WO2019150835A1 - ハニカム構造体および金型 - Google Patents

ハニカム構造体および金型 Download PDF

Info

Publication number
WO2019150835A1
WO2019150835A1 PCT/JP2018/047139 JP2018047139W WO2019150835A1 WO 2019150835 A1 WO2019150835 A1 WO 2019150835A1 JP 2018047139 W JP2018047139 W JP 2018047139W WO 2019150835 A1 WO2019150835 A1 WO 2019150835A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
wall
honeycomb
honeycomb structure
outer peripheral
Prior art date
Application number
PCT/JP2018/047139
Other languages
English (en)
French (fr)
Inventor
真大 林
伊藤 健一
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN201880087757.5A priority Critical patent/CN111655984B/zh
Priority to DE112018006976.1T priority patent/DE112018006976T5/de
Publication of WO2019150835A1 publication Critical patent/WO2019150835A1/ja
Priority to US16/941,621 priority patent/US11465137B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • B28B3/269For multi-channeled structures, e.g. honeycomb structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2462Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure the outer peripheral sealing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2474Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the walls along the length of the honeycomb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2482Thickness, height, width, length or diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2484Cell density, area or aspect ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2498The honeycomb filter being defined by mathematical relationships
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B3/00Producing shaped articles from the material by using presses; Presses specially adapted therefor
    • B28B3/20Producing shaped articles from the material by using presses; Presses specially adapted therefor wherein the material is extruded
    • B28B3/26Extrusion dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/11Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels comprising two or more partially or fully enclosed cavities, e.g. honeycomb-shaped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • F01N3/2825Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/06Ceramic, e.g. monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2330/00Structure of catalyst support or particle filter
    • F01N2330/30Honeycomb supports characterised by their structural details
    • F01N2330/32Honeycomb supports characterised by their structural details characterised by the shape, form or number of corrugations of plates, sheets or foils

Definitions

  • the present disclosure relates to a honeycomb structure and a mold, and more particularly, to a honeycomb structure and a mold having cells having a quadrangular cross section.
  • the exhaust gas purification apparatus includes a ceramic honeycomb structure housed in an exhaust pipe and a catalyst component held in the honeycomb structure.
  • a honeycomb structure usually includes a plurality of cells adjacent to each other, a plurality of cell walls that form a plurality of cells, and an outer peripheral wall that is provided on the outer periphery of the plurality of cell walls and holds the cell walls. Yes.
  • the catalyst component is held on the cell wall surface.
  • a ceramic honeycomb structure is generally formed by extrusion molding by supplying clay as a raw material for a honeycomb structure to a mold.
  • the mold has a plurality of clay supply holes to which the clay is supplied, and a plurality of slits for forming a portion that becomes a cell wall after the clay is introduced from the clay supply holes. Yes.
  • Prior Patent Document 1 has a plurality of cells having a quadrangular cross section, and the cell partition wall thickness from the outermost peripheral cell as the starting cell to any one of the end cells within the 5th to 20th ranges is described.
  • a honeycomb structure is disclosed which is formed thicker than the basic cell partition wall thickness.
  • honeycomb structure In recent years, exhaust gas purification devices are required to have early warm-up and low pressure loss due to stricter exhaust regulations and fuel efficiency regulations. Accordingly, in the honeycomb structure, the wall thickness of the cell wall has been reduced year by year. However, reducing the wall thickness reduces the structure strength of the honeycomb structure. Therefore, in the canning process in which the honeycomb structure holding the catalyst component is accommodated in the exhaust pipe, the honeycomb structure is likely to be broken by the compressive stress applied from the radial direction.
  • the wall thickness of the cell wall is increased from the outer peripheral portion of the honeycomb structure to the several cells in the honeycomb central axis direction to improve the structure strength.
  • a molding defect such as a portion having a thin wall thickness or insufficient clay is locally generated in the outer peripheral portion of the molded body. The reason why such a molding defect occurs is that due to the cell wall structure, the clay must be introduced into a plurality of slits having different widths from one clay supply hole of the mold.
  • the conventional honeycomb structure having a strengthened outer peripheral portion has a cell wall structure, so that a molding defect locally generated at the time of extrusion molding causes a failure starting point, resulting in a decrease in structure strength. There is a problem that it is difficult to suppress destruction due to stress concentration at the time.
  • the present disclosure provides a honeycomb capable of suppressing a decrease in structure strength due to molding defects even when the wall thickness of the outer peripheral cell wall is increased, and capable of suppressing breakage due to stress concentration during canning. It is an object of the present invention to provide a structure and a mold capable of forming the honeycomb structure.
  • One embodiment of the present disclosure includes a plurality of cells having a quadrangular cross-section adjacent to each other, a plurality of cell walls forming the plurality of cells, and an outer periphery that is provided on an outer periphery of the plurality of cell walls and holds the cell walls And a honeycomb structure satisfying the following requirements 1 to 5 in a cross-sectional view perpendicular to the central axis of the honeycomb.
  • the honeycomb structure includes the cell wall of the four surrounding cells surrounding the honeycomb central axis, or the cell wall having a wall thickness equivalent to the cell wall of the central cell in which the honeycomb central axis passes through the cell center.
  • Requirement 2 Passing through the honeycomb central axis and in contact with a virtual parallel line parallel to the cell wall, or passing through the honeycomb central axis and passing through the midpoint of the cell wall Among the plurality of cells arranged along the virtual orthogonal line orthogonal to the cell wall, the reference boundary cell in which the wall thickness of the cell wall on the two sides parallel to the virtual parallel line or the virtual orthogonal line is different.
  • the wall thickness of the thin wall which is one thin cell wall parallel to the virtual parallel line or the virtual orthogonal line is t1
  • the other thick parallel to the virtual parallel line or the virtual orthogonal line The wall thickness of the thick wall which is the cell wall is t3, the wall thickness of the medium wall which is the cell wall on the honeycomb center side orthogonal to the virtual parallel line or the virtual orthogonal line is t2, the virtual parallel line or the virtual orthogonal line
  • the wall thickness of the outer wall, which is the cell wall on the honeycomb outer periphery side orthogonal to is t4, t1 ⁇ t3, t2 ⁇ t4, t1 and t2 are equivalent, and t3 and t4 are equivalent.
  • the honeycomb structure is The thin wall, the middle wall, the cell wall extending from the first reference cell vertex comprising the connecting portion of the thin wall and the middle wall to the opposite side of the thin wall, and the first reference cell vertex
  • a first reference cross unit constituted by the four cell walls, and the cell wall extending to the opposite side from the middle wall, and The thick wall, the outer wall, the cell wall extending to the opposite side of the thick wall from the second reference cell apex composed of the connecting portion of the thick wall and the outer wall, and the second reference cell apex
  • a second reference cross unit configured by the four cell walls, the cell wall extending on the opposite side to the outer wall.
  • Requirement 4 The honeycomb structure starts from the first reference cell apex or the second reference cell apex, and extends in four directions from the cell apexes arranged one by one along the cell wall. And it has multiple cross units comprised by the four said cell walls mutually connected by the said cell vertex.
  • Requirement 5 In all the cross units in the center region and the outer periphery strengthening region, the wall thickness of the cell wall is equal for each cross unit.
  • a plurality of cells having a quadrangular cross section adjacent to each other, a plurality of cell walls forming the plurality of cells, and the outer periphery of the plurality of cell walls are provided to hold the cell walls.
  • a mold used for extruding a honeycomb structure having an outer peripheral wall A first mold part having a plurality of clay supply holes to which clay as a raw material of the honeycomb structure is supplied; The clay is introduced from the clay supply hole, and has a second mold part having a plurality of slits for forming a plurality of portions to be the cell walls in the honeycomb structure,
  • the second mold portion includes the cell walls of the four surrounding cells surrounding the honeycomb central axis, or the cell walls having a wall thickness equivalent to the cell wall of the central cell through which the honeycomb central axis passes through the cell center.
  • the plurality of clay supply holes are not arranged at all of the slit vertices formed by the slit connecting portions of the four slits, but are arranged in accordance with the slit vertices every one along the slit.
  • the four slits extending radially from the slit apex where the clay supply holes are arranged have the same width for each of the clay supply holes.
  • the honeycomb structure has the above-described configuration, and in all the cross units in the central region and the outer peripheral reinforcing region, the wall thickness of the cell wall is equal for each cross unit. Therefore, when extruding the honeycomb structure using a mold having a plurality of clay supply holes and a plurality of slits, not all of the slit apexes formed by the slit connecting portions of the four slits, but one along the slit. By introducing the clay from one clay supply hole to each of the slit vertices at each jump, and spreading the clay evenly in four slits that have the same width from the slit vertices, the cross unit Can be formed.
  • the honeycomb structure since the wall thickness of the cell wall is equal for each cross unit, the resistance difference of the clay flow generated between the four slits extending from the slit apex is small when each cross unit is formed. Become. Therefore, even if the honeycomb structure has an outer peripheral reinforcing region, local forming defects are hardly generated during extrusion molding. Therefore, the honeycomb structure can suppress a decrease in structure strength due to a molding defect, and can suppress breakage due to stress concentration during canning.
  • the mold has the above configuration. Therefore, at the time of extrusion molding of the honeycomb structure using the above-mentioned mold, not all of the slit vertices formed by the slit connecting portions of the four slits, but one for each of the slit vertices every one along the slit.
  • the clay can be introduced from the two clay supply holes, and the clay can be uniformly spread in four slits having the same width from the top of the slit. That is, in the above mold, the width of the four slits extending radially from the slit apex where the clay supply holes are arranged is equal for each of the clay supply holes. The resistance difference can be reduced.
  • the mold can form the honeycomb structure capable of suppressing a decrease in structure strength due to a molding defect.
  • FIG. 1 is an explanatory view schematically showing a cell wall structure of a honeycomb structure of Embodiment 1.
  • FIG. 2 is an explanatory diagram for explaining the concept of the reference boundary cell, the reference cross unit, and the cross unit when the honeycomb structure has four surrounding cells surrounding the honeycomb central axis.
  • FIG. 3 is an explanatory diagram for explaining how to count the number of reinforcing cells in the outer peripheral reinforcing region,
  • FIG. 4 is an explanatory view schematically showing a cell wall structure of the honeycomb structure of Embodiment 2.
  • FIG. 5 is an explanatory diagram for explaining the concept of the reference boundary cell, the reference cross unit, and the cross unit when the honeycomb structure has a center cell in which the honeycomb central axis passes through the cell center.
  • FIG. 6 is an explanatory view schematically showing a cell wall structure of the honeycomb structure of Embodiment 3.
  • FIG. 7 is an explanatory view schematically showing a cell wall structure of the honeycomb structure of Embodiment 4.
  • FIG. 8 is an explanatory view schematically showing a cell wall structure of the honeycomb structure of Embodiment 5.
  • FIG. 9 is an explanatory view schematically showing a part of the mold of the sixth embodiment.
  • FIG. 10 is an explanatory diagram for explaining the arrangement relationship between the clay supply holes and the slit apexes in the mold according to the sixth embodiment.
  • FIG. 11 is an explanatory view schematically showing how the clay introduced from the clay supply hole to the slit apex in the mold of the sixth embodiment
  • FIG. 12 is an explanatory diagram for explaining the supply rate ratio in the mold according to the sixth embodiment.
  • FIG. 13 is an explanatory diagram for describing a pressure loss evaluation method in Experimental Example 3.
  • FIG. 14 is a graph showing the relationship between the number of reinforcement cells in the outer peripheral strengthening region and the isostatic strength in Experimental Example 3
  • FIG. 15 is a graph showing the relationship between the number of strengthening cells in the outer peripheral strengthening region and the pressure loss in Experimental Example 3, FIG.
  • FIG. 16 is a graph showing the relationship between the number of cells from the outer peripheral wall of the honeycomb structure by the CAE analysis and the stress ratio in Experimental Example 3
  • FIG. 17 is a graph showing the relationship between the wall thickness of the cell wall of the first cell and the isostatic strength in the peripheral reinforcement region in Experimental Example 5
  • FIG. 18 is an explanatory view schematically showing a cell wall structure of a conventional honeycomb structure according to Test Example 1 in Experimental Example 1.
  • the honeycomb structure 1 of the present embodiment is made of ceramics (for example, cordierite), and forms a plurality of cells 2 having a quadrangular cross section adjacent to each other and a plurality of cells 2.
  • the thickness of the cell wall 3 is represented by the thickness of the line for convenience.
  • the cell 2 is composed of a through hole extending along the honeycomb central axis 10 that is an axis passing through the center of the honeycomb structure 1.
  • the cell 2 is a part that is a flow path through which the exhaust gas to be purified flows.
  • the cross section referred to in the quadrangular cross section means a cross section perpendicular to the honeycomb central axis 10.
  • the quadrangular shape referred to in the above-mentioned quadrangular cross-sectional shape is not necessarily limited to a regular quadrangle, and includes a square having rounded corners, a quadrangle that is unintentionally distorted in manufacturing, and the like. is there.
  • the plurality of cell walls 3 are connected and integrated with the adjacent cell walls 3.
  • the outer peripheral wall 4 has a circular shape in a cross-sectional view perpendicular to the honeycomb central axis 10.
  • a plurality of cell walls 3 arranged near the inner side surface of the outer peripheral wall 4 are connected to the inner side surface of the outer peripheral wall 4.
  • the plurality of cell walls 3 are integrally held by the outer peripheral wall 4.
  • the honeycomb structure 1 satisfies the following requirements 1 to 5 in a cross-sectional view perpendicular to the honeycomb central axis 10. Hereinafter, each requirement will be described.
  • the honeycomb structure has a central region having a cell wall having a wall thickness equivalent to the cell walls of the four surrounding cells surrounding the honeycomb central axis, and a wall thickness larger than the wall thickness of the surrounding cell cell wall at the outer periphery of the central region.
  • An outer peripheral reinforcing region having a cell wall having a cell wall.
  • the honeycomb structure 1 includes a center region 11 and an outer peripheral reinforcing region 12.
  • the central region 11 has the cell walls 3 having the same wall thickness as the cell walls 3 of the surrounding cells 200.
  • Each Go cell 200 is partitioned from the surrounding cell 2 by four cell walls 3.
  • each cell wall 3 extending in all directions from the honeycomb central axis 10 is shared by the adjacent surrounding cells 200.
  • the average value of the wall thicknesses of the cell walls 3 constituting the four surrounding cells 200 is used for the wall thickness of the cell wall 3 of the surrounding cell 200.
  • the center region 11 basically includes a plurality of cell walls 3 whose wall thickness is not increased as compared with the outer peripheral reinforcing region 12. However, in calculating the wall thickness of the cell wall 3 arranged around the center cell 201 in the center region 11, a part of the center region 11 enters the center region 11 in relation to requirement 5 described later. The wall thickness of the thickened cell wall 3 is excluded.
  • the outer periphery strengthening region 12 has a cell wall 3 whose wall thickness is thicker than the wall thickness of the cell wall 3 of the surrounding cell 200 on the outer periphery of the central region 11. That is, the outer periphery strengthening region 12 is configured to include a plurality of cell walls 3 having a thicker wall thickness than the central region 11. In the present embodiment, as illustrated in FIG. 1, the wall thicknesses of the plurality of cell walls 3 in the outer periphery reinforcing region 12 are all equal. As will be described later in other embodiments, the outer peripheral reinforcement region 12 can include the thickened cell walls 3 having different wall thicknesses as long as the requirement 5 described later is satisfied.
  • the wall thickness of the thin wall that is one thin cell wall parallel to the virtual parallel line is t1
  • the wall thickness of the thick wall that is the other thick cell wall parallel to the virtual parallel line is t3
  • the virtual parallel line When the wall thickness of the inner wall, which is the cell wall on the honeycomb center side orthogonal to the vertical axis, is t2, and the wall thickness of the outer wall, which is the cell wall on the honeycomb outer periphery side, orthogonal to the virtual parallel line, is t4, t1 ⁇ t3, t2 ⁇ t4, t1 and t2 are equivalent, and t3 and t4 are equivalent.
  • requirement 2 will be described.
  • FIG. 1 broken lines L1 0 , L1 90 , L1 180 , and L1 270 that pass through the honeycomb central axis 10 and are parallel to the cell wall 3 are shown.
  • FIG. 1 when the direction of one broken line passing through the honeycomb central axis 10 and parallel to the cell wall 3 (the broken line L1 0 at the 12 o'clock position in FIG. 1) is the 0 degree direction,
  • the directions of the broken lines L1 0 , L1 90 , L1 180 , and L1 270 at positions 90 degrees, 180 degrees, and 270 degrees clockwise from the directions are 90 degrees, 180 degrees, and 270 degrees, respectively.
  • FIG. 2 is an enlarged view of the cell 2 and the cell wall 3 arranged around the positions of L1 0 , L1 90 , L1 180 , and L1 270 in FIG.
  • a cell 2 having a thickness of the cell wall 3 different between adjacent cells 2 appears at a certain point.
  • the cell walls 3 on two sides parallel to the virtual parallel line L1 have different thicknesses.
  • This cell 2 is set as a reference boundary cell 21.
  • the wall thickness of the thin wall 3a which is one thin cell wall 3 parallel to the virtual parallel line L1 in the reference boundary cell 21 is defined as t1.
  • the wall thickness of the thick wall 3c, which is the other thick cell wall 3 parallel to the virtual parallel line L1, is t3.
  • the wall thickness of the middle wall 3b which is the cell wall 3 on the honeycomb center side orthogonal to the virtual parallel line L1 is defined as t2.
  • the wall thickness of the outer wall 3d which is the cell wall 3 on the honeycomb outer periphery side orthogonal to the virtual parallel line L1, is t4.
  • a cell wall extending from the first reference cell vertex comprising the thin wall, the middle wall, and the connecting portion between the thin wall and the middle wall to the opposite side of the thin wall, and from the first reference cell vertex to the opposite side of the middle wall
  • a second reference cross unit constituted by four cell walls comprising a thick wall, an outer wall, and a connecting portion between the thick wall and the outer wall.
  • a cell wall 3e extending from the first reference cell apex 311 composed of a connection portion between the thin wall 3a, the intermediate wall 3b, and the thin wall 3a and the intermediate wall 3b to the opposite side of the thin wall 3a.
  • the first reference cross unit 31 is defined by four cell walls 3 including a cell wall 3f extending from the first reference cell vertex 311 to the opposite side to the middle wall 3b.
  • a second reference cross unit 32 is defined by four cell walls 3 including a cell wall 3h extending from 322 to the opposite side to the outer wall 3d.
  • the honeycomb structure starts from the first reference cell vertex or the second reference cell vertex and extends in four directions from the cell vertexes arranged one by one along the cell wall.
  • a plurality of cross units constituted by four cell walls to be connected are provided.
  • requirement 4 will be described.
  • the honeycomb structure 1 has a cell wall group including four cell walls 3 extending radially from the cell apexes 330 of the plurality of cells 2.
  • FIG. 1 there are two ways to select the cell wall group in any of the central region 11 and the outer periphery strengthening region 12. That is, one is that the honeycomb structure 1 has a plurality of cell wall groups each including four cell walls 3 extending radially from each cell vertex 330 marked with a circle shown in FIG. It is what. The other is that the honeycomb structure 1 has a plurality of cell wall groups each composed of four cell walls 3 extending radially from each cell vertex 330 without a circle shown in FIG. It is.
  • Requirement 4 is a requirement for narrowing down the way of selecting the above two cell wall groups to one.
  • the first reference cell vertex 311 or the second reference cell vertex 322 defined in the requirement 3 is used as a starting point, and the cell vertices 330 arranged one by one along the cell wall 3 are used.
  • a cell wall group constituted by four cell walls 3 extending in all directions and connected to each other at the cell vertex 330 is defined as a cross unit 33. Therefore, in the present embodiment, the cell wall group constituted by the four cell walls 3 extending radially from the cell vertex 330 with the circle shown in FIG. For this reason, the cell wall group constituted by the four cell walls 3 extending radially from the cell vertex 330 without the circle shown in FIG.
  • the honeycomb structure 1 has a plurality of cross units 33. Specifically, the honeycomb structure 1 has a cell structure formed by connecting adjacent cross units 33 to each other.
  • the cross unit 33 determined by the requirement 5 described above is a minimum unit for forming the cell 2 having a quadrangular cross section.
  • each cross unit 33 having the cell vertex 330 in the central region 11 has the same wall thickness of the cell wall 3 for each cross unit 33.
  • the thickness of the cell wall 3 between the cross units 33 is also equal.
  • each cross unit 33 having the cell apex 330 in the outer periphery strengthening region 12 has the same wall thickness of the cell wall 3 for each cross unit 33, and the wall thickness of the cell wall 3 of each cross unit 33 is Both are thicker than the wall thickness of the cell wall 3 of each cross unit 33 having the cell vertex 330 in the central region 11.
  • the honeycomb structure 1 has the above-described configuration, and the wall thickness of the cell wall 3 is the same for each cross unit 33 in all the cross units 33 in the central region 11 and the outer peripheral reinforcement 12. Therefore, for example, at the time of extrusion molding of the honeycomb structure 1 using the mold 5 having a plurality of clay supply holes 510 and a plurality of slits 520, which will be described later in Embodiment 6, the slit connection portion of the four slits 520 is formed.
  • the clay is introduced from one clay supply hole 510 to each of the slit vertices 521 every one along the slit 520 instead of all of the slit vertices 521, and the width is equal to the slit vertex 521.
  • the cross unit 33 can be formed by spreading the clay uniformly in the four slits 520. That is, since the honeycomb structure 1 has the same wall thickness of the cell wall 3 for each cross unit 33, the clay flow generated between the four slits 520 extending from the slit vertex 521 when each cross unit 33 is formed. The resistance difference becomes smaller. Therefore, even if the honeycomb structure 1 has the outer peripheral reinforcing region 12, local forming defects are hardly generated during extrusion molding. Therefore, the honeycomb structure 1 can suppress a decrease in structure strength due to a molding defect, and can suppress breakage due to stress concentration during canning.
  • the maximum value of the wall thickness of the four cell walls 3 constituting the cross unit 33 is tmax and the minimum value is tmin, it is calculated from the equation 100 ⁇ (tmax ⁇ tmin) / tmax.
  • the wall thickness difference ratio to be made can be 10% or less.
  • each cross unit 33 of the honeycomb structure 1 when forming each cross unit 33 of the honeycomb structure 1, it becomes easy to reduce the resistance difference of the clay flow generated between the four slits 520 extending from the slit vertex 521, and between the adjacent cross units 33. Molding defects such as a state where the cell walls 3 are not connected are less likely to occur. Therefore, according to this configuration, it is possible to obtain the honeycomb structure 1 that can sufficiently ensure both the average isostatic strength and the minimum isostatic strength even when the material variation is taken into consideration. Further, according to this configuration, the honeycomb structure 1 that is advantageous for reducing the defect rate due to molding defects can be obtained.
  • the wall thickness difference ratio is preferably less than 10%, more preferably 9% or less, even more preferably 8% or less, from the viewpoint of ensuring the structural strength of the honeycomb structure 1 and the like. Even more preferably, it can be 7% or less, and still more preferably 6% or less.
  • the wall thickness difference ratio is still more preferably from the viewpoint that it is difficult to form the cross unit 33 including a molding defect that reduces the structure strength of the honeycomb structure 1 even if there is a wall thickness difference. It can be 5% or less.
  • honeycomb structure 1 it is determined in the following manner how many cells from the outer peripheral wall 4 to the honeycomb central axis 10 in the honeycomb structure 1 are formed.
  • the cell 2 in contact with the outer peripheral wall 4 is not usually rectangular in cross section, but such an imperfect one is also counted as the cell 2.
  • a plurality of cells 2 arranged in contact with the virtual parallel line L1 are sequentially counted from the first cell toward the honeycomb central axis 10 direction. To go. Then, as illustrated in FIG.
  • the region 12 is composed of a region from the outer peripheral wall 4 to the m-th cell 2 in the honeycomb central axis 10 direction. That is, the number of strengthening cells in the outer periphery strengthening region 12 is m cells.
  • the virtual circle C is a boundary circle between the center region 11 and the outer periphery strengthening region 12.
  • the central region 11 may include a part of the cell wall 3 whose wall thickness is larger than the wall thickness of the cell wall 3 of the surrounding cell 200 at the outer periphery in relation to the requirement 5 described above.
  • a part of the cell wall 3 of the cross unit 33 having the cell vertex 330 in the outer periphery strengthening region 12 may enter the outer peripheral edge of the central region 11 in relation to the requirement 5 described above.
  • the present embodiment is an example in which the outer peripheral reinforcing region 12 is configured by a region from the outer peripheral wall 4 to the fourth cell 2 in the direction of the honeycomb central axis 10. It is understood that the number of strengthening cells in the outer periphery strengthening region 12 is four cells. Further, in the present embodiment, the wall thickness of the cell wall 3 constituting the cell 2 in the outer peripheral reinforcing region 12 is from the outer peripheral wall 4 to the first cell 2 to the fourth cell 2 in the direction of the honeycomb central axis 10. An example in which both are equivalent is shown.
  • the outer peripheral reinforcing region 12 is preferably composed of a region from the outer peripheral wall 4 to any one of the cells 2 in at least the fourth cell in the direction of the honeycomb central axis 10.
  • the honeycomb structure 1 having the outer peripheral reinforcing region 12 having four or more reinforced cells has an advantage that the isostatic strength can be easily improved as compared with the honeycomb structural body 1 having the outer peripheral reinforcing region 12 having fewer reinforcing cells than four cells. Because there is. Further, in the honeycomb structure 1 having the cells 2 having a quadrangular cross section, it is known from the CAE analysis that a higher stress is generated toward the outer peripheral portion.
  • the stress concentration during canning is large in the region from the outer peripheral wall 4 to the fourth cell 2 in the direction of the honeycomb central axis 10. Therefore, with the above configuration, it is possible to effectively suppress breakage due to stress concentration during canning, which is advantageous for improving the structure strength of the honeycomb structure 1.
  • the outer peripheral reinforcing region 12 is more preferably composed of a region from the outer peripheral wall 4 to any one of the cells 2 in at least the fifth cell in the direction of the honeycomb central axis 10. can do.
  • the outer peripheral reinforcing region 12 is preferably composed of a region from the outer peripheral wall 4 to any one of the cells 2 within the 20th cell in the direction of the honeycomb central axis 10. Even if the outer peripheral reinforcing region 12 is configured from the region from the outer peripheral wall 4 to the cell 2 in the direction of the honeycomb central axis 10 in the direction of the twentieth cell, a great improvement in the strength of the honeycomb structure 1 cannot be expected. Further, the number of cells of the honeycomb structure 1 increases toward the outer peripheral portion. Therefore, when the cell wall 3 in the outer peripheral portion is thickened, the pressure loss of the honeycomb structure 1 increases.
  • the pressure loss of the honeycomb structure 1 tends to increase rapidly. Therefore, with the above configuration, it is possible to suppress a decrease in structure strength due to molding defects while suppressing an increase in pressure loss, and it is possible to suppress breakage due to stress concentration during canning.
  • the outer peripheral reinforcing region 12 is more preferably from the region from the outer peripheral wall 4 to any one of the cells 2 within the 18th cell in the honeycomb central axis 10 direction.
  • the cell density in the honeycomb structure 1 can be, for example, 46.5 cells / cm 2 to 155 cells / cm 2 (300 cpsi to 1000 cpsi).
  • Embodiment 2 The honeycomb structure 1 of Embodiment 2 will be described with reference to FIGS. 4 and 5.
  • the same reference numerals as those used in the above-described embodiments represent the same components as those in the above-described embodiments unless otherwise indicated.
  • the honeycomb structure 1 satisfies the following requirements 1 to 5 in a cross-sectional view perpendicular to the honeycomb central axis 10. Hereinafter, each requirement will be described.
  • the honeycomb structure has a central region having a cell wall having a wall thickness equivalent to the cell wall of the central cell in which the central axis of the honeycomb passes through the cell center, and has a wall thickness that is greater than the cell wall thickness of the central cell at the outer periphery of the central region. And a peripheral reinforcing region having a thick cell wall.
  • requirement 1 will be described.
  • the honeycomb structure 1 includes a center region 11 and an outer peripheral reinforcing region 12.
  • the center region 11 has the cell wall 3 having the same wall thickness as the cell wall 3 of the center cell 201.
  • the central cell 201 is partitioned from the surrounding cells 2 by four cell walls 3. Specifically, the average value of the wall thicknesses of the four cell walls 3 surrounding the center cell 201 is used as the wall thickness of the cell wall 3 of the center cell 201.
  • the center region 11 basically includes a plurality of cell walls 3 whose wall thickness is not increased as compared with the outer peripheral reinforcing region 12. However, in calculating the wall thickness of the cell wall 3 arranged around the center cell 201 in the center region 11, a part of the center region 11 enters the center region 11 in relation to requirement 5 described later. The wall thickness of the thickened cell wall 3 is excluded.
  • the outer periphery strengthening region 12 has a cell wall 3 whose wall thickness is thicker than the wall thickness of the cell wall 3 of the center cell 201 on the outer periphery of the center region 11. That is, the outer periphery strengthening region 12 is configured to include a plurality of cell walls 3 having a thicker wall thickness than the central region 11. In the present embodiment, as illustrated in FIG. 4, the wall thicknesses of the plurality of cell walls 3 in the outer periphery reinforcing region 12 are all equal. As will be described later in other embodiments, the outer peripheral reinforcement region 12 can include the thickened cell walls 3 having different wall thicknesses as long as the requirement 5 described later is satisfied.
  • the wall thickness of the thin wall that is one thin cell wall parallel to the virtual orthogonal line is t1
  • the wall thickness of the thick wall that is the other thick cell wall parallel to the virtual orthogonal line is t3
  • the virtual orthogonal line When the wall thickness of the inner wall which is the cell wall on the honeycomb center side orthogonal to the t2 is t2, and the wall thickness of the outer wall which is the cell wall on the honeycomb outer periphery side orthogonal to the virtual orthogonal line is t4, t1 ⁇ t3, t2 ⁇ t4, t1 and t2 are equivalent, and t3 and t4 are equivalent.
  • FIG. 4 shows broken lines L2 0 , L2 90 , L2 180 , and L2 270 that pass through the honeycomb central axis 10 and pass through the midpoint of the cell wall 3 and are orthogonal to the cell wall 3.
  • FIG. 4 when the direction of one broken line (broken line L2 0 at the 12 o'clock position in FIG. 4) passing through the honeycomb central axis 10 and orthogonal to the cell wall 3 is the 0 degree direction,
  • the directions of the broken lines L2 0 , L2 90 , L2 180 , and L2 270 at positions 90 degrees, 180 degrees, and 270 degrees clockwise from the directions are 90 degrees, 180 degrees, and 270 degrees, respectively.
  • FIG. 5 is an enlarged view of the cell 2 and the cell wall 3 arranged around the positions of L2 0 , L2 90 , L2 180 , and L2 270 in FIG. 4.
  • the broken lines L2 0 , L2 90 , L2 180 , and L2 270 in four directions of 90 degrees ⁇ n correspond to the honeycomb central axis 10
  • the virtual orthogonal line L 2 in requirement 1 is obtained.
  • the virtual orthogonal line L2 is a straight line passing through the honeycomb central axis 10 in the honeycomb radial direction.
  • a plurality of cells 2 arranged along the virtual orthogonal line L2 are directed from the outer peripheral wall 4 side toward the honeycomb central axis 10 direction.
  • a cell 2 in which the thickness of the cell wall 3 is different between adjacent cells 2 appears at a certain place.
  • the cell walls 3 on two sides parallel to the virtual orthogonal line L2 have different thicknesses.
  • This cell 2 is set as a reference boundary cell 21. Since the subsequent steps are the same as the requirement 2 described in the first embodiment, the description thereof is omitted.
  • requirements 3 to 5 are basically the same as those in the first embodiment, and thus the description thereof is omitted.
  • the honeycomb structure 1 of the first embodiment described above has a cell structure in which the honeycomb central axis 10 is surrounded by four surrounding cells 200.
  • the honeycomb structure 1 of the present embodiment has a cell structure including the central cell 201 in which the honeycomb central axis 10 passes through the cell center.
  • the honeycomb structure 1 of the present embodiment is less likely to cause local forming defects during extrusion molding even if it has the outer peripheral reinforcing region 12. Therefore, the honeycomb structure 1 of the present embodiment can suppress a decrease in structure strength due to a molding defect, and can suppress breakage due to stress concentration during canning.
  • Other configurations and operational effects are the same as those of the first embodiment.
  • the number of reinforcing cells in the outer peripheral reinforcing region 12 of the honeycomb structure 1 of the present embodiment is determined by “a plurality of cells arranged in contact with the virtual parallel line L1” in the method of counting the number of reinforcing cells described in the first embodiment. 2 ”can be understood by appropriately replacing“ a plurality of cells 2 arranged along the virtual orthogonal line L2 ”according to the present embodiment.
  • Embodiment 3 The honeycomb structure of Embodiment 3 will be described with reference to FIG.
  • the outer peripheral reinforcing region 12 is configured by a region from the outer peripheral wall 4 to the fourth cell 2 in the honeycomb central axis 10 direction. And the same as the honeycomb structure 1 of the first embodiment in that the number of reinforcing cells in the outer peripheral reinforcing region 12 is four.
  • the honeycomb wall of the first embodiment is such that the wall thickness of the cell wall 3 constituting the cell 2 in the outer peripheral reinforcement region 12 decreases from the outer peripheral wall 4 toward the honeycomb central axis 10. It is different from the structure 1.
  • the wall thickness of the cell wall 3 constituting the cell 2 in the outer periphery strengthening region 12 is the maximum in the cell 2 of the first cell from the outer peripheral wall 4 in the direction of the honeycomb central axis 10, and The outer wall 4 gradually decreases in the direction of the honeycomb central axis 10.
  • the honeycomb structure 1 in which the wall thickness of the cell wall 3 of the cell 2 in the outer peripheral reinforcing region 12 is uniformly increased, the increase in pressure loss is suppressed, and the honeycomb structure 1 It is possible to ensure the structure strength. This makes it possible to gradually reduce the stress toward the center of the honeycomb as compared with the case where the wall thickness of the cell wall 3 of the cell 2 in the outer peripheral strengthening region 12 is increased uniformly, and to reduce the pressure loss. This is because it becomes possible to minimize the influence of the above.
  • the cell wall 3 constituting the cell 2 of the X cell (where X is a natural number equal to or greater than 2 and less than the number of strengthening cells in the outer peripheral reinforcing region) from the outer peripheral wall 4 toward the honeycomb central axis 10 direction.
  • the average value of the measured wall thickness of each cell wall 3 constituting the X-th cell 2 in each direction of 90 degrees ⁇ n (where n 0, 1, 2, 3) is used as the wall thickness of It is done.
  • a plurality of regions having different wall thicknesses of the cell wall 3 are present in the outer peripheral reinforcing region 12 in a concentric manner centering on the cell center of the center cell 20.
  • the outer periphery strengthening region 12 between the region including the cell 2 of the X cell from the outer peripheral wall 4 and the region including the cell 2 of the previous (X ⁇ 1) cell, A case where the wall thickness is varied will be described as an example.
  • the wall thickness of the cell wall 3 of each cross unit 33 having the cell vertex 330 on the virtual circle Ci and outside the virtual circle Ci is defined as the cell wall of each cross unit 33 having the cell vertex 330 inside the virtual circle Ci. Thicker than the wall thickness of 3.
  • the wall thickness of the cell wall 3 in the region including the (X-1) th cell from the outer peripheral wall 4 in the outer periphery strengthening region 12 is changed to the cell in the region including the cell 2 in the Xth cell from the outer wall 4. It can be made thicker than the wall thickness of the wall 3.
  • the wall thickness of the cell wall 3 in the region including the cell 2 of the fourth cell from the outer peripheral wall 4 ⁇ the cell 2 of the third cell from the outer peripheral wall 4.
  • the wall thickness of the cell wall 3 in the area including the cell wall 3 in the area including the cell 2 in the second cell from the outer peripheral wall 4 ⁇ The wall thickness of the cell wall 3 in the area including the cell 2 in the first cell from the outer wall 4 This is an example of thickness.
  • the virtual circle Ci 1 drawn in the outer periphery reinforcing region 12 is a boundary circle that forms a boundary between the first cell region and the second cell region.
  • a virtual circle Ci 2 drawn in the outer periphery strengthening region 12 is a boundary circle that forms a boundary between the second cell region and the third cell region.
  • Virtual circle Ci drawn on the outer circumferential reinforcing region 12 3 is a limit circle forming a boundary between the 3 cell th region and the fourth cell of the area.
  • each cross unit 33 having the cell apex 330 between the outer peripheral wall 4 and the virtual circle Ci 1 has the same wall thickness of the cell wall 3.
  • each cross unit 33 having the cell vertex 330 between the virtual circle Ci 1 and the virtual circle Ci 2 has the same wall thickness of the cell wall 3.
  • Each cross unit 33 having the cell vertex 330 between the virtual circle Ci 2 and the virtual circle Ci 3 has the same wall thickness of the cell wall 3.
  • the cross units 33 each having a cell vertex between the virtual circle Ci 3 and the virtual circle C have the same wall thickness of the cell wall 3.
  • the wall thickness of the cell wall 3 constituting the first cell 2 in the direction of the honeycomb central axis 10 from the outer peripheral wall 4 in the outer peripheral reinforcing region 12 constitutes the surrounding cell 200 in the central region 11.
  • the wall thickness of the cell wall 3 can be 1.4 times or more, preferably 1.5 times or more.
  • this configuration it is easy to reduce the stress generated in the first cell region where stress concentration occurs most during canning. Therefore, this configuration is advantageous for improving the structure strength of the honeycomb structure 1.
  • the average value of the measured wall thickness of each cell wall 3 constituting the surrounding cell 200 is used for the wall thickness of the cell wall 3 constituting the surrounding cell 200 in the central region 11.
  • Other configurations and operational effects are the same as those of the first embodiment.
  • Embodiment 4 The honeycomb structure of Embodiment 4 will be described with reference to FIG.
  • the honeycomb structure 1 of the present embodiment is an example in which the honeycomb central axis 10 includes a central cell 20 that passes through the cell center.
  • the honeycomb structure 1 of the present embodiment is an example in which the outer periphery reinforcing region 12 is configured by a region from the outer peripheral wall 4 to the fourth cell 2 in the direction of the honeycomb central axis 10.
  • the number of cells is 4 cells.
  • the honeycomb structure 1 has a wall thickness of the cell wall 3 in the region including the cell 2 from the outer peripheral wall 4 to the cell 2 in the region including the cell 2 in the third cell from the outer peripheral wall 4.
  • the wall thickness of the wall 3 ⁇ the wall thickness of the cell wall 3 in the region including the second cell 2 from the outer peripheral wall 4 ⁇ the wall thickness of the cell wall 3 in the region including the first cell 2 from the outer peripheral wall 4 Yes.
  • the wall thickness of the cell wall 3 constituting the first cell 2 in the direction of the honeycomb central axis 10 from the outer peripheral wall 4 in the outer peripheral reinforcing region 12 constitutes the central cell 201 in the central region 11.
  • the wall thickness of the cell wall 3 can be 1.4 times or more, preferably 1.5 times or more.
  • this configuration it is easy to reduce the stress generated in the first cell region where stress concentration occurs most during canning. Therefore, this configuration is advantageous for improving the structure strength of the honeycomb structure 1.
  • the average value of the measured wall thickness of each cell wall 3 constituting the center cell 201 is used as the wall thickness of the cell wall 3 constituting the center cell 201 in the center region 11.
  • Other configurations and operational effects are the same as those of the third embodiment.
  • Embodiment 5 The honeycomb structure of Embodiment 5 will be described with reference to FIG.
  • the honeycomb structure 1 of the present embodiment is an example in which the outer peripheral reinforcing region 12 is configured by a region from the outer peripheral wall 4 to the third cell 2 in the direction of the honeycomb central axis 10.
  • the number of strengthening cells in the outer periphery strengthening region 12 is three cells.
  • the honeycomb structure 1 has a wall thickness of a cell wall 3 in a region including the cell 2 from the outer peripheral wall 4 to a cell in a region including the cell 2 in the second cell from the outer peripheral wall 4.
  • the wall thickness of the wall 3 is smaller than the wall thickness of the cell wall 3 in the region including the first cell 2 from the outer peripheral wall 4.
  • Other configurations and operational effects are the same as those of the third embodiment.
  • the mold 5 of the present embodiment is provided with a plurality of cells 2 having a quadrangular cross section adjacent to each other, a plurality of cell walls 3 forming the plurality of cells 2, and a cell wall 3 provided on the outer periphery of the plurality of cell walls 3.
  • the mold 5 of the present embodiment includes a first mold part 51 and a second mold part 52.
  • the first mold part 51 has a plurality of clay supply holes 510 to which clay as a raw material for the honeycomb structure 1 is supplied.
  • the clay supply hole 510 is configured by a through hole having a columnar shape. Note that, as the clay, a material in which the raw material of the cell wall 3 of the honeycomb structure 1 is prepared in a clay shape is usually used.
  • the second mold part 52 has a plurality of slits 520 for forming a part that becomes the plurality of cell walls 3 in the honeycomb structure 1 through the introduction of the clay from the clay supply hole 510.
  • die part 52 has a center slit part (not shown) and an outer periphery slit part (not shown).
  • the central slit portion becomes the cell wall 3 of the four surrounding cells 200 surrounding the honeycomb central axis 10 or the cell wall 3 having the same wall thickness as the cell wall 3 of the central cell 20 through which the honeycomb central axis 10 passes through the cell center.
  • the outer peripheral slit portion is a portion having a slit 520 having a larger width than the slit 520 of the central slit portion on the outer periphery of the central slit portion. That is, the outer peripheral slit portion is a portion for forming the outer peripheral reinforcing region 12 of the honeycomb structure 1.
  • FIG. 10 shows an arrangement relationship between the clay supply hole 510 and the slit apex 521.
  • FIG. 10 is an example of a mold 5 for forming the honeycomb structure 1 having four surrounding cells 200 surrounding the honeycomb central axis 10.
  • each slit 520 is represented by a line for convenience.
  • the width relationship of each slit 520, the central slit portion, and the outer peripheral slit portion are omitted.
  • the plurality of clay supply holes 510 included in the first mold unit 51 includes slit connection portions of four slits 520 included in the second mold unit 52. Not all of the slit vertices 521 are arranged.
  • the clay supply holes 510 of the first mold part 51 are arranged along the slits 520 of the second mold part 52 in accordance with the slit vertices 521 that are provided one by one.
  • the mold 5 has the above configuration. Therefore, at the time of extrusion molding of the honeycomb structure 1 using the mold 5, not all of the slit vertices 521 formed of the slit connecting portions of the four slits 520 but one along the slit 520 as shown in FIG.
  • the clay is introduced from one clay supply hole 510 for each of the slit vertices 521 for each jump, and as shown in FIG. 11, the slits 521 have the same width as the four slits 520 having the same width. Can spread the clay evenly.
  • the widths of the four slits 520 extending radially from the slit apex 521 where the clay supply holes 510 are arranged are equal for each of the clay supply holes 510.
  • the difference in resistance of the dredged soil flow that occurs can be reduced. Therefore, according to the mold 5, local molding defects are less likely to occur during extrusion molding of the outer peripheral reinforcing region 12 of the honeycomb structure 1.
  • the mold 5 can form the honeycomb structure 1 capable of suppressing a decrease in structure strength due to a molding defect.
  • the honeycomb structure 1 exemplified in the first to fifth embodiments can be formed, for example, as follows.
  • a mold 5 having a first mold portion 51 in which a clay supply hole 510 is arranged with the hole center aligned with the apex 521 is prepared.
  • the arrangement of the clay supply holes 510 of the first mold portion 51 in the mold 5 is such that the cell apex 320 of each cross unit 33 of the honeycomb structure 1 to be molded (FIGS. 1, 4, 6 to 6). This corresponds to the arrangement of each circled part indicated by 8.
  • the clay is supplied to the clay supply hole 510 and introduced into the slit apex 521.
  • the clay introduced into the slit apex 521 is pushed out into the four slits 520 extending radially from the slit apex 521.
  • the clay spread in the slit 520 is similarly introduced from the adjacent clay supply hole 510 into the slit apex 521 and integrated with the clay spread in the slit 520, and the mold 5.
  • the molded body is extruded from. Thereafter, a known process can be applied.
  • the honeycomb structure 1 exemplified in the first to fifth embodiments can be manufactured.
  • each cross unit 33 of the honeycomb structure 1 when forming each cross unit 33 of the honeycomb structure 1, it becomes easy to reduce the resistance difference of the clay flow generated between the four slits 520 extending from the slit vertex 521, and between the adjacent cross units 33. Molding defects such as cell walls 3 not being connected are less likely to occur. Therefore, according to this configuration, it is possible to obtain the honeycomb structure 1 that can sufficiently ensure both the average isostatic strength and the minimum isostatic strength even when the material variation is taken into consideration. Further, according to this configuration, the honeycomb structure 1 that is advantageous for reducing the defect rate due to molding defects can be obtained.
  • the width difference ratio is preferably less than 10%, more preferably 9% or less, and even more preferably 8% from the viewpoint of ensuring the structure strength of the honeycomb structure 1 by extrusion molding. Hereinafter, it is still more preferably 7% or less, and still more preferably 6% or less.
  • the width difference ratio can be set to 5% or less even more preferably from the viewpoint of easily reducing the wall thickness difference ratio of the honeycomb structure 1 described above to 5% or less.
  • the hole diameter of the clay supply hole 510 is preferably configured so that the supply ratio is constant. According to this configuration, the amount of clay supplied from each clay supply hole 510 to each slit 520 can be easily made uniform. Therefore, according to this configuration, a mold 5 can be obtained that makes it easy to obtain the honeycomb structure 1 in which the wall thickness of the cell wall 3 is the same for each cross unit 33.
  • the said supply rate ratio is calculated by the cross-sectional area of the four slits 520 extended radially from the slit vertex 521 / the cross-sectional area of the clay supply hole 510, as FIG. 12 shows.
  • the cross section is a cross section perpendicular to the hole axis of the clay supply hole 510.
  • the mold 5 satisfies the relationship of the hole diameter of the clay supply hole 510 connected to the center slit portion ⁇ the diameter of the clay supply hole 510 connected to the outer peripheral slit portion. According to this configuration, since the amount of clay to be supplied increases according to the width of the thickened slit 520, the cell wall thickness difference corresponding to the slit width difference can be increased by increasing the hole diameter supplied accordingly. It becomes possible to obtain the molded object which has effectively.
  • a honeycomb structure having four surrounding cells surrounding the honeycomb central axis was manufactured.
  • the test body 3 has the same cell wall thickness for each cross unit in all the cross units in the center region and the outer peripheral reinforcement region. 5 is satisfied.
  • the test body 4 is basically the same as the test body 3 although the number of reinforcing cells is different from that of the test body 3.
  • the test bodies 1 and 2 do not satisfy the requirement 5.
  • the test body 1 is a conventional honeycomb structure, and as shown in FIG. 18, the wall thickness of at least one cell wall remains out of four cell walls extending radially from each cell vertex.
  • the cell wall includes a portion different from the wall thickness.
  • the test body 2 is the same as the test body 1.
  • the thickness of the outer peripheral wall of the honeycomb structure of the test body was 0.35 mm, and the outer shape was 117 mm in diameter ⁇ 100 mm in height.
  • the mold slits were as follows.
  • the cell walls of the honeycomb structure to be extruded were as follows.
  • Cell wall thickness in the central region 65 ⁇ m
  • cell wall pitch 1.1 mm
  • cell wall pitch 1.1 mm
  • R dimension at cell apex 0.15 mm
  • the wall thickness of the cell wall of the second cell in the peripheral reinforcement region 98 ⁇ m
  • cell wall pitch 1.1 mm
  • cell wall pitch 1.1 mm
  • cell wall pitch 1.1 mm
  • R dimension at cell apex 0.15 mm
  • Table 1 shows the following. Test bodies 1 and 2 had low isostatic strength. When this cause was investigated, in the test bodies 1 and 2, molding defects such as a portion where the wall thickness of the cell wall was thin and insufficient clay were found in the outer peripheral portion. And the crack of the cell wall in the part of the said shaping
  • the specimens 3 and 4 showed higher isostatic strength than the specimens 1 and 2. This is because, in the test bodies 3 and 4, the wall thickness of the cell wall is the same for each cross unit, so that when the cross units are formed, the difference in resistance of the clay flow that occurs between the four slits extending from the slit apex. This is because local molding defects are less likely to occur.
  • the wall thickness difference is measured by using a CNC image processing device “QV-H4A” manufactured by Mitutoyo Corporation to observe the light-transmitted specimen with a camera and automatically measure the wall thickness of the cell wall. It was. According to the above apparatus, it is possible to confirm an abnormal measurement value due to a molding defect or to confirm a molding defect with an image. Moreover, according to the said apparatus, the wall thickness of a cell wall is set to 0 as a measurement error in the part of a shaping
  • Table 2 shows the following. According to the test bodies 5 and 6, it can be seen that the isostatic strength (average value) does not decrease, and the maximum isostatic strength and the minimum isostatic strength are at the same level. From this result, it is understood that if the wall thickness difference ratio is 5% or less, even if there is a wall thickness difference, it is difficult to form a cross unit including a molding defect that reduces the structural strength of the honeycomb structure.
  • the pressure loss was measured as follows. As schematically shown in FIG. 13, the piping part 91, the accommodating part 92 in which the honeycomb structure 1 is accommodated, and the enlarged diameter part 93 that connects the piping part 91 and the accommodating part 92 are provided. An evaluation converter 9 was prepared. The diameter ⁇ 1 of the piping part 91 was 50.5 mm. The diameter ⁇ 2 of the accommodating portion 92 was 123 mm. The length l1 of the enlarged diameter portion 93 was 55 mm. The distance l2 between the one end surface of the honeycomb structure 1 and the enlarged diameter portion 93 on the one end surface side was 5 mm.
  • the distance l3 between the other end face of the honeycomb structure 1 and the enlarged diameter portion 93 on the other end face side was set to 10 mm.
  • the gas flow rate of the exhaust gas flowing through the honeycomb structure 1 was 7 m 3 / min, and the gas temperature was 600 degrees.
  • a 4.6 L V8 engine was used as an engine for generating exhaust gas.
  • the outer peripheral reinforcing region is composed of the region from the outer peripheral wall to any one of the cells in at least the fourth cell in the honeycomb central axis direction, that is, the outer peripheral reinforcing region is strengthened. It can be seen that by setting the number of cells to at least 4 cells or more, the isostatic strength can be easily improved as compared with the case where the number of strengthened cells in the outer peripheral strengthened region is less than 4.
  • FIG. 16 shows the relationship between the number of cells from the outer peripheral wall of the honeycomb structure and the stress ratio by CAE analysis. According to FIG.
  • the number of reinforced cells in the outer peripheral reinforced region exceeded 20 cells, the pressure loss of the honeycomb structure tended to increase rapidly. This is thought to be due to the fact that the influence of the cell wall has increased greatly since the cell wall has started to thicken to the vicinity of the center of the honeycomb where exhaust gas tends to concentrate. According to this result, the number of reinforcement cells in the outer peripheral strengthening region is reduced from the viewpoint of suppressing the decrease in structure strength due to molding defects while suppressing the increase in pressure loss, and suppressing the destruction due to the stress concentration during canning. It can be seen that it is preferably within 20 cells.
  • each test body having a different number of strengthened cells and a wall thickness configuration of the cell wall in the outer peripheral strengthening region was produced.
  • the pressure loss explained in the above was measured.
  • the wall thickness of the cell wall constituting the cell in the outer periphery strengthening region is any from the first cell in the honeycomb central axis direction to the final cell in the outer periphery strengthening region.
  • the wall thickness of the cell wall constituting the test specimen and the cell in the outer periphery strengthening region is the largest in the first cell in the honeycomb central axis direction from the outer peripheral wall, and from the outer peripheral wall.
  • a test body having a configuration that gradually decreases in the direction of the central axis of the honeycomb was manufactured.
  • Table 4 shows the following.
  • the wall thickness of the cell wall constituting the cell in the outer peripheral reinforcement region is from the outer peripheral wall in the direction of the honeycomb central axis.
  • the first cell is the largest and has a structure that gradually decreases from the outer peripheral wall toward the honeycomb central axis
  • the structure of the honeycomb structure is suppressed while suppressing an increase in pressure loss. It can be seen that the strength can be secured. This makes it possible to gradually reduce the stress toward the center of the honeycomb as compared with the case where the wall thickness of the cell wall in the outer periphery strengthening region is increased uniformly, and has an effect on the pressure loss. By being able to be minimized.
  • Example 5 As shown in Table 5, in the same manner as the test body 3 of Experimental Example 1, each test body having a different wall thickness configuration of the cell wall in the outer peripheral reinforcement region was produced, and the isostatic strength was measured. Specifically, in this experimental example, the wall thickness (average value) of the cell walls constituting the central cell in the central region is set to 65 ⁇ m. Moreover, the wall thickness of the cell wall of the cell in an outer periphery reinforcement
  • Table 5 and FIG. 17 show the following. According to Table 5 and FIG. 17, it is easy to improve the isostatic strength of the honeycomb structure by making the wall thickness of the cell wall of the first cell 1.4 times or more the wall thickness of the cell wall of the central cell. I understand that From this result, it can be seen that by adopting the above configuration, it is easy to reduce the stress generated in the first cell region where stress concentration occurs most at the time of canning, which is advantageous for improving the structure strength of the honeycomb structure. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Geometry (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Toxicology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

ハニカム構造体(1)は、中心領域(11)、外周強化領域(12)を有する。仮想平行線(L1)に平行な二辺のセル壁(3)の壁厚が異なる基準境界セル(21)は、薄壁(3a)厚t1<厚壁(3c)厚t3、中壁(3b)厚t2<外壁(3d)厚t4、t1、t2が同等、t3、t4が同等である。ハニカム構造体(1)は、薄壁(3a)、中壁(3b)、セル壁(3e)、セル壁(3f)よりなる基準十字ユニット(31)、厚壁(3c)、外壁(3d)、セル壁(3c)、セル壁(3g)よりなる基準十字ユニット(32)を有し、基準セル頂点(311)を出発点として一つ飛び毎に配置されたセル頂点(330)から四方に延びる十字ユニット(33)を複数有する。中心領域(11)及び外周強化領域(12)の全てにおいて、十字ユニット(33)毎にセル壁(3)の壁厚が同等とされる。

Description

ハニカム構造体および金型 関連出願の相互参照
 本出願は、2018年1月30日に出願された日本出願番号2018-13779号に基づくもので、ここにその記載内容を援用する。
 本開示は、ハニカム構造体および金型に関し、さらに詳しくは、断面四角形状のセルを有するハニカム構造体および金型に関する。
 従来、自動車等の車両分野では、内燃機関から排出される排ガスを浄化するため、排ガス浄化装置が使用されている。排ガス浄化装置は、排気管に収容されたセラミックス製のハニカム構造体と、ハニカム構造体に保持させた触媒成分とを有している。ハニカム構造体は、通常、互いに隣接する複数のセルと、複数のセルを形成する複数のセル壁と、複数のセル壁の外周に設けられてセル壁を保持する外周壁と、を有している。触媒成分は、セル壁表面に保持されている。セラミックス製のハニカム構造体は、一般に、ハニカム構造体の原料となる坏土を金型に供給し、押し出し成形によって形成されている。なお、金型は、坏土が供給される複数の坏土供給孔と、坏土供給孔から坏土が導入され、セル壁となる部分を形成するための複数のスリットと、を有している。
 先行する特許文献1には、断面四角形状の複数のセルを有しており、最外周セルを起点セルとしてそこから5~20番目の範囲内のいずれかの終点セルまでのセル隔壁厚さが、基本セル隔壁厚さよりも厚く形成された、ハニカム構造体が開示されている。
特許第4473505号公報
 近年、排気規制や燃費規制の厳格化により、排ガス浄化装置には、早期暖気および低圧力損失が求められている。それに伴い、ハニカム構造体では、セル壁の壁厚が年々薄化されてきている。しかし、壁厚の薄肉化は、ハニカム構造体の構造体強度を低下させる。そのため、触媒成分を保持させたハニカム構造体を排気管に収容するキャニング工程において、径方向から負荷される圧縮応力により、ハニカム構造体が破壊しやすい。
 キャニング時の破壊を抑制する手法としては、上述したように、ハニカム構造体の外周部からハニカム中心軸方向に数セル目までの領域にわたってセル壁の壁厚を厚化し、構造体強度を向上させる方法がある。しかし、むやみにセル壁の壁厚を厚化しようとすると、ハニカム構造体の押し出し成形工程において、成形体の外周部に壁厚の薄い部位や坏土不足などの成形欠損が局所的に生じる。このような成形欠陥が生じるのは、セル壁構造に起因して、金型の一つの坏土供給孔から幅の異なる複数のスリットへ坏土を導入せざるを得ないためである。つまり、金型の一つの坏土供給孔から幅の異なる複数のスリットへ坏土が導入される場合、幅が狭く坏土の流れ抵抗の高いスリットには坏土が均一に流れず、その結果、上記のような成形欠陥が発生しやすい。
 このように、外周部が強化された従来のハニカム構造体は、そのセル壁構造に起因して、押し出し成形時に局所的に生じた成形欠陥が破壊起点となって構造体強度が低下し、キャニング時の応力集中による破壊を抑制することが難しいという課題がある。
 本開示は、外周部のセル壁の壁厚が厚化された場合でも、成形欠陥による構造体強度の低下を抑制することができ、キャニング時の応力集中による破壊を抑制することが可能なハニカム構造体、また、当該ハニカム構造体を成形することができる金型を提供することを目的とする。
 本開示の一態様は、互いに隣接する断面四角形状の複数のセルと、複数の上記セルを形成する複数のセル壁と、複数の上記セル壁の外周に設けられて上記セル壁を保持する外周壁と、を有しており、ハニカム中心軸に垂直な断面視で、以下の要件1~要件5を満たす、ハニカム構造体にある。
要件1:上記ハニカム構造体は、上記ハニカム中心軸を取り囲む四つの囲繞セルの上記セル壁、または、上記ハニカム中心軸がセル中心を通る中心セルの上記セル壁と同等の壁厚の上記セル壁を有する中心領域と、上記中心領域の外周において上記囲繞セルの上記セル壁、または、上記中心セルの上記セル壁の壁厚よりも壁厚が厚い上記セル壁を有する外周強化領域と、を有する。
要件2:上記ハニカム中心軸を通り、かつ、上記セル壁に平行な仮想平行線に接する複数の上記セルのうち、または、上記ハニカム中心軸を通り、かつ、上記セル壁の中点を通って上記セル壁に直交する仮想直交線上に沿って並ぶ複数の上記セルのうち、上記仮想平行線または上記仮想直交線に平行な二辺の上記セル壁の壁厚が異なる厚みとされた基準境界セルに着目したとき、
 上記基準境界セルにおける、上記仮想平行線または上記仮想直交線に平行な一方の薄い上記セル壁である薄壁の壁厚をt1、上記仮想平行線または上記仮想直交線に平行な他方の厚い上記セル壁である厚壁の壁厚をt3、上記仮想平行線または上記仮想直交線と直交するハニカム中心側の上記セル壁である中壁の壁厚をt2、上記仮想平行線または上記仮想直交線と直交するハニカム外周側の上記セル壁である外壁の壁厚をt4、としたとき、
 t1<t3、t2<t4、t1とt2とが同等、t3とt4とが同等である。
要件3:上記ハニカム構造体は、
 上記薄壁と、上記中壁と、上記薄壁と上記中壁との接続部からなる第1の基準セル頂点から上記薄壁と反対側に延びる上記セル壁と、上記第1の基準セル頂点から上記中壁と反対側に延びる上記セル壁と、の4つの上記セル壁によって構成される第1の基準十字ユニット、および、
 上記厚壁と、上記外壁と、上記厚壁と上記外壁との接続部からなる第2の基準セル頂点から上記厚壁と反対側に延びる上記セル壁と、上記第2の基準セル頂点から上記外壁と反対側に延びる上記セル壁と、の4つの上記セル壁によって構成される第2の基準十字ユニットを有する。
要件4:上記ハニカム構造体は、上記第1の基準セル頂点または上記第2の基準セル頂点を出発点とし、上記セル壁に沿って一つ飛び毎に配置されたセル頂点から四方に延び、かつ、当該セル頂点で互いに接続される4つの上記セル壁によって構成される十字ユニットを複数有する。
要件5:上記中心領域および上記外周強化領域の全ての上記十字ユニットにおいて、当該十字ユニットごとに上記セル壁の壁厚が同等とされている。
 本開示の他の態様は、互いに隣接する断面四角形状の複数のセルと、複数の上記セルを形成する複数のセル壁と、複数の上記セル壁の外周に設けられて上記セル壁を保持する外周壁と、を有するハニカム構造体を押し出し成形するために用いられる金型であって、
 上記ハニカム構造体の原料となる坏土が供給される複数の坏土供給孔を有する第1金型部と、
 上記坏土供給孔から上記坏土が導入され、上記ハニカム構造体における複数の上記セル壁となる部分を形成するための複数のスリットを有する第2金型部と、を有しており、
 上記第2金型部は、上記ハニカム中心軸を取り囲む四つの囲繞セルの上記セル壁、または、上記ハニカム中心軸がセル中心を通る中心セルの上記セル壁と同等の壁厚の上記セル壁となる部分を形成するための上記スリットを有する中心スリット部と、上記中心スリット部の外周において上記中心スリット部の上記スリットよりも幅が大きい上記スリットを有する外周スリット部と、を有しており、
 複数の上記坏土供給孔は、4つの上記スリットのスリット接続部からなるスリット頂点の全てには配置されておらず、上記スリットに沿って一つ飛び毎にある上記スリット頂点に合わせて配置されており、
 上記坏土供給孔が配置された上記スリット頂点から放射状に延びる4つの上記スリットの幅が、上記坏土供給孔ごとに同等とされている、金型にある。
 上記ハニカム構造体は、上記構成を有しており、中心領域および外周強化領域の全ての十字ユニットにおいて、当該十字ユニットごとにセル壁の壁厚が同等とされている。そのため、複数の坏土供給孔および複数のスリットを有する金型を用いた上記ハニカム構造体の押し出し成形時に、4つのスリットのスリット接続部からなるスリット頂点の全てではなく、スリットに沿って一つ飛び毎にあるスリット頂点のそれぞれに対して一つの坏土供給孔から坏土を導入し、スリット頂点から同等の幅とされた4つのスリット内に均一に坏土を広げることで、十字ユニットを形成することができる。つまり、上記ハニカム構造体は、十字ユニットごとにセル壁の壁厚が同等とされているので、各十字ユニットの形成時に、スリット頂点から延びる4つのスリット間で生じる坏土流れの抵抗差が小さくなる。それ故、上記ハニカム構造体は、外周強化領域を有していても、押し出し成形時に局所的な成形欠損が生じ難い。よって、上記ハニカム構造体は、成形欠陥による構造体強度の低下を抑制することができ、キャニング時の応力集中による破壊を抑制することが可能になる。
 上記金型は、上記構成を有している。そのため、上記金型を用いたハニカム構造体の押し出し成形時に、4つのスリットのスリット接続部からなるスリット頂点の全てではなく、スリットに沿って一つ飛び毎にあるスリット頂点のそれぞれに対して一つの坏土供給孔から坏土を導入し、スリット頂点から同等の幅とされた4つのスリット内に均一に坏土を広げることができる。つまり、上記金型は、坏土供給孔が配置されたスリット頂点から放射状に延びる4つのスリットの幅が坏土供給孔ごとに同等とされているので、4つのスリット間で生じる坏土流れの抵抗差を小さくすることができる。それ故、上記金型によれば、ハニカム構造体における外周強化領域の押し出し成形時に局所的な成形欠損が生じ難い。よって、上記金型は、成形欠陥による構造体強度の低下を抑制可能な上記ハニカム構造体を成形することができる。
 なお、請求の範囲に記載した括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものであり、本開示の技術的範囲を限定するものではない。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、実施形態1のハニカム構造体のセル壁構造を模式的に示した説明図であり、 図2は、ハニカム構造体が、ハニカム中心軸を取り囲む四つの囲繞セルを有する場合における、基準境界セル、基準十字ユニット、および、十字ユニットの概念を説明するための説明図であり、 図3は、外周強化領域における強化セル数の数え方を説明するための説明図であり、 図4は、実施形態2のハニカム構造体のセル壁構造を模式的に示した説明図であり、 図5は、ハニカム構造体が、ハニカム中心軸がセル中心を通る中心セルを有する場合における、基準境界セル、基準十字ユニット、および、十字ユニットの概念を説明するための説明図であり、 図6は、実施形態3のハニカム構造体のセル壁構造を模式的に示した説明図であり、 図7は、実施形態4のハニカム構造体のセル壁構造を模式的に示した説明図であり、 図8は、実施形態5のハニカム構造体のセル壁構造を模式的に示した説明図であり、 図9は、実施形態6の金型の一部を模式的に示した説明図であり、 図10は、実施形態6の金型における坏土供給孔およびスリット頂点の配置関係を説明するための説明図であり、 図11は、実施形態6の金型において、坏土供給孔からスリット頂点へ導入された坏土の流れ方を模式的に示した説明図であり、 図12は、実施形態6の金型において、供給率比を説明するための説明図であり、 図13は、実験例3における圧力損失の評価方法を説明するための説明図であり、 図14は、実験例3における、外周強化領域の強化セル数とアイソスタティック強度との関係を示したグラフであり、 図15は、実験例3における、外周強化領域の強化セル数と圧力損失との関係を示したグラフであり、 図16は、実験例3における、CAE解析によるハニカム構造体の外周壁からのセル数と応力比との関係を示したグラフであり、 図17は、実験例5における、外周強化領域における1セル目のセル壁の壁厚とアイソスタティック強度との関係を示したグラフであり、 図18は、実験例1における、試験体1にかかる従来のハニカム構造体のセル壁構造を模式的に示した説明図である。
(実施形態1)
 実施形態1のハニカム構造体について、図1~図3を用いて説明する。図1に例示されるように、本実施形態のハニカム構造体1は、セラミックス製(例えば、コージェライト等)であり、互いに隣接する断面四角形状の複数のセル2と、複数のセル2を形成する複数のセル壁3と、複数のセル壁3の外周に設けられて、セル壁3を保持する外周壁4と、を有している。なお、各図において、セル壁3の厚みは、便宜上、線の太さによって表されている。
 本実施形態において、セル2は、ハニカム構造体1の中心を通る軸であるハニカム中心軸10に沿って延びる貫通孔より構成されている。セル2は、浄化すべき排ガスが流される流路とされる部位である。なお、上記の断面四角形状にいう断面とは、ハニカム中心軸10に垂直な断面を意味する。また、上記の断面四角形状にいう四角形状とは、必ずしも正四角形に限られず、正四角形以外にも、角部が丸みを帯びている四角形や製造上意図せず歪んだ四角形等も含む意味である。複数のセル壁3は、互いに隣接するセル壁3と接続されて一体化されている。セル壁3のセル2側の壁面には、ハニカム構造体1の使用時に触媒成分が担持される。外周壁4は、ハニカム中心軸10に垂直な断面視で円形状の形状を呈している。外周壁4の内側面には、外周壁4の内側面寄りに配置された複数のセル壁3が接続されている。これにより、複数のセル壁3は、外周壁4にて一体に保持されている。
 ここで、ハニカム構造体1は、ハニカム中心軸10に垂直な断面視で、以下の要件1~要件5を満たしている。以下、各要件について説明する。
-要件1-
 ハニカム構造体は、ハニカム中心軸を取り囲む四つの囲繞セルのセル壁と同等の壁厚のセル壁を有する中心領域と、中心領域の外周において囲繞セルのセル壁の壁厚よりも壁厚が厚いセル壁を有する外周強化領域と、を有する。以下、要件1について説明する。
 図1に例示されるように、ハニカム構造体1は、中心領域11と、外周強化領域12と、を有している。ハニカム中心軸10を取り囲む四つのセル2を、囲繞セル200としたとき、中心領域11は、囲繞セル200のセル壁3と同等の壁厚のセル壁3を有している。各囲繞セル200は、それぞれ4つのセル壁3によって周囲のセル2と区画されている。なお、4つの囲繞セル200において、ハニカム中心軸10から四方に延びる各セル壁3は、互いに隣接する囲繞セル200同士により共有されている。囲繞セル200のセル壁3の壁厚には、具体的には、4つの囲繞セル200を構成する各セル壁3の壁厚の平均値が用いられる。中心領域11は、基本的には、外周強化領域12に比べ、壁厚が厚化されていないセル壁3を複数含んで構成されている。但し、中心領域11において、中心セル201の周囲に配置されているセル壁3の壁厚を算出するにあたり、後述する要件5との関係で外周強化領域12から中心領域11に一部入り込んでいる厚化されたセル壁3の壁厚は除かれる。
 外周強化領域12は、中心領域11の外周において囲繞セル200のセル壁3の壁厚よりも壁厚が厚いセル壁3を有している。つまり、外周強化領域12は、中心領域11に比べ、壁厚が厚化されたセル壁3を複数含んで構成されている。本実施形態では、図1に例示されるように、外周強化領域12における複数のセル壁3の壁厚は、いずれも同等とされている。なお、他の実施形態にて後述するが、外周強化領域12は、後述する要件5を満たす限りにおいて、壁厚の異なる厚化されたセル壁3を含むことができる。
-要件2-
 ハニカム中心軸を通り、かつ、セル壁に平行な仮想平行線に接する複数のセルのうち、仮想平行線に平行な二辺のセル壁の壁厚が異なる厚みとされた基準境界セルに着目したとき、
 基準境界セルにおける、仮想平行線に平行な一方の薄いセル壁である薄壁の壁厚をt1、仮想平行線に平行な他方の厚いセル壁である厚壁の壁厚をt3、仮想平行線と直交するハニカム中心側のセル壁である中壁の壁厚をt2、仮想平行線と直交するハニカム外周側のセル壁である外壁の壁厚をt4、としたとき、
 t1<t3、t2<t4、t1とt2とが同等、t3とt4とが同等である。以下、要件2について説明する。
 図1には、ハニカム中心軸10を通り、かつ、セル壁3に平行な破線L1、L190、L1180、L1270が示されている。図1では、ハニカム中心軸10を通り、かつ、セル壁3に平行なある1本の破線(図1では、12時の位置にある破線L1)の方向を0度方向としたとき、そこから時計回りに90度、180度、270度の位置にある各破線L1、L190、L1180、L1270の方向が、それぞれ、90度方向、180度方向、270度方向とされる。図2は、図1におけるL1、L190、L1180、L1270の位置周辺に配置されたセル2およびセル壁3を拡大して示したものである。
 図1に例示されるように、90度×n(但し、n=0、1、2、3)の4方向にある各破線L1、L190、L1180、L1270は、ハニカム中心軸10を通り、かつ、セル壁3に平行であるため、要件2における仮想平行線L1とされる。当該仮想平行線L1は、ハニカム中心軸10を通るハニカム径方向の直線である。90度×n(但し、n=0、1、2、3)の各方向において、仮想平行線L1に接して並ぶ複数のセル2を、外周壁4側からハニカム中心軸10方向に向かって順に見ていくと、図2に例示されるように、ある所において、隣接するセル2間でセル壁3の厚みが異なるセル2が現れる。そのセル2では、仮想平行線L1に平行な二辺のセル壁3が異なる厚みとされている。このセル2が、基準境界セル21とされる。
 この基準境界セル21に着目し、基準境界セル21における、仮想平行線L1に平行な一方の薄いセル壁3である薄壁3aの壁厚をt1とする。また、仮想平行線L1に平行な他方の厚いセル壁3である厚壁3cの壁厚をt3とする。また、仮想平行線L1と直交するハニカム中心側のセル壁3である中壁3bの壁厚をt2とする。また、仮想平行線L1と直交するハニカム外周側のセル壁3である外壁3dの壁厚をt4とする。そうすると、基準境界セル21は、t1<t3、t2<t4、t1とt2とが同等、t3とt4とが同等となっている。
 なお、上記において、基準境界セル21における薄壁3aの壁厚、厚壁3cの壁厚、中壁3bの壁厚、外壁3dの壁厚には、ぞれぞれ、90度×n(但し、n=0、1、2、3)の方向で同様に現れる各基準境界セル21における各薄壁3aの壁厚測定値の平均値、各厚壁3cの壁厚測定値の平均値、各中壁3bの壁厚測定値の平均値、各外壁3dの壁厚測定値の平均値が用いられる。
-要件3-
 ハニカム構造体は、
 薄壁と、中壁と、薄壁と中壁との接続部からなる第1の基準セル頂点から薄壁と反対側に延びるセル壁と、第1の基準セル頂点から中壁と反対側に延びるセル壁と、の4つのセル壁によって構成される第1の基準十字ユニット、および、
 厚壁と、外壁と、厚壁と外壁との接続部からなる第2の基準セル頂点から厚壁と反対側に延びるセル壁と、第2の基準セル頂点から外壁と反対側に延びるセル壁と、の4つのセル壁によって構成される第2の基準十字ユニットを有する。以下、要件3について説明する。
 図2に示されるように、薄壁3aと、中壁3bと、薄壁3aと中壁3bとの接続部からなる第1の基準セル頂点311から薄壁3aと反対側に延びるセル壁3eと、第1の基準セル頂点311から中壁3bと反対側に延びるセル壁3fと、の4つのセル壁3にて、第1の基準十字ユニット31が定義される。また、厚壁3cと、外壁3dと、厚壁3cと外壁3dとの接続部からなる第2の基準セル頂点322から厚壁3cと反対側に延びるセル壁3gと、第2の基準セル頂点322から外壁3dと反対側に延びるセル壁3hと、の4つのセル壁3にて、第2の基準十字ユニット32が定義される。
 なお、セル壁3eの壁厚、セル壁3fの壁厚、セル壁3gの壁厚、セル壁3hの壁厚は、ぞれぞれ、90度×n(但し、n=0、1、2、3)の方向で同様に現れる各基準境界セル21における各セル壁3eの壁厚測定値の平均値、各セル壁3fの壁厚測定値の平均値、各セル壁3gの壁厚測定値の平均値、各セル壁3hの壁厚測定値の平均値が用いられる。
-要件4-
 ハニカム構造体は、第1の基準セル頂点または第2の基準セル頂点を出発点とし、セル壁に沿って一つ飛び毎に配置されたセル頂点から四方に延び、かつ、当該セル頂点で互いに接続される4つのセル壁によって構成される十字ユニットを複数有する。以下、要件4について説明する。
 ハニカム構造体1は、複数のセル2の各セル頂点330から放射状に延びる4つのセル壁3によって構成されるセル壁群を有している。ここで、図1に示されるように、中心領域11、外周強化領域12のいずれの領域においても、セル壁群の選択の仕方は、2通り考えられる。つまり、一つは、ハニカム構造体1が、図1に示される丸印がつけられた各セル頂点330からそれぞれ放射状に延びる4つのセル壁3によって構成されるセル壁群を複数有しているとするものである。もう一つは、ハニカム構造体1が、図1に示される丸印のない各セル頂点330からそれぞれ放射状に延びる4つのセル壁3によって構成されるセル壁群を複数有しているとするものである。
 要件4は、上記の2通りのセル壁群の選択の仕方を1つに絞り込むための要件となる。具体的には、要件3にて定義された第1の基準セル頂点311または第2の基準セル頂点322を出発点とし、セル壁3に沿って一つ飛び毎に配置されたセル頂点330から四方に延び、かつ、当該セル頂点330で互いに接続される4つのセル壁3によって構成されるセル壁群が十字ユニット33とされる。したがって、本実施形態では、図1に示される丸印がつけられたセル頂点330からそれぞれ放射状に延びる4つのセル壁3によって構成されるセル壁群が、十字ユニット33となる。そのため、図1に示される丸印のないセル頂点330からそれぞれ放射状に延びる4つのセル壁3によって構成されるセル壁群は、十字ユニット33にはならない。
 ハニカム構造体1は、複数の十字ユニット33を有している。ハニカム構造体1は、具体的には、隣接する十字ユニット33同士が繋がることによってセル構造が形成されている。
-要件5-
 中心領域および外周強化領域の全ての十字ユニットにおいて、当該十字ユニットごとにセル壁の壁厚が同等とされている。以下、要件5について説明する。
 上述した要件5で決定される十字ユニット33は、断面四角形状のセル2を構成するための最小単位となるものである。本実施形態では、具体的には、図1に例示されるように、中心領域11内にセル頂点330がある各十字ユニット33は、各十字ユニット33ごとにセル壁3の壁厚が同等とされるとともに、各十字ユニット33同士のセル壁3の厚みも同等とされている。一方、外周強化領域12内にセル頂点330がある各十字ユニット33は、各十字ユニット33ごとにセル壁3の壁厚が同等とされるとともに、各十字ユニット33のセル壁3の壁厚は、いずれも、中心領域11内にセル頂点330がある各十字ユニット33のセル壁3の壁厚よりも厚化されている。
 ハニカム構造体1は、上記構成を有しており、中心領域11および外周強化12の全ての十字ユニット33において、当該十字ユニット33ごとにセル壁3の壁厚が同等とされている。そのため、例えば、実施形態6で後述する、複数の坏土供給孔510および複数のスリット520を有する金型5を用いたハニカム構造体1の押し出し成形時に、4つのスリット520のスリット接続部からなるスリット頂点521の全てではなく、スリット520に沿って一つ飛び毎にあるスリット頂点521のそれぞれに対して一つの坏土供給孔510から坏土を導入し、スリット頂点521から同等の幅とされた4つのスリット520内に均一に坏土を広げることで、十字ユニット33を形成することができる。つまり、ハニカム構造体1は、十字ユニット33ごとにセル壁3の壁厚が同等とされているので、各十字ユニット33の形成時に、スリット頂点521から延びる4つのスリット520間で生じる坏土流れの抵抗差が小さくなる。それ故、ハニカム構造体1は、外周強化領域12を有していても、押し出し成形時に局所的な成形欠損が生じ難い。よって、ハニカム構造体1は、成形欠陥による構造体強度の低下を抑制することができ、キャニング時の応力集中による破壊を抑制することが可能になる。
 ここで、ハニカム構造体1では、十字ユニット33を構成する4つのセル壁3の壁厚の最大値をtmax、最小値をtminとしたとき、100×(tmax-tmin)/tmaxの式より算出される壁厚差割合を、10%以下とすることができる。
 この構成によれば、ハニカム構造体1の各十字ユニット33の形成時に、スリット頂点521から延びる4つのスリット520間で生じる坏土流れの抵抗差を小さくしやすくなり、隣接する十字ユニット33間でセル壁3が繋がっていない状態等の成形欠損が生じ難くなる。そのため、この構成によれば、材料バラツキを考慮した場合でも、平均アイソスタティック強度および最小アイソスタティック強度の両方を十分に確保することが可能なハニカム構造体1が得られる。また、この構成によれば、成形欠陥による不良率の低減にも有利なハニカム構造体1が得られる。
 壁厚差割合は、ハニカム構造体1の構造体強度の確保を確実なものとするなどの観点から、好ましくは、10%未満、より好ましくは、9%以下、さらに好ましくは、8%以下、さらにより好ましくは、7%以下、さらに一層好ましくは、6%以下とすることができる。壁厚差割合は、壁厚差があっても、ハニカム構造体1の構造体強度を低下させるような成形欠陥を含む十字ユニット33が形成され難くなるなどの観点から、さらにより一層好ましくは、5%以下とすることができる。
 ハニカム構造体1において、外周強化領域12が、外周壁4からハニカム中心軸10方向に何セル目のセルまでの領域より構成されているかは、以下のようにして、判断される。
 90度×n(但し、n=0、1、2、3)の方向において、仮想平行線L1に接し、かつ、外周壁4に接するセル2を1セル目のセルとする。なお、外周壁4に接するセル2は、通常、断面四角形状となっていないが、このような不完全なものもセル2として数えられる。90度×n(但し、n=0、1、2、3)の各方向において、仮想平行線L1に接して並ぶ複数のセル2を、1セル目からハニカム中心軸10方向に向かって順に数えていく。すると、図3に例示されるように、外周壁4に接するセル2から(m+1)セル目で、囲繞セル200のセル壁3の壁厚と同等の壁厚のセル壁3によって構成される十字ユニット33を含むセル2が現れる。なお、mは、自然数である。この(m+1)セル目のセル2と一つ前のmセル目のセル2との境界をなすセル壁3を外内境界壁30とし、この外内境界壁30を壁厚方向で二等分する二等分線Tに接する仮想円Cを描く。仮想円Cは、ハニカム中心軸10と中心が一致する同心円である。この仮想円Cよりも外側にセル頂点330がある各十字ユニット33のセル壁3の壁厚が、囲繞セル200のセル壁3の壁厚よりも壁厚が厚く強化されているとき、外周強化領域12は、外周壁4からハニカム中心軸10方向にmセル目のセル2までの領域より構成されているということになる。つまり、外周強化領域12の強化セル数はmセルということになる。また、仮想円Cは、中心領域11と外周強化領域12との境界円となっている。但し、中心領域11は、上述した要件5との関係で、その外周縁に、囲繞セル200のセル壁3の壁厚よりも壁厚が厚いセル壁3を一部含むことができる。例えば、中心領域11の外周縁には、上述した要件5との関係で、外周強化領域12内にセル頂点330がある十字ユニット33のセル壁3の一部が入り込んでいてもよい。
 これを図1のハニカム構造体1について見ると、本実施形態は、外周強化領域12が、外周壁4からハニカム中心軸10方向に4セル目のセル2までの領域より構成されている例であり、外周強化領域12の強化セル数は4セルであることが理解される。また、本実施形態では、外周強化領域12にあるセル2を構成するセル壁3の壁厚は、外周壁4からハニカム中心軸10方向に1セル目のセル2~4セル目のセル2まででいずれも同等とされている例が示されている。
 ハニカム構造体1において、外周強化領域12は、外周壁4からハニカム中心軸10方向に少なくとも4セル目以上にあるいずれかのセル2までの領域より構成されていることが好ましい。強化セル数が4セル以上の外周強化領域12を有するハニカム構造体1は、強化セル数が4セルよりも少ない外周強化領域12を有するハニカム構造体1に比べ、アイソスタティック強度を向上させやすい利点があるからである。また、断面四角形状のセル2を有するハニカム構造体1では、CAE解析より外周部ほど高い応力が発生することがわかっている。特に、外周壁4からハニカム中心軸10方向に4セル目のセル2までの領域は、キャニング時の応力集中が大きい。そのため、上記構成とすることにより、キャニング時の応力集中による破壊を効果的に抑制することが可能となり、ハニカム構造体1の構造体強度の向上に有利となる。
 外周強化領域12は、上記効果を確実なものとするなどの観点から、より好ましくは、外周壁4からハニカム中心軸10方向に少なくとも5セル目以上にあるいずれかのセル2までの領域より構成することができる。
 一方、ハニカム構造体1において、外周強化領域12は、外周壁4からハニカム中心軸10方向に多くとも20セル目以内にあるいずれかのセル2までの領域より構成されていることが好ましい。外周強化領域12を、外周壁4からハニカム中心軸10方向に20セル目を超えるところにあるセル2までの領域より構成しても、ハニカム構造体1の大きな強度向上は望めない。また、ハニカム構造体1のセル数は、外周部ほど多くなる。そのため、外周部のセル壁3が厚化されると、ハニカム構造体1の圧力損失が増加する。特に、外周強化領域12の強化セル数が20セルを超えると、ハニカム構造体1の圧力損失が急激に大きくなりやすい。そのため、上記構成とすることにより、圧力損失の増加を抑制しつつ、成形欠陥による構造体強度の低下を抑制し、キャニング時の応力集中による破壊を抑制することが可能になる。
 外周強化領域12は、上記効果を確実なものとするなどの観点から、より好ましくは、外周壁4からハニカム中心軸10方向に多くとも18セル目以内にあるいずれかのセル2までの領域より構成することができる。なお、ハニカム構造体1におけるセル密度は、例えば、46.5セル/cm~155セル/cm(300cpsi~1000cpsi)などとすることができる。
(実施形態2)
 実施形態2のハニカム構造体1について、図4、図5を用いて説明する。なお、実施形態2以降において用いられる符号のうち、既出の実施形態において用いた符号と同一のものは、特に示さない限り、既出の実施形態におけるものと同様の構成要素等を表す。
 ハニカム構造体1は、ハニカム中心軸10に垂直な断面視で、以下の要件1~要件5を満たしている。以下、各要件について説明する。
-要件1-
 ハニカム構造体は、ハニカム中心軸がセル中心を通る中心セルのセル壁と同等の壁厚のセル壁を有する中心領域と、中心領域の外周において中心セルのセル壁の壁厚よりも壁厚が厚いセル壁を有する外周強化領域と、を有する。以下、要件1について説明する。
 図1に例示されるように、ハニカム構造体1は、中心領域11と、外周強化領域12と、を有している。ハニカム中心軸10がセル中心を通るセル2を、中心セル201としたとき、中心領域11は、中心セル201のセル壁3と同等の壁厚のセル壁3を有している。中心セル201は、4つのセル壁3によって周囲のセル2と区画されている。中心セル201のセル壁3の壁厚には、具体的には、中心セル201を取り囲む4つの各セル壁3の壁厚の平均値が用いられる。中心領域11は、基本的には、外周強化領域12に比べ、壁厚が厚化されていないセル壁3を複数含んで構成されている。但し、中心領域11において、中心セル201の周囲に配置されているセル壁3の壁厚を算出するにあたり、後述する要件5との関係で外周強化領域12から中心領域11に一部入り込んでいる厚化されたセル壁3の壁厚は除かれる。
 外周強化領域12は、中心領域11の外周において中心セル201のセル壁3の壁厚よりも壁厚が厚いセル壁3を有している。つまり、外周強化領域12は、中心領域11に比べ、壁厚が厚化されたセル壁3を複数含んで構成されている。本実施形態では、図4に例示されるように、外周強化領域12における複数のセル壁3の壁厚は、いずれも同等とされている。なお、他の実施形態にて後述するが、外周強化領域12は、後述する要件5を満たす限りにおいて、壁厚の異なる厚化されたセル壁3を含むことができる。
-要件2-
 ハニカム中心軸を通り、かつ、セル壁の中点を通ってセル壁に直交する仮想直交線上に沿って並ぶ複数のセルのうち、仮想直交線に平行な二辺のセル壁の壁厚が異なる厚みとされた基準境界セルに着目したとき、
 基準境界セルにおける、仮想直交線に平行な一方の薄いセル壁である薄壁の壁厚をt1、仮想直交線に平行な他方の厚いセル壁である厚壁の壁厚をt3、仮想直交線と直交するハニカム中心側のセル壁である中壁の壁厚をt2、仮想直交線と直交するハニカム外周側のセル壁である外壁の壁厚をt4、としたとき、
 t1<t3、t2<t4、t1とt2とが同等、t3とt4とが同等である。
 図4には、ハニカム中心軸10を通り、かつ、セル壁3の中点を通ってセル壁3に直交する破線L2、L290、L2180、L2270が示されている。図4では、ハニカム中心軸10を通り、かつ、セル壁3に直交するある1本の破線(図4では、12時の位置にある破線L2)の方向を0度方向としたとき、そこから時計回りに90度、180度、270度の位置にある各破線L2、L290、L2180、L2270の方向が、それぞれ、90度方向、180度方向、270度方向とされる。図5は、図4におけるL2、L290、L2180、L2270の位置周辺の配置されたセル2およびセル壁3を拡大して示したものである。
 図4に例示されるように、90度×n(但し、n=0、1、2、3)の4方向にある各破線L2、L290、L2180、L2270は、ハニカム中心軸10を通り、かつ、セル壁3の中点を通ってセル壁3に直交しているため、要件1における仮想直交線L2とされる。当該仮想直交線L2は、ハニカム中心軸10を通るハニカム径方向の直線である。90度×n(但し、n=0、1、2、3)の各方向において、仮想直交線L2上に沿って並ぶ複数のセル2を、外周壁4側からハニカム中心軸10方向に向かって順に見ていくと、図5に例示されるように、ある所において、隣接するセル2間でセル壁3の厚みが異なるセル2が現れる。そのセル2では、仮想直交線L2に平行な二辺のセル壁3が異なる厚みとされている。このセル2が、基準境界セル21とされる。以降は、実施形態1で説明した要件2と同様であるので、説明を省略する。また、要件3~要件5についも、基本的には、実施形態1と同様であるため、説明を省略する。
 上述した実施形態1のハニカム構造体1は、ハニカム中心軸10が4つの囲繞セル200により取り囲まれるセル構造を有している。これに対し、本実施形態のハニカム構造体1は、ハニカム中心軸10がセル中心を通る中心セル201を備えるセル構造を有している。本実施形態のハニカム構造体1も、実施形態1のハニカム構造体1と同様に、外周強化領域12を有していても、押し出し成形時に局所的な成形欠損が生じ難い。よって、本実施形態のハニカム構造体1は、成形欠陥による構造体強度の低下を抑制することができ、キャニング時の応力集中による破壊を抑制することができる。その他の構成および作用効果は、実施形態1と同様である。
 なお、本実施形態のハニカム構造体1の外周強化領域12における強化セル数の数え方は、実施形態1にて説明した強化セル数の数え方における「仮想平行線L1に接して並ぶ複数のセル2」を、本実施形態に合わせて「仮想直交線L2上に沿って並ぶ複数のセル2」等と適宜読み替えることによって理解することができる。
(実施形態3)
 実施形態3のハニカム構造体について、図6を用いて説明する。
 図6に例示されるように、本実施形態のハニカム構造体1は、外周強化領域12が、外周壁4からハニカム中心軸10方向に4セル目のセル2までの領域より構成されている例であり、外周強化領域12の強化セル数が4セルである点で、実施形態1のハニカム構造体1と同様である。
 しかし、本実施形態では、外周強化領域12にあるセル2を構成するセル壁3の壁厚が、外周壁4からハニカム中心軸10方向に向かって小さくなっている点で、実施形態1のハニカム構造体1と異なっている。
 すなわち、本実施形態では、外周強化領域12にあるセル2を構成するセル壁3の壁厚が、外周壁4からハニカム中心軸10方向に1セル目のセル2で最大となっており、かつ、外周壁4からハニカム中心軸10方向に向かって徐々に小さくなる構成とされている。
 この構成によれば、外周強化領域12内におけるセル2のセル壁3の壁厚が一様に厚くされているハニカム構造体1に比べ、圧力損失の増加を抑制しつつ、ハニカム構造体1の構造体強度を確保することが可能になる。これは、外周強化領域12内におけるセル2のセル壁3の壁厚を一様に厚くする場合に比べ、ハニカム中心部に向けて徐々に応力を低減することが可能となり、かつ、圧力損失への影響を最小限にすることが可能になるためである。
 なお、外周強化領域12において、外周壁4からハニカム中心軸10方向にXセル目(但し、Xは、2以上、外周強化領域の強化セル数以下の自然数)のセル2を構成するセル壁3の壁厚には、90度×n(但し、n=0、1、2、3)の各方向におけるXセル目のセル2を構成する各セル壁3の壁厚測定値の平均値が用いられる。
 本実施形態では、具体的には、外周強化領域12内に、セル壁3の壁厚が異なる領域が、中心セル20のセル中心を中心とする同心円状に複数存在している。以下、外周強化領域12内において、外周壁4からXセル目のセル2を含む領域と、一つ前の(X-1)セル目のセル2を含む領域との間で、セル壁3の壁厚を異ならせる場合を例に用いて説明する。
 基本的には、90度×n(但し、n=0、1、2、3)の各方向において仮想平行線L1に接して並ぶ複数のセル2の部分で見て、実施形態1で上述した外周強化領域12における強化セル数の考え方と同様にして考えればよい。すなわち、上記の例では、Xセル目のセル2と(X-1)セル目のセル2との境界をなすセル壁3を内部境界壁300とし、この内部境界壁300を壁厚方向で二等分する二等分線(不図示)に接する仮想円Ciを描く。仮想円Ciは、ハニカム中心軸10と中心が一致する同心円である。この仮想円Ci上および仮想円Ciよりも外側にセル頂点330がある各十字ユニット33のセル壁3の壁厚を、仮想円Ciよりも内側にセル頂点330がある各十字ユニット33のセル壁3の壁厚よりも厚くする。これにより、外周強化領域12内において、外周壁4から(X-1)セル目のセルを含む領域のセル壁3の壁厚を、外周壁4からXセル目のセル2を含む領域のセル壁3の壁厚よりも厚くすることができる。
 図6に例示されるハニカム構造体1は、外周強化領域12において、外周壁4から4セル目のセル2を含む領域のセル壁3の壁厚<外周壁4から3セル目のセル2を含む領域のセル壁3の壁厚<外周壁4から2セル目のセル2を含む領域のセル壁3の壁厚<外周壁4から1セル目のセル2を含む領域のセル壁3の壁厚とされている例である。
 なお、図6に例示されるハニカム構造体1において、外周強化領域12内に描かれた仮想円Ciは、1セル目の領域と2セル目の領域との境界をなす境界円である。同様に、外周強化領域12内に描かれた仮想円Ciは、2セル目の領域と3セル目の領域との境界をなす境界円である。外周強化領域12内に描かれた仮想円Ciは、3セル目の領域と4セル目の領域との境界をなす境界円である。また、外周壁4と仮想円Ciとの間にセル頂点330がある各十字ユニット33は、いずれも、セル壁3の壁厚が同等とされている。同様に、仮想円Ciと仮想円Ciとの間にセル頂点330がある各十字ユニット33は、いずれも、セル壁3の壁厚が同等とされている。仮想円Ciと仮想円Ciとの間にセル頂点330がある各十字ユニット33は、いずれも、セル壁3の壁厚が同等とされている。仮想円Ciと仮想円Cとの間にセル頂点がある各十字ユニット33は、いずれも、セル壁3の壁厚が同等とされている。
 本実施形態において、外周強化領域12にある、外周壁4からハニカム中心軸10方向に1セル目のセル2を構成するセル壁3の壁厚は、中心領域11にある囲繞セル200を構成するセル壁3の壁厚の1.4倍以上、好ましくは、1.5倍以上とすることができる。
 この構成によれば、キャニング時に最も応力集中の起こる1セル目の領域に発生する応力を低減しやすくなる。そのため、この構成によれば、ハニカム構造体1の構造体強度の向上に有利である。
 なお、中心領域11にある囲繞セル200を構成するセル壁3の壁厚には、囲繞セル200を構成する各セル壁3の壁厚測定値の平均値が用いられる。その他の構成および作用効果は、実施形態1と同様である。
(実施形態4)
 実施形態4のハニカム構造体について、図7を用いて説明する。
 図7に例示されるように、本実施形態のハニカム構造体1は、ハニカム中心軸10がセル中心を通る中心セル20を有する例である。なお、本実施形態における、外周強化領域12における強化セル数の考え方も、基本的には、実施形態3に倣って、90度×n(但し、n=0、1、2、3)の各方向において仮想直交線L2上に沿って並ぶ複数のセル2の部分で見て、同様に考えることができる。
 本実施形態のハニカム構造体1は、外周強化領域12が、外周壁4からハニカム中心軸10方向に4セル目のセル2までの領域より構成されている例であり、外周強化領域12の強化セル数は4セルである。また、ハニカム構造体1は、外周強化領域12において、外周壁4から4セル目のセル2を含む領域のセル壁3の壁厚<外周壁4から3セル目のセル2を含む領域のセル壁3の壁厚<外周壁4から2セル目のセル2を含む領域のセル壁3の壁厚<外周壁4から1セル目のセル2を含む領域のセル壁3の壁厚とされている。
 本実施形態において、外周強化領域12にある、外周壁4からハニカム中心軸10方向に1セル目のセル2を構成するセル壁3の壁厚は、中心領域11にある中心セル201を構成するセル壁3の壁厚の1.4倍以上、好ましくは、1.5倍以上とすることができる。
 この構成によれば、キャニング時に最も応力集中の起こる1セル目の領域に発生する応力を低減しやすくなる。そのため、この構成によれば、ハニカム構造体1の構造体強度の向上に有利である。
 なお、中心領域11にある中心セル201を構成するセル壁3の壁厚には、中心セル201を構成する各セル壁3の壁厚測定値の平均値が用いられる。その他の構成および作用効果は、実施形態3と同様である。
(実施形態5)
 実施形態5のハニカム構造体について、図8を用いて説明する。
 図8に例示されるように、本実施形態のハニカム構造体1は、外周強化領域12が、外周壁4からハニカム中心軸10方向に3セル目のセル2までの領域より構成されている例であり、外周強化領域12の強化セル数は3セルである。また、ハニカム構造体1は、外周強化領域12において、外周壁4から3セル目のセル2を含む領域のセル壁3の壁厚<外周壁4から2セル目のセル2を含む領域のセル壁3の壁厚<外周壁4から1セル目のセル2を含む領域のセル壁3の壁厚とされている。その他の構成および作用効果は、実施形態3と同様である。
(実施形態6)
 実施形態6の金型5について、図9~図11を用いて説明する。本実施形態の金型5は、互いに隣接する断面四角形状の複数のセル2と、複数のセル2を形成する複数のセル壁3と、複数のセル壁3の外周に設けられてセル壁3を保持する外周壁4と、を有するハニカム構造体1を押し出し成形するために用いられる金型である。なお、ハニカム構造体1の各構成については、上述した実施形態1~5の記載を適宜参照することができる。
 図9~図11に例示されるように、本実施形態の金型5は、第1金型部51と、第2金型部52と、を有している。第1金型部51は、ハニカム構造体1の原料となる坏土が供給される複数の坏土供給孔510を有している。本実施形態では、坏土供給孔510は、円柱形状を有する貫通孔より構成されている。なお、坏土には、通常、ハニカム構造体1のセル壁3の原料が粘土状に調製されたものが用いられる。
 第2金型部52は、坏土供給孔510から坏土が導入され、ハニカム構造体1における複数のセル壁3となる部分を形成するための複数のスリット520を有している。また、第2金型部52は、中心スリット部(不図示)と、外周スリット部(不図示)と、を有している。中心スリット部は、ハニカム中心軸10を取り囲む四つの囲繞セル200のセル壁3、または、ハニカム中心軸10がセル中心を通る中心セル20のセル壁3と同等の壁厚のセル壁3となる部分を形成するため部位である。つまり、中心スリット部は、ハニカム構造体1の中心領域11を形成するための部位である。一方、外周スリット部は、中心スリット部の外周において中心スリット部のスリット520よりも幅が大きいスリット520を有する部位である。つまり、外周スリット部は、ハニカム構造体1の外周強化領域12を形成するための部位である。
 図10に、坏土供給孔510およびスリット頂点521の配置関係を示す。なお、図10は、ハニカム中心軸10を取り囲む四つの囲繞セル200を有するハニカム構造体1を成形する金型5の一例である。また、図10において、各スリット520は、便宜上、線で表されている。また、図10では、各スリット520の幅の大小関係、中心スリット部および外周スリット部は省略されている。図10に例示されるように、金型5において、第1金型部51が有する複数の坏土供給孔510は、第2金型部52が有する、4つのスリット520のスリット接続部からなるスリット頂点521の全てには配置されていない。第1金型部51の坏土供給孔510は、第2金型部52のスリット520に沿って一つ飛び毎にあるスリット頂点521に合わせて配置されている。
 金型5は、上記構成を有している。そのため、金型5を用いたハニカム構造体1の押し出し成形時に、4つのスリット520のスリット接続部からなるスリット頂点521の全てではなく、図10に示されるように、スリット520に沿って一つ飛び毎にあるスリット頂点521のそれぞれに対して一つの坏土供給孔510から坏土を導入し、図11に示されるように、スリット頂点521から同等の幅とされた4つのスリット520内に均一に坏土を広げることができる。つまり、金型5は、坏土供給孔510が配置されたスリット頂点521から放射状に延びる4つのスリット520の幅が坏土供給孔510ごとに同等とされているので、4つのスリット520間で生じる坏土流れの抵抗差を小さくすることができる。それ故、金型5によれば、ハニカム構造体1の外周強化領域12の押し出し成形時に局所的な成形欠損が生じ難い。
 よって、金型5は、成形欠陥による構造体強度の低下を抑制可能なハニカム構造体1を成形することができる。実施形態1~5に例示されるハニカム構造体1は、具体的には、例えば、次にようにして成形することができる。
 各ハニカム構造体1における複数のセル壁3の壁厚およびセル壁配置に対応するスリット幅およびスリット配置を有する第2金型部52と、第2金型部52における一つ飛び毎にあるスリット頂点521に孔中心を合わせて坏土供給孔510が配置された第1金型部51とを有する金型5を準備する。この際、金型5における第1金型部51の坏土供給孔510の配置は、成形すべきハニカム構造体1の各十字ユニット33のセル頂点320(図1、図4、図6~図8で示される各丸印の部分)の配置と一致している。次いで、押し出し工程にて、坏土供給孔510に坏土を供給するとともにスリット頂点521に坏土を導入する。これにより、スリット頂点521に導入された坏土は、スリット頂点521から放射状に延びる4つのスリット520内に押し広げられる。また、スリット520内で押し広げられた坏土が、同様にして隣接する坏土供給孔510からスリット頂点521に導入されてスリット520内で押し広げられた坏土と一体化され、金型5から成形体が押し出される。以降は、公知の工程を適用することができる。以上により、実施形態1~5に例示されるハニカム構造体1を製造することができる。
 ここで、金型5では、坏土供給孔510が配置されたスリット頂点521から放射状に延びる4つのスリット520の幅の最大値をwmax、最小値をwminとしたとき、100×(wmax-wmin)/wmaxの式より算出される幅差割合を、10%以下とすることができる。
 この構成によれば、ハニカム構造体1の各十字ユニット33の形成時に、スリット頂点521から延びる4つのスリット520間で生じる坏土流れの抵抗差を小さくしやすくなり、隣接する十字ユニット33間でセル壁3が繋がっていない等の成形欠損が生じ難くなる。そのため、この構成によれば、材料バラツキを考慮した場合でも、平均アイソスタティック強度および最小アイソスタティック強度の両方を十分に確保することが可能なハニカム構造体1が得られる。また、この構成によれば、成形欠陥による不良率の低減にも有利なハニカム構造体1が得られる。
 幅差割合は、押し出し成形によるハニカム構造体1の構造体強度の確保を確実なものとするなどの観点から、好ましくは、10%未満、より好ましくは、9%以下、さらに好ましくは、8%以下、さらにより好ましくは、7%以下、さらに一層好ましくは、6%以下とすることができる。幅差割合は、上述したハニカム構造体1の壁厚差割合を5%以下しやすくなるなどの観点から、さらにより一層好ましくは、5%以下とすることができる。
 また、金型5において、坏土供給孔510の孔径は、供給率比が一定となるように構成されているとよい。この構成によれば、各坏土供給孔510から各スリット520へ供給される坏土量を均一にしやすくなる。そのため、この構成によれば、十字ユニット33ごとにセル壁3の壁厚が同等とされたハニカム構造体1を得やすい金型5が得られる。なお、上記供給率比は、図12に示されるように、スリット頂点521から放射状に延びる4つのスリット520の断面積/坏土供給孔510の断面積で算出される。上記断面は、坏土供給孔510の孔軸に垂直な断面である。
 また、金型5は、中心スリット部につながる坏土供給孔510の孔径<外周スリット部につながる坏土供給孔510の孔径の関係を満たしていることが好ましい。この構成によれば、厚化させたスリット520の幅に応じて供給すべき坏土量が増えるため、それに応じて供給する孔径を大きくすることにより、スリット幅差に応じたセル壁厚差を有する成形体を効果的に得ることが可能になる。
<実験例1>
 表1に示されるように、外周強化領域における強化セル数およびセル壁の壁厚構成が異なるハニカム構造体より構成される各試験体を作製し、アイソスタティック強度(n=20の平均値、以下省略)を測定した。なお、本実験例では、ハニカム中心軸を取り囲む四つの囲繞セルを有するハニカム構造体を作製した。
 具体的には、試験体3は、図6に例示されるように、中心領域および外周強化領域の全ての十字ユニットにおいて、当該十字ユニットごとにセル壁の壁厚が同等とされており、要件5を満たしている。また、試験体4は、試験体3と強化セル数が異なるが、基本的には、試験体3と同様である。これらに対して、試験体1、2は、上記要件5を満たしていない。具体的には、試験体1は、従来のハニカム構造体であり、図18に示されるように、各セル頂点から放射状に延びる4つのセル壁のうち、少なくとも1つのセル壁の壁厚が残りのセル壁の壁厚と異なる部位を含んでいる。図示はしないが、試験体2も、試験体1と同様である。
 代表として試験体1および試験体3を用いてその詳細を説明する。本実験例では、試験体のハニカム構造体における外周壁の厚みは、0.35mm、外形は、直径117mm×高さ100mmとした。金型のスリットは、次の通りとした。
 ・中心スリット部におけるスリット幅:70μm、スリットピッチ:1.19mm、スリット頂点におけるR寸法:0.1mm
 ・外周スリット部における1セル目のスリット幅:117μm、スリットピッチ:1.19mm、スリット頂点におけるR寸法:0.1mm
 ・外周スリット部における2セル目のスリット幅:103μm、スリットピッチ:1.19mm、スリット頂点におけるR寸法:0.1mm
 ・外周スリット部における3セル目のスリット幅:90μm、スリットピッチ:1.19mm、スリット頂点におけるR寸法:0.1mm
 ・外周スリット部における4セル目のスリット幅:77μm、スリットピッチ:1.19mm、スリット頂点におけるR寸法:0.1mm
 上記の金型を用いた場合、押し出し成形されるハニカム構造体のセル壁は、次の通りとなった。
 ・中心領域におけるセル壁の壁厚:65μm、セル壁ピッチ:1.1mm、セル頂点におけるR寸法:0.15mm
 ・外周強化領域における1セル目のセル壁の壁厚:112μm、セル壁ピッチ:1.1mm、セル頂点におけるR寸法:0.15mm
 ・外周強化領域における2セル目のセル壁の壁厚:98μm、セル壁ピッチ:1.1mm、セル頂点におけるR寸法:0.15mm
 ・外周強化領域における3セル目のセル壁の壁厚:85μm、セル壁ピッチ:1.1mm、セル頂点におけるR寸法:0.15mm
 ・外周強化領域における4セル目のセル壁の壁厚:72μm、セル壁ピッチ:1.1mm、セル頂点におけるR寸法:0.15mm
Figure JPOXMLDOC01-appb-T000001
 表1から以下のことがわかる。試験体1、2は、アイソスタティック強度が低かった。この原因について調査したところ、試験体1、2では、外周部にセル壁の壁厚の薄い部位や坏土不足などの成形欠陥が見られた。そして、当該成形欠陥の部分でのセル壁の割れが確認された。これは、試験体1、2では、そのセル壁構造に起因して、金型の一つの坏土供給孔から幅の異なる複数のスリットへ坏土を導入せざるをえない箇所が生じ、その結果、幅が狭く、坏土の流れ抵抗の高いスリットに坏土が均一に流れ難くかったことによる。
 これらに対し、試験体3、4は、試験体1、2に比較して、高いアイソスタティック強度を示した。これは、試験体3、4では、十字ユニットごとにセル壁の壁厚が同等とされているので、各十字ユニットの形成時に、スリット頂点から延びる4つのスリット間で生じる坏土流れの抵抗差が小さくなり、局所的な成形欠損が生じ難かったことによる。
<実験例2>
 表2に示されるように、実験例1の試験体3と同様にして、十字ユニットにおける壁厚差割合が異なる各試験体を作製し、アイソスタティック強度を測定した。
 なお、壁厚差の計測は、ミツトヨ社製、CNC画像処理装置「QV-H4A」を用い、光透過させた試験体をカメラで観察し、セル壁の壁厚を全数自動計測することにより行った。上記装置によれば、成形欠陥による異常な計測値の確認や、成形欠陥の画像での確認が可能である。また、上記装置によれば、成形欠陥の部分では、測定エラーとしてセル壁の壁厚が0とされる。
Figure JPOXMLDOC01-appb-T000002
 表2から以下のことがわかる。試験体5、6によれば、アイソスタティック強度(平均値)の低下はなく、最大アイソスタティック強度および最小アイソスタティック強度ともに同レベルであることがわかる。この結果から、壁厚差割合が5%以下であれば、壁厚差があっても、ハニカム構造体の構造体強度を低下させるような成形欠陥を含む十字ユニットが形成され難いことがわかる。
 また、試験体7、8によれば、最大アイソスタティック強度は、ほとんど変わらないものの、最小アイソスタティック強度の低下が見られた。試験体8の破壊前画像を見ると、壁厚差割合が10%である一部の十字ユニットにおいて、セル壁の欠けが確認された。この結果から、壁厚差割合が10%に近づくほど、セル壁の欠けが出る確率が増加すると考えられる。また、壁厚差割合が小さいほど、アイソスタティック強度を確保しやすくなるといえる。これは、成形欠陥の減少により、低いアイソスタティック強度を示すものが少なくなることによる。
 これらに対し、試験体9のように、壁厚差割合が10%を超えると、n=20のすべてのワークに成形欠陥が確認され、低いアイソスタティック強度しか示さなかった。
<実験例3>
 表3に示されるように、実験例1の試験体3と同様にして、外周強化領域における強化セル数の異なる各試験体を作製し、アイソスタティック強度および圧力損失を測定した。
 なお、圧力損失の測定は、次のようにして実施した。図13に模式的に示されるように、配管部91と、ハニカム構造体1が内部に収容される収容部92と、配管部91と収容部92との間を繋ぐ拡径部93と、を有する評価コンバータ9を準備した。配管部91の直径φ1は、50.5mmとした。収容部92の直径φ2は、123mmとした。拡径部93の長さl1は、55mmとした。ハニカム構造体1の一端面と当該一端面側の拡径部93との距離l2は、5mmとした。ハニカム構造体1の他端面と当該他端面側の拡径部93との距離l3は、10mmとした。ハニカム構造体1に流す排ガスのガス流量は、7m/分、ガス温度は、600度とした。排ガスを発生させるエンジンには、4.6L V8エンジンを用いた。
Figure JPOXMLDOC01-appb-T000003
 表3、図14~図16から以下のことがわかる。表3、図14および図15によれば、外周強化領域を、外周壁からハニカム中心軸方向に少なくとも4セル目以上にあるいずれかのセルまでの領域より構成する、つまり、外周強化領域の強化セル数を少なくとも4セル以上とすることにより、外周強化領域の強化セル数が4セルよりも少ない場合に比べ、アイソスタティック強度を向上させやすくなることがわかる。ここで、図16に、CAE解析によるハニカム構造体の外周壁からのセル数と応力比との関係を示す。図16によれば、断面四角形状のセルを有するハニカム構造体では、外周部ほど高い応力が発生することがわかる。特に、外周壁からハニカム中心軸方向に4セル目のセルまでの領域では、発生する応力が急激に高くなることがわかる。この結果からも、外周強化領域の強化セル数を少なくとも4セル以上とすることにより、キャニング時の応力集中による破壊を効果的に抑制することが可能となり、ハニカム構造体の構造体強度の向上に有利であることがわかる。
 一方、表3および図15によれば、外周強化領域の強化セル数が20セルを超えると、ハニカム構造体の圧力損失が急激に大きくなる傾向が見られた。これは、排ガスが集中しやすいハニカム中心部付近までセル壁を厚化し始めているためにその影響が大きく出たことなどが原因として考えられる。この結果によれば、圧力損失の増加を抑制しつつ、成形欠陥による構造体強度の低下を抑制し、キャニング時の応力集中による破壊を抑制するなどの観点から、外周強化領域の強化セル数を20セル以内とすることが好ましいことがわかる。
<実験例4>
 表4に示されるように、実験例1の試験体3と同様にして、外周強化領域における強化セル数およびセル壁の壁厚構成の異なる各試験体を作製し、アイソスタティック強度および実験例3で説明した圧力損失を測定した。本実験例では、具体的には、外周強化領域にあるセルを構成するセル壁の壁厚が、外周壁からハニカム中心軸方向に1セル目のセルから外周強化領域の最終セルまででいずれも同等とされている試験体と、外周強化領域にあるセルを構成するセル壁の壁厚が、外周壁からハニカム中心軸方向に1セル目のセルで最大となっており、かつ、外周壁からハニカム中心軸方向に向かって徐々に小さくなる構成を有する試験体と、を作製した。
Figure JPOXMLDOC01-appb-T000004
 表4から以下のことがわかる。表4の試験体21と22、試験体23と24、試験体25と26とをそれぞれ比較すると、外周強化領域にあるセルを構成するセル壁の壁厚が、外周壁からハニカム中心軸方向に1セル目のセルで最大となっており、かつ、外周壁からハニカム中心軸方向に向かって徐々に小さくなる構成を有する場合には、圧力損失の増加を抑制しつつ、ハニカム構造体の構造体強度を確保することが可能になることがわかる。これは、外周強化領域内におけるセルのセル壁の壁厚を一様に厚くする場合に比べ、ハニカム中心部に向けて徐々に応力を低減することが可能となり、かつ、圧力損失への影響を最小限にすることが可能になることによる。
<実験例5>
 表5に示されるように、実験例1の試験体3と同様にして、外周強化領域におけるセル壁の壁厚構成が異なる各試験体を作製し、アイソスタティック強度を測定した。本実験例では、具体的には、中心領域にある中心セルを構成するセル壁の壁厚(平均値)は、65μmとされている。また、外周強化領域内におけるセルのセル壁の壁厚は、一様に厚く形成されている。そして、外周強化領域にある、外周壁からハニカム中心軸方向に1セル目のセルを構成するセル壁の壁厚(平均値)は、表5に示される通りとされている。
Figure JPOXMLDOC01-appb-T000005
 表5、図17から以下のことがわかる。表5、図17によれば、1セル目のセル壁の壁厚を、中心セルのセル壁の壁厚の1.4倍以上とすることにより、ハニカム構造体のアイソスタティック強度を向上させやすくなることがわかる。この結果から、上記構成を採用することにより、キャニング時に最も応力集中の起こる1セル目の領域に発生する応力を低減しやすくなり、ハニカム構造体の構造体強度の向上に有利になることがわかる。
 本開示は、上記各実施形態、各実験例に限定されるものではなく、その要旨を逸脱しない範囲において種々の変更が可能である。また、各実施形態、各実験例に示される各構成は、それぞれ任意に組み合わせることができる。すなわち、本開示は、実施形態に準拠して記述されたが、本開示は、当該実施形態や構造等に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (11)

  1.  互いに隣接する断面四角形状の複数のセル(2)と、複数の上記セルを形成する複数のセル壁(3)と、複数の上記セル壁の外周に設けられて上記セル壁を保持する外周壁(4)と、を有しており、ハニカム中心軸(10)に垂直な断面視で、以下の要件1~要件5を満たす、ハニカム構造体(1)。
    要件1:上記ハニカム構造体は、上記ハニカム中心軸を取り囲む四つの囲繞セル(200)の上記セル壁、または、上記ハニカム中心軸がセル中心を通る中心セル(201)の上記セル壁と同等の壁厚の上記セル壁を有する中心領域(11)と、上記中心領域の外周において上記囲繞セルの上記セル壁、または、上記中心セルの上記セル壁の壁厚よりも壁厚が厚い上記セル壁を有する外周強化領域(12)と、を有する。
    要件2:上記ハニカム中心軸を通り、かつ、上記セル壁に平行な仮想平行線(L1)に接する複数の上記セルのうち、または、上記ハニカム中心軸を通り、かつ、上記セル壁の中点を通って上記セル壁に直交する仮想直交線(L2)上に沿って並ぶ複数の上記セルのうち、上記仮想平行線または上記仮想直交線に平行な二辺の上記セル壁の壁厚が異なる厚みとされた基準境界セル(21)に着目したとき、
     上記基準境界セルにおける、上記仮想平行線または上記仮想直交線に平行な一方の薄い上記セル壁である薄壁(3a)の壁厚をt1、上記仮想平行線または上記仮想直交線に平行な他方の厚い上記セル壁である厚壁(3c)の壁厚をt3、上記仮想平行線または上記仮想直交線と直交するハニカム中心側の上記セル壁である中壁(3b)の壁厚をt2、上記仮想平行線または上記仮想直交線と直交するハニカム外周側の上記セル壁である外壁(3d)の壁厚をt4、としたとき、
     t1<t3、t2<t4、t1とt2とが同等、t3とt4とが同等である。
    要件3:上記ハニカム構造体は、
     上記薄壁と、上記中壁と、上記薄壁と上記中壁との接続部からなる第1の基準セル頂点(311)から上記薄壁と反対側に延びる上記セル壁と、上記第1の基準セル頂点から上記中壁と反対側に延びる上記セル壁と、の4つの上記セル壁によって構成される第1の基準十字ユニット(31)、および、
     上記厚壁と、上記外壁と、上記厚壁と上記外壁との接続部からなる第2の基準セル頂点(322)から上記厚壁と反対側に延びる上記セル壁と、上記第2の基準セル頂点から上記外壁と反対側に延びる上記セル壁と、の4つの上記セル壁によって構成される第2の基準十字ユニット(32)を有する。
    要件4:上記ハニカム構造体は、上記第1の基準セル頂点または上記第2の基準セル頂点を出発点とし、上記セル壁に沿って一つ飛び毎に配置されたセル頂点(330)から四方に延び、かつ、当該セル頂点で互いに接続される4つの上記セル壁によって構成される十字ユニット(33)を複数有する。
    要件5:上記中心領域および上記外周強化領域の全ての上記十字ユニットにおいて、当該十字ユニットごとに上記セル壁の壁厚が同等とされている。
  2.  上記十字ユニットを構成する4つの上記セル壁の壁厚の最大値をtmax、最小値をtminとしたとき、
     100×(tmax-tmin)/tmaxの式より算出される壁厚差割合が10%以下である、請求項1に記載のハニカム構造体。
  3.  上記壁厚差割合が5%以下である、請求項2に記載のハニカム構造体。
  4.  上記外周強化領域は、上記外周壁から上記ハニカム中心軸方向に少なくとも4セル目以上にあるいずれかの上記セルまでの領域より構成されている、請求項1~3のいずれか1項に記載のハニカム構造体。
  5.  上記外周強化領域は、上記外周壁から上記ハニカム中心軸方向に多くとも20セル目以内にあるいずれかの上記セルまでの領域より構成されている、請求項1~4のいずれか1項に記載のハニカム構造体。
  6.  上記外周強化領域にある上記セルを構成する上記セル壁の壁厚は、上記外周壁から上記ハニカム中心軸方向に1セル目の上記セルで最大となっており、かつ、上記外周壁から上記ハニカム中心軸方向に向かって徐々に小さくなっている、請求項1~5のいずれか1項に記載のハニカム構造体。
  7.  上記外周強化領域にある、上記外周壁から上記ハニカム中心軸方向に1セル目の上記セルを構成する上記セル壁の壁厚は、上記中心領域にある上記囲繞セルまたは上記中心セルを構成する上記セル壁の壁厚の1.4倍以上である、請求項1~6のいずれか1項に記載のハニカム構造体。
  8.  互いに隣接する断面四角形状の複数のセル(2)と、複数の上記セルを形成する複数のセル壁(3)と、複数の上記セル壁の外周に設けられて上記セル壁を保持する外周壁(4)と、を有するハニカム構造体(1)を押し出し成形するために用いられる金型(5)であって、
     上記ハニカム構造体の原料となる坏土が供給される複数の坏土供給孔(510)を有する第1金型部(51)と、
     上記坏土供給孔から上記坏土が導入され、上記ハニカム構造体における複数の上記セル壁となる部分を形成するための複数のスリット(520)を有する第2金型部(52)と、を有しており、
     上記第2金型部は、上記ハニカム中心軸を取り囲む四つの囲繞セル(200)の上記セル壁、または、上記ハニカム中心軸がセル中心を通る中心セル(201)の上記セル壁と同等の壁厚の上記セル壁となる部分を形成するための上記スリットを有する中心スリット部と、上記中心スリット部の外周において上記中心スリット部の上記スリットよりも幅が大きい上記スリットを有する外周スリット部と、を有しており、
     複数の上記坏土供給孔は、4つの上記スリットのスリット接続部からなるスリット頂点(521)の全てには配置されておらず、上記スリットに沿って一つ飛び毎にある上記スリット頂点に合わせて配置されており、
     上記坏土供給孔が配置された上記スリット頂点から放射状に延びる4つの上記スリットの幅が、上記坏土供給孔ごとに同等とされている、金型(5)。
  9.  上記坏土供給孔が配置された上記スリット頂点から放射状に延びる4つの上記スリットの幅の最大値をwmax、最小値をwminとしたとき、
     100×(wmax-wmin)/wmaxの式より算出される幅差割合が10%以下である、請求項8に記載の金型。
  10.  上記幅差割合が5%以下である、請求項9に記載の金型。
  11.  上記坏土供給孔の孔径は、供給率比が一定となるように構成されている、請求項8~請求項10のいずれか1項に記載の金型。
PCT/JP2018/047139 2018-01-30 2018-12-21 ハニカム構造体および金型 WO2019150835A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880087757.5A CN111655984B (zh) 2018-01-30 2018-12-21 蜂窝构造体以及模具
DE112018006976.1T DE112018006976T5 (de) 2018-01-30 2018-12-21 Wabenstruktur und Matrize
US16/941,621 US11465137B2 (en) 2018-01-30 2020-07-29 Honeycomb structure and die

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-013779 2018-01-30
JP2018013779A JP6881337B2 (ja) 2018-01-30 2018-01-30 ハニカム構造体および金型

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/941,621 Continuation US11465137B2 (en) 2018-01-30 2020-07-29 Honeycomb structure and die

Publications (1)

Publication Number Publication Date
WO2019150835A1 true WO2019150835A1 (ja) 2019-08-08

Family

ID=67479700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047139 WO2019150835A1 (ja) 2018-01-30 2018-12-21 ハニカム構造体および金型

Country Status (5)

Country Link
US (1) US11465137B2 (ja)
JP (1) JP6881337B2 (ja)
CN (1) CN111655984B (ja)
DE (1) DE112018006976T5 (ja)
WO (1) WO2019150835A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7213198B2 (ja) * 2020-03-09 2023-01-26 日本碍子株式会社 焼成前又は焼成後の柱状ハニカム成形体を検査する方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179215A (ja) * 1983-03-29 1984-10-11 コ−ニング・グラス・ワ−クス 押出ダイ
JPH09174657A (ja) * 1995-11-30 1997-07-08 Corning Inc ハニカム押出しダイおよびその作成方法ならびにハニカム製品の押出し方法
JP2003509250A (ja) * 1999-09-23 2003-03-11 コーニング インコーポレイテッド 変更されたスロット押出ダイ
JP2010247536A (ja) * 2009-03-27 2010-11-04 Ngk Insulators Ltd ハニカム構造体成形用口金、及びその製造方法
JP2012170935A (ja) * 2011-02-24 2012-09-10 Denso Corp ハニカム構造体
WO2016039328A1 (ja) * 2014-09-08 2016-03-17 イビデン株式会社 ハニカム焼成体、ハニカムフィルタ及びハニカム焼成体の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55147154A (en) 1979-05-07 1980-11-15 Ngk Spark Plug Co Ltd High-strength honeycomb structure
WO1998005602A1 (fr) 1996-08-07 1998-02-12 Denso Corporation Ceramique nid d'abeille et procede de fabrication
JP4259703B2 (ja) * 1999-12-07 2009-04-30 株式会社デンソー セラミックスハニカム構造体及びその製造方法
DE19962544A1 (de) * 1999-12-23 2001-07-19 Degussa Verfahren zum Beschichten eines keramischen Wabenkörpers
WO2002011884A1 (fr) 2000-08-03 2002-02-14 Ngk Insulators, Ltd. Structure céramique alvéolaire
JP4282960B2 (ja) * 2001-08-30 2009-06-24 日本碍子株式会社 高強度ハニカム構造体、その成形方法及びハニカム構造コンバーター
JP4294964B2 (ja) * 2002-03-15 2009-07-15 日本碍子株式会社 セラミックスハニカム構造体の製造方法
JP4545383B2 (ja) * 2002-04-25 2010-09-15 日本碍子株式会社 セラミックスハニカム構造体及びその製造方法
CN101069980A (zh) * 2006-03-23 2007-11-14 日本碍子株式会社 填塞蜂窝状结构的制造方法和填塞蜂窝状结构
DE102008042590A1 (de) * 2007-10-05 2009-04-30 Denso Corp., Kariya-shi Abgasreinigungsfilter und Verfahren zu dessen Herstellung
EP2698188B1 (en) * 2012-08-17 2018-01-31 Pall Corporation Catalytic filter module and catalytic filter system comprising same
JP5708670B2 (ja) * 2013-01-18 2015-04-30 株式会社デンソー ハニカム構造体
US9663408B2 (en) * 2013-09-26 2017-05-30 Ngk Insulators, Ltd. Honeycomb structure
JP6279368B2 (ja) * 2014-03-18 2018-02-14 日本碍子株式会社 排ガス浄化装置
JP6792489B2 (ja) * 2017-03-07 2020-11-25 日本碍子株式会社 ハニカム構造体

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59179215A (ja) * 1983-03-29 1984-10-11 コ−ニング・グラス・ワ−クス 押出ダイ
JPH09174657A (ja) * 1995-11-30 1997-07-08 Corning Inc ハニカム押出しダイおよびその作成方法ならびにハニカム製品の押出し方法
JP2003509250A (ja) * 1999-09-23 2003-03-11 コーニング インコーポレイテッド 変更されたスロット押出ダイ
JP2010247536A (ja) * 2009-03-27 2010-11-04 Ngk Insulators Ltd ハニカム構造体成形用口金、及びその製造方法
JP2012170935A (ja) * 2011-02-24 2012-09-10 Denso Corp ハニカム構造体
WO2016039328A1 (ja) * 2014-09-08 2016-03-17 イビデン株式会社 ハニカム焼成体、ハニカムフィルタ及びハニカム焼成体の製造方法

Also Published As

Publication number Publication date
CN111655984A (zh) 2020-09-11
US20200353455A1 (en) 2020-11-12
US11465137B2 (en) 2022-10-11
DE112018006976T5 (de) 2020-10-08
JP2019132169A (ja) 2019-08-08
JP6881337B2 (ja) 2021-06-02
CN111655984B (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
US9073289B2 (en) Honeycomb structural body
JP4473505B2 (ja) セラミック製ハニカム構造体
JP6137151B2 (ja) ハニカム構造体
US9403339B2 (en) Honeycomb structural body
US7842369B2 (en) Honeycomb structure body having hexagonal cells and manufacturing method thereof
CN101119801B (zh) 具有内部空腔的蜂窝体
JPH11268018A (ja) セラミックハニカム構造体および押出金型
WO2019150835A1 (ja) ハニカム構造体および金型
WO2019150834A1 (ja) ハニカム構造体および金型
JP2013132879A (ja) 押出成形金型
US10450913B2 (en) Exhaust gas purifying device of internal combustion engine
JP2007275873A (ja) 六角セルハニカム構造体
JP7003694B2 (ja) ハニカム構造体
US20190176077A1 (en) Honeycomb structure body
US20170072358A1 (en) Honeycomb filter
JP7069753B6 (ja) ハニカム構造体
US9322311B2 (en) Honeycomb structure
BRPI0822008B1 (pt) corpo de colmeia, uso do corpo de colmeia e veículo motorizado
JP2013132881A (ja) 押出成形金型
JP6140618B2 (ja) 触媒装置及び触媒装置の設計方法
JP2018038941A (ja) 排ガス浄化フィルタ
US11666898B2 (en) Ceramic honeycomb structure and honeycomb-molding die
JP2003251198A (ja) セラミックハニカム構造体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18904022

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18904022

Country of ref document: EP

Kind code of ref document: A1