WO2019150444A1 - Semiconductor device production method and film-shaped adhesive - Google Patents

Semiconductor device production method and film-shaped adhesive Download PDF

Info

Publication number
WO2019150444A1
WO2019150444A1 PCT/JP2018/003021 JP2018003021W WO2019150444A1 WO 2019150444 A1 WO2019150444 A1 WO 2019150444A1 JP 2018003021 W JP2018003021 W JP 2018003021W WO 2019150444 A1 WO2019150444 A1 WO 2019150444A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
semiconductor element
adhesive
component
film adhesive
Prior art date
Application number
PCT/JP2018/003021
Other languages
French (fr)
Japanese (ja)
Inventor
智陽 山崎
祐樹 中村
慎太郎 橋本
健太 菊地
大輔 舛野
Original Assignee
日立化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立化成株式会社 filed Critical 日立化成株式会社
Priority to CN201880087177.6A priority Critical patent/CN111630642B/en
Priority to JP2019568437A priority patent/JP6988923B2/en
Priority to PCT/JP2018/003021 priority patent/WO2019150444A1/en
Priority to SG11202004755QA priority patent/SG11202004755QA/en
Priority to KR1020207018666A priority patent/KR102429210B1/en
Priority to TW108103160A priority patent/TWI785197B/en
Publication of WO2019150444A1 publication Critical patent/WO2019150444A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/20Adhesives in the form of films or foils characterised by their carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/56Encapsulations, e.g. encapsulation layers, coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/46Structure, shape, material or disposition of the wire connectors prior to the connecting process of a plurality of wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/065Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/312Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier parameters being the characterizing feature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32135Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/32145Disposition the layer connector connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/922Connecting different surfaces of the semiconductor or solid-state body with connectors of different types
    • H01L2224/9222Sequential connecting processes
    • H01L2224/92242Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92247Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device and a film adhesive.
  • Adhesive sheets are known that can provide a wire embedded semiconductor device capable of filling irregularities due to wiring of a substrate in a semiconductor device, wires attached to a semiconductor chip, and the like (for example, Patent Documents 1 and 2). .
  • the adhesive sheet contains a thermosetting component as a main component in order to exhibit high fluidity when filling unevenness.
  • a controller chip for controlling the operation of the semiconductor device has been arranged at the top of the stacked semiconductor elements.
  • the semiconductor device packaging technology has a controller chip arranged at the bottom.
  • the film adhesive used when crimping the second-stage semiconductor element is thickened, and the controller chip is placed inside the film adhesive. Embed packages are attracting attention.
  • the film adhesive used for such applications requires high fluidity that can embed a controller chip, a wire connected to the controller chip, a step due to unevenness on the substrate surface, and the like.
  • the present invention provides a first die-bonding step for electrically connecting a first semiconductor element on a substrate via a first wire, and a second semiconductor element having a larger area than the first semiconductor element.
  • a method for manufacturing a semiconductor device is provided.
  • the present invention it is possible to obtain a semiconductor device having excellent connection reliability while suppressing bleed during crimping. More specifically, by using a film adhesive having a shear stress relaxation rate of 40% or more after 0.1 seconds at 100 ° C., it is possible to follow the shape of a wire, a semiconductor element, etc. It becomes possible to ensure the sex. Moreover, by using a film-like adhesive having a shear stress relaxation rate of 85% or less, the film shape can be retained at the time of pressure bonding, and bleeding can be suppressed.
  • the shear stress relaxation rate after 0.1 seconds at 100 ° C. is measured after 0.1 seconds have passed since the film adhesive has been heated from room temperature to 100 ° C. and 10% strain has been applied.
  • the shear stress is obtained by normalizing with the initial stress.
  • the rate of temperature increase depends on the specifications of the measuring apparatus to be used, but can be appropriately set in the range of 10 to 60 ° C./min.
  • a dynamic viscoelasticity measuring device can be used for measuring the shear stress relaxation rate.
  • the shear viscosity at 120 ° C. of the film adhesive is 5000 Pa ⁇ s or less. This makes it easy to obtain good embedding properties.
  • the film adhesive preferably contains an acrylic resin and an epoxy resin.
  • the film adhesive contains at least one of an inorganic filler and an organic filler. Thereby, the handleability etc. of a film adhesive improve.
  • the first semiconductor element is electrically connected to the substrate via the first wire
  • the second semiconductor element has a second area larger than the area of the first semiconductor element on the first semiconductor element.
  • shear stress after 0.1 second at 100 ° C. is used for pressure-bonding the second semiconductor element and embedding the first wire and the first semiconductor element.
  • a film adhesive having a relaxation rate of 40 to 85% is provided.
  • the shear viscosity at 120 ° C. is preferably 5000 Pa ⁇ s or less.
  • the film adhesive of the present invention preferably contains an acrylic resin and an epoxy resin.
  • the film adhesive of the present invention preferably contains at least one of an inorganic filler and an organic filler.
  • the present invention it is possible to provide a semiconductor device manufacturing method capable of obtaining a semiconductor device having excellent connection reliability while suppressing bleeding during crimping. Moreover, according to this invention, the film adhesive used for the said manufacturing method can be provided.
  • FIG. 8 is a diagram showing a step subsequent to FIG. 7.
  • FIG. 9 is a diagram showing a step subsequent to that in FIG. 8.
  • FIG. 10 is a diagram showing a step subsequent to FIG. 9.
  • FIG. 11 is a diagram showing a step subsequent to FIG. 10.
  • FIG. 1 is a cross-sectional view schematically showing a film adhesive 10 according to the present embodiment.
  • the film-like adhesive 10 is thermosetting, and is formed by forming an adhesive composition that can be in a completely cured product (C stage) state after a curing process through a semi-cured (B stage) state into a film shape. is there.
  • the film adhesive 10 has a shear stress relaxation rate of 40 to 85% after 0.1 seconds at 100 ° C.
  • the shear stress relaxation rate is preferably 50 to 80%, and more preferably 60 to 70%, from the viewpoint that it is easier to obtain a semiconductor device having excellent connection reliability while suppressing bleeding.
  • the shear stress relaxation rate can be adjusted by adjusting the types and amounts of the components (a) to (f) as described later.
  • the film adhesive 10 preferably has a shear viscosity at 120 ° C. of 5000 Pa ⁇ s or less. From the viewpoint that it becomes easier to obtain good embedding properties, the shear viscosity is more preferably 3000 Pa ⁇ s or less. The lower limit of the shear viscosity is not particularly limited, but can be set to 200 Pa ⁇ s from the viewpoint of suppressing excessive fluidity.
  • the shear viscosity can be measured using, for example, a dynamic viscoelasticity measuring apparatus.
  • the content component of the film adhesive 10 is not specifically limited, For example, (a) thermosetting component, (b) thermoplastic component, (c) inorganic filler, (d) organic filler, (e) curing accelerator, (F) Other components can be included.
  • the characteristics of the film adhesive 10 can be adjusted by adjusting the types and amounts of these components (a) to (f).
  • thermosetting component A thermosetting resin is mentioned as a thermosetting component.
  • an epoxy resin, a phenol resin, or the like is preferable as the thermosetting component.
  • epoxy resin generally known epoxy resins such as an aromatic ring-containing epoxy resin, a heterocyclic ring-containing epoxy resin, and an alicyclic epoxy resin can be used.
  • the epoxy resin may be a polyfunctional epoxy resin.
  • Specific examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol E type epoxy resins, bifunctional epoxy resins obtained by modifying these bisphenol type epoxy resins, and cresol novolac type epoxy resins.
  • Bisphenol A novolac type epoxy resin, fluorene modified epoxy resin, triphenylmethane type epoxy resin, biphenyl type epoxy resin, glycidylamine type epoxy resin, naphthalene modified epoxy resin and the like can be used.
  • epoxy resin examples include Celloxide series manufactured by Daicel Corporation, YDF series and YDCN series manufactured by Nippon Kayaku Epoxy Manufacturing Corporation, HP-7000L manufactured by DIC Corporation, and VG-3101L manufactured by Printec Corporation. Can be mentioned.
  • the phenol resin examples include novolak type phenol resin, sylock type phenol resin, biphenyl type phenol resin, triphenylmethane type phenol resin, and modified phenol resin in which hydrogen on the phenol ring is substituted with an aryl group.
  • a phenol resin from the viewpoint of heat resistance, the water absorption after introduction into a constant temperature and humidity chamber of 85 ° C. and 85% RH for 48 hours is 2% by mass or less, and 350 measured by a thermogravimetric analyzer (TGA). It is preferable that the heating mass reduction rate (temperature increase rate: 5 ° C./min, atmosphere: nitrogen) at 5 ° C. is less than 5 mass%.
  • phenol resin examples include HE series manufactured by Air Water Co., Ltd., and Resitop series manufactured by Gunei Chemical Industry Co., Ltd.
  • the compounding ratio of the epoxy resin and the phenol resin is 0.70 / 0.30 to 0.30 / 0.70 is preferable, 0.65 / 0.35 to 0.35 / 0.65 is more preferable, and 0.60 / 0.40 to 0.40 / 0.60 is preferable. More preferred is 0.60 / 0.40 to 0.50 / 0.50. It becomes easy to obtain the film adhesive 10 which has the outstanding sclerosis
  • thermosetting resins having different curing speeds from the viewpoint of suppressing warpage of the semiconductor device after curing.
  • the epoxy resins and phenol resins exemplified above for example, (a1) those having a softening point of 60 ° C. or lower or liquid at room temperature (no particular limitation as long as they are cured and have an adhesive action) And (a2) those having a softening point exceeding 60 ° C. (solid at normal temperature) are preferably used in combination.
  • the normal temperature here means 5 to 35 ° C.
  • the content of the component (a1) is preferably 10 to 50% by mass, more preferably 20 to 40% by mass based on the total mass of the component (a). This makes it easy to achieve both embeddability and process suitability such as dicing and pickup.
  • the content of the component (a2) is preferably 10% by mass or more, more preferably 15% by mass or more based on the total mass of the component (a). Thereby, it becomes easy to adjust film forming property, fluidity
  • the upper limit of content of (a2) component is not specifically limited, It can be 90 mass% on the basis of the total mass of (a) component.
  • the content standard can be 30 to 100% by mass based on the total mass of the component (a) (that is, the total amount of the component (a) is the alicyclic epoxy. It may be a resin).
  • the weight average molecular weight of the component (a) is preferably 200 to 5,000. Thereby, it becomes easy to adjust the shear stress relaxation rate to a desired range.
  • thermoplastic component includes a thermoplastic component having a high monomer ratio having a crosslinkable functional group and a low molecular weight, and a thermoplastic component having a low monomer ratio having a crosslinkable functional group and a high molecular weight. Is preferred. In particular, the latter thermoplastic component is preferably contained in a certain amount or more.
  • the component (b) is preferably an acrylic resin (acrylic resin) which is a thermoplastic resin, and further has a glass transition temperature Tg of ⁇ 50 ° C. to 50 ° C., and an epoxy group or glycidyl group such as glycidyl acrylate or glycidyl methacrylate.
  • An acrylic resin such as an epoxy group-containing (meth) acrylic copolymer obtained by polymerizing a functional monomer having a crosslinkable functional group is more preferred.
  • Epoxy group-containing acrylic rubber is an acrylic rubber having an epoxy group, which is mainly composed of an acrylate ester, and mainly composed of a copolymer such as butyl acrylate and acrylonitrile, a copolymer such as ethyl acrylate and acrylonitrile, or the like. is there.
  • the crosslinkable functional group of component (b) includes crosslinkable functional groups such as alcoholic or phenolic hydroxyl groups and carboxyl groups in addition to epoxy groups.
  • the monomer unit having a crosslinkable functional group is 5 to 15 relative to the total amount of monomer units.
  • the mol% is preferable, and 5 to 10 mol% is more preferable.
  • the weight average molecular weight of the component (b) is preferably 200,000 to 1,000,000, more preferably 500,000 to 1,000,000. Thereby, it becomes easy to adjust the shear stress relaxation rate to a desired range. In particular, when the weight average molecular weight of the component (b) is 500,000 or more, the effect of improving the film forming property is further improved. When the weight average molecular weight of the component (b) is 1,000,000 or less, the shear viscosity of the uncured film adhesive 10 can be easily reduced, so that the embedding property becomes better. Moreover, the machinability of the uncured film adhesive 10 may be improved, and the quality of dicing may be improved.
  • the weight average molecular weight is a polystyrene conversion value obtained by a gel permeation chromatography method (GPC) using a calibration curve with standard polystyrene.
  • the glass transition temperature Tg of the entire component is preferably ⁇ 20 ° C. to 40 ° C., and preferably ⁇ 10 ° C. to 30 ° C.
  • the glass transition temperature Tg can be measured using a thermal differential scanning calorimeter (for example, “Thermo Plus 2” manufactured by Rigaku Corporation).
  • the content of the component (b) is preferably 20 to 160 parts by mass, and more preferably 50 to 120 parts by mass when the component (a) is 100 parts by mass.
  • (B) When content of a component is more than the said lower limit, while it becomes easy to suppress the fall of the flexibility of the film adhesive 10, it becomes low elasticity after hardening and the curvature of a semiconductor device (package) is carried out. It becomes easy to suppress.
  • the content of the component (b) is not more than the above upper limit value, the fluidity of the uncured film adhesive 10 is increased, and the embedding property can be further improved. In addition, it becomes easy to adjust a shear stress relaxation rate to a desired range because content of (b) component exists in the said range.
  • Inorganic filler As component, the dicing property of the film-like adhesive 10 in the B-stage state, the handling property of the film-like adhesive 10 is improved, the thermal conductivity is improved, the shear viscosity (melt viscosity) From the viewpoints of adjusting the thickness, imparting thixotropic properties, improving adhesive strength, and the like, silica filler and the like are preferable.
  • the component (c) preferably contains two or more kinds of fillers having different average particle diameters for the purpose of improving the dicing property of the uncured film adhesive 10 and sufficiently expressing the cured adhesive force. .
  • the component (c) is, for example, for the purpose of improving the dicing property of the uncured film adhesive 10 (c1)
  • the first filler having an average particle size of 0.2 ⁇ m or more and the adhesive strength after curing are sufficiently It is preferable to include (c2) a second filler having an average particle diameter of less than 0.2 ⁇ m for the purpose of expression.
  • the average particle diameter is a value obtained when analysis is performed using acetone as a solvent with a laser diffraction particle size distribution analyzer. It is more preferable that the difference between the average particle diameters of the first and second fillers is so large that it can be determined that the respective fillers are contained when analyzed by a particle size distribution measuring apparatus.
  • the content of the component (c1) is preferably 30% by mass or more based on the total mass of the component (c).
  • the content of the component (c1) is 30% by mass or more, it becomes easy to suppress deterioration of the film breakability and deterioration of the fluidity of the uncured film adhesive 10.
  • the upper limit of content of (c1) component is not specifically limited, It can be 95 mass% on the basis of the total mass of (c) component.
  • the content of the component (c2) is preferably 5% by mass or more based on the total mass of the component (c).
  • (C2) It is easy to improve the adhesive force after hardening because content of a component is 5 mass% or more.
  • the upper limit of content of (c2) component can be 30 mass% on the basis of the total mass of (c) component from a viewpoint of ensuring appropriate fluidity
  • the content of the component (c) is preferably 10 to 90 parts by mass, more preferably 40 to 70 parts by mass when the component (a) is 100 parts by mass.
  • (C) When content of a component is more than the said lower limit, there exists a tendency for it to be easy to suppress the deterioration of the dicing property of the uncured film adhesive 10, and the fall of the adhesive force after hardening. On the other hand, when the content of the component (c) is not more than the above upper limit value, there is a tendency that it is easy to suppress a decrease in fluidity of the uncured film adhesive 10 and an increase in the elastic modulus after curing. In addition, it becomes easy to adjust a shear stress relaxation rate to a desired range because content of (c) component exists in the said range.
  • the dicing property of the film adhesive 10 is improved, the handling property of the film adhesive 10 is improved, the shear viscosity (melt viscosity) is adjusted, the adhesive force is improved, and after curing.
  • the shear viscosity melting viscosity
  • the average particle diameter of the component (d) is preferably 0.2 ⁇ m or less from the viewpoint of sufficiently expressing the adhesive strength after curing.
  • the content of the component (d) is preferably 0 to 50 parts by mass, more preferably 0 to 30 parts by mass when the component (c) is 100 parts by mass.
  • (E) Curing accelerator For the purpose of obtaining good curability, it is preferable to use (e) a curing accelerator.
  • the component (e) is preferably an imidazole compound from the viewpoint of reactivity.
  • the reactivity of (e) component is too high, not only will shear viscosity rise easily by the heating in the manufacturing process of the film adhesive 10, but it will tend to cause deterioration over time.
  • the reactivity of the component (e) is too low, the curability of the film adhesive 10 tends to decrease. If the film adhesive 10 is mounted in a product without being sufficiently cured, sufficient adhesiveness may not be obtained, and the connection reliability of the semiconductor device may be deteriorated.
  • hardenability of the film adhesive 10 improves more.
  • the content of the component (e) is preferably 0 to 0.20 parts by mass when the component (a) is 100 parts by mass.
  • (F) Other components
  • a coupling agent examples include ⁇ -ureidopropyltriethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, and the like.
  • the film adhesive 10 includes, for example, a step of forming a varnish layer by applying a varnish of an adhesive composition containing the above components on a base film, a step of removing the solvent from the varnish layer by heating and drying, It can be obtained by the step of removing the material film.
  • the varnish can be prepared by mixing, kneading, etc. an adhesive composition containing the above components in an organic solvent.
  • a dispersing machine such as a normal stirrer, a raking machine, a three-roller, or a ball mill can be used. These devices can be used in appropriate combination.
  • the varnish can be applied by, for example, a comma coater or a die coater.
  • the heating and drying conditions for the varnish are not particularly limited as long as the organic solvent used is sufficiently volatilized, and can be, for example, 60 to 200 ° C. for 0.1 to 90 minutes.
  • the organic solvent is not particularly limited as long as it can uniformly dissolve, knead or disperse the above components, and conventionally known ones can be used.
  • solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dimethylformamide, dimethylacetamide, N methylpyrrolidone, toluene, xylene, and the like. It is preferable to use methyl ethyl ketone, cyclohexanone, etc. in terms of fast drying speed and low price.
  • a polyester film polyethylene terephthalate film etc.
  • a polypropylene film OPP (Oriented Polypropylene) film etc.
  • a polyimide film a polyetherimide film
  • a polyether naphthalate film methyl Examples include pentene film.
  • the thickness of the film adhesive 10 is preferably 20 to 200 ⁇ m so that the first wire, the first semiconductor element, and the unevenness of the wiring circuit of the substrate can be sufficiently embedded. Further, when the thickness is 20 ⁇ m or more, it becomes easy to obtain a sufficient adhesive force, and when the thickness is 200 ⁇ m or less, it becomes easy to meet the demand for downsizing of the semiconductor device. From such a viewpoint, the thickness of the film adhesive 10 is more preferably 30 to 200 ⁇ m, and further preferably 40 to 150 ⁇ m.
  • the adhesive sheet 100 includes a film adhesive 10 on a base film 20.
  • the adhesive sheet 100 can be obtained by removing the base film 20 in the step of obtaining the film adhesive 10.
  • the adhesive sheet 110 further includes a cover film 30 on the surface of the adhesive sheet 100 opposite to the base film 20.
  • cover film 30 include a PET film, a PE film, and an OPP film.
  • the film adhesive 10 may be laminated on a dicing tape.
  • the dicing / die bonding integrated adhesive sheet obtained in this way the lamination process to the semiconductor wafer can be performed at a time, and the work efficiency can be improved.
  • the dicing tape examples include plastic films such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, and a polyimide film.
  • the dicing tape may be subjected to surface treatment such as primer treatment, UV treatment, corona discharge treatment, polishing treatment, and etching treatment as necessary.
  • the dicing tape is preferably adhesive.
  • Examples of such a dicing tape include those obtained by imparting adhesiveness to the plastic film and those obtained by providing an adhesive layer on one side of the plastic film.
  • Examples of such a dicing / die bonding integrated adhesive sheet include an adhesive sheet 120 shown in FIG. 4 and an adhesive sheet 130 shown in FIG.
  • the adhesive sheet 120 uses a dicing tape 60 in which an adhesive layer 50 is provided on a base film 40 that can ensure elongation when a tensile tension is applied, as a supporting base material.
  • the adhesive layer 50 has a structure in which the film adhesive 10 is provided.
  • the adhesive sheet 130 has a structure in which a base film 20 is further provided on the surface of the film adhesive 10 in the adhesive sheet 120.
  • the base film 40 examples include the plastic films described for the dicing tape.
  • the pressure-sensitive adhesive layer 50 can be formed using, for example, a resin composition that includes a liquid component and a thermoplastic component and has an appropriate tack strength.
  • a method of forming the pressure-sensitive adhesive layer 50 by applying the resin composition on the base film 40 and drying the pressure-sensitive adhesive layer 50 once formed on another film such as a PET film. The method of bonding with the base film 40 etc. are mentioned.
  • a method of laminating the film adhesive 10 on the dicing tape 60 a method of directly applying and drying the varnish of the above adhesive composition on the dicing tape 60, a method of screen printing the varnish on the dicing tape 60, Examples thereof include a method in which the film adhesive 10 is prepared in advance and is laminated on the dicing tape 60 by pressing or hot roll laminating. Lamination by hot roll laminating is preferred because it can be continuously produced and is efficient.
  • the thickness of the dicing tape 60 is not particularly limited, and can be determined based on the knowledge of those skilled in the art as appropriate depending on the thickness of the film adhesive 10, the use of the dicing / die bonding integrated adhesive sheet, and the like.
  • the thickness of the dicing tape 60 is 60 ⁇ m or more, there is a tendency that it is easy to suppress deterioration in handleability, tearing due to the expand, and the like.
  • the thickness of the dicing tape is 180 ⁇ m or less, it is easy to achieve both economy and good handling properties.
  • FIG. 6 is a cross-sectional view showing the semiconductor device.
  • the semiconductor device 200 is a semiconductor device in which a second semiconductor element Waa is stacked on a first semiconductor element Wa.
  • the first semiconductor element Wa at the first stage is electrically connected to the substrate 14 via the first wire 88, and the first semiconductor element Wa is formed on the first semiconductor element Wa.
  • the second semiconductor element Waa in the second stage larger than the area of the first wire 88 is pressure-bonded via the film adhesive 10 so that the first wire 88 and the first semiconductor element Wa are embedded in the film adhesive 10. This is a buried wire type semiconductor device.
  • the substrate 14 and the second semiconductor element Waa are further electrically connected via the second wire 98, and the second semiconductor element Waa is sealed with the sealing material 42. ing.
  • the thickness of the first semiconductor element Wa is 10 to 170 ⁇ m, and the thickness of the second semiconductor element Waa is 20 to 400 ⁇ m.
  • the first semiconductor element Wa embedded in the film adhesive 10 is a controller chip for driving the semiconductor device 200.
  • the substrate 14 is composed of an organic substrate 90 on which two circuit patterns 84 and 94 are formed on the surface.
  • the first semiconductor element Wa is crimped onto the circuit pattern 94 via an adhesive 41
  • the second semiconductor element Waa is a circuit pattern 94 in which the first semiconductor element Wa is not crimped.
  • the semiconductor element Wa and a part of the circuit pattern 84 are pressure-bonded to the substrate 14 via the film adhesive 10. Unevenness caused by the circuit patterns 84 and 94 on the substrate 14 is embedded by the film adhesive 10.
  • the second semiconductor element Waa, the circuit pattern 84, and the second wire 98 are sealed with a resin sealing material 42.
  • a semiconductor device includes: a first die bonding step of electrically connecting a first semiconductor element on a substrate through a first wire; and a second semiconductor element having a larger area than the first semiconductor element.
  • a laminating step of applying a film adhesive having a shear stress relaxation rate of 40 to 85% after 0.1 seconds at 100 ° C., and a second semiconductor element to which the film adhesive is applied A second die bonding step of embedding the first wire and the first semiconductor element in the film adhesive by placing the agent so as to cover the first semiconductor element and pressing the film adhesive.
  • the semiconductor device is manufactured by a method for manufacturing a semiconductor device. Hereinafter, the manufacturing procedure of the semiconductor device 200 will be specifically described as an example.
  • the first semiconductor element Waa with the adhesive 41 is pressure-bonded on the circuit pattern 94 on the substrate 14, and the circuit pattern 84 on the substrate 14 and the first pattern are connected to each other via the first wire 88.
  • the first semiconductor element Wa is electrically connected (first die bonding step).
  • the adhesive sheet 100 is laminated on one side of a semiconductor wafer (for example, 8-inch size), and the base film 20 is peeled off, so that the film adhesive 10 is attached to one side of the semiconductor wafer.
  • the film adhesive is diced into a predetermined size (for example, 7.5 mm square), and the dicing tape 60 is peeled off, as shown in FIG.
  • a second semiconductor element Waa to which 10 is attached is obtained (laminating step).
  • the laminating step is preferably performed at 50 to 100 ° C., more preferably 60 to 80 ° C.
  • the temperature in the laminating step is 50 ° C. or higher, good adhesion to the semiconductor wafer can be obtained.
  • the temperature of the laminating process is 100 ° C. or lower, the film-like adhesive 10 can be prevented from flowing excessively during the laminating process, so that it is possible to prevent a change in thickness and the like.
  • a dicing method As a dicing method, a blade dicing method using a rotary blade, a method of cutting the film adhesive 10 or both the wafer and the film adhesive 10 with a laser, and a general-purpose method such as stretching under normal temperature or cooling conditions Etc.
  • the second semiconductor element Waa to which the film adhesive 10 is attached is pressure-bonded to the substrate 14 to which the first semiconductor element Wa is connected via the wire 88.
  • the second semiconductor element Waa attached with the film adhesive 10 is placed so that the film adhesive 10 covers the first semiconductor element Wa
  • the second semiconductor element Waa is fixed to the substrate 14 by pressing the second semiconductor element Waa to the substrate 14 (second die bonding step).
  • the film adhesive 10 is preferably pressure-bonded for 0.5 to 3.0 seconds under conditions of 80 to 180 ° C. and 0.01 to 0.50 MPa.
  • the film-like adhesive 10 is applied for 5 minutes or more at 60 to 175 ° C. and 0.3 to 0.7 MPa after the second die bonding step. You may implement the process of pressing and heating. As a result, the semiconductor device can be manufactured more easily while stabilizing the yield.
  • the substrate 14 and the second semiconductor element Waa are electrically connected via the second wire 98, the circuit pattern 84, the second wire 98, and the second semiconductor element are connected.
  • the entire Waa is sealed with the sealing material 42 under the conditions of 170 to 180 ° C. and 5 to 8 MPa (sealing process).
  • the semiconductor device 200 can be manufactured through such steps.
  • the first semiconductor element is electrically connected to the substrate via the first wire, and the area of the first semiconductor element is larger than that of the first semiconductor element.
  • the second semiconductor element is crimped and used for embedding the first wire and the first semiconductor element, after 0.1 seconds at 100 ° C. It is manufactured using a film adhesive having a shear stress relaxation rate of 40 to 85%.
  • a film adhesive that has a shear stress relaxation rate of 40% or more after 0.1 seconds at 100 ° C., it is possible to follow the shape of a wire, a semiconductor element, etc., and to ensure embeddability. It becomes possible.
  • a film-like adhesive having a shear stress relaxation rate of 85% or less the film shape can be retained at the time of pressure bonding, and bleeding can be suppressed.
  • the substrate 14 is the organic substrate 90 having the circuit patterns 84 and 94 formed on the surface thereof at two locations.
  • the substrate 14 is not limited to this, and a metal substrate such as a lead frame is used. Also good.
  • the semiconductor device 200 has a configuration in which the second semiconductor element Waa is stacked on the first semiconductor element Wa and the semiconductor elements are stacked in two stages, the configuration of the semiconductor device is not limited thereto. I can't.
  • a third semiconductor element may be further stacked on the second semiconductor element Waa, or a plurality of semiconductor elements may be further stacked on the second semiconductor element Waa. As the number of stacked semiconductor elements increases, the capacity of the obtained semiconductor device can be increased.
  • the adhesive sheet 100 shown in FIG. 2 is laminated on one side of the semiconductor wafer, and the base film 20 is peeled off, so that the film adhesive 10 is applied.
  • the adhesive sheet used at the time of lamination is not limited to this.
  • dicing / die bonding integrated adhesive sheets 120 and 130 shown in FIGS. 4 and 5 can be used. In this case, it is not necessary to attach the dicing tape 60 separately when dicing the semiconductor wafer.
  • a semiconductor element obtained by dividing a semiconductor wafer instead of a semiconductor wafer may be laminated on the adhesive sheet 100.
  • the dicing process can be omitted.
  • HTR-860P-3CSP (sample name: manufactured by Nagase ChemteX Corporation, acrylic rubber: weight average molecular weight 800,000, glycidyl functional group monomer ratio 3 mol%, Tg 12 ° C.)
  • HTR-860P-30B-CHN (Sample name, manufactured by Nagase ChemteX Corporation, acrylic rubber: weight average molecular weight 230,000, glycidyl functional group monomer ratio 8 mass%, Tg-7 ° C.)
  • Cureazole 2PZ-CN (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole)
  • the obtained varnish was filtered through a 100 mesh filter and vacuum degassed.
  • the varnish after vacuum defoaming was applied onto a polyethylene terephthalate (PET) film (thickness: 38 ⁇ m) which was a base film and was subjected to a release treatment.
  • PET polyethylene terephthalate
  • the applied varnish was heat-dried in two stages of 90 ° C. for 5 minutes, followed by 140 ° C. for 5 minutes.
  • an adhesive sheet provided with a film adhesive having a thickness of 60 ⁇ m in a B-stage state on a PET film was obtained.
  • Shear viscosity measurement Similar to the shear stress relaxation rate measurement, the shear viscosity was increased from room temperature (30 ° C.) to 140 ° C. at a rate of temperature increase of 5 ° C./min while applying 5% strain to the sample for evaluation at a frequency of 1 Hz. Was measured. And the measured value in 120 degreeC was recorded.
  • the chip with integrated film is pressure-bonded to an evaluation substrate having a maximum surface roughness of 6 ⁇ m under the conditions of 120 ° C., 0.20 MPa, 2 seconds, and then heated at 120 ° C. for 2 hours to semi-cure the integrated film. It was. Thereby, a substrate with a chip was obtained.
  • the semiconductor element with an adhesive sheet was pressure-bonded to the obtained substrate with chip under the conditions of 120 ° C., 0.20 MPa, and 1.5 seconds. At this time, alignment was performed so that the chip that was previously crimped was in the middle of the semiconductor element with the adhesive sheet.
  • the structure which was naturally cooled to room temperature after heating was analyzed with an ultrasonic C-SCAN diagnostic imaging apparatus (Insight Co., Ltd., product number IS350, probe: 75 MHz), and the embedding property was confirmed after press bonding.
  • the embedding after crimping was evaluated according to the following criteria.
  • The ratio of the void area to the pressure-bonded film area is 5% or more and less than 8%.
  • X The ratio of the void area to the pressure-bonded film area is 8% or more.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)
  • Die Bonding (AREA)
  • Dicing (AREA)
  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)

Abstract

The present invention pertains to a semiconductor device production method which is provided with: a first die bonding step for electrically connecting a first semiconductor element onto a substrate via a first wire; a lamination step for sticking a film-shaped adhesive, the shearing stress relaxation percentage of which is 40-85% after 0.1 second at 100°C, onto one surface of a second semiconductor element which has a larger surface area than does the first semiconductor element; and a second die bonding step for positioning the second semiconductor element to which the film-shaped adhesive has been stuck in a manner such that the film-shaped adhesive covers the first semiconductor element, and embedding the first wire and the first semiconductor element in the film-shaped adhesive by pressure-bonding the film-shaped adhesive.

Description

半導体装置の製造方法、及びフィルム状接着剤Semiconductor device manufacturing method and film adhesive
 本発明は半導体装置の製造方法、及びフィルム状接着剤に関する。 The present invention relates to a method for manufacturing a semiconductor device and a film adhesive.
 半導体装置における基板の配線、半導体チップに付設されたワイヤ等による凹凸を充填可能な、ワイヤ埋込型の半導体装置を得ることができる接着シートが知られている(例えば、特許文献1及び2)。当該接着シートは、凹凸充填時において高い流動性を発現するべく、熱硬化性成分を主成分として含有している。 2. Description of the Related Art Adhesive sheets are known that can provide a wire embedded semiconductor device capable of filling irregularities due to wiring of a substrate in a semiconductor device, wires attached to a semiconductor chip, and the like (for example, Patent Documents 1 and 2). . The adhesive sheet contains a thermosetting component as a main component in order to exhibit high fluidity when filling unevenness.
 近年、このようなワイヤ埋込型の半導体装置の動作の高速化が重要視されている。従来は積層された半導体素子の最上段に、半導体装置の動作を制御するコントローラチップが配置されていたが、動作の高速化を実現するため、最下段にコントローラチップを配置した半導体装置のパッケージ技術が開発されている。このようなパッケージの1つの形態として、多段に積層した半導体素子のうち、2段目の半導体素子を圧着する際に使用するフィルム状接着剤を分厚くし、当該フィルム状接着剤内部にコントローラチップを埋め込むパッケージが注目を集めている。このような用途に使用されるフィルム状接着剤には、コントローラチップ、コントローラチップに接続されているワイヤ、基板表面の凹凸起因の段差等を埋め込むことのできる高い流動性が必要となる。 In recent years, increasing the speed of operation of such a wire-embedded semiconductor device has been regarded as important. Conventionally, a controller chip for controlling the operation of the semiconductor device has been arranged at the top of the stacked semiconductor elements. However, in order to realize high-speed operation, the semiconductor device packaging technology has a controller chip arranged at the bottom. Has been developed. As one form of such a package, among the semiconductor elements stacked in multiple stages, the film adhesive used when crimping the second-stage semiconductor element is thickened, and the controller chip is placed inside the film adhesive. Embed packages are attracting attention. The film adhesive used for such applications requires high fluidity that can embed a controller chip, a wire connected to the controller chip, a step due to unevenness on the substrate surface, and the like.
国際公開第2005/103180号International Publication No. 2005/103180 特開2009-120830号公報JP 2009-120830 A
 しかしながら、特許文献1及び2に記載の接着シートのように、埋込性を確保するべく単に硬化前の流動性が高いことを特徴とする接着シートを用いると、圧着時に接着シートの一部が半導体素子の圧着面端部からはみ出すブリードという現象が起こる虞がある。ブリードが発生すると、半導体素子自身及び周辺回路を汚染するという問題がある。 However, when using an adhesive sheet characterized by high fluidity before curing to ensure embedding, as in the adhesive sheets described in Patent Documents 1 and 2, a part of the adhesive sheet may be bonded at the time of pressure bonding. There is a possibility that the phenomenon of bleeding that protrudes from the end of the crimping surface of the semiconductor element may occur. When bleeding occurs, there is a problem that the semiconductor element itself and peripheral circuits are contaminated.
 そこで、本発明は、圧着時のブリードを抑制しつつ、接続信頼性に優れる半導体装置を得ることが可能な、半導体装置の製造方法を提供することを目的とする。本発明はまた、当該製造方法に用いられるフィルム状接着剤を提供することを目的とする。 Therefore, an object of the present invention is to provide a semiconductor device manufacturing method capable of obtaining a semiconductor device having excellent connection reliability while suppressing bleeding during crimping. Another object of the present invention is to provide a film adhesive used in the production method.
 本発明は、基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のダイボンド工程と、第1の半導体素子の面積よりも大きい第2の半導体素子の片面に、100℃における0.1秒後のずり応力緩和率が40~85%であるフィルム状接着剤を貼付するラミネート工程と、フィルム状接着剤が貼付された第2の半導体素子を、フィルム状接着剤が第1の半導体素子を覆うように載置し、フィルム状接着剤を圧着することで、第1のワイヤ及び第1の半導体素子をフィルム状接着剤に埋め込む第2のダイボンド工程と、を備える、半導体装置の製造方法を提供する。 The present invention provides a first die-bonding step for electrically connecting a first semiconductor element on a substrate via a first wire, and a second semiconductor element having a larger area than the first semiconductor element. A laminating step of applying a film adhesive having a shear stress relaxation rate of 40 to 85% after 0.1 seconds at 100 ° C., and a second semiconductor element to which the film adhesive is applied A second die bonding step of embedding the first wire and the first semiconductor element in the film adhesive by placing the agent so as to cover the first semiconductor element and pressing the film adhesive. A method for manufacturing a semiconductor device is provided.
 本発明によれば、圧着時のブリードを抑制しつつ、接続信頼性に優れる半導体装置を得ることが可能である。より具体的には、100℃における0.1秒後のずり応力緩和率が40%以上であるフィルム状接着剤を用いることで、ワイヤ、半導体素子等の形状に追従することができ、埋込性を確保することが可能となる。また、ずり応力緩和率が85%以下であるフィルム状接着剤を用いることで、圧着時にフィルム形状を留めておくことができ、ブリードを抑制することが可能となる。 According to the present invention, it is possible to obtain a semiconductor device having excellent connection reliability while suppressing bleed during crimping. More specifically, by using a film adhesive having a shear stress relaxation rate of 40% or more after 0.1 seconds at 100 ° C., it is possible to follow the shape of a wire, a semiconductor element, etc. It becomes possible to ensure the sex. Moreover, by using a film-like adhesive having a shear stress relaxation rate of 85% or less, the film shape can be retained at the time of pressure bonding, and bleeding can be suppressed.
 本発明において、100℃における0.1秒後のずり応力緩和率とは、フィルム状接着剤を室温から100℃まで昇温した後、10%の歪を与えて0.1秒経過後に測定されるずり応力を、初期応力で規格化して得られるものである。昇温速度は、使用する測定装置のスペックにも依存するが、10~60℃/分の範囲で適宜設定することができる。ずり応力緩和率の測定には動的粘弾性測定装置を用いることができる。なお、ずり応力緩和率がX%であるとは、初期応力(歪を与えた直後の応力)を100%としたとき、X%の応力が経過時間と共に緩和されることを意味する。このため、100-ずり応力緩和率(%)=ずり応力残存率(%)である。 In the present invention, the shear stress relaxation rate after 0.1 seconds at 100 ° C. is measured after 0.1 seconds have passed since the film adhesive has been heated from room temperature to 100 ° C. and 10% strain has been applied. The shear stress is obtained by normalizing with the initial stress. The rate of temperature increase depends on the specifications of the measuring apparatus to be used, but can be appropriately set in the range of 10 to 60 ° C./min. A dynamic viscoelasticity measuring device can be used for measuring the shear stress relaxation rate. The shear stress relaxation rate of X% means that when the initial stress (stress immediately after applying the strain) is 100%, the stress of X% is relaxed with time. Therefore, 100−shear stress relaxation rate (%) = shear stress residual rate (%).
 本発明において、フィルム状接着剤の、120℃におけるずり粘度が5000Pa・s以下であることが好ましい。これにより、良好な埋め込み性を得易くなる。 In the present invention, it is preferable that the shear viscosity at 120 ° C. of the film adhesive is 5000 Pa · s or less. This makes it easy to obtain good embedding properties.
 本発明において、フィルム状接着剤が、アクリル樹脂及びエポキシ樹脂を含むことが好ましい。熱可塑性成分と熱硬化成分とを併用することにより、良好な埋め込み性と熱硬化性を得易くなる。 In the present invention, the film adhesive preferably contains an acrylic resin and an epoxy resin. By using the thermoplastic component and the thermosetting component in combination, it becomes easy to obtain good embedding properties and thermosetting properties.
 本発明において、フィルム状接着剤が、無機フィラー及び有機フィラーの少なくとも一方を含むことが好ましい。これにより、フィルム状接着剤の取り扱い性等が向上する。 In the present invention, it is preferable that the film adhesive contains at least one of an inorganic filler and an organic filler. Thereby, the handleability etc. of a film adhesive improve.
 本発明は、また、基板上に第1のワイヤを介して第1の半導体素子が電気的に接続されると共に、第1の半導体素子上に、第1の半導体素子の面積よりも大きい第2の半導体素子が圧着されてなる半導体装置において、第2の半導体素子を圧着すると共に、第1のワイヤ及び第1の半導体素子を埋め込むために用いられる、100℃における0.1秒後のずり応力緩和率が40~85%である、フィルム状接着剤を提供する。本発明のフィルム状接着剤を用いることで、圧着時のブリードを抑制しつつ、接続信頼性に優れる半導体装置を得ることが可能である。 According to the present invention, the first semiconductor element is electrically connected to the substrate via the first wire, and the second semiconductor element has a second area larger than the area of the first semiconductor element on the first semiconductor element. In the semiconductor device formed by pressure-bonding the semiconductor element, shear stress after 0.1 second at 100 ° C. is used for pressure-bonding the second semiconductor element and embedding the first wire and the first semiconductor element. A film adhesive having a relaxation rate of 40 to 85% is provided. By using the film adhesive of the present invention, it is possible to obtain a semiconductor device excellent in connection reliability while suppressing bleed during pressure bonding.
 本発明のフィルム状接着剤において、120℃におけるずり粘度が5000Pa・s以下であることが好ましい。 In the film adhesive of the present invention, the shear viscosity at 120 ° C. is preferably 5000 Pa · s or less.
 本発明のフィルム状接着剤は、アクリル樹脂及びエポキシ樹脂を含むことが好ましい。 The film adhesive of the present invention preferably contains an acrylic resin and an epoxy resin.
 本発明のフィルム状接着剤は、無機フィラー及び有機フィラーの少なくとも一方を含むことが好ましい。 The film adhesive of the present invention preferably contains at least one of an inorganic filler and an organic filler.
 本発明によれば、圧着時のブリードを抑制しつつ、接続信頼性に優れる半導体装置を得ることが可能な、半導体装置の製造方法を提供することができる。また、本発明によれば、当該製造方法に用いられるフィルム状接着剤を提供することができる。 According to the present invention, it is possible to provide a semiconductor device manufacturing method capable of obtaining a semiconductor device having excellent connection reliability while suppressing bleeding during crimping. Moreover, according to this invention, the film adhesive used for the said manufacturing method can be provided.
本発明の実施形態に係るフィルム状接着剤を示す図である。It is a figure which shows the film adhesive which concerns on embodiment of this invention. 接着シートを示す図である。It is a figure which shows an adhesive sheet. 他の接着シートを示す図である。It is a figure which shows another adhesive sheet. 他の接着シートを示す図である。It is a figure which shows another adhesive sheet. 他の接着シートを示す図である。It is a figure which shows another adhesive sheet. 半導体装置を示す図である。It is a figure which shows a semiconductor device. 本発明の実施形態に係る半導体装置の製造方法を示す図である。It is a figure which shows the manufacturing method of the semiconductor device which concerns on embodiment of this invention. 図7の後続の工程を示す図である。FIG. 8 is a diagram showing a step subsequent to FIG. 7. 図8の後続の工程を示す図である。FIG. 9 is a diagram showing a step subsequent to that in FIG. 8. 図9の後続の工程を示す図である。FIG. 10 is a diagram showing a step subsequent to FIG. 9. 図10の後続の工程を示す図である。FIG. 11 is a diagram showing a step subsequent to FIG. 10.
 以下、図面を参照しながら本発明の好適な実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。なお、本明細書における「(メタ)アクリル」とは、「アクリル」及びそれに対応する「メタクリル」を意味する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In the following description, the same or corresponding parts are denoted by the same reference numerals, and redundant description is omitted. Further, the positional relationship such as up, down, left and right is based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratios in the drawings are not limited to the illustrated ratios. In this specification, “(meth) acryl” means “acryl” and “methacryl” corresponding to it.
(フィルム状接着剤)
 図1は、本実施形態に係るフィルム状接着剤10を模式的に示す断面図である。フィルム状接着剤10は、熱硬化性であり、半硬化(Bステージ)状態を経て、硬化処理後に完全硬化物(Cステージ)状態となり得る接着剤組成物をフィルム状に成形してなるものである。
(Film adhesive)
FIG. 1 is a cross-sectional view schematically showing a film adhesive 10 according to the present embodiment. The film-like adhesive 10 is thermosetting, and is formed by forming an adhesive composition that can be in a completely cured product (C stage) state after a curing process through a semi-cured (B stage) state into a film shape. is there.
 フィルム状接着剤10は、100℃における0.1秒後のずり応力緩和率が40~85%である。ブリードを抑制しつつ、接続信頼性に優れる半導体装置をより得易くなるという観点から、ずり応力緩和率は50~80%であることが好ましく、60~70%であることがより好ましい。なお、ずり応力緩和率は、後述のとおり(a)~(f)成分の種類及び量を調整することにより、調整することが可能である。 The film adhesive 10 has a shear stress relaxation rate of 40 to 85% after 0.1 seconds at 100 ° C. The shear stress relaxation rate is preferably 50 to 80%, and more preferably 60 to 70%, from the viewpoint that it is easier to obtain a semiconductor device having excellent connection reliability while suppressing bleeding. The shear stress relaxation rate can be adjusted by adjusting the types and amounts of the components (a) to (f) as described later.
 フィルム状接着剤10は、120℃におけるずり粘度が5000Pa・s以下であることが好ましい。良好な埋め込み性をより得易くなるという観点から、ずり粘度は3000Pa・s以下であることがより好ましい。ずり粘度の下限は特に限定されないが、過度な流動性を抑制するという観点から200Pa・sとすることができる。ずり粘度は、例えば動的粘弾性測定装置を用いて測定することができる。 The film adhesive 10 preferably has a shear viscosity at 120 ° C. of 5000 Pa · s or less. From the viewpoint that it becomes easier to obtain good embedding properties, the shear viscosity is more preferably 3000 Pa · s or less. The lower limit of the shear viscosity is not particularly limited, but can be set to 200 Pa · s from the viewpoint of suppressing excessive fluidity. The shear viscosity can be measured using, for example, a dynamic viscoelasticity measuring apparatus.
 フィルム状接着剤10の含有成分は特に限定されないが、例えば、(a)熱硬化性成分、(b)熱可塑性成分、(c)無機フィラー、(d)有機フィラー、(e)硬化促進剤、(f)その他の成分、等を含むことができる。これら(a)~(f)成分の種類及び量を調整することにより、フィルム状接着剤10の特性を調整することができる。 Although the content component of the film adhesive 10 is not specifically limited, For example, (a) thermosetting component, (b) thermoplastic component, (c) inorganic filler, (d) organic filler, (e) curing accelerator, (F) Other components can be included. The characteristics of the film adhesive 10 can be adjusted by adjusting the types and amounts of these components (a) to (f).
(a)熱硬化性成分
 熱硬化性成分としては熱硬化性樹脂が挙げられる。特に、半導体素子を実装する場合に要求される耐熱性及び耐湿性の観点から、熱硬化性成分としてエポキシ樹脂、フェノール樹脂等が好ましい。
(A) Thermosetting component A thermosetting resin is mentioned as a thermosetting component. In particular, from the viewpoint of heat resistance and moisture resistance required when mounting a semiconductor element, an epoxy resin, a phenol resin, or the like is preferable as the thermosetting component.
 例えばエポキシ樹脂としては、芳香環含有エポキシ樹脂、複素環含有エポキシ樹脂、脂環式エポキシ樹脂等の、一般に知られているエポキシ樹脂を用いることができる。また、エポキシ樹脂は多官能エポキシ樹脂であってもよい。エポキシ樹脂としては、具体的には、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールE型エポキシ樹脂、これらのビスフェノール型エポキシ樹脂を変性させた二官能エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、フルオレン変性エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、ビフェニル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ナフタレン変性エポキシ樹脂等を用いることができる。 For example, as the epoxy resin, generally known epoxy resins such as an aromatic ring-containing epoxy resin, a heterocyclic ring-containing epoxy resin, and an alicyclic epoxy resin can be used. The epoxy resin may be a polyfunctional epoxy resin. Specific examples of epoxy resins include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol E type epoxy resins, bifunctional epoxy resins obtained by modifying these bisphenol type epoxy resins, and cresol novolac type epoxy resins. Bisphenol A novolac type epoxy resin, fluorene modified epoxy resin, triphenylmethane type epoxy resin, biphenyl type epoxy resin, glycidylamine type epoxy resin, naphthalene modified epoxy resin and the like can be used.
 エポキシ樹脂としては、例えば、ダイセル株式会社製のCelloxideシリーズ、新日化エポキシ製造株式会社製のYDFシリーズ及びYDCNシリーズ、DIC株式会社製のHP-7000L、株式会社プリンテック製のVG-3101L等が挙げられる。 Examples of the epoxy resin include Celloxide series manufactured by Daicel Corporation, YDF series and YDCN series manufactured by Nippon Kayaku Epoxy Manufacturing Corporation, HP-7000L manufactured by DIC Corporation, and VG-3101L manufactured by Printec Corporation. Can be mentioned.
 また、フェノール樹脂としては、例えば、ノボラック型フェノール樹脂、ザイロック型フェノール樹脂、ビフェニル型フェノール樹脂、トリフェニルメタン型フェノール樹脂、フェノール環上の水素をアリール基で置換した変性フェノール樹脂等が挙げられる。なお、フェノール樹脂としては、耐熱性の観点から、85℃、85%RHの恒温恒湿槽に48時間投入後の吸水率が2質量%以下で、熱重量分析計(TGA)で測定した350℃での加熱質量減少率(昇温速度:5℃/min、雰囲気:窒素)が5質量%未満のものが好ましい。 Examples of the phenol resin include novolak type phenol resin, sylock type phenol resin, biphenyl type phenol resin, triphenylmethane type phenol resin, and modified phenol resin in which hydrogen on the phenol ring is substituted with an aryl group. In addition, as a phenol resin, from the viewpoint of heat resistance, the water absorption after introduction into a constant temperature and humidity chamber of 85 ° C. and 85% RH for 48 hours is 2% by mass or less, and 350 measured by a thermogravimetric analyzer (TGA). It is preferable that the heating mass reduction rate (temperature increase rate: 5 ° C./min, atmosphere: nitrogen) at 5 ° C. is less than 5 mass%.
 フェノール樹脂としては、例えば、エア・ウォーター株式会社製のHEシリーズ、群栄化学工業株式会社製のレヂトップシリーズ等が挙げられる。 Examples of the phenol resin include HE series manufactured by Air Water Co., Ltd., and Resitop series manufactured by Gunei Chemical Industry Co., Ltd.
 (a)熱硬化性成分としてエポキシ樹脂及びフェノール樹脂を併用する場合、エポキシ樹脂及びフェノール樹脂の配合比は、それぞれエポキシ当量と水酸基当量の当量比で0.70/0.30~0.30/0.70となるのが好ましく、0.65/0.35~0.35/0.65となるのがより好ましく、0.60/0.40~0.40/0.60となるのがさらに好ましく、0.60/0.40~0.50/0.50となるのが特に好ましい。配合比が上記範囲内であることで、優れた硬化性、流動性等を有するフィルム状接着剤10が得易くなる。 (A) When an epoxy resin and a phenol resin are used in combination as the thermosetting component, the compounding ratio of the epoxy resin and the phenol resin is 0.70 / 0.30 to 0.30 / 0.70 is preferable, 0.65 / 0.35 to 0.35 / 0.65 is more preferable, and 0.60 / 0.40 to 0.40 / 0.60 is preferable. More preferred is 0.60 / 0.40 to 0.50 / 0.50. It becomes easy to obtain the film adhesive 10 which has the outstanding sclerosis | hardenability, fluidity | liquidity, etc. because a compounding ratio exists in the said range.
 なお、硬化後における半導体装置の反りを抑制するという観点から、硬化速度の異なる熱硬化性樹脂を組み合わせることが好ましい。具体的には、上記に例示したエポキシ樹脂及びフェノール樹脂のうち、例えば(a1)軟化点が60℃以下又は常温で液体であるもの(硬化して接着作用を有するものであれば特に限定されない)と、(a2)軟化点が60℃超(常温で固体)であるものと、を組み合わせて用いることが好ましい。なお、ここでいう常温とは5~35℃を意味する。 In addition, it is preferable to combine thermosetting resins having different curing speeds from the viewpoint of suppressing warpage of the semiconductor device after curing. Specifically, among the epoxy resins and phenol resins exemplified above, for example, (a1) those having a softening point of 60 ° C. or lower or liquid at room temperature (no particular limitation as long as they are cured and have an adhesive action) And (a2) those having a softening point exceeding 60 ° C. (solid at normal temperature) are preferably used in combination. The normal temperature here means 5 to 35 ° C.
 (a1)成分の含有量は、(a)成分の全質量を基準として10~50質量%であることが好ましく、20~40質量%であることがより好ましい。これにより、埋め込み性と、ダイシング、ピックアップ等のプロセス適性とを両立し易くなる。 The content of the component (a1) is preferably 10 to 50% by mass, more preferably 20 to 40% by mass based on the total mass of the component (a). This makes it easy to achieve both embeddability and process suitability such as dicing and pickup.
 (a2)成分の含有量は、(a)成分の全質量を基準として10質量%以上であることが好ましく、15質量%以上であることがより好ましい。これにより、製膜性、流動性、応力緩和性等を調整し易くなる。なお、(a2)成分の含有量の上限は特に限定されないが、(a)成分の全質量を基準として90質量%とすることができる。 The content of the component (a2) is preferably 10% by mass or more, more preferably 15% by mass or more based on the total mass of the component (a). Thereby, it becomes easy to adjust film forming property, fluidity | liquidity, stress relaxation property, etc. In addition, although the upper limit of content of (a2) component is not specifically limited, It can be 90 mass% on the basis of the total mass of (a) component.
 なお、(a)成分として脂環式エポキシ樹脂を用いることで、ずり応力緩和率を所望の範囲に調整し易くなる。脂環式エポキシ樹脂を用いる場合、その含有量の目安は、(a)成分の全質量を基準として30~100質量%とすることができる(すなわち、(a)成分の全量が脂環式エポキシ樹脂であっても良い)。 In addition, it becomes easy to adjust the shear stress relaxation rate to a desired range by using an alicyclic epoxy resin as the component (a). When the alicyclic epoxy resin is used, the content standard can be 30 to 100% by mass based on the total mass of the component (a) (that is, the total amount of the component (a) is the alicyclic epoxy. It may be a resin).
 (a)成分の重量平均分子量は、200~5000であることが好ましい。これにより、ずり応力緩和率を所望の範囲に調整し易くなる。 The weight average molecular weight of the component (a) is preferably 200 to 5,000. Thereby, it becomes easy to adjust the shear stress relaxation rate to a desired range.
(b)熱可塑性成分
 (b)熱可塑性成分としては、架橋性官能基を有するモノマー比率が高く分子量が低い熱可塑性成分と、架橋性官能基を有するモノマー比率が低く分子量が高い熱可塑性成分との併用が好ましい。特に後者の熱可塑性成分が一定量以上含まれることが好ましい。
(B) Thermoplastic component (b) The thermoplastic component includes a thermoplastic component having a high monomer ratio having a crosslinkable functional group and a low molecular weight, and a thermoplastic component having a low monomer ratio having a crosslinkable functional group and a high molecular weight. Is preferred. In particular, the latter thermoplastic component is preferably contained in a certain amount or more.
 (b)成分としては、熱可塑性樹脂であるアクリル樹脂(アクリル系樹脂)が好ましく、さらに、ガラス転移温度Tgが-50℃~50℃であり、グリシジルアクリレート、グリシジルメタクリレート等のエポキシ基又はグリシジル基を架橋性官能基として有する官能性モノマーを重合して得られる、エポキシ基含有(メタ)アクリル共重合体等のアクリル樹脂がより好ましい。 The component (b) is preferably an acrylic resin (acrylic resin) which is a thermoplastic resin, and further has a glass transition temperature Tg of −50 ° C. to 50 ° C., and an epoxy group or glycidyl group such as glycidyl acrylate or glycidyl methacrylate. An acrylic resin such as an epoxy group-containing (meth) acrylic copolymer obtained by polymerizing a functional monomer having a crosslinkable functional group is more preferred.
 このようなアクリル樹脂として、エポキシ基含有(メタ)アクリル酸エステル共重合体、エポキシ基含有アクリルゴム等を使用することができ、エポキシ基含有アクリルゴムがより好ましい。エポキシ基含有アクリルゴムは、アクリル酸エステルを主成分とし、主として、ブチルアクリレートとアクリロニトリル等の共重合体、エチルアクリレートとアクリロニトリル等の共重合体等からなる、エポキシ基を有しているアクリルゴムである。 As such an acrylic resin, an epoxy group-containing (meth) acrylic acid ester copolymer, an epoxy group-containing acrylic rubber or the like can be used, and an epoxy group-containing acrylic rubber is more preferable. Epoxy group-containing acrylic rubber is an acrylic rubber having an epoxy group, which is mainly composed of an acrylate ester, and mainly composed of a copolymer such as butyl acrylate and acrylonitrile, a copolymer such as ethyl acrylate and acrylonitrile, or the like. is there.
 なお、(b)成分の架橋性官能基としては、エポキシ基の他、アルコール性又はフェノール性水酸基、カルボキシル基等の架橋性官能基が挙げられる。 The crosslinkable functional group of component (b) includes crosslinkable functional groups such as alcoholic or phenolic hydroxyl groups and carboxyl groups in addition to epoxy groups.
 (b)成分において、高い接着力が発現し易く、また150℃/1時間加熱後の引張弾性率を低くし易い観点から、架橋性官能基を有するモノマー単位はモノマー単位全量に対し5~15モル%であることが好ましく、5~10モル%がより好ましい。 In the component (b), from the viewpoint of easily exhibiting high adhesive force and easily lowering the tensile elastic modulus after heating at 150 ° C./1 hour, the monomer unit having a crosslinkable functional group is 5 to 15 relative to the total amount of monomer units. The mol% is preferable, and 5 to 10 mol% is more preferable.
 (b)成分の重量平均分子量は、20万~100万であることが好ましく、50万~100万であることがより好ましい。これにより、ずり応力緩和率を所望の範囲に調整し易くなる。また、特に(b)成分の重量平均分子量が50万以上であると成膜性を向上させる効果が一段と良好になる。(b)成分の重量平均分子量が100万以下であると、未硬化状態のフィルム状接着剤10のずり粘度を低減し易くなるため、埋込性がより良好になる。また、未硬化状態のフィルム状接着剤10の切削性が改善し、ダイシングの品質がより良好になる場合がある。 The weight average molecular weight of the component (b) is preferably 200,000 to 1,000,000, more preferably 500,000 to 1,000,000. Thereby, it becomes easy to adjust the shear stress relaxation rate to a desired range. In particular, when the weight average molecular weight of the component (b) is 500,000 or more, the effect of improving the film forming property is further improved. When the weight average molecular weight of the component (b) is 1,000,000 or less, the shear viscosity of the uncured film adhesive 10 can be easily reduced, so that the embedding property becomes better. Moreover, the machinability of the uncured film adhesive 10 may be improved, and the quality of dicing may be improved.
 重量平均分子量は、ゲルパーミエーションクロマトグラフィー法(GPC)により、標準ポリスチレンによる検量線を用いて得られるポリスチレン換算値である。 The weight average molecular weight is a polystyrene conversion value obtained by a gel permeation chromatography method (GPC) using a calibration curve with standard polystyrene.
 (b)成分全体のガラス転移温度Tgは-20℃~40℃であることが好ましく、-10℃~30℃であることが好ましい。これにより、ダイシング時にフィルム状接着剤10が切断し易くなるため樹脂くずが発生し難く、フィルム状接着剤10の接着力と耐熱性とを高くし易く、また未硬化状態のフィルム状接着剤10の高い流動性を発現し易くなる。 (B) The glass transition temperature Tg of the entire component is preferably −20 ° C. to 40 ° C., and preferably −10 ° C. to 30 ° C. Thereby, since the film adhesive 10 becomes easy to cut | disconnect at the time of dicing, it is hard to generate | occur | produce resin waste, it is easy to make the adhesive force and heat resistance of the film adhesive 10 high, and the film adhesive 10 in an unhardened state. It becomes easy to express high fluidity.
 ガラス転移温度Tgは、熱示差走査熱量計(例えば、株式会社リガク製「Thermo Plus 2」)を用いて測定することができる。 The glass transition temperature Tg can be measured using a thermal differential scanning calorimeter (for example, “Thermo Plus 2” manufactured by Rigaku Corporation).
 (b)成分の含有量は、(a)成分を100質量部としたとき、20~160質量部であることが好ましく、50~120質量部であることがより好ましい。(b)成分の含有量が上記下限値以上であることにより、フィルム状接着剤10の可とう性の低下を抑制し易くなるとともに、硬化後には低弾性化して半導体装置(パッケージ)の反りを抑制し易くなる。一方、(b)成分の含有量が上記上限値以下であることにより、未硬化状態のフィルム状接着剤10の流動性が上昇し、埋込性をより良好にすることができる。なお、(b)成分の含有量が上記範囲内であることで、ずり応力緩和率を所望の範囲に調整し易くなる。 The content of the component (b) is preferably 20 to 160 parts by mass, and more preferably 50 to 120 parts by mass when the component (a) is 100 parts by mass. (B) When content of a component is more than the said lower limit, while it becomes easy to suppress the fall of the flexibility of the film adhesive 10, it becomes low elasticity after hardening and the curvature of a semiconductor device (package) is carried out. It becomes easy to suppress. On the other hand, when the content of the component (b) is not more than the above upper limit value, the fluidity of the uncured film adhesive 10 is increased, and the embedding property can be further improved. In addition, it becomes easy to adjust a shear stress relaxation rate to a desired range because content of (b) component exists in the said range.
(c)無機フィラー
 (c)成分としては、Bステージ状態におけるフィルム状接着剤10のダイシング性の向上、フィルム状接着剤10の取扱い性の向上、熱伝導性の向上、ずり粘度(溶融粘度)の調整、チクソトロピック性の付与、接着力の向上等の観点から、シリカフィラー等が好ましい。
(C) Inorganic filler (c) As component, the dicing property of the film-like adhesive 10 in the B-stage state, the handling property of the film-like adhesive 10 is improved, the thermal conductivity is improved, the shear viscosity (melt viscosity) From the viewpoints of adjusting the thickness, imparting thixotropic properties, improving adhesive strength, and the like, silica filler and the like are preferable.
 (c)成分は、未硬化状態のフィルム状接着剤10のダイシング性を向上し、硬化後の接着力を十分に発現させる目的で、平均粒径の異なる2種類以上のフィラーを含むことが好ましい。(c)成分は、例えば未硬化状態のフィルム状接着剤10のダイシング性向上を目的とした(c1)平均粒径が0.2μm以上の第1のフィラーと、硬化後の接着力を十分に発現させることを目的とした(c2)平均粒径が0.2μm未満の第2のフィラーを含むことが好ましい。 The component (c) preferably contains two or more kinds of fillers having different average particle diameters for the purpose of improving the dicing property of the uncured film adhesive 10 and sufficiently expressing the cured adhesive force. . The component (c) is, for example, for the purpose of improving the dicing property of the uncured film adhesive 10 (c1) The first filler having an average particle size of 0.2 μm or more and the adhesive strength after curing are sufficiently It is preferable to include (c2) a second filler having an average particle diameter of less than 0.2 μm for the purpose of expression.
 平均粒径は、レーザー回折式粒度分布測定装置を用いて、アセトンを溶媒として分析した場合に得られる値とする。第1及び第2のフィラーの平均粒径は、粒度分布測定装置で分析した場合に、それぞれのフィラーが含まれていることが判別できる程度に、その差が大きいことがより好ましい。 The average particle diameter is a value obtained when analysis is performed using acetone as a solvent with a laser diffraction particle size distribution analyzer. It is more preferable that the difference between the average particle diameters of the first and second fillers is so large that it can be determined that the respective fillers are contained when analyzed by a particle size distribution measuring apparatus.
 (c1)成分の含有量は、(c)成分の全質量を基準として30質量%以上であることが好ましい。(c1)成分の含有量が30質量%以上であることにより、フィルムの破断性の悪化、未硬化状態のフィルム状接着剤10の流動性の悪化を抑制し易くなる。なお、(c1)成分の含有量の上限は特に限定されないが、(c)成分の全質量を基準として95質量%とすることができる。 The content of the component (c1) is preferably 30% by mass or more based on the total mass of the component (c). When the content of the component (c1) is 30% by mass or more, it becomes easy to suppress deterioration of the film breakability and deterioration of the fluidity of the uncured film adhesive 10. In addition, although the upper limit of content of (c1) component is not specifically limited, It can be 95 mass% on the basis of the total mass of (c) component.
 (c2)成分の含有量は、(c)成分の全質量を基準として5質量%以上であることが好ましい。(c2)成分の含有量が5質量%以上であることにより、硬化後の接着力を向上させ易い。なお、(c2)成分の含有量の上限は、適度な流動性を確保する観点から、(c)成分の全質量を基準として30質量%とすることができる。 The content of the component (c2) is preferably 5% by mass or more based on the total mass of the component (c). (C2) It is easy to improve the adhesive force after hardening because content of a component is 5 mass% or more. In addition, the upper limit of content of (c2) component can be 30 mass% on the basis of the total mass of (c) component from a viewpoint of ensuring appropriate fluidity | liquidity.
 (c)成分の含有量は、(a)成分を100質量部としたとき、10~90質量部であることが好ましく、40~70質量部であることがより好ましい。(c)成分の含有量が上記下限値以上であることにより、未硬化状態のフィルム状接着剤10のダイシング性の悪化、硬化後の接着力の低下を抑制し易いという傾向がある。一方、(c)成分の含有量が上記上限値以下であることにより、未硬化状態のフィルム状接着剤10の流動性の低下、硬化後の弾性率の上昇を抑制し易いという傾向がある。なお、(c)成分の含有量が上記範囲内であることで、ずり応力緩和率を所望の範囲に調整し易くなる。 The content of the component (c) is preferably 10 to 90 parts by mass, more preferably 40 to 70 parts by mass when the component (a) is 100 parts by mass. (C) When content of a component is more than the said lower limit, there exists a tendency for it to be easy to suppress the deterioration of the dicing property of the uncured film adhesive 10, and the fall of the adhesive force after hardening. On the other hand, when the content of the component (c) is not more than the above upper limit value, there is a tendency that it is easy to suppress a decrease in fluidity of the uncured film adhesive 10 and an increase in the elastic modulus after curing. In addition, it becomes easy to adjust a shear stress relaxation rate to a desired range because content of (c) component exists in the said range.
(d)有機フィラー
 (d)成分としては、フィルム状接着剤10のダイシング性の向上、フィルム状接着剤10の取扱い性の向上、ずり粘度(溶融粘度)の調整、接着力の向上、硬化後の応力緩和性等の観点から、スチレン-PMMA変性ゴムフィラー、シリコーン変性ゴムフィラー等が好ましい。(d)成分の平均粒径は、硬化後の接着力を十分に発現し易くする観点から0.2μm以下であることが好ましい。
(D) Organic filler As the component (d), the dicing property of the film adhesive 10 is improved, the handling property of the film adhesive 10 is improved, the shear viscosity (melt viscosity) is adjusted, the adhesive force is improved, and after curing. From the viewpoint of the stress relaxation property of styrene, a styrene-PMMA modified rubber filler, a silicone modified rubber filler and the like are preferable. The average particle diameter of the component (d) is preferably 0.2 μm or less from the viewpoint of sufficiently expressing the adhesive strength after curing.
 (d)成分の含有量は、(c)成分を100質量部としたとき、0~50質量部であることが好ましく、0~30質量部であることがより好ましい。必要に応じ(d)成分を所定量含有させることにより、埋め込み性を向上しつつ応力緩和率を抑え易いという傾向がある。 The content of the component (d) is preferably 0 to 50 parts by mass, more preferably 0 to 30 parts by mass when the component (c) is 100 parts by mass. By containing a predetermined amount of the component (d) as necessary, the stress relaxation rate tends to be easily suppressed while improving the embedding property.
(e)硬化促進剤
 良好な硬化性を得る目的で、(e)硬化促進剤を用いることが好ましい。(e)成分としては、反応性の観点からイミダゾール系の化合物が好ましい。なお、(e)成分の反応性が高すぎると、フィルム状接着剤10の製造工程中の加熱によりずり粘度が上昇し易くなるだけではなく、経時による劣化を引き起こし易い傾向がある。一方、(e)成分の反応性が低すぎると、フィルム状接着剤10の硬化性が低下し易い傾向がある。フィルム状接着剤10が十分硬化されないまま製品内に搭載されると、十分な接着性が得られず、半導体装置の接続信頼性を悪化させる可能性がある。
(E) Curing accelerator For the purpose of obtaining good curability, it is preferable to use (e) a curing accelerator. The component (e) is preferably an imidazole compound from the viewpoint of reactivity. In addition, when the reactivity of (e) component is too high, not only will shear viscosity rise easily by the heating in the manufacturing process of the film adhesive 10, but it will tend to cause deterioration over time. On the other hand, if the reactivity of the component (e) is too low, the curability of the film adhesive 10 tends to decrease. If the film adhesive 10 is mounted in a product without being sufficiently cured, sufficient adhesiveness may not be obtained, and the connection reliability of the semiconductor device may be deteriorated.
 (e)成分を含有させることで、フィルム状接着剤10の硬化性がより向上する。一方、(e)成分の含有量が多すぎる場合には、フィルム状接着剤10の製造工程中の加熱によりずり粘度が上昇し易くなるだけではなく、経時による劣化を引き起こし易い傾向がある。このような観点から、(e)成分の含有量は、(a)成分を100質量部としたとき、0~0.20質量部であることが好ましい。 (E) By containing a component, the sclerosis | hardenability of the film adhesive 10 improves more. On the other hand, when the content of the component (e) is too large, not only the shear viscosity tends to increase due to heating during the production process of the film-like adhesive 10 but also tends to cause deterioration with time. From such a viewpoint, the content of the component (e) is preferably 0 to 0.20 parts by mass when the component (a) is 100 parts by mass.
(f)その他の成分
 上記成分以外に、接着性向上の観点から、本技術分野において使用され得るその他の成分をさらに適量用いてもよい。そのような成分としては、例えばカップリング剤が挙げられる。カップリング剤としては、γ-ウレイドプロピルトリエトキシシラン、γ-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-(2-アミノエチル)アミノプロピルトリメトキシシラン等が挙げられる。
(F) Other components In addition to the components described above, other components that can be used in the present technical field may be used in an appropriate amount from the viewpoint of improving adhesiveness. An example of such a component is a coupling agent. Examples of the coupling agent include γ-ureidopropyltriethoxysilane, γ-mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3- (2-aminoethyl) aminopropyltrimethoxysilane, and the like.
(フィルム状接着剤)
 フィルム状接着剤10は、例えば上記成分を含む接着剤組成物のワニスを基材フィルム上に塗布することによりワニスの層を形成する工程、加熱乾燥によりワニスの層から溶媒を除去する工程、基材フィルムを除去する工程、により得ることができる。
(Film adhesive)
The film adhesive 10 includes, for example, a step of forming a varnish layer by applying a varnish of an adhesive composition containing the above components on a base film, a step of removing the solvent from the varnish layer by heating and drying, It can be obtained by the step of removing the material film.
 ワニスは、上記成分を含む接着剤組成物を有機溶媒中で混合、混練等して調製することができる。混合及び混練は、通常の攪拌機、らいかい機、三本ロール、ボールミル等の分散機を用いることができる。これらの機器は適宜組み合わせて用いることができる。ワニスの塗布は、例えばコンマコーター、ダイコータ―等により行うことができる。ワニスの加熱乾燥条件は、使用した有機溶媒が充分に揮散する条件であれば特に制限はなく、例えば60~200℃で0.1~90分間とすることができる。 The varnish can be prepared by mixing, kneading, etc. an adhesive composition containing the above components in an organic solvent. For mixing and kneading, a dispersing machine such as a normal stirrer, a raking machine, a three-roller, or a ball mill can be used. These devices can be used in appropriate combination. The varnish can be applied by, for example, a comma coater or a die coater. The heating and drying conditions for the varnish are not particularly limited as long as the organic solvent used is sufficiently volatilized, and can be, for example, 60 to 200 ° C. for 0.1 to 90 minutes.
 有機溶媒としては、上記成分を均一に溶解、混練又は分散できるものであれば制限はなく、従来公知のものを使用することができる。このような溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、ジメチルホルムアミド、ジメチルアセトアミド、Nメチルピロリドン、トルエン、キシレン等が挙げられる。乾燥速度が速く、価格が安い点でメチルエチルケトン、シクロヘキサノン等を使用することが好ましい。 The organic solvent is not particularly limited as long as it can uniformly dissolve, knead or disperse the above components, and conventionally known ones can be used. Examples of such solvents include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone, dimethylformamide, dimethylacetamide, N methylpyrrolidone, toluene, xylene, and the like. It is preferable to use methyl ethyl ketone, cyclohexanone, etc. in terms of fast drying speed and low price.
 上記基材フィルムとしては、特に制限はなく、例えば、ポリエステルフィルム(ポリエチレンテレフタレートフィルム等)、ポリプロピレンフィルム(OPP(Oriented PolyPropylene)フィルム等)、ポリイミドフィルム、ポリエーテルイミドフィルム、ポリエーテルナフタレートフィルム、メチルペンテンフィルム等が挙げられる。 There is no restriction | limiting in particular as said base film, For example, a polyester film (polyethylene terephthalate film etc.), a polypropylene film (OPP (Oriented Polypropylene) film etc.), a polyimide film, a polyetherimide film, a polyether naphthalate film, methyl Examples include pentene film.
 フィルム状接着剤10の厚さは、第1のワイヤ及び第1の半導体素子、並びに基板の配線回路等の凹凸を十分に埋め込めるよう、20~200μmであることが好ましい。また、厚さが20μm以上であることで十分な接着力を得易くなり、200μm以下であることで半導体装置の小型化の要求に応え易くなる。このような観点から、フィルム状接着剤10の厚さは30~200μmであることがより好ましく、40~150μmであることがさらに好ましい。 The thickness of the film adhesive 10 is preferably 20 to 200 μm so that the first wire, the first semiconductor element, and the unevenness of the wiring circuit of the substrate can be sufficiently embedded. Further, when the thickness is 20 μm or more, it becomes easy to obtain a sufficient adhesive force, and when the thickness is 200 μm or less, it becomes easy to meet the demand for downsizing of the semiconductor device. From such a viewpoint, the thickness of the film adhesive 10 is more preferably 30 to 200 μm, and further preferably 40 to 150 μm.
 厚いフィルム状接着剤10を得る方法としては、フィルム状接着剤10同士を貼り合わせる方法が挙げられる。 As a method of obtaining the thick film adhesive 10, there is a method of bonding the film adhesives 10 together.
(接着シート)
 接着シート100は、図2に示すように、基材フィルム20上にフィルム状接着剤10を備えるものである。接着シート100は、フィルム状接着剤10を得る工程において、基材フィルム20を除去しないことで得ることができる。
(Adhesive sheet)
As shown in FIG. 2, the adhesive sheet 100 includes a film adhesive 10 on a base film 20. The adhesive sheet 100 can be obtained by removing the base film 20 in the step of obtaining the film adhesive 10.
 接着シート110は、図3に示すように、接着シート100の基材フィルム20とは反対側の面にさらにカバーフィルム30を備えるものである。カバーフィルム30としては、例えば、PETフィルム、PEフィルム、OPPフィルム等が挙げられる。 As shown in FIG. 3, the adhesive sheet 110 further includes a cover film 30 on the surface of the adhesive sheet 100 opposite to the base film 20. Examples of the cover film 30 include a PET film, a PE film, and an OPP film.
 フィルム状接着剤10は、ダイシングテープ上に積層されてもよい。これにより得られるダイシング・ダイボンディング一体型接着シートを用いることで、半導体ウェハへのラミネート工程を一度に行うことができ、作業の効率化が可能である。 The film adhesive 10 may be laminated on a dicing tape. By using the dicing / die bonding integrated adhesive sheet obtained in this way, the lamination process to the semiconductor wafer can be performed at a time, and the work efficiency can be improved.
 ダイシングテープとしては、例えば、ポリテトラフルオロエチレンフィルム、ポリエチレンテレフタレートフィルム、ポリエチレンフィルム、ポリプロピレンフィルム、ポリメチルペンテンフィルム、ポリイミドフィルム等のプラスチックフィルムなどが挙げられる。ダイシングテープには、必要に応じて、プライマー処理、UV処理、コロナ放電処理、研磨処理、エッチング処理等の表面処理が行われていてもよい。 Examples of the dicing tape include plastic films such as a polytetrafluoroethylene film, a polyethylene terephthalate film, a polyethylene film, a polypropylene film, a polymethylpentene film, and a polyimide film. The dicing tape may be subjected to surface treatment such as primer treatment, UV treatment, corona discharge treatment, polishing treatment, and etching treatment as necessary.
 ダイシングテープは粘着性を有するものが好ましい。このようなダイシングテープとしては、上記プラスチックフィルムに粘着性を付与したもの、上記プラスチックフィルムの片面に粘着剤層を設けたものが挙げられる。 The dicing tape is preferably adhesive. Examples of such a dicing tape include those obtained by imparting adhesiveness to the plastic film and those obtained by providing an adhesive layer on one side of the plastic film.
 このようなダイシング・ダイボンディング一体型接着シートとしては、図4に示す接着シート120及び図5に示す接着シート130が挙げられる。接着シート120は、図4に示すように、引張テンションを加えたときの伸びを確保できる基材フィルム40上に粘着剤層50が設けられたダイシングテープ60を支持基材とし、ダイシングテープ60の粘着剤層50上に、フィルム状接着剤10が設けられた構造を有している。接着シート130は、図5に示すように、接着シート120においてフィルム状接着剤10の表面にさらに基材フィルム20が設けられた構造を有している。 Examples of such a dicing / die bonding integrated adhesive sheet include an adhesive sheet 120 shown in FIG. 4 and an adhesive sheet 130 shown in FIG. As shown in FIG. 4, the adhesive sheet 120 uses a dicing tape 60 in which an adhesive layer 50 is provided on a base film 40 that can ensure elongation when a tensile tension is applied, as a supporting base material. The adhesive layer 50 has a structure in which the film adhesive 10 is provided. As shown in FIG. 5, the adhesive sheet 130 has a structure in which a base film 20 is further provided on the surface of the film adhesive 10 in the adhesive sheet 120.
 基材フィルム40としては、ダイシングテープについて記載した上記プラスチックフィルムが挙げられる。また、粘着剤層50は、例えば、液状成分及び熱可塑性成分を含み適度なタック強度を有する樹脂組成物を用いて形成することができる。ダイシングテープ60を得るには、当該樹脂組成物を基材フィルム40上に塗布し乾燥して粘着剤層50を形成する方法、PETフィルム等の他のフィルム上に一旦形成した粘着剤層50を基材フィルム40と貼り合せる方法等が挙げられる。 Examples of the base film 40 include the plastic films described for the dicing tape. The pressure-sensitive adhesive layer 50 can be formed using, for example, a resin composition that includes a liquid component and a thermoplastic component and has an appropriate tack strength. In order to obtain the dicing tape 60, a method of forming the pressure-sensitive adhesive layer 50 by applying the resin composition on the base film 40 and drying the pressure-sensitive adhesive layer 50 once formed on another film such as a PET film. The method of bonding with the base film 40 etc. are mentioned.
 ダイシングテープ60上にフィルム状接着剤10を積層する方法としては、上記の接着剤組成物のワニスをダイシングテープ60上に直接塗布し乾燥する方法、ワニスをダイシングテープ60上にスクリーン印刷する方法、予めフィルム状接着剤10を作製し、これをダイシングテープ60上に、プレス、ホットロールラミネートにより積層する方法等が挙げられる。連続的に製造でき、効率がよい点で、ホットロールラミネートによる積層が好ましい。 As a method of laminating the film adhesive 10 on the dicing tape 60, a method of directly applying and drying the varnish of the above adhesive composition on the dicing tape 60, a method of screen printing the varnish on the dicing tape 60, Examples thereof include a method in which the film adhesive 10 is prepared in advance and is laminated on the dicing tape 60 by pressing or hot roll laminating. Lamination by hot roll laminating is preferred because it can be continuously produced and is efficient.
 ダイシングテープ60の厚さは、特に制限はなく、フィルム状接着剤10の厚さ、ダイシング・ダイボンディング一体型接着シートの用途等によって適宜、当業者の知識に基づいて定めることができる。なお、ダイシングテープ60の厚さが60μm以上であることで、取扱い性の低下、エキスパンドによる破れ等を抑制し易いる傾向がある。一方、ダイシングテープの厚さが180μm以下であることで、経済性と取扱い性の良さを両立し易い。 The thickness of the dicing tape 60 is not particularly limited, and can be determined based on the knowledge of those skilled in the art as appropriate depending on the thickness of the film adhesive 10, the use of the dicing / die bonding integrated adhesive sheet, and the like. In addition, when the thickness of the dicing tape 60 is 60 μm or more, there is a tendency that it is easy to suppress deterioration in handleability, tearing due to the expand, and the like. On the other hand, since the thickness of the dicing tape is 180 μm or less, it is easy to achieve both economy and good handling properties.
(半導体装置)
 図6は、半導体装置を示す断面図である。図6に示すように、半導体装置200は、第1の半導体素子Wa上に、第2の半導体素子Waaが積み重ねられた半導体装置である。詳細には、基板14に、第1のワイヤ88を介して1段目の第1の半導体素子Waが電気的に接続されると共に、第1の半導体素子Wa上に、第1の半導体素子Waの面積よりも大きい2段目の第2の半導体素子Waaがフィルム状接着剤10を介して圧着されることで、第1のワイヤ88及び第1の半導体素子Waがフィルム状接着剤10に埋め込まれてなるワイヤ埋込型の半導体装置である。また、半導体装置200では、基板14と第2の半導体素子Waaとがさらに第2のワイヤ98を介して電気的に接続されると共に、第2の半導体素子Waaが封止材42により封止されている。
(Semiconductor device)
FIG. 6 is a cross-sectional view showing the semiconductor device. As shown in FIG. 6, the semiconductor device 200 is a semiconductor device in which a second semiconductor element Waa is stacked on a first semiconductor element Wa. Specifically, the first semiconductor element Wa at the first stage is electrically connected to the substrate 14 via the first wire 88, and the first semiconductor element Wa is formed on the first semiconductor element Wa. The second semiconductor element Waa in the second stage larger than the area of the first wire 88 is pressure-bonded via the film adhesive 10 so that the first wire 88 and the first semiconductor element Wa are embedded in the film adhesive 10. This is a buried wire type semiconductor device. In the semiconductor device 200, the substrate 14 and the second semiconductor element Waa are further electrically connected via the second wire 98, and the second semiconductor element Waa is sealed with the sealing material 42. ing.
 第1の半導体素子Waの厚さは、10~170μmであり、第2の半導体素子Waaの厚さは20~400μmである。フィルム状接着剤10内部に埋め込まれている第1の半導体素子Waは、半導体装置200を駆動するためのコントローラチップである。 The thickness of the first semiconductor element Wa is 10 to 170 μm, and the thickness of the second semiconductor element Waa is 20 to 400 μm. The first semiconductor element Wa embedded in the film adhesive 10 is a controller chip for driving the semiconductor device 200.
 基板14は、表面に回路パターン84,94がそれぞれ二箇所ずつ形成された有機基板90からなる。第1の半導体素子Waは、回路パターン94上に接着剤41を介して圧着されており、第2の半導体素子Waaは、第1の半導体素子Waが圧着されていない回路パターン94、第1の半導体素子Wa、及び回路パターン84の一部を覆うようにフィルム状接着剤10を介して基板14に圧着されている。基板14上の回路パターン84,94に起因する凹凸は、フィルム状接着剤10により埋め込まれている。そして、樹脂製の封止材42により、第2の半導体素子Waa、回路パターン84及び第2のワイヤ98が封止されている。 The substrate 14 is composed of an organic substrate 90 on which two circuit patterns 84 and 94 are formed on the surface. The first semiconductor element Wa is crimped onto the circuit pattern 94 via an adhesive 41, and the second semiconductor element Waa is a circuit pattern 94 in which the first semiconductor element Wa is not crimped. The semiconductor element Wa and a part of the circuit pattern 84 are pressure-bonded to the substrate 14 via the film adhesive 10. Unevenness caused by the circuit patterns 84 and 94 on the substrate 14 is embedded by the film adhesive 10. The second semiconductor element Waa, the circuit pattern 84, and the second wire 98 are sealed with a resin sealing material 42.
(半導体装置の製造方法)
 半導体装置は、基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のダイボンド工程と、第1の半導体素子の面積よりも大きい第2の半導体素子の片面に、100℃における0.1秒後のずり応力緩和率が40~85%であるフィルム状接着剤を貼付するラミネート工程と、フィルム状接着剤が貼付された第2の半導体素子を、フィルム状接着剤が第1の半導体素子を覆うように載置し、フィルム状接着剤を圧着することで、第1のワイヤ及び第1の半導体素子をフィルム状接着剤に埋め込む第2のダイボンド工程と、を備える、半導体装置の製造方法により製造される。以下、半導体装置200の製造手順を例として、具体的に説明する。
(Method for manufacturing semiconductor device)
A semiconductor device includes: a first die bonding step of electrically connecting a first semiconductor element on a substrate through a first wire; and a second semiconductor element having a larger area than the first semiconductor element. A laminating step of applying a film adhesive having a shear stress relaxation rate of 40 to 85% after 0.1 seconds at 100 ° C., and a second semiconductor element to which the film adhesive is applied A second die bonding step of embedding the first wire and the first semiconductor element in the film adhesive by placing the agent so as to cover the first semiconductor element and pressing the film adhesive. The semiconductor device is manufactured by a method for manufacturing a semiconductor device. Hereinafter, the manufacturing procedure of the semiconductor device 200 will be specifically described as an example.
 まず、図7に示すように、基板14上の回路パターン94上に、接着剤41付き第1の半導体素子Waaを圧着し、第1のワイヤ88を介して基板14上の回路パターン84と第1の半導体素子Waとを電気的に接続する(第1のダイボンド工程)。 First, as shown in FIG. 7, the first semiconductor element Waa with the adhesive 41 is pressure-bonded on the circuit pattern 94 on the substrate 14, and the circuit pattern 84 on the substrate 14 and the first pattern are connected to each other via the first wire 88. The first semiconductor element Wa is electrically connected (first die bonding step).
 次に、半導体ウェハ(例えば8インチサイズ)の片面に、接着シート100をラミネートし、基材フィルム20を剥がすことで、半導体ウェハの片面にフィルム状接着剤10を貼り付ける。そして、フィルム状接着剤10にダイシングテープ60を貼り合わせた後、所定サイズ(例えば7.5mm角)にダイシングし、ダイシングテープ60を剥離することにより、図8に示すように、フィルム状接着剤10が貼付した第2の半導体素子Waaを得る(ラミネート工程)。 Next, the adhesive sheet 100 is laminated on one side of a semiconductor wafer (for example, 8-inch size), and the base film 20 is peeled off, so that the film adhesive 10 is attached to one side of the semiconductor wafer. Then, after the dicing tape 60 is bonded to the film adhesive 10, the film adhesive is diced into a predetermined size (for example, 7.5 mm square), and the dicing tape 60 is peeled off, as shown in FIG. A second semiconductor element Waa to which 10 is attached is obtained (laminating step).
 ラミネート工程は、50~100℃で行うことが好ましく、60~80℃で行うことがより好ましい。ラミネート工程の温度が50℃以上であると、半導体ウェハと良好な密着性を得ることができる。ラミネート工程の温度が100℃以下であると、ラミネート工程中にフィルム状接着剤10が過度に流動することが抑えられるため、厚さの変化等を引き起こすことを防止できる。 The laminating step is preferably performed at 50 to 100 ° C., more preferably 60 to 80 ° C. When the temperature in the laminating step is 50 ° C. or higher, good adhesion to the semiconductor wafer can be obtained. When the temperature of the laminating process is 100 ° C. or lower, the film-like adhesive 10 can be prevented from flowing excessively during the laminating process, so that it is possible to prevent a change in thickness and the like.
 ダイシング方法としては、回転刃を用いてブレードダイシングする方法、レーザーによりフィルム状接着剤10又はウェハとフィルム状接着剤10の両方を切断する方法、また常温又は冷却条件下での伸張など汎用の方法などが挙げられる。 As a dicing method, a blade dicing method using a rotary blade, a method of cutting the film adhesive 10 or both the wafer and the film adhesive 10 with a laser, and a general-purpose method such as stretching under normal temperature or cooling conditions Etc.
 そして、フィルム状接着剤10が貼付した第2の半導体素子Waaを、第1の半導体素子Waがワイヤ88を介して接続された基板14に圧着する。具体的には、図9に示すように、フィルム状接着剤10が貼付した第2の半導体素子Waaを、フィルム状接着剤10が第1の半導体素子Waを覆うように載置し、次いで、図10に示すように、第2の半導体素子Waaを基板14に圧着させることで基板14に第2の半導体素子Waaを固定する(第2のダイボンド工程)。第2のダイボンド工程は、フィルム状接着剤10を80~180℃、0.01~0.50MPaの条件で0.5~3.0秒間圧着することが好ましい。 Then, the second semiconductor element Waa to which the film adhesive 10 is attached is pressure-bonded to the substrate 14 to which the first semiconductor element Wa is connected via the wire 88. Specifically, as shown in FIG. 9, the second semiconductor element Waa attached with the film adhesive 10 is placed so that the film adhesive 10 covers the first semiconductor element Wa, As shown in FIG. 10, the second semiconductor element Waa is fixed to the substrate 14 by pressing the second semiconductor element Waa to the substrate 14 (second die bonding step). In the second die bonding step, the film adhesive 10 is preferably pressure-bonded for 0.5 to 3.0 seconds under conditions of 80 to 180 ° C. and 0.01 to 0.50 MPa.
 第2のダイボンド工程において生じ得る空隙を除去することを目的として、第2のダイボンド工程後に、フィルム状接着剤10を60~175℃、0.3~0.7MPaの条件で、5分間以上加圧及び加熱する工程を実施してもよい。これにより、歩留まりを安定させながら、より容易に半導体装置を製造することができる。 For the purpose of removing voids that may occur in the second die bonding step, the film-like adhesive 10 is applied for 5 minutes or more at 60 to 175 ° C. and 0.3 to 0.7 MPa after the second die bonding step. You may implement the process of pressing and heating. As a result, the semiconductor device can be manufactured more easily while stabilizing the yield.
 次いで、図11に示すように、基板14と第2の半導体素子Waaとを第2のワイヤ98を介して電気的に接続した後、回路パターン84、第2のワイヤ98及び第2の半導体素子Waa全体を、封止材42で170~180℃、5~8MPaの条件にて封止する(封止工程)。このような工程を経ることで半導体装置200を製造することができる。 Next, as shown in FIG. 11, after the substrate 14 and the second semiconductor element Waa are electrically connected via the second wire 98, the circuit pattern 84, the second wire 98, and the second semiconductor element are connected. The entire Waa is sealed with the sealing material 42 under the conditions of 170 to 180 ° C. and 5 to 8 MPa (sealing process). The semiconductor device 200 can be manufactured through such steps.
 上記のとおり、半導体装置200は、基板上に第1のワイヤを介して第1の半導体素子が電気的に接続されると共に、第1の半導体素子上に、第1の半導体素子の面積よりも大きい第2の半導体素子が圧着されてなる半導体装置において、第2の半導体素子を圧着すると共に、第1のワイヤ及び第1の半導体素子を埋め込むために用いられる、100℃における0.1秒後のずり応力緩和率が40~85%である、フィルム状接着剤を用いて製造される。100℃における0.1秒後のずり応力緩和率が40%以上であるフィルム状接着剤を用いることで、ワイヤ、半導体素子等の形状に追従することができ、埋込性を確保することが可能となる。また、ずり応力緩和率が85%以下であるフィルム状接着剤を用いることで、圧着時にフィルム形状を留めておくことができ、ブリードを抑制することが可能となる。 As described above, in the semiconductor device 200, the first semiconductor element is electrically connected to the substrate via the first wire, and the area of the first semiconductor element is larger than that of the first semiconductor element. In a semiconductor device in which a large second semiconductor element is crimped, the second semiconductor element is crimped and used for embedding the first wire and the first semiconductor element, after 0.1 seconds at 100 ° C. It is manufactured using a film adhesive having a shear stress relaxation rate of 40 to 85%. By using a film adhesive that has a shear stress relaxation rate of 40% or more after 0.1 seconds at 100 ° C., it is possible to follow the shape of a wire, a semiconductor element, etc., and to ensure embeddability. It becomes possible. Moreover, by using a film-like adhesive having a shear stress relaxation rate of 85% or less, the film shape can be retained at the time of pressure bonding, and bleeding can be suppressed.
 以上、本発明の好適な実施形態について説明したが、本発明は必ずしも上述した実施形態に限定されるものではない。例えば、以下のようにその趣旨を逸脱しない範囲で適宜変更を行ってもよい。 The preferred embodiment of the present invention has been described above, but the present invention is not necessarily limited to the above-described embodiment. For example, you may change suitably in the range which does not deviate from the meaning as follows.
 半導体装置200において、基板14は、表面に回路パターン84,94がそれぞれ二箇所ずつ形成された有機基板90であったが、基板14としてはこれに限られず、リードフレームなどの金属基板を用いてもよい。 In the semiconductor device 200, the substrate 14 is the organic substrate 90 having the circuit patterns 84 and 94 formed on the surface thereof at two locations. However, the substrate 14 is not limited to this, and a metal substrate such as a lead frame is used. Also good.
 半導体装置200は、第1の半導体素子Wa上に第2の半導体素子Waaが積層されており、二段に半導体素子が積層された構成を有していたが、半導体装置の構成はこれに限られない。第2の半導体素子Waaの上に第3の半導体素子をさらに積層されていても構わないし、第2の半導体素子Waaの上に複数の半導体素子がさらに積層されていても構わない。積層される半導体素子の数が増加するにつれて、得られる半導体装置の容量を増やすことができる。 Although the semiconductor device 200 has a configuration in which the second semiconductor element Waa is stacked on the first semiconductor element Wa and the semiconductor elements are stacked in two stages, the configuration of the semiconductor device is not limited thereto. I can't. A third semiconductor element may be further stacked on the second semiconductor element Waa, or a plurality of semiconductor elements may be further stacked on the second semiconductor element Waa. As the number of stacked semiconductor elements increases, the capacity of the obtained semiconductor device can be increased.
 本実施形態に係る半導体装置の製造方法では、ラミネート工程において、半導体ウェハの片面に、図2に示す接着シート100をラミネートし、基材フィルム20を剥がすことで、フィルム状接着剤10を貼り付けていたが、ラミネート時に用いる接着シートはこれに限られない。接着シート100の代わりに、図4及び5に示すダイシング・ダイボンディング一体型接着シート120,130を用いることができる。この場合、半導体ウェハをダイシングする際にダイシングテープ60を別途貼り付ける必要がない。 In the semiconductor device manufacturing method according to the present embodiment, in the laminating process, the adhesive sheet 100 shown in FIG. 2 is laminated on one side of the semiconductor wafer, and the base film 20 is peeled off, so that the film adhesive 10 is applied. However, the adhesive sheet used at the time of lamination is not limited to this. Instead of the adhesive sheet 100, dicing / die bonding integrated adhesive sheets 120 and 130 shown in FIGS. 4 and 5 can be used. In this case, it is not necessary to attach the dicing tape 60 separately when dicing the semiconductor wafer.
 ラミネート工程において、半導体ウェハではなく、半導体ウェハを個片化して得られた半導体素子を、接着シート100にラミネートしても構わない。この場合、ダイシング工程を省略することができる。 In the laminating step, a semiconductor element obtained by dividing a semiconductor wafer instead of a semiconductor wafer may be laminated on the adhesive sheet 100. In this case, the dicing process can be omitted.
 以下、実施例を挙げて本発明についてより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
(実施例及び比較例)
 表1及び表2(単位:質量部)に従い、熱硬化性樹脂であるエポキシ樹脂及びフェノール樹脂、並びに無機フィラーをそれぞれ秤量して組成物を得て、さらにシクロヘキサノンを加えて撹拌混合した。これに、熱可塑性樹脂であるアクリルゴムを加えて撹拌した後、さらにカップリング剤及び硬化促進剤を加えて各成分が均一になるまで撹拌し、ワニスを得た。なお、表中の各成分の品名は下記のものを意味する。
(Examples and Comparative Examples)
According to Table 1 and Table 2 (unit: part by mass), the epoxy resin and phenol resin, which are thermosetting resins, and the inorganic filler were weighed to obtain compositions, and further cyclohexanone was added and mixed with stirring. Acrylic rubber, which is a thermoplastic resin, was added thereto and stirred, and then a coupling agent and a curing accelerator were further added and stirred until each component became uniform to obtain a varnish. In addition, the product name of each component in a table | surface means the following.
(エポキシ樹脂)
Celloxide 2021P:(商品名、ダイセル株式会社製、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート:エポキシ当量126、常温で液体、分子量236)
YDF-8170C:(商品名、新日化エポキシ製造株式会社製、ビスフェノールF型エポキシ樹脂:エポキシ当量159、常温で液体、重量平均分子量約310)
YDCN-700-10:(商品名、新日化エポキシ製造株式会社製、クレゾールノボラック型エポキシ樹脂:エポキシ当量210、軟化点75~85℃)
HP-7000L:(商品名、DIC株式会社製、ジシクロペンタジエン変性エポキシ樹脂:エポキシ当量242~252、軟化点:50~60℃)
VG-3101L:(商品名、株式会社プリンテック製、多官能エポキシ樹脂:エポキシ当量210、軟化点39~46℃)
(Epoxy resin)
Celloxide 2021P: (trade name, manufactured by Daicel Corporation, 3 ′, 4′-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate: epoxy equivalent 126, liquid at room temperature, molecular weight 236)
YDF-8170C: (trade name, manufactured by Nippon Kayaku Epoxy Manufacturing Co., Ltd., bisphenol F type epoxy resin: epoxy equivalent 159, liquid at room temperature, weight average molecular weight of about 310)
YDCN-700-10: (trade name, manufactured by Nippon Kasei Epoxy Manufacturing Co., Ltd., cresol novolac type epoxy resin: epoxy equivalent 210, softening point 75 to 85 ° C.)
HP-7000L: (trade name, manufactured by DIC Corporation, dicyclopentadiene-modified epoxy resin: epoxy equivalent 242-252, softening point: 50-60 ° C.)
VG-3101L: (trade name, manufactured by Printec Co., Ltd., polyfunctional epoxy resin: epoxy equivalent 210, softening point 39-46 ° C.)
(フェノール樹脂)
HE-100C-30:(商品名、エア・ウォーター株式会社製、フェノール樹脂:水酸基当量175、軟化点79℃、吸水率1質量%、加熱質量減少率4質量%)
レヂトップPSM-4326:(商品名、群栄化学工業株式会社製、フェノール樹脂:水酸基当量105、軟化点118~122℃、吸水率1質量%)
(Phenolic resin)
HE-100C-30: (trade name, manufactured by Air Water Co., Ltd., phenol resin: hydroxyl group equivalent 175, softening point 79 ° C., water absorption 1 mass%, heating mass reduction rate 4 mass%)
Resitop PSM-4326: (trade name, manufactured by Gunei Chemical Industry Co., Ltd., phenol resin: hydroxyl group equivalent 105, softening point 118-122 ° C., water absorption 1% by mass)
(無機フィラー)
SC2050-HLG:(商品名、アドマテックス株式会社製、シリカフィラー分散液:平均粒径0.50μm)
アエロジルR972:(商品名、日本アエロジル株式会社製、シリカ:平均粒径0.016μm)。
(Inorganic filler)
SC2050-HLG: (trade name, manufactured by Admatechs Co., Ltd., silica filler dispersion: average particle size 0.50 μm)
Aerosil R972: (trade name, manufactured by Nippon Aerosil Co., Ltd., silica: average particle size 0.016 μm).
(アクリルゴム)
HTR-860P-3CSP:(サンプル名:ナガセケムテックス株式会社製、アクリルゴム:重量平均分子量80万、グリシジル官能基モノマー比率3モル%、Tg12℃)
HTR-860P-3CSP Mw:50:(サンプル名:ナガセケムテックス株式会社製、アクリルゴム:重量平均分子量50万、グリシジル官能基モノマー比率3モル%、Tg12℃)
HTR-860P-30B-CHN:(サンプル名、ナガセケムテックス株式会社製、アクリルゴム:重量平均分子量23万、グリシジル官能基モノマー比率8質量%、Tg-7℃)
(Acrylic rubber)
HTR-860P-3CSP: (sample name: manufactured by Nagase ChemteX Corporation, acrylic rubber: weight average molecular weight 800,000, glycidyl functional group monomer ratio 3 mol%, Tg 12 ° C.)
HTR-860P-3CSP Mw: 50: (Sample name: manufactured by Nagase ChemteX Corporation, acrylic rubber: weight average molecular weight 500,000, glycidyl functional group monomer ratio 3 mol%, Tg 12 ° C.)
HTR-860P-30B-CHN: (Sample name, manufactured by Nagase ChemteX Corporation, acrylic rubber: weight average molecular weight 230,000, glycidyl functional group monomer ratio 8 mass%, Tg-7 ° C.)
(カップリング剤)
A-189:(商品名、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、γ-メルカプトプロピルトリメトキシシラン)
A-1160:(商品名、モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社製、γ-ウレイドプロピルトリエトキシシラン)
(Coupling agent)
A-189: (trade name, manufactured by Momentive Performance Materials Japan GK, γ-mercaptopropyltrimethoxysilane)
A-1160: (Product name, Momentive Performance Materials Japan GK, γ-ureidopropyltriethoxysilane)
(硬化促進剤)
キュアゾール2PZ-CN:(商品名、四国化成工業株式会社製、1-シアノエチル-2-フェニルイミダゾール)
(Curing accelerator)
Cureazole 2PZ-CN: (trade name, manufactured by Shikoku Kasei Kogyo Co., Ltd., 1-cyanoethyl-2-phenylimidazole)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 次に、得られたワニスを100メッシュのフィルターでろ過し、真空脱泡した。真空脱泡後のワニスを、基材フィルムである、離型処理を施したポリエチレンテレフタレート(PET)フィルム(厚さ38μm)上に塗布した。塗布したワニスを、90℃で5分間、続いて140℃で5分間の2段階で加熱乾燥した。こうして、PETフィルム上に、Bステージ状態にある厚さ60μmのフィルム状接着剤を備えた接着シートを得た。 Next, the obtained varnish was filtered through a 100 mesh filter and vacuum degassed. The varnish after vacuum defoaming was applied onto a polyethylene terephthalate (PET) film (thickness: 38 μm) which was a base film and was subjected to a release treatment. The applied varnish was heat-dried in two stages of 90 ° C. for 5 minutes, followed by 140 ° C. for 5 minutes. Thus, an adhesive sheet provided with a film adhesive having a thickness of 60 μm in a B-stage state on a PET film was obtained.
<各種物性の評価>
 得られたフィルム状接着剤について下記のとおり評価をした。評価結果を表3及び表4に示す。
<Evaluation of various physical properties>
The obtained film adhesive was evaluated as follows. The evaluation results are shown in Tables 3 and 4.
[ずり応力緩和率測定]
 基材フィルムを剥離除去したフィルム状接着剤を複数枚貼り合わせ、厚さ方向に10mm角に打ち抜いた。これにより10mm角、厚さ360μmの、フィルム状接着剤の評価用サンプルを得た。動的粘弾性装置ARES(TA社製)に直径8mmの円形アルミプレート治具をセットし、この治具で上記評価用サンプルを挟み込んだ。その後、評価用サンプルを室温(30℃)から最大で60℃/分の昇温速度で100℃まで昇温した後、10%の歪を与えて0.1秒経過後のずり応力を記録した。この応力を初期応力で規格化し、応力緩和率を算出した。
[Shear stress relaxation rate measurement]
A plurality of film adhesives from which the base film was peeled and removed were bonded together and punched out to 10 mm square in the thickness direction. As a result, a sample for evaluation of a film adhesive having a 10 mm square and a thickness of 360 μm was obtained. A circular aluminum plate jig having a diameter of 8 mm was set on a dynamic viscoelastic device ARES (manufactured by TA), and the sample for evaluation was sandwiched with the jig. Thereafter, the sample for evaluation was heated from room temperature (30 ° C.) to 100 ° C. at a maximum rate of 60 ° C./min, 10% strain was applied, and shear stress after 0.1 seconds was recorded. . This stress was normalized with the initial stress, and the stress relaxation rate was calculated.
[ずり粘度測定]
 ずり応力緩和率測定と同様にして、評価用サンプルに対し5%の歪みを周波数1Hzで与えながら、5℃/分の昇温速度で室温(30℃)から140℃まで昇温させながらずり粘度を測定した。そして、120℃での測定値を記録した。
[Shear viscosity measurement]
Similar to the shear stress relaxation rate measurement, the shear viscosity was increased from room temperature (30 ° C.) to 140 ° C. at a rate of temperature increase of 5 ° C./min while applying 5% strain to the sample for evaluation at a frequency of 1 Hz. Was measured. And the measured value in 120 degreeC was recorded.
[圧着後埋込性評価]
 接着シートのフィルム状接着剤を2枚貼り合わせて厚さ120μmとし、これを厚さ100μmの半導体ウェハ(8インチ)に70℃で貼り付けた。次に、それらを7.5mm角にダイシングして、接着シート付き半導体素子を得た。
 一方、ダイシング・ダイボンディング一体型フィルム(日立化成株式会社製、HR-9004-10(厚さ10μm))を、厚さ50μmの半導体ウェハ(8インチ)に70℃で貼り付けた。次に、それらを3.0mm角にダイシングして、上記の一体型フィルム付きチップを得た。一体型フィルム付きチップを、表面凹凸が最大6μmである評価用基板に、120℃、0.20MPa、2秒間の条件で圧着した後、120℃で2時間加熱して一体型フィルムを半硬化させた。これによりチップ付き基板を得た。
 得られたチップ付き基板に、接着シート付き半導体素子を、120℃、0.20MPa、1.5秒間の条件で圧着した。この際、先に圧着しているチップが、接着シート付き半導体素子の真ん中にくるように位置合わせをした。
 加熱後室温まで自然放冷した構造体を、超音波C-SCAN画像診断装置(インサイト株式会社製、品番IS350、プローブ:75MHz)にて分析し、圧着後埋込性を確認した。圧着後埋込性は以下の基準により評価した。
◎:圧着フィルム面積に対する空隙面積の割合が3%未満。
○:圧着フィルム面積に対する空隙面積の割合が3%以上5%未満。
△:圧着フィルム面積に対する空隙面積の割合が5%以上8%未満。
×:圧着フィルム面積に対する空隙面積の割合が8%以上。
[Evaluation of embedding after crimping]
Two film-like adhesives of an adhesive sheet were bonded to a thickness of 120 μm, and this was bonded to a semiconductor wafer (8 inches) having a thickness of 100 μm at 70 ° C. Next, they were diced to 7.5 mm square to obtain a semiconductor element with an adhesive sheet.
On the other hand, a dicing / die bonding integrated film (manufactured by Hitachi Chemical Co., Ltd., HR-9004-10 (thickness 10 μm)) was attached to a semiconductor wafer (8 inches) having a thickness of 50 μm at 70 ° C. Next, they were diced into 3.0 mm squares to obtain the above chip with integrated film. The chip with integrated film is pressure-bonded to an evaluation substrate having a maximum surface roughness of 6 μm under the conditions of 120 ° C., 0.20 MPa, 2 seconds, and then heated at 120 ° C. for 2 hours to semi-cure the integrated film. It was. Thereby, a substrate with a chip was obtained.
The semiconductor element with an adhesive sheet was pressure-bonded to the obtained substrate with chip under the conditions of 120 ° C., 0.20 MPa, and 1.5 seconds. At this time, alignment was performed so that the chip that was previously crimped was in the middle of the semiconductor element with the adhesive sheet.
The structure which was naturally cooled to room temperature after heating was analyzed with an ultrasonic C-SCAN diagnostic imaging apparatus (Insight Co., Ltd., product number IS350, probe: 75 MHz), and the embedding property was confirmed after press bonding. The embedding after crimping was evaluated according to the following criteria.
A: The ratio of the void area to the pressure-bonded film area is less than 3%.
○: The ratio of the void area to the pressure-bonded film area is 3% or more and less than 5%.
Δ: The ratio of the void area to the pressure-bonded film area is 5% or more and less than 8%.
X: The ratio of the void area to the pressure-bonded film area is 8% or more.
[ブリード量評価]
 圧着後埋込性評価にて得られた構造体を、光学顕微鏡を用いて真上から観察した。そして、半導体素子の縁を始点として、圧着により半導体素子の縁から押し出されたフィルム状接着剤の縁までの距離を測長した。測長は顕微鏡付属の画像解析ソフトを用いて行い、測長された距離の最大値をブリード量とした。なお、圧着後埋込性が×及び△の例については評価を行わなかった。
[Bleed amount evaluation]
The structure obtained by the embedding evaluation after crimping was observed from directly above using an optical microscope. Then, using the edge of the semiconductor element as a starting point, the distance to the edge of the film adhesive extruded from the edge of the semiconductor element by pressure bonding was measured. The length measurement was performed using the image analysis software attached to the microscope, and the maximum value of the measured distance was taken as the bleed amount. In addition, evaluation was not performed about the example whose embedding after press bonding is x and (triangle | delta).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 10…フィルム状接着剤、14…基板、42…樹脂(封止材)、88…第1のワイヤ、98…第2のワイヤ、200…半導体装置、Wa…第1の半導体素子、Waa…第2の半導体素子。 DESCRIPTION OF SYMBOLS 10 ... Film adhesive, 14 ... Board | substrate, 42 ... Resin (sealing material), 88 ... 1st wire, 98 ... 2nd wire, 200 ... Semiconductor device, Wa ... 1st semiconductor element, Waa ... 1st 2. Semiconductor element.

Claims (8)

  1.  基板上に第1のワイヤを介して第1の半導体素子を電気的に接続する第1のダイボンド工程と、
     前記第1の半導体素子の面積よりも大きい第2の半導体素子の片面に、100℃における0.1秒後のずり応力緩和率が40~85%であるフィルム状接着剤を貼付するラミネート工程と、
     前記フィルム状接着剤が貼付された第2の半導体素子を、前記フィルム状接着剤が前記第1の半導体素子を覆うように載置し、前記フィルム状接着剤を圧着することで、前記第1のワイヤ及び前記第1の半導体素子を前記フィルム状接着剤に埋め込む第2のダイボンド工程と、
    を備える、半導体装置の製造方法。
    A first die bonding step for electrically connecting the first semiconductor element on the substrate via the first wire;
    A laminating step of attaching a film adhesive having a shear stress relaxation rate of 40 to 85% after 0.1 second at 100 ° C. to one side of the second semiconductor element larger than the area of the first semiconductor element; ,
    The second semiconductor element to which the film-like adhesive is attached is placed so that the film-like adhesive covers the first semiconductor element, and the film-like adhesive is pressure-bonded. A second die bonding step of embedding the wire and the first semiconductor element in the film adhesive;
    A method for manufacturing a semiconductor device.
  2.  前記フィルム状接着剤の、120℃におけるずり粘度が5000Pa・s以下である、請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the film-like adhesive has a shear viscosity at 120 ° C of 5000 Pa · s or less.
  3.  前記フィルム状接着剤が、アクリル樹脂及びエポキシ樹脂を含む、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the film adhesive includes an acrylic resin and an epoxy resin.
  4.  前記フィルム状接着剤が、無機フィラー及び有機フィラーの少なくとも一方を含む、請求項1~3のいずれか一項に記載の製造方法。 The production method according to any one of claims 1 to 3, wherein the film adhesive contains at least one of an inorganic filler and an organic filler.
  5.  基板上に第1のワイヤを介して第1の半導体素子が電気的に接続されると共に、前記第1の半導体素子上に、前記第1の半導体素子の面積よりも大きい第2の半導体素子が圧着されてなる半導体装置において、前記第2の半導体素子を圧着すると共に、前記第1のワイヤ及び前記第1の半導体素子を埋め込むために用いられる、100℃における0.1秒後のずり応力緩和率が40~85%である、フィルム状接着剤。 A first semiconductor element is electrically connected to the substrate via a first wire, and a second semiconductor element larger than the area of the first semiconductor element is formed on the first semiconductor element. In a semiconductor device formed by pressure bonding, the second semiconductor element is pressure-bonded and used for embedding the first wire and the first semiconductor element, and shear stress relaxation after 0.1 seconds at 100 ° C. A film adhesive having a rate of 40 to 85%.
  6.  120℃におけるずり粘度が5000Pa・s以下である、請求項5に記載のフィルム状接着剤。 The film adhesive according to claim 5, wherein the shear viscosity at 120 ° C. is 5000 Pa · s or less.
  7.  アクリル樹脂及びエポキシ樹脂を含む、請求項5又は6に記載のフィルム状接着剤。 The film adhesive according to claim 5 or 6, comprising an acrylic resin and an epoxy resin.
  8.  無機フィラー及び有機フィラーの少なくとも一方を含む、請求項5~7のいずれか一項に記載のフィルム状接着剤。
     
     
    The film adhesive according to any one of claims 5 to 7, comprising at least one of an inorganic filler and an organic filler.

PCT/JP2018/003021 2018-01-30 2018-01-30 Semiconductor device production method and film-shaped adhesive WO2019150444A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880087177.6A CN111630642B (en) 2018-01-30 2018-01-30 Method for manufacturing semiconductor device and film-like adhesive
JP2019568437A JP6988923B2 (en) 2018-01-30 2018-01-30 Manufacturing method of semiconductor devices and film-like adhesives
PCT/JP2018/003021 WO2019150444A1 (en) 2018-01-30 2018-01-30 Semiconductor device production method and film-shaped adhesive
SG11202004755QA SG11202004755QA (en) 2018-01-30 2018-01-30 Semiconductor device production method and film-shaped adhesive
KR1020207018666A KR102429210B1 (en) 2018-01-30 2018-01-30 Semiconductor device manufacturing method and film adhesive
TW108103160A TWI785197B (en) 2018-01-30 2019-01-28 Semiconductor device manufacturing method and film adhesive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/003021 WO2019150444A1 (en) 2018-01-30 2018-01-30 Semiconductor device production method and film-shaped adhesive

Publications (1)

Publication Number Publication Date
WO2019150444A1 true WO2019150444A1 (en) 2019-08-08

Family

ID=67480016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/003021 WO2019150444A1 (en) 2018-01-30 2018-01-30 Semiconductor device production method and film-shaped adhesive

Country Status (6)

Country Link
JP (1) JP6988923B2 (en)
KR (1) KR102429210B1 (en)
CN (1) CN111630642B (en)
SG (1) SG11202004755QA (en)
TW (1) TWI785197B (en)
WO (1) WO2019150444A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200128051A (en) * 2018-03-08 2020-11-11 쇼와덴코머티리얼즈가부시끼가이샤 Semiconductor device manufacturing method and film adhesive
CN117170005A (en) * 2023-08-19 2023-12-05 荣谕科技(成都)有限公司 Lens assembly and method of manufacture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040835A (en) * 2008-08-06 2010-02-18 Toshiba Corp Manufacturing method of multilayer semiconductor device
JP2010118554A (en) * 2008-11-13 2010-05-27 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2012214526A (en) * 2011-03-28 2012-11-08 Hitachi Chemical Co Ltd Film adhesive, adhesive sheet and semiconductor apparatus
JP2014175459A (en) * 2013-03-08 2014-09-22 Hitachi Chemical Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2016216562A (en) * 2015-05-18 2016-12-22 日東電工株式会社 Adhesive film, dicing tape-integrated adhesive film, double-layer film, method for producing semiconductor device, and semiconductor device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11238856A (en) * 1998-02-23 1999-08-31 Mitsubishi Electric Corp Semiconductor storage device, manufacture thereof and protective sheet used therefor
JP2004217859A (en) * 2003-01-17 2004-08-05 Hitachi Chem Co Ltd Method for manufacturing adhesive sheet, semiconductor device, and its manufacturing method
JP4599800B2 (en) * 2003-02-20 2010-12-15 日立化成工業株式会社 Adhesive sheet manufacturing method, semiconductor device and manufacturing method thereof
JP2004323543A (en) * 2003-04-21 2004-11-18 Nitto Denko Corp Pressure-sensitive adhesive composition for optical member, pressure-sensitive adhesive layer for optical member, adherent optical member and image display device
JP2005103180A (en) 2003-10-02 2005-04-21 Matsushita Electric Ind Co Ltd Washing machine
CN101714513B (en) * 2004-04-20 2012-05-30 日立化成工业株式会社 Method for producing the semiconductor device
CN101627465B (en) * 2007-02-28 2011-06-01 住友电木株式会社 Adhesive film for semiconductor and semiconductor device using the adhesive film
JP5524465B2 (en) 2007-10-24 2014-06-18 日立化成株式会社 Adhesive sheet, semiconductor device using the same, and manufacturing method thereof
KR20140142676A (en) * 2013-06-04 2014-12-12 닛토덴코 가부시키가이샤 Thermosetting die-bonding film, die-bonding film with dicing sheet, and process for producing semiconductor device
JP6114149B2 (en) * 2013-09-05 2017-04-12 トヨタ自動車株式会社 Semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040835A (en) * 2008-08-06 2010-02-18 Toshiba Corp Manufacturing method of multilayer semiconductor device
JP2010118554A (en) * 2008-11-13 2010-05-27 Nec Electronics Corp Semiconductor device and method of manufacturing the same
JP2012214526A (en) * 2011-03-28 2012-11-08 Hitachi Chemical Co Ltd Film adhesive, adhesive sheet and semiconductor apparatus
JP2014175459A (en) * 2013-03-08 2014-09-22 Hitachi Chemical Co Ltd Semiconductor device and semiconductor device manufacturing method
JP2016216562A (en) * 2015-05-18 2016-12-22 日東電工株式会社 Adhesive film, dicing tape-integrated adhesive film, double-layer film, method for producing semiconductor device, and semiconductor device

Also Published As

Publication number Publication date
JPWO2019150444A1 (en) 2021-01-07
CN111630642B (en) 2023-05-26
JP6988923B2 (en) 2022-01-05
KR20200112820A (en) 2020-10-05
SG11202004755QA (en) 2020-06-29
KR102429210B1 (en) 2022-08-03
CN111630642A (en) 2020-09-04
TWI785197B (en) 2022-12-01
TW201936829A (en) 2019-09-16

Similar Documents

Publication Publication Date Title
JP6135202B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP5736899B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP6133542B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP5428423B2 (en) Semiconductor device and film adhesive
JP6222395B1 (en) Film adhesive and dicing die bonding integrated adhesive sheet
JP6191799B1 (en) Semiconductor device, semiconductor device manufacturing method, and film adhesive
TWI774916B (en) Manufacturing method of semiconductor device, film-like adhesive, and adhesive sheet
JP6443521B2 (en) Film adhesive and dicing die bonding integrated adhesive sheet
WO2019151260A1 (en) Manufacturing method for semiconductor device, and adhesive film
TWI785197B (en) Semiconductor device manufacturing method and film adhesive
JP6191800B1 (en) Film adhesive and dicing die bonding integrated adhesive sheet
JP7140143B2 (en) Semiconductor device manufacturing method and film adhesive
JP7115537B2 (en) Semiconductor device manufacturing method and film adhesive
JP6213618B2 (en) Film adhesive, adhesive sheet and semiconductor device
JP2020145227A (en) Adhesive film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18903687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019568437

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18903687

Country of ref document: EP

Kind code of ref document: A1