotates the carriage 26 by making the direction of the force generated by the one linear motor 22A and the direction of the force generated by the other linear motor 22B opposite directions from one another.

Description

アクチュエータ及びワイヤボンディング装置Actuator and wire bonding apparatus
 本開示は、アクチュエータ及びワイヤボンディング装置に関する。 The present disclosure relates to an actuator and a wire bonding apparatus.
 特許文献1は、ワイヤボンディング装置を開示する。ワイヤボンディング装置は、ボンディングツールであるキャピラリを有する。ワイヤボンディング装置は、当該キャピラリを用いてワイヤに対して熱あるいは超音波振動などを付与することにより、電極にワイヤを接続する。 Patent Document 1 discloses a wire bonding apparatus. The wire bonding apparatus has a capillary which is a bonding tool. The wire bonding apparatus connects a wire to an electrode by applying heat or ultrasonic vibration to the wire using the capillary.
特開2018-6731号公報JP-A-2018-6731
 特許文献1が開示するワイヤボンディング装置といった製造装置は、複数の移動機構を要する。例えば、製造装置の動作は、処理対象となる被処理部品の移動と、被処理部品に対するツールの移動と、を含む。従って、製造装置は、被処理部品及びツールのそれぞれに要求される移動態様を実現するためのアクチュエータを要する。 A manufacturing apparatus such as a wire bonding apparatus disclosed in Patent Document 1 requires a plurality of moving mechanisms. For example, the operation of the manufacturing apparatus includes movement of a processing target component to be processed and movement of a tool with respect to the processing target component. Therefore, the manufacturing apparatus requires an actuator for realizing the movement mode required for each of the component to be processed and the tool.
 製造装置の分野においては、高機能化が検討されている。高機能化によれば、要求される移動態様が増加する。さらに、要求される移動態様は複雑化する。その結果、移動態様ごとにアクチュエータを準備する必要が生じるので、移動態様が増加するごとにアクチュエータの数も増加してしまう。 In the field of manufacturing equipment, higher functionality is being studied. With higher functionality, the required movement mode increases. Further, the required movement mode is complicated. As a result, it is necessary to prepare an actuator for each movement mode, so that the number of actuators increases each time the movement mode increases.
 そこで上記の事情に鑑み、本開示は、複数の動作が可能なアクチュエータ及びワイヤボンディング装置を説明する。 Therefore, in view of the above circumstances, the present disclosure describes an actuator and a wire bonding apparatus capable of a plurality of operations.
 本開示の一形態に係るアクチュエータは、第1方向に沿った正方向に向かう力、及び、第1方向に沿った正方向とは逆向きの負方向に向かう力を生じさせる第1力発生部と、第1力発生部に対して第1方向と直交する第2方向に離間して配置され、正方向に向かう力、及び、負方向に向かう力を生じさせる第2力発生部と、第1力発生部及び第2力発生部が生じさせる力の向きと大きさとを制御する制御部と、第1力発生部及び第2力発生部に掛け渡された移動体と、を備え、制御部は、第1力発生部が生じさせる力の方向と、第2力発生部が生じさせる力の方向と、を一致させることにより、移動体を第1方向に沿って並進させ、第1力発生部が生じさせる力の方向を、第2力発生部が生じさせる力の方向に対して逆向きにすることにより、移動体の重心まわりに回転させる。 An actuator according to an embodiment of the present disclosure includes a first force generation unit that generates a force in a positive direction along a first direction and a force in a negative direction opposite to the positive direction along the first direction. And a second force generator that is spaced apart in a second direction orthogonal to the first direction with respect to the first force generator, and that generates a force in the positive direction and a force in the negative direction, A control unit that controls the direction and magnitude of the force generated by the first force generation unit and the second force generation unit, and a moving body that is stretched over the first force generation unit and the second force generation unit. The unit translates the moving body along the first direction by matching the direction of the force generated by the first force generation unit and the direction of the force generated by the second force generation unit. By making the direction of the force generated by the generator opposite to the direction of the force generated by the second force generator , It is rotated about the center of gravity of the moving body.
 アクチュエータは、第1力発生部及び第2力発生部を備えている。それぞれの力発生部が発生させる力は、制御部によって制御される。この構成によれば、第1力発生部の力の向きと第2力発生部の力の向きとを一致させることにより、移動体を第1方向に沿って移動させることが可能になる。さらに、第1力発生部の力の向きに対して第2力発生部の力の向きを逆向きにすることにより、移動体に重心まわりのトルクを提供できる。その結果、移動体を、重心まわりに回転させることが可能になる。その結果、アクチュエータは、移動体に対して、第1方向に沿う並進及び重心まわりの回転という複数の動作を提供できる。 The actuator includes a first force generator and a second force generator. The force generated by each force generator is controlled by the controller. According to this configuration, the moving body can be moved along the first direction by matching the direction of the force of the first force generation unit and the direction of the force of the second force generation unit. Furthermore, the torque around the center of gravity can be provided to the moving body by reversing the direction of the force of the second force generation unit with respect to the direction of the force of the first force generation unit. As a result, the moving body can be rotated around the center of gravity. As a result, the actuator can provide the moving body with a plurality of operations such as translation along the first direction and rotation around the center of gravity.
 上記アクチュエータにおいて、第1力発生部及び第2力発生部は、第2方向に沿って移動体の重心を挟んで配置されてもよい。この構成によれば、移動体を効率よく回転させることができる。 In the actuator, the first force generation unit and the second force generation unit may be arranged with the center of gravity of the moving body sandwiched along the second direction. According to this configuration, the moving body can be efficiently rotated.
 上記アクチュエータにおいて、第1力発生部及び第2力発生部は、制御部に接続されて、制御部による制御を受ける超音波発生部と、第1方向に延び、移動体と接触する接触部を有すると共に、超音波発生部に固定されて超音波発生部が生じさせる超音波振動を受ける駆動軸と、を有してもよい。第1力発生部及び第2力発生部が生じさせる力は、接触部における摩擦力であってよい。摩擦力は、超音波の周波数により制御されてもよい。この構成によれば、第1力発生部の構成及び第2力発生部の構成を簡易にすることができる。 In the actuator, the first force generation unit and the second force generation unit are connected to the control unit and include an ultrasonic generation unit that is controlled by the control unit, and a contact unit that extends in the first direction and contacts the moving body. And a drive shaft that is fixed to the ultrasonic wave generation unit and receives ultrasonic vibration generated by the ultrasonic wave generation unit. The force generated by the first force generation part and the second force generation part may be a frictional force at the contact part. The frictional force may be controlled by the ultrasonic frequency. According to this configuration, the configuration of the first force generation unit and the configuration of the second force generation unit can be simplified.
 上記アクチュエータにおいて、テーブルは、主面及び裏面を有してよい。主面及び裏面の一方は、接触部を含んでもよい。この構成によれば、第1力発生部及び第2力発生部は、移動体に対して力を確実に提供することが可能になる。その結果、移動体の並進及び回転を確実に行うことができる。 In the above actuator, the table may have a main surface and a back surface. One of the main surface and the back surface may include a contact portion. According to this configuration, the first force generation unit and the second force generation unit can reliably provide force to the moving body. As a result, translation and rotation of the moving body can be performed reliably.
 本開示の別の態様に係るワイヤボンディング装置は、キャピラリを着脱可能に保持するボンディングツールと、ボンディングツールに対してキャピラリを取り付け又は取り外すキャピラリ交換部と、を備え、キャピラリ交換部は、上記のアクチュエータを有する。このワイヤボンディング装置は、上記のアクチュエータを備えたキャピラリ交換部を備える。このアクチュエータは、並進と回転との二つの動作を行い得る。従って、ワイヤボンディング装置にキャピラリの交換機能を付与しつつ、キャピラリ交換部の大型化を抑制することが可能である。従って、ワイヤボンディング装置の高機能化と小型化とを両立することができる。 A wire bonding apparatus according to another aspect of the present disclosure includes a bonding tool that detachably holds a capillary, and a capillary replacement unit that attaches or detaches the capillary to or from the bonding tool, and the capillary replacement unit includes the actuator described above. Have This wire bonding apparatus includes a capillary replacement unit including the actuator described above. This actuator can perform two operations, translation and rotation. Therefore, it is possible to suppress an increase in size of the capillary replacement part while providing a capillary replacement function to the wire bonding apparatus. Therefore, it is possible to achieve both high functionality and downsizing of the wire bonding apparatus.
 本開示によれば、複数の動作が可能なアクチュエータ及びワイヤボンディング装置が説明される。 According to the present disclosure, an actuator and a wire bonding apparatus capable of a plurality of operations are described.
図1は、実施形態に係るワイヤボンディング装置を示す斜視図である。FIG. 1 is a perspective view showing a wire bonding apparatus according to an embodiment. 図2は、図1に示すワイヤボンディング装置が有するキャピラリ交換部を拡大して示す斜視図である。FIG. 2 is an enlarged perspective view showing the capillary exchange part of the wire bonding apparatus shown in FIG. 図3は、キャピラリ保持部の一部を断面視して示す斜視図である。FIG. 3 is a perspective view showing a part of the capillary holding section in a cross-sectional view. 図4は、キャピラリ保持部の動作を説明する図である。FIG. 4 is a diagram for explaining the operation of the capillary holder. 図5は、キャピラリ案内部の一部を断面視して示す斜視図である。FIG. 5 is a perspective view showing a part of the capillary guide section in a cross-sectional view. 図6は、キャピラリ保持部及びキャピラリ案内部によって奏されるキャピラリのガイド機能を示す図である。FIG. 6 is a diagram showing a capillary guide function played by the capillary holding part and the capillary guide part. 図7は、キャピラリ保持部及びキャピラリ案内部によって奏されるキャピラリの別のガイド機能を示す図である。FIG. 7 is a diagram showing another guide function of the capillary played by the capillary holding part and the capillary guide part. 図8は、図2に示すキャピラリ交換部が有するアクチュエータの要部を示す平面図である。FIG. 8 is a plan view showing the main part of the actuator included in the capillary exchange part shown in FIG. 図9は、アクチュエータの動作原理を説明する図である。FIG. 9 is a diagram illustrating the operating principle of the actuator. 図10は、アクチュエータの具体的な制御を説明する図である。FIG. 10 is a diagram illustrating specific control of the actuator. 図11は、アクチュエータの具体的な制御を説明する図である。FIG. 11 is a diagram illustrating specific control of the actuator. 図12は、キャピラリ交換部の主要な動作を示す図である。FIG. 12 is a diagram illustrating main operations of the capillary exchange unit. 図13は、図12に続くキャピラリ交換部の主要な動作を示す図である。FIG. 13 is a diagram showing the main operation of the capillary exchange unit following FIG. 図14は、図13に続くキャピラリ交換部の主要な動作を示す図である。FIG. 14 is a diagram showing the main operation of the capillary exchange unit following FIG. 図15は、図14に続くキャピラリ交換部の主要な動作を示す図である。FIG. 15 is a diagram showing the main operation of the capillary exchange unit following FIG. 図16は、変形例に係るキャピラリ保持部の断面を示す斜視図である。FIG. 16 is a perspective view showing a cross section of a capillary holding part according to a modification.
 以下、添付図面を参照しながら本開示のアクチュエータ及びワイヤボンディング装置を詳細に説明する。図面の説明において同一の要素には同一の符号を付し、重複する説明を省略する。 Hereinafter, the actuator and the wire bonding apparatus of the present disclosure will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same elements are denoted by the same reference numerals, and redundant description is omitted.
 図1に示すワイヤボンディング装置1は、例えば、プリント基板などに設けられた電極と、当該プリント基板に取り付けられた導体素子の電極と、を細径の金属ワイヤを用いて電気的に接続する。ワイヤボンディング装置1は、ワイヤを電極に接続するために、ワイヤに対して熱、超音波又は圧力を提供する。ワイヤボンディング装置1は、ベース2と、ボンディング部3と、搬送部4と、を有する。ボンディング部3は、上記接続作業を行う。搬送部4は、被処理部品であるプリント基板などをボンディングエリアに搬送する。 The wire bonding apparatus 1 shown in FIG. 1 electrically connects, for example, an electrode provided on a printed board or the like and an electrode of a conductor element attached to the printed board using a thin metal wire. The wire bonding apparatus 1 provides heat, ultrasonic waves or pressure to the wire in order to connect the wire to the electrode. The wire bonding apparatus 1 includes a base 2, a bonding unit 3, and a transport unit 4. The bonding unit 3 performs the above connection work. The transport unit 4 transports a printed circuit board, which is a component to be processed, to a bonding area.
 ボンディング部3は、ボンディングツール6を含む、ボンディングツール6の先端には、超音波ホーン7が設けられる。超音波ホーン7の先端には、キャピラリ8が着脱可能に設けられる。キャピラリ8は、ワイヤに対して熱、超音波又は圧力を提供する。 The bonding unit 3 includes the bonding tool 6, and an ultrasonic horn 7 is provided at the tip of the bonding tool 6. A capillary 8 is detachably provided at the tip of the ultrasonic horn 7. The capillary 8 provides heat, ultrasound or pressure to the wire.
 以下の説明において、超音波ホーン7が伸びる方向をX軸とする。搬送部4によってプリント基板が搬送される方向をY軸(第2方向)とする。キャピラリ8がボンディング動作を行う際に移動する方向(Z軸の方向、第1方向)をZ軸とする。 In the following description, the direction in which the ultrasonic horn 7 extends is the X axis. The direction in which the printed circuit board is conveyed by the conveyance unit 4 is defined as a Y axis (second direction). The direction in which the capillary 8 moves when performing the bonding operation (Z-axis direction, first direction) is taken as the Z-axis.
 キャピラリ8は、定期的な交換を要する。そこで、ワイヤボンディング装置1は、キャピラリ交換部9を有する。キャピラリ交換部9は、作業者による操作を介することなく、キャピラリ8を自動的に交換する。 The capillary 8 needs to be replaced periodically. Therefore, the wire bonding apparatus 1 includes a capillary exchange unit 9. The capillary exchange unit 9 automatically exchanges the capillary 8 without any operator operation.
 キャピラリ交換部9は、超音波ホーン7に取り付けられたキャピラリ8を回収する。さらに、キャピラリ交換部9は、超音波ホーン7に対してキャピラリ8を装着する。キャピラリ8の交換作業とは、キャピラリ8を回収する作業と、キャピラリ8を装着する作業と、を含む。キャピラリ8の交換作業は、予め設定された条件を満たした場合に、自動的に実施される。例えば、当該条件は、ボンディング作業の回数としてもよい。すなわち、所定回数のボンディング作業を実施するごとに、キャピラリ8を交換する作業を行うものとしてよい。 The capillary exchange unit 9 collects the capillary 8 attached to the ultrasonic horn 7. Further, the capillary exchange unit 9 attaches the capillary 8 to the ultrasonic horn 7. The replacement operation of the capillary 8 includes an operation of collecting the capillary 8 and an operation of mounting the capillary 8. The replacement operation of the capillary 8 is automatically performed when a preset condition is satisfied. For example, the condition may be the number of bonding operations. That is, every time a predetermined number of bonding operations are performed, the operation of replacing the capillary 8 may be performed.
 図2に示すように、キャピラリ交換部9は、主要な構成要素として、キャピラリ保持部11と、キャピラリ案内部12と、アクチュエータ13と、を有する。また、付加的な構成要素として、キャピラリ交換部9は、着脱治具15及び着脱治具15を駆動する治具駆動部20を有する。 As shown in FIG. 2, the capillary exchange unit 9 includes a capillary holding unit 11, a capillary guide unit 12, and an actuator 13 as main components. Further, as an additional component, the capillary exchange unit 9 includes an attaching / detaching jig 15 and a jig driving unit 20 that drives the attaching / detaching jig 15.
<キャピラリ保持部>
 キャピラリ保持部11は、キャピラリ8を保持する。キャピラリ保持部11は、ホルダ14を介してアクチュエータ13に取り付けられる。キャピラリ保持部11の形状は、Z軸の方向に延びる円柱である。キャピラリ保持部11の下端は、ホルダ14に保持されている。キャピラリ保持部11の上端には、キャピラリ8が着脱可能に挿し込まれる。
<Capillary holding part>
The capillary holding unit 11 holds the capillary 8. The capillary holder 11 is attached to the actuator 13 via the holder 14. The shape of the capillary holding part 11 is a cylinder extending in the Z-axis direction. The lower end of the capillary holder 11 is held by a holder 14. A capillary 8 is detachably inserted into the upper end of the capillary holding part 11.
 図3に示すように、キャピラリ保持部11は、主要な構成要素として、上ソケット16と、コイルバネ17(弾性部)と、下ソケット18(キャピラリベース部)と、オーリング19(拘束部)と、を有する。上ソケット16、コイルバネ17及び下ソケット18は、共通する軸線上に配置される。具体的には、上から順に上ソケット16、コイルバネ17及び下ソケット18の順に配置される。 As shown in FIG. 3, the capillary holding part 11 includes, as main components, an upper socket 16, a coil spring 17 (elastic part), a lower socket 18 (capillary base part), and an O-ring 19 (restraining part). Have. The upper socket 16, the coil spring 17, and the lower socket 18 are disposed on a common axis. Specifically, the upper socket 16, the coil spring 17, and the lower socket 18 are arranged in this order from the top.
 上ソケット16の形状は、略円筒である。上ソケット16は、上端面16aから下端面16bに至る貫通孔16hを有する。上ソケット16は、キャピラリ8のテーパ面8aを保持する。従って、貫通孔16hの内径は、キャピラリ8のテーパ面8aの外径に対応する。例えば、貫通孔16hの内径は、キャピラリ本体8bの外径より小さい。貫通孔16hの上端面16a側には、オーリング19のための座繰り部16cが設けられる。座繰り部16cは、オーリング19を収容可能な寸法を有する。座繰り部16cの深さは、オーリング19の高さと同程度である。座繰り部16cの内径は、オーリング19の外径と同程度である。 The shape of the upper socket 16 is substantially a cylinder. The upper socket 16 has a through hole 16h extending from the upper end surface 16a to the lower end surface 16b. The upper socket 16 holds the tapered surface 8 a of the capillary 8. Accordingly, the inner diameter of the through hole 16 h corresponds to the outer diameter of the tapered surface 8 a of the capillary 8. For example, the inner diameter of the through hole 16h is smaller than the outer diameter of the capillary body 8b. A counterbore 16c for the O-ring 19 is provided on the upper end surface 16a side of the through hole 16h. The counterbore 16c has a dimension that can accommodate the O-ring 19. The depth of the counterbore 16c is approximately the same as the height of the O-ring 19. The inner diameter of the counterbore 16c is approximately the same as the outer diameter of the O-ring 19.
 オーリング19の形状は、いわゆるトーラスである。オーリング19は、キャピラリ8のテーパ面8aと直接に接触する。つまり、キャピラリ保持部11のオーリング19は、キャピラリ8を保持している。この保持は、オーリング19の表面に形成される粘着層によってなされる。オーリング19の内径は、貫通孔16hの内径と略同程度である。オーリング19には、キャピラリ8のテーパ面8aが挿し込まれる。 The shape of the O-ring 19 is a so-called torus. The O-ring 19 is in direct contact with the tapered surface 8 a of the capillary 8. That is, the O-ring 19 of the capillary holder 11 holds the capillary 8. This holding is performed by an adhesive layer formed on the surface of the O-ring 19. The inner diameter of the O-ring 19 is approximately the same as the inner diameter of the through hole 16h. The tapered surface 8 a of the capillary 8 is inserted into the O-ring 19.
 上ソケット16は、外周面に設けられた段差16dを有する。従って、上ソケット16の上端面16a側の外径は、上ソケット16の下端面16b側の外径と異なる。具体的には、下端面16b側の外径は、上端面16a側の外径よりわずかに小さい。下端面16b側の細径部16eには、コイルバネ17がはめ込まれる。 The upper socket 16 has a step 16d provided on the outer peripheral surface. Accordingly, the outer diameter of the upper socket 16 on the upper end surface 16a side is different from the outer diameter of the upper socket 16 on the lower end surface 16b side. Specifically, the outer diameter on the lower end surface 16b side is slightly smaller than the outer diameter on the upper end surface 16a side. A coil spring 17 is fitted into the small diameter portion 16e on the lower end surface 16b side.
 下ソケット18の形状は、略円筒である。下ソケット18の上端面18aは、上ソケット16の下端面16bと対面する。下ソケット18の外形形状は、上ソケット16の外形形状と同様である。下ソケット18の外周面には、段差18dが設けられる。上ソケット16とは逆に、下ソケット18の上端面18a側は、細径部18eである。この上端面18a側の細径部18eには、コイルバネ17がはめ込まれる。下ソケット18の下端面18b側の太径部18fは、ホルダ14によって挟持されている。 The shape of the lower socket 18 is substantially a cylinder. The upper end surface 18 a of the lower socket 18 faces the lower end surface 16 b of the upper socket 16. The outer shape of the lower socket 18 is the same as the outer shape of the upper socket 16. A step 18 d is provided on the outer peripheral surface of the lower socket 18. Contrary to the upper socket 16, the upper socket 18a side of the lower socket 18 is a small diameter portion 18e. A coil spring 17 is fitted into the small diameter portion 18e on the upper end surface 18a side. The large diameter portion 18 f on the lower end surface 18 b side of the lower socket 18 is sandwiched by the holder 14.
 コイルバネ17は、圧縮バネである。コイルバネ17の上端側は、上ソケット16の細径部16eにはめ込まれる。コイルバネ17の下端側は、下ソケット18の細径部18eに挿し込まれる。上ソケット16とコイルバネ17とは、可撓部10を構成する。従って、上ソケット16と下ソケット18とは、コイルバネ17によって連結されている。コイルバネ17は、軸線17Aの方向に沿った弾性及び軸線17Aと交差する方向に沿った弾性を有する。その結果、上ソケット16は、下ソケット18に対する相対的な位置を変更することができる。 The coil spring 17 is a compression spring. The upper end side of the coil spring 17 is fitted into the small diameter portion 16 e of the upper socket 16. The lower end side of the coil spring 17 is inserted into the small diameter portion 18 e of the lower socket 18. The upper socket 16 and the coil spring 17 constitute the flexible part 10. Therefore, the upper socket 16 and the lower socket 18 are connected by the coil spring 17. The coil spring 17 has elasticity along the direction of the axis 17A and elasticity along the direction intersecting the axis 17A. As a result, the upper socket 16 can change its position relative to the lower socket 18.
 上記の構成を有するキャピラリ保持部11は、図4に示す保持態様を有する。図4の(a)部は、初期態様におけるキャピラリ保持部11を示す。図4の(b)部は、第1の変形態様におけるキャピラリ保持部11を示す。図4の(c)部は、第2の変形態様におけるキャピラリ保持部11を示す。 The capillary holding part 11 having the above configuration has a holding mode shown in FIG. Part (a) of FIG. 4 shows the capillary holding part 11 in the initial mode. Part (b) of FIG. 4 shows the capillary holding part 11 in the first modification. Part (c) of FIG. 4 shows the capillary holding part 11 in the second modification.
 図4の(a)部に示すように、第1の保持態様に係るキャピラリ保持部11は、上ソケット16の軸線16Aが下ソケット18の軸線18Aと重複している。さらに、キャピラリ8の軸線8Aも当該軸線16A、18Aに重複する。 4A, in the capillary holding part 11 according to the first holding mode, the axis 16A of the upper socket 16 overlaps with the axis 18A of the lower socket 18. Furthermore, the axis 8A of the capillary 8 also overlaps with the axes 16A and 18A.
 図4の(b)部に示すように、第2の保持態様に係るキャピラリ保持部11は、上ソケット16の軸線16Aが下ソケット18の軸線18Aに重複しない。具体的には、下ソケット18は、ホルダ14に保持されており、その位置が維持されている。このような下ソケット18に対して、上ソケット16がX軸及びY軸の方向に移動する。上ソケット16の軸線16Aは、下ソケット18の軸線18Aに対して平行である。 4B, in the capillary holding part 11 according to the second holding mode, the axis 16A of the upper socket 16 does not overlap the axis 18A of the lower socket 18. Specifically, the lower socket 18 is held by the holder 14 and its position is maintained. The upper socket 16 moves in the X-axis and Y-axis directions with respect to such a lower socket 18. The axis 16A of the upper socket 16 is parallel to the axis 18A of the lower socket 18.
 図4の(c)部に示すように、第3の変形態様に係るキャピラリ保持部11は、上ソケット16の軸線16Aが下ソケット18の軸線18Aに重複している。つまり、これらの構成は、第1の保持態様と同じである。一方、キャピラリ8の軸線8Aは、上ソケット16の軸線16Aに対して傾いている。オーリング19は、トーラスの形状を有する。従って、キャピラリ8のテーパ面8aが挿し込まれる内周面は、曲面である。例えば、Z軸に平行な断面におけるオーリング19の断面形状は、円形である。オーリング19にテーパ面8aが挿し込まれた状態を断面視すると、オーリング19とテーパ面8aとは、2つの接触部C1、C2で接触する。つまり、オーリング19とキャピラリ8との接触態様は、環状の接触線CL(図3参照)において接触する線接触である。このような接触状態によれば、オーリング19の軸線19Aに対してキャピラリ8の傾きが許容される。 4 (c), in the capillary holding part 11 according to the third modification, the axis 16A of the upper socket 16 overlaps the axis 18A of the lower socket 18. That is, these configurations are the same as those in the first holding mode. On the other hand, the axis 8A of the capillary 8 is inclined with respect to the axis 16A of the upper socket 16. The O-ring 19 has a torus shape. Therefore, the inner peripheral surface into which the tapered surface 8a of the capillary 8 is inserted is a curved surface. For example, the cross-sectional shape of the O-ring 19 in a cross section parallel to the Z axis is a circle. When the state in which the tapered surface 8a is inserted into the O-ring 19 is viewed in cross section, the O-ring 19 and the tapered surface 8a are in contact with each other at two contact portions C1 and C2. That is, the contact mode between the O-ring 19 and the capillary 8 is a line contact that makes contact at an annular contact line CL (see FIG. 3). According to such a contact state, the capillary 8 is allowed to tilt with respect to the axis 19 </ b> A of the O-ring 19.
<キャピラリ案内部>
 再び図2に示すように、キャピラリ案内部12は、超音波ホーン7の孔7h(キャピラリ保持孔)にキャピラリ8を挿入するときにキャピラリ8を案内する。キャピラリ案内部12は、アクチュエータ13に設けられる。従って、キャピラリ案内部12とアクチュエータ13を構成する部品との相対的な位置関係は、保存される。キャピラリ案内部12は、アクチュエータ13から超音波ホーン7に向けて伸びる片持ち梁である。
<Capillary guide>
As shown in FIG. 2 again, the capillary guide portion 12 guides the capillary 8 when the capillary 8 is inserted into the hole 7 h (capillary holding hole) of the ultrasonic horn 7. The capillary guide 12 is provided in the actuator 13. Therefore, the relative positional relationship between the capillary guide portion 12 and the parts constituting the actuator 13 is preserved. The capillary guide portion 12 is a cantilever beam extending from the actuator 13 toward the ultrasonic horn 7.
 図5は、キャピラリ案内部12の主要部分を断面視した斜視図である。図5に示すように、キャピラリ案内部12の自由端部には、ガイド孔12hが設けられている。ガイド孔12hは、キャピラリ8のキャピラリ本体8bを受け入れる。そして、ガイド孔12hは、超音波ホーン7の孔7hへキャピラリ8を導く。ガイド孔12hは、貫通孔である。ガイド孔12hは、キャピラリ案内部12の上面12aから下面12bに至る。ガイド孔12hは、キャピラリ案内部12の前端面12cにも開口している。ガイド孔12hは、下面12b及び前端面12cからキャピラリ8を受け入れることができる。 FIG. 5 is a perspective view of the main part of the capillary guide portion 12 as a cross-sectional view. As shown in FIG. 5, a guide hole 12 h is provided in the free end portion of the capillary guide portion 12. The guide hole 12 h receives the capillary body 8 b of the capillary 8. The guide hole 12 h guides the capillary 8 to the hole 7 h of the ultrasonic horn 7. The guide hole 12h is a through hole. The guide hole 12h extends from the upper surface 12a of the capillary guide portion 12 to the lower surface 12b. The guide hole 12h is also opened in the front end surface 12c of the capillary guide portion 12. The guide hole 12h can receive the capillary 8 from the lower surface 12b and the front end surface 12c.
 ガイド孔12hは、テーパ孔部12tと、平行孔部12pと、を含む。テーパ孔部12tの下端は、下面12bに開口する。平行孔部12pの上端は、上面12aに開口する。下面12bにおけるテーパ孔部12tの内径は、上面12aにおける平行孔部12pの内径よりも大きい。この内径は、キャピラリ8の上端における外径よりも大きい。つまり、ガイド孔12hは、下面12bから上面12aに向かって次第に内径が小さくなる。そして、ガイド孔12hの内径は、テーパ孔部12tと平行孔部12pとが連結された位置において最小である。この内径は、キャピラリ8の上端における外径と略同じである。そして、平行孔部12pの内径は、一定である。 The guide hole 12h includes a tapered hole portion 12t and a parallel hole portion 12p. The lower end of the tapered hole portion 12t opens to the lower surface 12b. The upper end of the parallel hole 12p opens to the upper surface 12a. The inner diameter of the tapered hole portion 12t on the lower surface 12b is larger than the inner diameter of the parallel hole portion 12p on the upper surface 12a. This inner diameter is larger than the outer diameter at the upper end of the capillary 8. That is, the inner diameter of the guide hole 12h gradually decreases from the lower surface 12b toward the upper surface 12a. The inner diameter of the guide hole 12h is minimum at a position where the tapered hole portion 12t and the parallel hole portion 12p are connected. This inner diameter is substantially the same as the outer diameter at the upper end of the capillary 8. And the internal diameter of the parallel hole part 12p is constant.
 図6は、キャピラリ案内部12によってキャピラリ8が案内される様子を示す。図6の(a)部に示す状態では、超音波ホーン7の孔7hの軸線7Aは、キャピラリ案内部12のガイド孔12hの軸線12Aに重複する。一方、キャピラリ保持部11に保持されたキャピラリ8の軸線8Aは、軸線7A、12Aに対してX軸の方向に平行にずれている。 FIG. 6 shows how the capillary 8 is guided by the capillary guide 12. In the state shown in part (a) of FIG. 6, the axis 7 </ b> A of the hole 7 h of the ultrasonic horn 7 overlaps the axis 12 </ b> A of the guide hole 12 h of the capillary guide 12. On the other hand, the axis 8A of the capillary 8 held by the capillary holder 11 is shifted in parallel to the direction of the X axis with respect to the axes 7A and 12A.
 図6の(a)部に示す状態から、キャピラリ保持部11をZ軸の方向に移動させる。図6の(b)部に示すように、キャピラリ8の上端は、テーパ孔部12tの壁面に接触する。キャピラリ保持部11を上に移動させると、キャピラリ8は、壁面に沿って移動する。この移動は、上向き(Z軸方向)の成分に加えて、水平方向(X軸方向)の成分も含む。キャピラリ保持部11は、コイルバネ17によって上ソケット16が下ソケット18に対して移動する。つまり、下ソケット18を上方向に移動させると、上ソケット16は、上方向に移動しながら、コイルバネ17によって水平方向へも移動する。 From the state shown in FIG. 6 (a), the capillary holder 11 is moved in the Z-axis direction. As shown in FIG. 6B, the upper end of the capillary 8 is in contact with the wall surface of the tapered hole portion 12t. When the capillary holding part 11 is moved upward, the capillary 8 moves along the wall surface. This movement includes a horizontal component (X-axis direction) in addition to an upward component (Z-axis direction). In the capillary holding part 11, the upper socket 16 moves relative to the lower socket 18 by the coil spring 17. That is, when the lower socket 18 is moved upward, the upper socket 16 is also moved in the horizontal direction by the coil spring 17 while being moved upward.
 この移動によれば、キャピラリ8の軸線8Aは、孔7hの軸線7Aへ次第に近づく。そして、キャピラリ8の上端が平行孔部12pに達すると、キャピラリ8の軸線8Aは孔7hの軸線7Aに重複する。従って、キャピラリ8は、超音波ホーン7の孔7hへ挿し込まれる。 According to this movement, the axis 8A of the capillary 8 gradually approaches the axis 7A of the hole 7h. When the upper end of the capillary 8 reaches the parallel hole 12p, the axis 8A of the capillary 8 overlaps with the axis 7A of the hole 7h. Accordingly, the capillary 8 is inserted into the hole 7 h of the ultrasonic horn 7.
 図6の(a)部に示す例は、超音波ホーン7とキャピラリ案内部12との位置関係が理想的な状態である。一方、図7の(a)部に示す例は、キャピラリ案内部12の軸線12Aに対して、超音波ホーン7の孔7hの軸線7Aが傾いている。 In the example shown in FIG. 6 (a), the positional relationship between the ultrasonic horn 7 and the capillary guide portion 12 is ideal. On the other hand, in the example shown in FIG. 7A, the axis 7 </ b> A of the hole 7 h of the ultrasonic horn 7 is inclined with respect to the axis 12 </ b> A of the capillary guide 12.
 図7の(a)部に示す状態において、キャピラリ8を挿し込む動作を説明する。図7の(b)部に示すように、キャピラリ8の軸線8Aは、孔7hの軸線7Aに対して相対的に傾いている。この状態では、キャピラリ8の上端は、孔7hの壁面に接触する。従って、キャピラリ8を孔7hにそれ以上挿し込むことができない。孔7hに対してキャピラリ8を挿し込むためには、キャピラリ8の軸線8Aを孔7hの軸線7Aに対して平行にする必要がある。さらに、軸線8Aを軸線7Aに重複させることが必要である。 The operation of inserting the capillary 8 in the state shown in FIG. As shown in part (b) of FIG. 7, the axis 8A of the capillary 8 is inclined relative to the axis 7A of the hole 7h. In this state, the upper end of the capillary 8 is in contact with the wall surface of the hole 7h. Therefore, the capillary 8 cannot be inserted further into the hole 7h. In order to insert the capillary 8 into the hole 7h, it is necessary to make the axis 8A of the capillary 8 parallel to the axis 7A of the hole 7h. Furthermore, it is necessary to overlap the axis 8A with the axis 7A.
 キャピラリ保持部11は、上ソケット16が下ソケット18に対してずれることが可能である。さらに、キャピラリ8は上ソケット16の軸線16Aに対して傾くことが可能である。これらの作用によれば、図7の(c)部に示すように、キャピラリ保持部11を上昇させるにつれて、キャピラリ8の軸線8Aは、孔7hの軸線7Aに次第に近づく。そして、最終的にキャピラリ8を孔7hに挿し込むことができる。つまり、キャピラリ保持部11はキャピラリ8を柔軟に保持している。その結果、キャピラリ8とキャピラリ案内部12とのずれを吸収することができる。さらに、キャピラリ8と超音波ホーン7の孔7hとのずれを吸収することができる。従って、キャピラリ保持部11とキャピラリ案内部12とによれば、キャピラリ8を超音波ホーン7へ確実に装着することができる。 The capillary holding part 11 is capable of shifting the upper socket 16 with respect to the lower socket 18. Further, the capillary 8 can be inclined with respect to the axis 16 </ b> A of the upper socket 16. According to these actions, as shown in part (c) of FIG. 7, as the capillary holding part 11 is raised, the axis 8A of the capillary 8 gradually approaches the axis 7A of the hole 7h. Finally, the capillary 8 can be inserted into the hole 7h. That is, the capillary holding part 11 holds the capillary 8 flexibly. As a result, the displacement between the capillary 8 and the capillary guide 12 can be absorbed. Further, the displacement between the capillary 8 and the hole 7h of the ultrasonic horn 7 can be absorbed. Therefore, according to the capillary holding portion 11 and the capillary guide portion 12, the capillary 8 can be reliably attached to the ultrasonic horn 7.
<アクチュエータ>
 アクチュエータ13は、交換対象となるキャピラリ8及び新規なキャピラリ8を移動させる。また、アクチュエータ13は、キャピラリ8を所定の位置及び姿勢において保持する。アクチュエータ13は、キャピラリ8を所定の並進軸(Z軸)の方向に沿って往復移動させる。本実施形態において、並進軸は、鉛直方向(Z軸)に沿う。従って、アクチュエータ13は、鉛直方向に沿ってキャピラリ8を上方向及び下方向に移動させる。さらに、アクチュエータ13は、キャピラリ8を回転軸(X軸)のまわりに回転させる。本実施形態において、回転軸は鉛直方向(Z軸)と直交する。つまり、回転軸は水平方向(X軸)に沿う。従って、アクチュエータ13は、水平方向のまわりにキャピラリ8を回転させる。
<Actuator>
The actuator 13 moves the capillary 8 to be replaced and the new capillary 8. The actuator 13 holds the capillary 8 at a predetermined position and posture. The actuator 13 reciprocates the capillary 8 along the direction of a predetermined translation axis (Z axis). In the present embodiment, the translation axis is along the vertical direction (Z-axis). Therefore, the actuator 13 moves the capillary 8 upward and downward along the vertical direction. Further, the actuator 13 rotates the capillary 8 around the rotation axis (X axis). In the present embodiment, the rotation axis is orthogonal to the vertical direction (Z axis). That is, the rotation axis is along the horizontal direction (X axis). Accordingly, the actuator 13 rotates the capillary 8 around the horizontal direction.
 アクチュエータ13は、アクチュエータベース21(ベース部)と、一対のリニアモータ22A、22B(第1力発生部、第2力発生部)と、リニアガイド24と、キャリッジ26(移動体)と、制御装置27(制御部、図1等参照)と、を有する。 The actuator 13 includes an actuator base 21 (base portion), a pair of linear motors 22A and 22B (first force generating portion and second force generating portion), a linear guide 24, a carriage 26 (moving body), and a control device. 27 (control unit, see FIG. 1 and the like).
 アクチュエータベース21の形状は、平板である。アクチュエータベース21は、主面21aを有する。主面21aの法線方向は、水平方向(X軸の方向)に沿う。主面21a上には、リニアモータ22A、22B、リニアガイド24及びキャリッジ26が配置される。 The shape of the actuator base 21 is a flat plate. The actuator base 21 has a main surface 21a. The normal direction of the main surface 21a is along the horizontal direction (X-axis direction). Linear motors 22A and 22B, a linear guide 24, and a carriage 26 are arranged on the main surface 21a.
 リニアモータ22Aは、キャリッジ26を移動させる。リニアモータ22Aは、いわゆるインパクト駆動方式を原理とする超音波モータである。リニアモータ22Aは、駆動軸28Aと、超音波素子29A(超音波発生部)と、を有する。駆動軸28Aは、金属製の丸棒である。駆動軸28Aの軸線は、アクチュエータベース21の主面21aに対して平行である。キャリッジ26は、駆動軸28Aに沿って移動する。従って、駆動軸28Aの長さは、キャリッジ26の移動範囲を決定する。駆動軸28Aの下端は、超音波素子29Aに固定される。駆動軸28Aの上端は、ガイド31により支持される。ガイド31は、アクチュエータベース21の主面21aから突出する。駆動軸28Aの上端は、ガイド31に対して固定されてもよい。また、駆動軸28Aの上端は、ガイド31に対して接触してもよい。つまり、駆動軸28Aの下端は、固定端である。また、駆動軸28Aの上端は、固定端又は自由端である。 The linear motor 22A moves the carriage 26. The linear motor 22A is an ultrasonic motor based on a so-called impact drive system. The linear motor 22A includes a drive shaft 28A and an ultrasonic element 29A (ultrasonic wave generator). The drive shaft 28A is a metal round bar. The axis of the drive shaft 28 </ b> A is parallel to the main surface 21 a of the actuator base 21. The carriage 26 moves along the drive shaft 28A. Accordingly, the length of the drive shaft 28A determines the movement range of the carriage 26. The lower end of the drive shaft 28A is fixed to the ultrasonic element 29A. The upper end of the drive shaft 28A is supported by the guide 31. The guide 31 protrudes from the main surface 21 a of the actuator base 21. The upper end of the drive shaft 28 </ b> A may be fixed to the guide 31. Further, the upper end of the drive shaft 28 </ b> A may contact the guide 31. That is, the lower end of the drive shaft 28A is a fixed end. The upper end of the drive shaft 28A is a fixed end or a free end.
 超音波素子29Aは、駆動軸28Aに対して超音波振動を提供する。超音波振動が提供された駆動軸28Aは、Z軸に沿って僅かに振動する。超音波素子29Aは、例えば、圧電素子であるピエゾ素子を採用してよい。ピエゾ素子は、加えられた電圧に応じて変形する。従って、ピエゾ素子は、高周波電圧を与えられると、その周波数と電圧の大きさに応じて変形を繰り返す。つまり、ピエゾ素子は、超音波振動を生じる。超音波素子29Aは、アクチュエータベース21から突出するガイド32に固定される。 The ultrasonic element 29A provides ultrasonic vibration to the drive shaft 28A. The drive shaft 28A provided with the ultrasonic vibration vibrates slightly along the Z axis. For example, a piezoelectric element that is a piezoelectric element may be employed as the ultrasonic element 29A. The piezo element is deformed according to the applied voltage. Therefore, when a high frequency voltage is applied to the piezoelectric element, the piezoelectric element is repeatedly deformed according to the frequency and the magnitude of the voltage. That is, the piezo element generates ultrasonic vibration. The ultrasonic element 29A is fixed to a guide 32 protruding from the actuator base 21.
 超音波素子29Aには、制御装置27が電気的に接続される。超音波素子29Aは、制御装置27が発生する駆動電圧を受ける。制御装置27は、超音波素子29Aに提供される交流電圧の周波数と振幅とを制御する。 The control device 27 is electrically connected to the ultrasonic element 29A. The ultrasonic element 29A receives a driving voltage generated by the control device 27. The control device 27 controls the frequency and amplitude of the AC voltage provided to the ultrasonic element 29A.
 リニアモータ22Bの単体の構成は、リニアモータ22Aと同じである。リニアモータ22Bは、Z軸に交差するY軸の方向へリニアモータ22Aから離間して配置される。リニアモータ22Bの駆動軸28Bは、リニアモータ22Aの駆動軸28Aに対して平行である。リニアモータ22Bの上端の高さは、リニアモータ22Aの上端の高さと同じである。同様に、リニアモータ22Bの下端の高さは、リニアモータ22Aの下端の高さと同じである。 The single motor configuration of the linear motor 22B is the same as that of the linear motor 22A. The linear motor 22B is disposed away from the linear motor 22A in the direction of the Y axis that intersects the Z axis. The drive shaft 28B of the linear motor 22B is parallel to the drive shaft 28A of the linear motor 22A. The height of the upper end of the linear motor 22B is the same as the height of the upper end of the linear motor 22A. Similarly, the height of the lower end of the linear motor 22B is the same as the height of the lower end of the linear motor 22A.
 キャリッジ26は、移動体である。移動体は、リニアモータ22A、22Bによって並進及び回転する。キャリッジ26の形状は、円盤である。キャリッジ26は、リニアモータ22A、22Bの間に掛け渡されている。アクチュエータベース21とキャリッジ26との間には、キャリッジ26をZ軸の方向に導くリニアガイド24が設けられる。キャリッジ26は、リニアガイド24によって、Z軸の方向に案内される。リニアガイド24は、キャリッジ26の移動方向を規制するものである。リニアガイド24は、Z軸の方向への駆動力をキャリッジ26に提供しない。 The carriage 26 is a moving body. The moving body is translated and rotated by the linear motors 22A and 22B. The shape of the carriage 26 is a disk. The carriage 26 is stretched between the linear motors 22A and 22B. A linear guide 24 is provided between the actuator base 21 and the carriage 26 to guide the carriage 26 in the Z-axis direction. The carriage 26 is guided in the Z-axis direction by the linear guide 24. The linear guide 24 regulates the moving direction of the carriage 26. The linear guide 24 does not provide the carriage 26 with a driving force in the Z-axis direction.
 キャリッジ26は、前円盤33と、与圧円盤34と、後円盤36と、を有する。これらの円盤の外径は、互いに同じである。また、これらの円盤は、共通する軸線に沿って積層される。前円盤33と与圧円盤34との間には、軸体37が挟み込まれる。軸体37の外径は、前円盤33及び与圧円盤34の外径よりも小さい。従って、前円盤33の外周部と与圧円盤34の外周部の間には、隙間が形成される。同様に、後円盤36と与圧円盤34との間にも、軸体38が挟み込まれる。この軸体37の外径も、後円盤36及び与圧円盤34の外径よりも小さい。従って、後円盤36の外周部と与圧円盤34の外周部の間にも、隙間が形成される。 The carriage 26 has a front disk 33, a pressurized disk 34, and a rear disk 36. The outer diameters of these disks are the same as each other. These disks are stacked along a common axis. A shaft body 37 is sandwiched between the front disk 33 and the pressurized disk 34. The outer diameter of the shaft body 37 is smaller than the outer diameters of the front disk 33 and the pressurized disk 34. Therefore, a gap is formed between the outer peripheral portion of the front disk 33 and the outer peripheral portion of the pressurized disk 34. Similarly, the shaft body 38 is also sandwiched between the rear disk 36 and the pressurized disk 34. The outer diameter of the shaft body 37 is also smaller than the outer diameters of the rear disk 36 and the pressurized disk 34. Therefore, a gap is also formed between the outer peripheral portion of the rear disk 36 and the outer peripheral portion of the pressurizing disk 34.
 後円盤36は、リニアガイド24のテーブル24aに連結される。後円盤36は、テーブル24aに対して回転可能に連結される。一方、与圧円盤34及び前円盤33は、後円盤36に対して機械的に固定される。従って、与圧円盤34及び前円盤33は、後円盤36に対して回転しない。従って、前円盤33、与圧円盤34及び後円盤36を含むキャリッジ26の全体が、リニアガイド24のテーブル24aに対して回転可能である。 The rear disk 36 is connected to the table 24a of the linear guide 24. The rear disk 36 is rotatably connected to the table 24a. On the other hand, the pressurized disk 34 and the front disk 33 are mechanically fixed to the rear disk 36. Therefore, the pressurized disk 34 and the front disk 33 do not rotate with respect to the rear disk 36. Therefore, the entire carriage 26 including the front disk 33, the pressurizing disk 34 and the rear disk 36 can rotate with respect to the table 24 a of the linear guide 24.
 図8に示すように、駆動軸28A、28Bは、与圧円盤34と後円盤36との隙間G1に挟み込まれる。一対の駆動軸28A、28Bは、キャリッジ26の重心を挟む。駆動軸28A、28Bは、与圧円盤34の裏面34bと後円盤36の主面36aとに接触する。駆動軸28A、28Bは、軸体38の外周面38aに接触しない。隙間G1の外径は、与圧円盤34の外径及び後円盤36の外径よりも小さい。また、隙間G1の外径は、軸体38の外径よりも大きい。軸体38の外径と後円盤36の外径との差分は、駆動軸28Aの外径と駆動軸28Bの外径の差分よりも大きい。同様に、軸体37の外径と与圧円盤34の外径との差分は、駆動軸28Aの外径と駆動軸28Bの外径の差分よりも大きい。 As shown in FIG. 8, the drive shafts 28 </ b> A and 28 </ b> B are sandwiched in a gap G <b> 1 between the pressurizing disk 34 and the rear disk 36. The pair of drive shafts 28 </ b> A and 28 </ b> B sandwich the center of gravity of the carriage 26. The drive shafts 28 </ b> A and 28 </ b> B are in contact with the back surface 34 b of the pressurizing disk 34 and the main surface 36 a of the rear disk 36. The drive shafts 28A and 28B do not contact the outer peripheral surface 38a of the shaft body 38. The outer diameter of the gap G <b> 1 is smaller than the outer diameter of the pressurizing disk 34 and the outer diameter of the rear disk 36. Further, the outer diameter of the gap G <b> 1 is larger than the outer diameter of the shaft body 38. The difference between the outer diameter of the shaft body 38 and the outer diameter of the rear disk 36 is larger than the difference between the outer diameter of the drive shaft 28A and the outer diameter of the drive shaft 28B. Similarly, the difference between the outer diameter of the shaft body 37 and the outer diameter of the pressurizing disk 34 is larger than the difference between the outer diameter of the drive shaft 28A and the outer diameter of the drive shaft 28B.
 隙間G1の間隔は、駆動軸28Aの外径及び駆動軸28Bの外径よりも僅かに小さい。前円盤33と与圧円盤34との間には隙間G2が形成されている。その結果、与圧円盤34と後円盤36との間に駆動軸28A、28Bを配置したときに、与圧円盤34は前円盤33側に僅かにたわむ。このたわみは、駆動軸28A及び駆動軸28Bを後円盤36に押圧する力を発生する。 The gap G1 is slightly smaller than the outer diameter of the drive shaft 28A and the outer diameter of the drive shaft 28B. A gap G <b> 2 is formed between the front disk 33 and the pressurized disk 34. As a result, when the drive shafts 28 </ b> A and 28 </ b> B are disposed between the pressurizing disk 34 and the rear disk 36, the pressurizing disk 34 slightly bends toward the front disk 33. This deflection generates a force that presses the drive shaft 28A and the drive shaft 28B against the rear disk 36.
 以下、図9を参照しつつ、アクチュエータ13の動作原理について説明する。図9の(a)部、図9の(b)部及び図9の(c)部は、アクチュエータ13の動作原理を示す。説明の便宜上、図9では、一方のリニアモータ22Aとキャリッジ26とを示し、他方のリニアモータ22B等の図示を省略する。 Hereinafter, the operation principle of the actuator 13 will be described with reference to FIG. 9 (a), FIG. 9 (b) and FIG. 9 (c) show the operating principle of the actuator 13. FIG. For convenience of explanation, in FIG. 9, one linear motor 22A and the carriage 26 are shown, and the other linear motor 22B and the like are not shown.
 図9の(a)部は、キャリッジ26の位置を保持する態様を示す。キャリッジ26の駆動軸28Aは、与圧円盤34と後円盤36との間に挟み込まれる。キャリッジ26の位置は、この挟み込みに起因する与圧によって維持される。より詳細には、キャリッジ26の位置は、与圧を垂直抗力とする摩擦抵抗力によって維持される。制御装置27は、超音波素子29Aに対して電圧を提供しない。つまり、電圧E1に示すように、電圧値はゼロである。なお、制御装置27は、所定の電圧値を有する直流電流を超音波素子29Aに提供してもよい。 9 (a) shows a mode in which the position of the carriage 26 is held. The drive shaft 28 </ b> A of the carriage 26 is sandwiched between the pressurizing disk 34 and the rear disk 36. The position of the carriage 26 is maintained by the pressurization resulting from this pinching. More specifically, the position of the carriage 26 is maintained by a frictional resistance force in which the applied pressure is a vertical drag. The control device 27 does not provide a voltage to the ultrasonic element 29A. That is, as indicated by the voltage E1, the voltage value is zero. Note that the control device 27 may provide a direct current having a predetermined voltage value to the ultrasonic element 29A.
 キャリッジ26の位置は、駆動軸28Aとの間の摩擦抵抗力によって維持される。ここで、駆動軸28Aを移動させる態様として、キャリッジ26が駆動軸28Aに伴って移動する第1の態様と、キャリッジ26が駆動軸28Aに伴わず、その慣性によって位置を維持し続ける第2の態様と、がある。駆動軸28Aを移動させる態様は、駆動軸28Aを移動させる速度によって、第1の態様又は第2の態様を選択できる。駆動軸28Aを移動させる速度は、超音波振動の周波数に関連する。従って、駆動軸28Aを移動させる態様は、超音波振動の周波数によって、第1の態様又は第2の態様を選択できる。例えば、超音波振動の周波数が比較的低い周波数(15kHz~30kHz)であるとき、キャリッジ26は、駆動軸28Aに伴って移動する。例えば、超音波振動の周波数が比較的高い周波数(100kHz~150kHz)であるとき、キャリッジ26は、駆動軸28Aに伴わず位置を維持する。 The position of the carriage 26 is maintained by the frictional resistance with the drive shaft 28A. Here, as a mode of moving the drive shaft 28A, a first mode in which the carriage 26 moves along with the drive shaft 28A, and a second mode in which the carriage 26 does not accompany the drive shaft 28A and continues to maintain the position due to its inertia. There is an aspect. As the mode of moving the drive shaft 28A, the first mode or the second mode can be selected depending on the speed of moving the drive shaft 28A. The speed at which the drive shaft 28A is moved is related to the frequency of the ultrasonic vibration. Therefore, as the mode of moving the drive shaft 28A, the first mode or the second mode can be selected according to the frequency of the ultrasonic vibration. For example, when the frequency of ultrasonic vibration is a relatively low frequency (15 kHz to 30 kHz), the carriage 26 moves along with the drive shaft 28A. For example, when the frequency of ultrasonic vibration is a relatively high frequency (100 kHz to 150 kHz), the carriage 26 maintains its position regardless of the drive shaft 28A.
 例えば、図9の(b)部に示すように、駆動軸28Aを上方向(正方向)へ移動させるときに、駆動軸28Aの移動に応じて、キャリッジ26を移動させる。この場合、駆動軸28Aとキャリッジ26との相対な位置関係は、変化しない。駆動軸28Aを下方向(負方向)へ移動させるときに、駆動軸28Aの移動に応じて、キャリッジ26を移動させない。この場合、駆動軸28Aとキャリッジ26との相対な位置関係は、変化する。これらの動作を繰り返すと、キャリッジ26は、次第に上方へ移動する。つまり、駆動軸28Aを上方向へ移動させる電圧(電圧E2における符号E2a)の周期を、駆動軸28Aを下方向へ移動させる電圧の周期(電圧E2における符号E2b)よりも長くする。その結果、キャリッジ26は上方へ移動する。 For example, as shown in FIG. 9B, when the drive shaft 28A is moved upward (in the positive direction), the carriage 26 is moved according to the movement of the drive shaft 28A. In this case, the relative positional relationship between the drive shaft 28A and the carriage 26 does not change. When the drive shaft 28A is moved downward (negative direction), the carriage 26 is not moved in accordance with the movement of the drive shaft 28A. In this case, the relative positional relationship between the drive shaft 28A and the carriage 26 changes. When these operations are repeated, the carriage 26 gradually moves upward. In other words, the cycle of the voltage for moving the drive shaft 28A upward (reference E2a in the voltage E2) is longer than the cycle of the voltage for moving the drive shaft 28A downward (reference E2b in the voltage E2). As a result, the carriage 26 moves upward.
 逆に、図9の(c)部に示すように、駆動軸28Aを下方向へ移動させるときに、駆動軸28Aの移動に応じて、キャリッジ26を移動させる。この場合、駆動軸28Aとキャリッジ26との相対な位置関係は、変化しない。そして、駆動軸28Aを上方向へ移動させるときに、駆動軸28Aの移動に応じて、キャリッジ26を移動させない。この場合、駆動軸28Aとキャリッジ26との相対な位置関係は、変化する。これらの動作を繰り返すと、キャリッジ26は、次第に下方へ移動する。つまり、駆動軸28Aを上方向へ移動させる電圧(電圧E3における符号E3a)の周期を、駆動軸28Aを下方向へ移動させる電圧の周期(電圧E3における符号E3b)よりも短くする。その結果、キャリッジ26は下方へ移動する。 Conversely, as shown in FIG. 9C, when the drive shaft 28A is moved downward, the carriage 26 is moved in accordance with the movement of the drive shaft 28A. In this case, the relative positional relationship between the drive shaft 28A and the carriage 26 does not change. When the drive shaft 28A is moved upward, the carriage 26 is not moved according to the movement of the drive shaft 28A. In this case, the relative positional relationship between the drive shaft 28A and the carriage 26 changes. When these operations are repeated, the carriage 26 gradually moves downward. That is, the cycle of the voltage that moves the drive shaft 28A upward (reference E3a in the voltage E3) is shorter than the cycle of the voltage that moves the drive shaft 28A downward (reference E3b in the voltage E3). As a result, the carriage 26 moves downward.
 なお、キャリッジ26を下方向へ移動させる場合には、上記制御の他に、駆動軸28Aの上方向への移動及び下方向への移動動の両方に応じて、キャリッジ26が移動しないようにしてもよい。つまり、見かけ上、キャリッジ26と駆動軸28Aとの間に作用する摩擦抵抗力がキャリッジ26に作用する重力よりも小さくなる。その結果、キャリッジ26が落下するように見える。この態様では、キャリッジ26を下方向に移動させる力として、キャリッジ26に作用する重力を利用する。 When the carriage 26 is moved downward, in addition to the above control, the carriage 26 is prevented from moving according to both the upward movement and the downward movement of the drive shaft 28A. Also good. That is, apparently, the frictional resistance acting between the carriage 26 and the drive shaft 28 </ b> A is smaller than the gravity acting on the carriage 26. As a result, the carriage 26 appears to fall. In this aspect, gravity acting on the carriage 26 is used as a force for moving the carriage 26 downward.
 次に、図10及び図11を参照しつつ、アクチュエータ13の具体的な動作について説明する。 Next, a specific operation of the actuator 13 will be described with reference to FIGS.
 図10の(a)部は、キャリッジ26の位置を維持する動作を示す。キャリッジ26の位置を維持する場合には、制御装置27は、超音波素子29A及び超音波素子29Bのそれぞれに一定の電圧(図10の(a)部における電圧E4、E5参照)を提供する。 10 (a) shows an operation for maintaining the position of the carriage 26. FIG. When the position of the carriage 26 is maintained, the control device 27 provides a constant voltage (see voltages E4 and E5 in part (a) of FIG. 10) to each of the ultrasonic element 29A and the ultrasonic element 29B.
 図10の(b)部は、キャリッジ26を上方向へ移動させる動作を示す。このとき、制御装置27は、一方の超音波素子29Aに、図10の(b)部における電圧E6に示す交流電圧を提供する。駆動軸28Aを上方向へ移動させる電圧の周期は、駆動軸28Aを下方向へ移動させる電圧の周期よりも長い。同様に、制御装置27は、他方の超音波素子29Bにも図10の(b)部における電圧E7に示す交流電流を提供する。駆動軸28Bを上方向へ移動させる電圧の周期は、駆動軸28Bを下方向へ移動させる電圧の周期よりも長い。つまり、制御装置27は、超音波素子29A及び超音波素子26Bに同じ交流電圧を提供する。制御装置27は、一方の駆動軸28Aを上方向に移動させるタイミングと、他方の駆動軸28Bを上方向に移動させるタイミングと、を一致させる。つまり、制御装置27は、一方の超音波素子29Aに提供する電圧の位相と、他方の超音波素子29Aに提供する電圧の位相と、を互いに同位相の関係とする。従って、接触部P1及び接触部P2は、同じ距離だけ上方に移動する。ここで、接触部P1は、一方の駆動軸28Aにおいて、与圧円盤34及び後円盤36に押圧される部分である。また、接触部P2は、他方の駆動軸28Bにおいて、与圧円盤34及び後円盤36に押圧される部分である。その結果、接触部P1及び接触部P2は、平行状態を維持した状態で、上方向に移動する。つまり、キャリッジ26は、重心のまわりに回転することなく、上方向に並進する。 FIG. 10B shows an operation for moving the carriage 26 upward. At this time, the control device 27 provides the AC voltage indicated by the voltage E6 in part (b) of FIG. 10 to one ultrasonic element 29A. The cycle of the voltage that moves the drive shaft 28A upward is longer than the cycle of the voltage that moves the drive shaft 28A downward. Similarly, the control device 27 provides the other ultrasonic element 29B with the alternating current indicated by the voltage E7 in part (b) of FIG. The cycle of the voltage that moves the drive shaft 28B upward is longer than the cycle of the voltage that moves the drive shaft 28B downward. That is, the control device 27 provides the same AC voltage to the ultrasonic element 29A and the ultrasonic element 26B. The control device 27 matches the timing for moving one drive shaft 28A upward with the timing for moving the other drive shaft 28B upward. That is, the control device 27 sets the phase of the voltage provided to one ultrasonic element 29A and the phase of the voltage provided to the other ultrasonic element 29A to have the same phase relationship. Therefore, the contact part P1 and the contact part P2 move upward by the same distance. Here, the contact portion P1 is a portion that is pressed by the pressurizing disk 34 and the rear disk 36 on one drive shaft 28A. The contact portion P2 is a portion that is pressed by the pressurizing disk 34 and the rear disk 36 on the other drive shaft 28B. As a result, the contact part P1 and the contact part P2 move upward while maintaining a parallel state. That is, the carriage 26 translates upward without rotating around the center of gravity.
 図10の(c)部は、キャリッジ26を下方向へ移動させる動作を示す。このとき、制御装置27は、一方の超音波素子29Aに、図10の(c)部における電圧E8に示す交流電流を提供する。駆動軸28Aを上方向へ移動させる電圧の周期は、駆動軸28Aを下方向へ移動させる電圧の周期よりも短い。同様に、制御装置27は、他方の超音波素子29Bにも、図10の(c)部における電圧E9に示す交流電圧を提供する。駆動軸28Bを上方向へ移動させる電圧の周期は、駆動軸28Bを下方向へ移動させる電圧の周期よりも短い。その結果、一方の駆動軸28Aにおける接触部P1及び他方の駆動軸28Bにおける接触部P2は、同じ距離だけ下方向に移動していく。その結果、接触部P1及び接触部P2は、平行状態を維持した状態で、下方向に移動する。つまり、キャリッジ26は、重心のまわりに回転することなく、下方向に並進する。 10 (c) shows an operation of moving the carriage 26 downward. At this time, the control device 27 provides the alternating current indicated by the voltage E8 in part (c) of FIG. 10 to one ultrasonic element 29A. The cycle of the voltage that moves the drive shaft 28A upward is shorter than the cycle of the voltage that moves the drive shaft 28A downward. Similarly, the control device 27 provides the other ultrasonic element 29B with the AC voltage indicated by the voltage E9 in part (c) of FIG. The cycle of the voltage that moves the drive shaft 28B upward is shorter than the cycle of the voltage that moves the drive shaft 28B downward. As a result, the contact portion P1 on one drive shaft 28A and the contact portion P2 on the other drive shaft 28B move downward by the same distance. As a result, the contact part P1 and the contact part P2 move downward while maintaining a parallel state. That is, the carriage 26 translates downward without rotating around the center of gravity.
 上記の制御によれば、キャリッジ26を下方向に移動させるときには、キャリッジ26と駆動軸28A、28Bとの間には摩擦抵抗力が作用している。つまり、キャリッジ26と駆動軸28A、28Bとの相対的な位置は変わらない。従って、キャリッジ26は、重心のまわりに回転しない。例えば、キャリッジ26に保持されたキャピラリ8の姿勢に起因して、キャリッジ26を回転させるようなトルクが生じる場合があり得る。この場合であっても、アクチュエータ13は、キャリッジ26の回転を抑制した状態で、キャリッジ26を下方向に移動させることができる。 According to the above control, when the carriage 26 is moved downward, frictional resistance acts between the carriage 26 and the drive shafts 28A and 28B. That is, the relative position between the carriage 26 and the drive shafts 28A and 28B does not change. Therefore, the carriage 26 does not rotate around the center of gravity. For example, torque that rotates the carriage 26 may occur due to the posture of the capillary 8 held by the carriage 26. Even in this case, the actuator 13 can move the carriage 26 downward while suppressing the rotation of the carriage 26.
 キャリッジ26を上方向及び下方向へ移動させる並進は、1個のリニアモータ22Aで実現することもできる。実施形態に係るアクチュエータ13は、2個のリニアモータ22A、22Bを有するので、1個のリニアモータ22Aを有する構成よりも推進力を高めることができる。 The translation for moving the carriage 26 upward and downward can be realized by a single linear motor 22A. Since the actuator 13 according to the embodiment includes the two linear motors 22A and 22B, the driving force can be increased as compared with the configuration including the single linear motor 22A.
 図11の(a)部は、キャリッジ26を時計方向に回転させる動作を示す。このとき、制御装置27は、一方の超音波素子29Aに図11の(a)部における電圧E10に示す交流電流を提供する。駆動軸28Aを上方向へ移動させる電圧の周期は、駆動軸28Aを下方向へ移動させる電圧の周期よりも短い。一方、制御装置27は、他方の超音波素子29Bに図11の(a)部における電圧E11に示す交流電流を提供する。駆動軸28Bを上方向へ移動させる電圧の周期は、駆動軸28Bを下方向へ移動させる電圧の周期よりも長い。つまり、超音波素子29Aに提供する電圧は、超音波素子29Bに提供する電圧と異なる。そして、制御装置27は、一方の駆動軸28Aを上方向に移動させるタイミングと、他方の駆動軸28Bを下方向に移動させるタイミングと、を一致させる。つまり、一方の超音波素子29Aに提供する電圧の位相は、他方の超音波素子29Bに提供する電圧の位相に対して逆位相である。そうすると、一方の駆動軸28Aの接触部P1が下方向に移動すると共に他方の駆動軸28Bの接触部P2が上方向へ移動する。接触部P1及び接触部P2は、互いに逆方向へ移動する。これらの移動量が一致するならば、キャリッジ26は、Z軸の方向における位置を維持した状態で、時計方向に回転する。 11 (a) shows an operation of rotating the carriage 26 in the clockwise direction. At this time, the control device 27 provides the alternating current indicated by the voltage E10 in part (a) of FIG. 11 to one ultrasonic element 29A. The cycle of the voltage that moves the drive shaft 28A upward is shorter than the cycle of the voltage that moves the drive shaft 28A downward. On the other hand, the control device 27 provides the other ultrasonic element 29B with the alternating current indicated by the voltage E11 in part (a) of FIG. The cycle of the voltage that moves the drive shaft 28B upward is longer than the cycle of the voltage that moves the drive shaft 28B downward. That is, the voltage provided to the ultrasonic element 29A is different from the voltage provided to the ultrasonic element 29B. Then, the control device 27 matches the timing for moving the one drive shaft 28A upward with the timing for moving the other drive shaft 28B downward. That is, the phase of the voltage provided to one ultrasonic element 29A is opposite to the phase of the voltage provided to the other ultrasonic element 29B. Then, the contact portion P1 of one drive shaft 28A moves downward and the contact portion P2 of the other drive shaft 28B moves upward. The contact part P1 and the contact part P2 move in opposite directions. If these movement amounts match, the carriage 26 rotates clockwise while maintaining the position in the Z-axis direction.
 図11の(b)部は、キャリッジ26を反時計方向に回転させる動作を示す。このとき、制御装置27は、一方の超音波素子29Aに、図11の(b)部における電圧E12に示す交流電圧を提供する。駆動軸28Aを上方向へ移動させる電圧の周期は、駆動軸28Aを下方向へ移動させる電圧の周期よりも長い。一方、制御装置27は、他方の超音波素子29Bには、図11の(b)部における電圧E13参照に示す交流電圧を提供する。駆動軸28Bを上方向へ移動させる電圧の周期は、駆動軸28Bを下方向へ移動させる電圧の周期よりも短い。そうすると、一方の駆動軸28Aの接触部P1が上方向に移動し、他方の駆動軸28Bの接触部P2が下方向へ移動する。つまり、接触部P1、P2は、互いに逆方向へ移動する。これらの移動量が一致するならば、キャリッジ26は、Z軸の方向における位置を維持した状態で反時計方向に回転する。 (B) part of FIG. 11 shows the operation | movement which rotates the carriage 26 counterclockwise. At this time, the control device 27 provides the AC voltage indicated by the voltage E12 in part (b) of FIG. 11 to one ultrasonic element 29A. The cycle of the voltage that moves the drive shaft 28A upward is longer than the cycle of the voltage that moves the drive shaft 28A downward. On the other hand, the control device 27 provides the other ultrasonic element 29B with the AC voltage shown in the voltage E13 reference in part (b) of FIG. The cycle of the voltage that moves the drive shaft 28B upward is shorter than the cycle of the voltage that moves the drive shaft 28B downward. Then, the contact portion P1 of one drive shaft 28A moves upward, and the contact portion P2 of the other drive shaft 28B moves downward. That is, the contact parts P1 and P2 move in opposite directions. If these movement amounts match, the carriage 26 rotates counterclockwise while maintaining its position in the Z-axis direction.
<交換動作>
 続いて、上記のキャピラリ交換部9によって行われるキャピラリ交換動作について説明する。
<Exchange operation>
Next, the capillary exchange operation performed by the capillary exchange unit 9 will be described.
 図12の(a)部は、超音波ホーン7に取り付けられたキャピラリ8Uを交換する直前の状態を示す。キャピラリ交換部9は、上記のキャピラリ保持部11、キャピラリ案内部12及びアクチュエータ13に加えて、付加的な構成要素としてキャピラリストッカ39と、キャピラリ回収部41と、を有する。キャピラリストッカ39は、複数の交換用のキャピラリ8Nを収容する。キャピラリ回収部41は、使用済みのキャピラリ8Uを収容する。 (A) part of Drawing 12 shows the state just before exchanging capillary 8U attached to ultrasonic horn 7. The capillary exchange unit 9 includes a capillary stocker 39 and a capillary recovery unit 41 as additional components in addition to the capillary holding unit 11, the capillary guide unit 12, and the actuator 13. The capillary stocker 39 accommodates a plurality of replacement capillaries 8N. The capillary recovery unit 41 accommodates the used capillary 8U.
 図12の(a)部は、例えば、超音波ホーン7に取り付けられたキャピラリ8Uによってワイヤボンディング作業が行われている状態を示す。キャピラリ交換部9は、当該ワイヤボンディング作業を妨げない位置に退避してもよい。 12 (a) shows a state in which wire bonding work is being performed by, for example, a capillary 8U attached to the ultrasonic horn 7. FIG. The capillary exchange unit 9 may be retracted to a position that does not interfere with the wire bonding operation.
 図12の(b)部は、交換動作における第1ステップの状態を示す。キャピラリ交換部9は、制御装置27によってキャリッジ26を時計方向に回転させる。この回転は、図11の(a)部に示した動作に対応する。この回転によって、ワイヤボンディング作業を妨げない位置に退避していたキャピラリ保持部11がキャピラリ8Uの下方に位置する。 (B) part of Drawing 12 shows the state of the 1st step in exchange operation. The capillary exchange unit 9 causes the control device 27 to rotate the carriage 26 in the clockwise direction. This rotation corresponds to the operation shown in part (a) of FIG. By this rotation, the capillary holder 11 that has been retracted to a position that does not hinder the wire bonding operation is positioned below the capillary 8U.
 図13の(a)部は、交換動作における第2ステップの状態を示す。キャピラリ交換部9は、制御装置27によってキャリッジ26を上方向に移動させる。この移動は、図10の(b)部に示した動作に対応する。この移動によって、キャピラリ保持部11は、超音波ホーン7に取り付けられたキャピラリ8Uを保持する。 Part (a) of FIG. 13 shows the state of the second step in the exchange operation. The capillary exchange unit 9 moves the carriage 26 upward by the control device 27. This movement corresponds to the operation shown in part (b) of FIG. By this movement, the capillary holder 11 holds the capillary 8U attached to the ultrasonic horn 7.
 図13の(b)部は、交換動作における第3ステップの状態を示す。キャピラリ交換部9は、制御装置27によってキャリッジ26を下方向に移動させる。この移動は、図10の(c)部に示した動作に対応する。この移動によって、キャピラリ保持部11に保持されたキャピラリ8Uは、超音波ホーン7から取り外される。 (B) part of Drawing 13 shows the state of the 3rd step in exchange operation. The capillary exchange unit 9 moves the carriage 26 downward by the control device 27. This movement corresponds to the operation shown in part (c) of FIG. By this movement, the capillary 8U held by the capillary holder 11 is removed from the ultrasonic horn 7.
 図14の(a)部は、交換動作における第4ステップの状態を示す。キャピラリ交換部9は、制御装置27によってキャリッジ26を時計方向に回転させる。この移動は、図11の(a)部に示した動作に対応する。この移動によって、キャピラリ保持部11に保持されたキャピラリ8Uは、キャピラリ回収部41に搬送される。その結果、キャピラリ8Uは、使用済みのものとして回収される。 (A) part of FIG. 14 shows the state of the 4th step in exchange operation. The capillary exchange unit 9 causes the control device 27 to rotate the carriage 26 in the clockwise direction. This movement corresponds to the operation shown in part (a) of FIG. By this movement, the capillary 8U held in the capillary holding part 11 is conveyed to the capillary recovery part 41. As a result, the capillary 8U is recovered as a used one.
 図14の(b)部は、交換動作における第5ステップの状態を示す。キャピラリ交換部9は、制御装置27によってキャリッジ26を反時計方向に回転させる。この移動は、図11の(b)部に示した動作に対応する。この移動によって、キャピラリ保持部11は、交換用の新規なキャピラリ8Nを保持する。 (B) part of Drawing 14 shows the state of the 5th step in exchange operation. The capillary exchange unit 9 rotates the carriage 26 counterclockwise by the control device 27. This movement corresponds to the operation shown in part (b) of FIG. By this movement, the capillary holding unit 11 holds the new capillary 8N for replacement.
 図15の(a)部は、交換動作における第6ステップの状態を示す。キャピラリ交換部9は、制御装置27によってキャリッジ26を時計方向に回転させる。この移動は、図11の(a)部に示した動作に対応する。この移動によって、キャピラリ保持部11に保持された新規なキャピラリ8Nは、超音波ホーン7の孔7hの下方に位置する。 (A) part of Drawing 15 shows the state of the 6th step in exchange operation. The capillary exchange unit 9 causes the control device 27 to rotate the carriage 26 in the clockwise direction. This movement corresponds to the operation shown in part (a) of FIG. By this movement, the new capillary 8N held in the capillary holding part 11 is positioned below the hole 7h of the ultrasonic horn 7.
 図15の(b)部は、交換動作における第7ステップの状態を示す。キャピラリ交換部9は、制御装置27によってキャリッジ26を上方向に移動させる。この移動は、図10の(b)部に示した動作に対応する。この移動によって、キャピラリ保持部11に保持された新規なキャピラリ8Nは、超音波ホーン7の孔7hに挿し込まれる。この挿し込みでは、図6及び図7に示されたキャピラリ保持部11及びキャピラリ案内部12の作用によって、キャピラリ8Nとキャピラリ案内部12とのずれ、及び、キャピラリ8Nと超音波ホーン7の孔7hとのずれが解消される。その結果、キャピラリ8Nを孔7hへ確実に装着することができる。 (B) part of Drawing 15 shows the state of the 7th step in exchange operation. The capillary exchange unit 9 moves the carriage 26 upward by the control device 27. This movement corresponds to the operation shown in part (b) of FIG. By this movement, the new capillary 8N held in the capillary holder 11 is inserted into the hole 7h of the ultrasonic horn 7. In this insertion, due to the action of the capillary holding portion 11 and the capillary guide portion 12 shown in FIGS. 6 and 7, the displacement between the capillary 8N and the capillary guide portion 12, and the hole 7h between the capillary 8N and the ultrasonic horn 7 are obtained. The deviation is eliminated. As a result, the capillary 8N can be securely attached to the hole 7h.
 以下、実施形態に係るアクチュエータ13及びワイヤボンディング装置1の作用効果について説明する。 Hereinafter, functions and effects of the actuator 13 and the wire bonding apparatus 1 according to the embodiment will be described.
 アクチュエータ13は、一対のリニアモータ22A、22Bを備えている。それぞれのリニアモータ22A、22Bが発生する力は、制御装置27によって制御される。この構成によれば、一対のリニアモータ22A、22Bが発生する力の向きを一致させることにより、キャリッジ26を並進させることが可能になる。さらに、リニアモータ22A、22Bが発生する力の向きを互いに逆向きにすることにより、キャリッジ26に重心まわりのトルクを提供できる。その結果、キャリッジ26を、重心まわりに回転させることが可能になる。従って、アクチュエータ13は、並進及び回転という複数の動作をキャリッジ26に提供することができる。 The actuator 13 includes a pair of linear motors 22A and 22B. The force generated by each of the linear motors 22A and 22B is controlled by the control device 27. According to this configuration, the carriage 26 can be translated by matching the direction of the force generated by the pair of linear motors 22A and 22B. Further, the direction of the force generated by the linear motors 22A and 22B is made opposite to each other, whereby torque around the center of gravity can be provided to the carriage 26. As a result, the carriage 26 can be rotated around the center of gravity. Therefore, the actuator 13 can provide the carriage 26 with a plurality of operations of translation and rotation.
 本開示に係るアクチュエータ13は、並進と回転とを行うことが可能である。さらに、アクチュエータ13は、並進のためのだけの駆動機構及び回転のためだけの駆動機構をそれぞれ準備する必要がない。従って、並進用駆動機構及び回転用駆動機構のそれぞれを準備する構成に比べて、アクチュエータ13を小型化することができる。 The actuator 13 according to the present disclosure can perform translation and rotation. Furthermore, it is not necessary for the actuator 13 to prepare a drive mechanism only for translation and a drive mechanism only for rotation. Therefore, the actuator 13 can be reduced in size as compared with the configuration in which each of the translation drive mechanism and the rotation drive mechanism is prepared.
 ワイヤボンディング装置1は、アクチュエータ13を備えたキャピラリ交換部9を備える。このアクチュエータ13は、並進と回転との二つの動作をキャリッジ26に提供できる。従って、ワイヤボンディング装置1にキャピラリ8の交換機能を付与すると共に、キャピラリ交換部9の大型化を抑制することが可能である。従って、ワイヤボンディング装置1の高機能化と小型化とを両立することができる。 The wire bonding apparatus 1 includes a capillary exchange unit 9 including an actuator 13. The actuator 13 can provide the carriage 26 with two operations of translation and rotation. Therefore, it is possible to provide the wire bonding apparatus 1 with a function of replacing the capillary 8 and to suppress an increase in the size of the capillary replacement unit 9. Therefore, it is possible to achieve both high functionality and downsizing of the wire bonding apparatus 1.
 ワイヤボンディング装置1では、キャピラリ保持部11に保持されたキャピラリ8は、キャピラリ案内部12に導かれながら孔7hに挿入される。従って、孔7hに対してキャピラリ8がずれていても、キャピラリ案内部12によってずれが修正される。キャピラリ保持部11は、アクチュエータ13に固定された下ソケット18に対して、上ソケット16及びコイルバネ17を含む可撓部10がキャピラリ8の位置を相対的に変位可能に保持する。その結果、孔7hに対するキャピラリ8のずれに加えて、孔7hに対してキャピラリ案内部12がずれている場合にも、キャピラリ8がキャピラリ案内部12及び孔7hに倣うように、キャピラリ8の姿勢を変化させながら挿入することができる。従って、作業者の手によらず、新規なキャピラリ8をワイヤボンディング装置1に自動的に取り付けることができる。 In the wire bonding apparatus 1, the capillary 8 held by the capillary holder 11 is inserted into the hole 7h while being guided by the capillary guide 12. Therefore, even if the capillary 8 is displaced with respect to the hole 7h, the displacement is corrected by the capillary guide portion 12. The capillary holding portion 11 holds the flexible portion 10 including the upper socket 16 and the coil spring 17 so that the position of the capillary 8 can be displaced relative to the lower socket 18 fixed to the actuator 13. As a result, in addition to the displacement of the capillary 8 with respect to the hole 7h, even when the capillary guide portion 12 is displaced with respect to the hole 7h, the posture of the capillary 8 is such that the capillary 8 follows the capillary guide portion 12 and the hole 7h. Can be inserted while changing. Therefore, the new capillary 8 can be automatically attached to the wire bonding apparatus 1 regardless of the operator's hand.
 以上、本発明の実施形態について説明したが、上記実施形態に限定されることなく様々な形態で実施してよい。 As mentioned above, although embodiment of this invention was described, you may implement in various forms, without being limited to the said embodiment.
<変形例1>
 本開示では、第1の力発生部及び第2力発生部として、慣性の法則を利用したインパクト駆動方式を原理とする超音波駆動モータを例示した。しかし、第1力発生部及び第2力発生部は、この構成に限定されず、所定方向に沿う力を発生し得る仕組みを第1力発生部及び第2力発生部として採用してもよい。例えば、第1力発生部及び第2力発生部として、ボールねじを利用したリニアガイドを採用してもよい。
<Modification 1>
In the present disclosure, as the first force generation unit and the second force generation unit, the ultrasonic drive motor based on the principle of the impact drive method using the law of inertia is illustrated. However, the first force generation unit and the second force generation unit are not limited to this configuration, and a mechanism capable of generating a force along a predetermined direction may be adopted as the first force generation unit and the second force generation unit. . For example, a linear guide using a ball screw may be employed as the first force generation unit and the second force generation unit.
<変形例2>
 キャピラリ保持部は、キャピラリ8の姿勢を柔軟に変更し得る態様でキャピラリ8を保持できればよい。従って、上記キャピラリ保持部の構成に限定されない。図16は、変形例に係るキャピラリ保持部11Aを示す。
<Modification 2>
The capillary holding part only needs to hold the capillary 8 in such a manner that the posture of the capillary 8 can be flexibly changed. Therefore, it is not limited to the configuration of the capillary holding part. FIG. 16 shows a capillary holder 11A according to a modification.
 キャピラリ保持部11Aは、主要な構成要素として、金属製のパイプ42と、シリコーン樹脂製のチューブ43と、キャップ44と、を有する。パイプ42の形状は、筒状である。パイプ42は、その内部にチューブ43を収容する。パイプ42の一端は、キャップ44によって閉鎖される。チューブ43の一端は、キャップ44によって閉鎖される。キャップ44は、ホルダ14によって保持される。チューブ43の上端43a(上端開口縁)は、パイプ42の上端42aと略一致する。チューブ43の外径は、パイプ42の内径よりも小さい。つまり、チューブ43の外周面とパイプ42の内周面との間には、僅かな隙間が形成される。チューブ43の上端43aは、キャピラリ8のテーパ面8aを保持する。 The capillary holding part 11A includes a metal pipe 42, a silicone resin tube 43, and a cap 44 as main components. The shape of the pipe 42 is cylindrical. The pipe 42 accommodates the tube 43 therein. One end of the pipe 42 is closed by a cap 44. One end of the tube 43 is closed by a cap 44. The cap 44 is held by the holder 14. An upper end 43 a (upper end opening edge) of the tube 43 substantially coincides with the upper end 42 a of the pipe 42. The outer diameter of the tube 43 is smaller than the inner diameter of the pipe 42. That is, a slight gap is formed between the outer peripheral surface of the tube 43 and the inner peripheral surface of the pipe 42. The upper end 43 a of the tube 43 holds the tapered surface 8 a of the capillary 8.
 キャピラリ保持部11Aのチューブ43は、所定の可撓性を有する。従って、キャピラリ保持部11Aは、チューブ43の外周面とパイプ42の内周面との間に形成された隙間の分だけ、キャピラリ8の姿勢変更を許容できる。具体的には、キャピラリ保持部11Aは、パイプ42の軸線42Aと交差する方向への偏心及び傾きを許容できる。 The tube 43 of the capillary holding part 11A has a predetermined flexibility. Therefore, the capillary holding portion 11 </ b> A can change the attitude of the capillary 8 by the gap formed between the outer peripheral surface of the tube 43 and the inner peripheral surface of the pipe 42. Specifically, the capillary holding portion 11A can allow eccentricity and inclination in a direction intersecting the axis 42A of the pipe 42.
 キャピラリ保持部11Aがチューブ43のみを備える場合、チューブ43の剛性が不足するため、キャピラリ8の姿勢によってはキャピラリ8を保持できない場合が生じる。しかし、チューブ43の外側には、チューブ43よりも剛性の高いパイプ42が存在する。従って、チューブ43の剛性が不足する場合であっても、パイプ42によってキャピラリ8の変位を許容範囲に収めることができる。 When the capillary holding part 11 </ b> A includes only the tube 43, since the rigidity of the tube 43 is insufficient, the capillary 8 may not be held depending on the posture of the capillary 8. However, the pipe 42 having higher rigidity than the tube 43 exists outside the tube 43. Therefore, even when the rigidity of the tube 43 is insufficient, the displacement of the capillary 8 can be kept within an allowable range by the pipe 42.
 チューブ43にキャピラリ8が挿し込まれた状態において、上端43aの内周縁とテーパ面8aとの接触状態は、線接触である。従って、本開示に係るキャピラリ保持部11Aと同様に、キャピラリ8を傾けて保持することもできる。 When the capillary 8 is inserted into the tube 43, the contact state between the inner peripheral edge of the upper end 43a and the tapered surface 8a is a line contact. Accordingly, the capillary 8 can be tilted and held in the same manner as the capillary holding portion 11A according to the present disclosure.
1…ワイヤボンディング装置、2…ベース、3…ボンディング部、4…搬送部、6…ボンディングツール、7…超音波ホーン、7h…孔、8…キャピラリ、8a…テーパ面、8b…キャピラリ本体、9…キャピラリ交換部、11…キャピラリ保持部、12…キャピラリ案内部、12h…ガイド孔、12t…テーパ孔部、12p…平行孔部、13…アクチュエータ、14…ホルダ、16…上ソケット、16c…座繰り部、16d…段差、16e…細径部、16h…貫通孔、17…コイルバネ、18…下ソケット、18d…段差、18e…細径部、18f…太径部、19…オーリング、21…アクチュエータベース(ベース部)、22A…リニアモータ(第1力発生部)、22B…リニアモータ(第2力発生部)、24…リニアガイド、26…キャリッジ、27…制御装置(制御部)、28A,28B…駆動軸、29A,29B…超音波素子、31,32…ガイド、33…前円盤、34…与圧円盤、36…後円盤、37,38…軸体、39…キャピラリストッカ、41…キャピラリ回収部、G1,G2…隙間、P1,P2,C1,C2…接触部。 DESCRIPTION OF SYMBOLS 1 ... Wire bonding apparatus, 2 ... Base, 3 ... Bonding part, 4 ... Conveying part, 6 ... Bonding tool, 7 ... Ultrasonic horn, 7h ... Hole, 8 ... Capillary, 8a ... Tapered surface, 8b ... Capillary body, 9 DESCRIPTION OF SYMBOLS ... Capillary exchange part, 11 ... Capillary holding part, 12 ... Capillary guide part, 12h ... Guide hole, 12t ... Tapered hole part, 12p ... Parallel hole part, 13 ... Actuator, 14 ... Holder, 16 ... Upper socket, 16c ... Seat Repetition part, 16d ... step, 16e ... small diameter part, 16h ... through hole, 17 ... coil spring, 18 ... lower socket, 18d ... step, 18e ... small diameter part, 18f ... large diameter part, 19 ... O-ring, 21 ... Actuator base (base part), 22A ... linear motor (first force generating part), 22B ... linear motor (second force generating part), 24 ... linear guide, 26 ... key Ridge, 27 ... Control device (control unit), 28A, 28B ... Drive shaft, 29A, 29B ... Ultrasonic element, 31, 32 ... Guide, 33 ... Front disc, 34 ... Pressurized disc, 36 ... Rear disc, 37, 38 ... shaft body, 39 ... capillary stocker, 41 ... capillary recovery part, G1, G2 ... gap, P1, P2, C1, C2 ... contact part.

Claims (5)

  1.  第1方向に沿った正方向に向かう力、及び、前記第1方向に沿った前記正方向とは逆向きの負方向に向かう力を生じさせる第1力発生部と、
     前記第1力発生部に対して前記第1方向と直交する第2方向に離間して配置され、前記正方向に向かう力、及び、前記負方向に向かう力を生じさせる第2力発生部と、
     前記第1力発生部及び前記第2力発生部が生じさせる力の向きと大きさとを制御する制御部と、
     前記第1力発生部及び前記第2力発生部に掛け渡された移動体と、を備え、
     前記制御部は、
      前記第1力発生部が生じさせる力の方向と、前記第2力発生部が生じさせる力の方向と、を一致させることにより、前記移動体を前記第1方向に沿って並進させ、
      前記第1力発生部が生じさせる力の方向を、前記第2力発生部が生じさせる力の方向に対して逆向きにすることにより、前記移動体の重心まわりに回転させる、アクチュエータ。
    A first force generator that generates a force in a positive direction along the first direction and a force in a negative direction opposite to the positive direction along the first direction;
    A second force generation unit that is disposed apart from the first force generation unit in a second direction orthogonal to the first direction, and that generates a force toward the positive direction and a force toward the negative direction; ,
    A control unit that controls the direction and magnitude of the force generated by the first force generation unit and the second force generation unit;
    A moving body stretched over the first force generation unit and the second force generation unit,
    The controller is
    By causing the direction of the force generated by the first force generation unit and the direction of the force generated by the second force generation unit to coincide with each other, the movable body is translated along the first direction,
    An actuator that rotates around the center of gravity of the movable body by reversing the direction of the force generated by the first force generation unit with respect to the direction of the force generated by the second force generation unit.
  2.  前記第1力発生部及び前記第2力発生部は、前記第2方向に沿って前記移動体の重心を挟んで配置される、請求項1に記載のアクチュエータ。 2. The actuator according to claim 1, wherein the first force generation unit and the second force generation unit are arranged with the center of gravity of the movable body sandwiched along the second direction.
  3.  前記第1力発生部及び前記第2力発生部は、
      前記制御部に接続されて、前記制御部による制御を受ける超音波発生部と、
      前記第1方向に延び、前記移動体と接触する接触部を有すると共に、前記超音波発生部に固定されて前記超音波発生部が生じさせる超音波振動を受ける駆動軸と、を有する、請求項1又は2に記載のアクチュエータ。
    The first force generator and the second force generator are
    An ultrasonic generator connected to the controller and receiving control by the controller;
    A drive shaft that extends in the first direction and has a contact portion that comes into contact with the moving body, and that is fixed to the ultrasonic wave generation unit and receives ultrasonic vibrations generated by the ultrasonic wave generation unit. The actuator according to 1 or 2.
  4.  前記移動体は、主面及び裏面を有し、
     前記主面及び前記裏面の一方は、前記接触部を含む、請求項3に記載のアクチュエータ。
    The moving body has a main surface and a back surface,
    The actuator according to claim 3, wherein one of the main surface and the back surface includes the contact portion.
  5.  キャピラリを着脱可能に保持するボンディングツールと、
     前記ボンディングツールに対して前記キャピラリを取り付け又は取り外すキャピラリ交換部と、を備え、
     前記キャピラリ交換部は、請求項1~4のいずれか一項に記載のアクチュエータを有する、ワイヤボンディング装置。
    A bonding tool for detachably holding the capillary;
    A capillary exchange part for attaching or removing the capillary to or from the bonding tool, and
    The wire bonding apparatus, wherein the capillary exchange unit has the actuator according to any one of claims 1 to 4.
PCT/JP2019/003217 2018-01-30 2019-01-30 Actuator and wire bonding device WO2019151340A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980010485.3A CN111656502B (en) 2018-01-30 2019-01-30 Actuator and wire bonding apparatus
KR1020207022535A KR102420211B1 (en) 2018-01-30 2019-01-30 Actuator and wire bonding device
JP2019569186A JP7002148B2 (en) 2018-01-30 2019-01-30 Actuators and wire bonding equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-013321 2018-01-30
JP2018013321 2018-01-30

Publications (1)

Publication Number Publication Date
WO2019151340A1 true WO2019151340A1 (en) 2019-08-08

Family

ID=67478738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/003217 WO2019151340A1 (en) 2018-01-30 2019-01-30 Actuator and wire bonding device

Country Status (5)

Country Link
JP (1) JP7002148B2 (en)
KR (1) KR102420211B1 (en)
CN (1) CN111656502B (en)
TW (1) TWI722376B (en)
WO (1) WO2019151340A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0839375A (en) * 1994-07-27 1996-02-13 Mitsutoyo Corp Table device
JP2005218202A (en) * 2004-01-28 2005-08-11 Shinkawa Ltd Actuator and bonding apparatus
JP2005218203A (en) * 2004-01-28 2005-08-11 Shinkawa Ltd Actuator and bonding apparatus
JP2010283614A (en) * 2009-06-04 2010-12-16 Sekyurion Nijuyon Kk Camera control apparatus, photographing direction control method, and camera device

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10323064A (en) * 1997-05-13 1998-12-04 Hioki Ee Corp Fine positioning actuator
DE19928185B4 (en) * 1999-06-19 2006-05-24 Robert Bosch Gmbh piezo actuator
JP4360064B2 (en) * 2002-06-10 2009-11-11 株式会社ニコン Stage apparatus and exposure apparatus
KR100543176B1 (en) * 2003-11-06 2006-01-20 한국기계연구원 Printin Head for Nano Patterning
JP2005150218A (en) * 2003-11-12 2005-06-09 Tdk Corp Method and apparatus for manufacturing laminated electronic component
JP2005341632A (en) * 2004-05-24 2005-12-08 Yaskawa Electric Corp Moving magnet type linear slider
JP4877925B2 (en) * 2006-03-02 2012-02-15 住友重機械工業株式会社 Stage equipment
JP4700570B2 (en) * 2006-07-14 2011-06-15 株式会社新川 Bonding apparatus, bonding tool tip cleaning method and program
JP4787104B2 (en) * 2006-07-31 2011-10-05 株式会社新川 Bonding equipment
JP4411615B2 (en) * 2006-10-05 2010-02-10 日本電気株式会社 Wire bonding equipment
JP5305380B2 (en) * 2008-01-08 2013-10-02 Necトーキン株式会社 Actuator, positioning device
KR20180124874A (en) 2016-03-04 2018-11-21 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Semiconductor device, method of manufacturing the same, and display device including the semiconductor device
JP7321492B2 (en) * 2018-01-30 2023-08-07 株式会社新川 wire bonding equipment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0839375A (en) * 1994-07-27 1996-02-13 Mitsutoyo Corp Table device
JP2005218202A (en) * 2004-01-28 2005-08-11 Shinkawa Ltd Actuator and bonding apparatus
JP2005218203A (en) * 2004-01-28 2005-08-11 Shinkawa Ltd Actuator and bonding apparatus
JP2010283614A (en) * 2009-06-04 2010-12-16 Sekyurion Nijuyon Kk Camera control apparatus, photographing direction control method, and camera device

Also Published As

Publication number Publication date
CN111656502B (en) 2023-05-26
KR20200103820A (en) 2020-09-02
CN111656502A (en) 2020-09-11
TWI722376B (en) 2021-03-21
JP7002148B2 (en) 2022-01-20
KR102420211B1 (en) 2022-07-13
JPWO2019151340A1 (en) 2021-01-07
TW201939627A (en) 2019-10-01

Similar Documents

Publication Publication Date Title
US9391257B2 (en) Actuator, robot hand, robot, electronic component carrying device, electronic component inspection device, and printer
US20130141716A1 (en) Piezoelectric motor, driving device, electronic component conveying device, electronic component inspection device, printing device, robot hand, and robot
TWI558085B (en) Actuator, robot hand, robot, electric component conveying apparatus, electronic component testing apparatus, and printer
US20130255427A1 (en) Piezoelectric motor, robot hand, and robot
JP7321492B2 (en) wire bonding equipment
JP2005081538A (en) Manipulator and device equipped with it
WO2019151340A1 (en) Actuator and wire bonding device
JP6902304B2 (en) Capillary guide device and wire bonding device
WO2019151339A1 (en) Wire bonding device
JP5958013B2 (en) Actuators and robots
JP2012210053A (en) Piezoelectric actuator, robot, and robot hand
CN112448609B (en) Piezoelectric driving device and robot
US11271496B2 (en) Piezoelectric drive device and robot
JP2021037442A (en) Adhesive application device
CN118024572A (en) Ultrasonic driving device and robot system
Edeler Simulation and experimental evaluation of laser-structured actuators for a mobile microrobot
JPH10217163A (en) Micro manipulator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19747949

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019569186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207022535

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19747949

Country of ref document: EP

Kind code of ref document: A1